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Abstract

Bioluminescence tomography (BLT) is a recently developed area in biomedical imaging. The goal of BLT is to quantitatively recon-
struct a bioluminescent source distribution within a small animal from optical signals on the surface of the animal body. While there have
been theoretical investigations of the BLT problem in the literature, in this paper, we propose a more general mathematical framework
for a study of the BLT problem. For the proposed formulation, we establish a well-posedness result and explore its relation to the for-
mulation studied previously in other papers. We introduce numerical methods for solving the BLT problem, show convergence, and
derive error estimates for the discrete solutions. Numerical simulation results are presented showing improvement of solution accuracy
with the new general mathematical framework over that with the standard formulation of BLT.
� 2007 Elsevier B.V. All rights reserved.

MSC: 2C55; 31B20; 49K40; 34K28; 65N15

Keywords: Bioluminescence tomography; Inverse problem; Well-posedness; Numerical solution; Error estimate
1. Introduction

Recently, molecular imaging has been developed rapidly
in the study of physiological and pathological processes
in vivo at the cellular and molecular levels, see, e.g.
[3,15,17,18] and references therein. As a recently developed
optical imaging technique of molecular imaging modalities,
bioluminescence tomography (BLT) provides quantitative
and localized analysis on a bioluminescent source distribu-
tion in a living object [1,5,9–11]. Without going into detail,
we notice that BLT problems reduce to determination of a
light source function p in the differential equation

�divðDruÞ þ lu ¼ pvX0
in X ð1Þ

with following possible boundary conditions:
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uþ 2Domu ¼ g� on C; ð2Þ
Domu ¼ �g � g2 on C; ð3Þ
u ¼ g� þ 2g � g1 on C: ð4Þ

Here D ¼ ½3ðlþ l0Þ��1, l and l0 are given absorption and
reduced scattering coefficients, both the function g and
the influx g� are measurement data, and om denotes the
outward normal differentiation operator. Moreover, X0

is a measurable subset of X or X itself, vX0
is the character-

istic function of X0, i.e., its value is 1 in X0 and is 0 outside
X0.

Note that only two of the three boundary conditions
(2)–(4) are independent. As was pointed out in [9], to deter-
mine the source function p, we may associate one of the
above three boundary conditions (2)–(4) with the differen-
tial equation (1) to form a boundary value problem while
choosing one of the remaining boundary conditions to
form the inverse problem for p. In particular, in [9], discus-
sion of the inverse problem was made for the boundary
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value problem (1) and (2) with the measurement matching
for (4). As noted in [9], this pointwise formulation is ill-
posed. In general, there are infinitely many solutions. When
the form of the source function is pre-specified, there is no
solution if data are inconsistent. In this regard, some
uniqueness results on the pointwise formulation of the
inverse problem are presented in [19]. Also, the source
function does not depend continuously on the data. To cir-
cumvent these difficulties, a reformulation of the problem
can be introduced through weak formulations of boundary
value problems and Tikhonov regularization. For this pur-
pose, we first introduce a few symbols for function spaces
and sets. For a set G for X, X0 or C, we denote by H sðGÞ
the standard Sobolev space with corresponding inner prod-
uct ð�; �Þs;G and norm k � ks;G, and H 0ðGÞ refers to L2ðGÞ. Let
V ¼ H 1ðXÞ and Q ¼ L2ðX0Þ. We also introduce the space
V 0 ¼ H 1

0ðXÞ, and for a given g1 2 V , we denote g1 þ V 0

for the set fg1 þ vjv 2 V 0g.
For any q 2 Q, we denote by u1 ¼ u1ðqÞ 2 V the solution

of the problemZ
X
ðDru1 � rvþ lu1vÞdx ¼

Z
X0

qvdxþ
Z

C
g2v ds 8v 2 V :

ð5Þ

Note that this is a weak formulation of the boundary value
problem defined by (1) and (3). Suppose the admissible
source function p belongs to a closed convex subset de-
noted Qad of the space Q. Then introduce the functional

J ð1Þe ðqÞ ¼
1

2
ku1ðqÞ � g1k

2
0;C þ

e
2
kqk2

0;X0
; e P 0;

and the following reformulation problem.

Problem 1.1. Find pð1Þe 2 Qad such that
J ð1Þe pð1Þe

� �
¼ inf

q2Qad

J ð1Þe ðqÞ:

In [9], well-posedness of this reformulation is studied. It
is shown that the reformulated problem with e > 0 leads to
stable and convergent numerical schemes.

Similar discussion of the inverse problem can be made
for other choices of boundary value condition and mea-
surement data. As an example, we may switch the roles
played by the boundary conditions (3) and (4), i.e., we
define the boundary value problem by (1) and (4), and treat
(3) as a matching condition. The pointwise formulation of
this problem is again ill-posed. So we turn to a regularized
formulation. For any q 2 Q, we denote by u2 ¼ u2ðqÞ 2 g1

þV 0 the solution of the problemZ
X
ðDru2 � rvþ lu2vÞdx ¼

Z
X0

qvdx 8v 2 V 0: ð6Þ

This is a weak formulation of the boundary value problem
defined by (1) and (4). Introduce the functional

J ð2Þe ðqÞ ¼
1

2
kDomu2ðqÞ � g2k

2
0;C þ

e
2
kqk2

0;X0
; e P 0;
and the problem:

Problem 1.2. Find pð2Þe 2 Qad such that

J ð2Þe pð2Þe

� �
¼ inf

q2Qad

J ð2Þe ðqÞ:

Results similar to those for Problem 1.1 are valid for
Problem 1.2.

In this paper, we propose a more general mathematical
framework for the reconstruction of the source function in
BLT. This framework covers both Problems 1.1 and 1.2 as
special cases, and it leads to more accurate numerical solu-
tions. In Section 2, we introduce the new general mathemat-
ical framework for the BLT problem, and discuss solution
existence, uniqueness, and continuous dependence on the
data. In Section 3, we explore the limiting behaviors of the
solution of the regularized solution as any of the parameters
tends to 0. In particular, we show how solutions of Problems
1.1 and 1.2 can be recovered in the limit. Finite elements
approximations, including semi-discrete and full-discrete
approximations, are introduced and studied in Section 4.
In this part, we also obtain convergence and error estimates
of numerical solutions. In Section 5, we report some numer-
ical results that show how solution accuracy is improved
with proper choices of parameters in the general framework.
Some conclusion remarks are stated in the last section.

We comment that the new general mathematical frame-
work in this paper is presented for the BLT problem. It is
straightforward to extend this general framework to multi-
spectral BLT problems studied in [11].

2. A general framework for BLT

In the rest of the paper, we use c to denote a positive
constant taking possibly different values at different places.

We first introduce assumptions on the data for simplic-
ity in the theoretical discussions below. The smoothness
assumptions on the data can be substantially weakened
for numerical simulations. We use d to denote the space
dimension. For applications, d 6 3. However, our discus-
sions are valid for any space dimension. Let X � Rd be
an open and bounded set with a boundary C. We assume
either C 2 C2 or X is convex. It is shown in [8, Section
1.2] that the boundary of an open, bounded and convex
set is Lipschitz continuous. We also assume D 2 C0;1ðXÞ,
D P D0 a.e. in X for some constant D0 > 0, l 2 L1ðXÞ,
l P 0 a.e. in X and l > 0 a.e. in a subset of X with positive
measure. Moreover, we assume g1 2 H 3=2ðCÞ, g2 2 L2ðCÞ.
Note that the function g1 is the trace of an H 2ðXÞ function,
that will also be denoted as g1. In other words, we use the
same symbol g1 for both an H 2ðXÞ function and its trace in
H 3=2ðXÞ such that for some constant c > 0,

kg1k2;X 6 ckg1k3=2;C:

See [8] for more details.
Under the above assumptions, we can apply the Lax–

Milgram lemma [2,4,6] to show that the solutions u1ðqÞ
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and u2ðqÞ of the boundary value problems (5) and (6) exist
and are unique. The following bound follows immediately
from the definition (5):

ku1ðqÞk1;X 6 cðkqk0;X0
þ kg2k0;CÞ: ð7Þ

Applying regularity results for elliptic problems ([6] for the
case C 2 C2 and [8, Section 3.2] for the case where X is con-
vex), we have

ku2ðqÞk2;X 6 cðkqk0;X0
þ kg1k3=2;CÞ; ð8Þ

and if g2 2 H 1=2ðCÞ, which we will assume

ku1ðqÞk2;X 6 cðkqk0;X0
þ kg2k1=2;CÞ: ð9Þ

By the regularity bound (8), we know in particular that
omu2ðqÞ 2 L2ðCÞ and komu2ðqÞk0;C is well defined.

For fixed constants r1; r2 P 0, we define the following
functional with a Tikhonov regularization [12,14]

J e;r1;r2
ðqÞ ¼ r1

2
ku1ðqÞ � g1k

2
0;C þ

r2

2
kDomu2ðqÞ � g2k

2
0;C

þ e
2
kqk2

0;X0
; e P 0: ð10Þ

Then we reformulate the BLT problem as follows.

Problem 2.1. Find pe;r1;r2
2 Qad such that

J e;r1;r2
ðpe;r1;r2

Þ ¼ inf
q2Qad

J e;r1;r2
ðqÞ: ð11Þ

When r1 ¼ 1 and r2 ¼ 0, Problem 2.1 reduces to Problem
1.1, which is the problem discussed in [9]. When r1 ¼ 0
and r2 ¼ 1, we obtain Problem 1.2 from Problem 2.1.
Theoretically, it is natural to use ku1ðqÞ � g1k1=2;C and
kDomu2ðqÞ � g2k�1=2;C to replace ku1ðqÞ � g1k0;C and
kDomu2ðqÞ � g2k0;C, respectively, in the definition (10).
However, it is more convenient to use the k � k0;C norm in
the cost function for actual simulation. When g1 or g2 is
known only on a part C0 of C, we can replace
ku1ðqÞ � g1k0;C or kDomu2ðqÞ � g2k0;C by ku1ðqÞ � g1k0;C0

or kDomu2ðqÞ � g2k0;C0
, respectively, in (10).

For any p; q 2 Q, we can verify that u1ðp þ qÞ � u1ðpÞ
and u2ðp þ qÞ � u2ðpÞ are linear in q. So we have

uiðp1 þ qÞ � uiðp2Þ ¼ uiðp1Þ � uiðp2 � qÞ 8p1; p2; q 2 Q;

i ¼ 1; 2: ð12Þ

For the first and second Frechet derivatives of J e;r1;r2
, we

have the expressions

J 0e;r1;r2
ðpÞq ¼ r1ðu1ðpÞ � g1; u1ðqÞ � u1ð0ÞÞ0;C

þ r2ðDomu2ðpÞ � g2;Domðu2ðqÞ � u2ð0ÞÞÞ0;C
þ eðp; qÞ0;X0

; ð13Þ
J 00e;r1;r2

ðpÞq2 ¼ r1ku1ðqÞ � u1ð0Þk2
0;C þ r2kDomðu2ðqÞ

� u2ð0ÞÞk2
0;C þ ekqk2

0;X0
:

Hence, for e > 0, J e;r1;r2
ð�Þ is strictly convex.

Now we are in the position to show the existence and
uniqueness of the solution of Problem 2.1 and optimality
condition.
Theorem 2.2. For any e > 0 and r1; r2 P 0 with r1 þ r2 > 0,

Problem 2.1 has a unique solution pe;r1;r2
2 Qad. Moreover,

the solution pe;r1;r2
2 Qad is characterized by the following

variational inequality:

r1ðu1ðpe;r1;r2
Þ � g1; u1ðqÞ � u1ðpe;r1;r2

ÞÞ0;C
þ r2ðDomu2ðpe;r1;r2

Þ � g2;Domðu2ðqÞ � u2ðpe;r1;r2
ÞÞÞ0;C

þ eðpe;r1;r2
; q� pe;r1;r2

Þ0;X0
P 0 8q 2 Qad: ð14Þ

When Qad is a subspace of Q, the inequality above is reduced

to an equation

r1ðu1ðpe;r1;r2
Þ � g1; u1ðqÞ � u1ð0ÞÞ0;C

þ r2ðDomu2ðpe;r1;r2
Þ � g2;Domðu2ðqÞ � u2ð0ÞÞÞ0;C

þ eðpe;r1;r2
; qÞ0;X0

¼ 0 8q 2 Qad: ð15Þ

Proof. Note that Qad is a closed and convex set of Hilbert
space Q, J e;r1;r2

: Qad ! R is strictly convex and continuous
with the property J e;r1;r2

ðqÞ ! 1 as kqk0;X0
!1. Then, by

a standard result on convex problem [2,7], there is a unique
solution pe;r1;r2

2 Qad to Problem 2.1 and the solution is
characterized by the condition

J 0e;r1;r2
ðpe;r1;r2

Þðq� pe;r1;r2
ÞP 0 8q 2 Qad:

Due to the formula (13), this condition is exactly (14).
If Qad is a subspace of Q, then we can take q ¼ 0 and

q ¼ 2pe;r1;r2
in (14) and use the linearity (12) to conclude

that

r1ðu1ðpe;r1;r2
Þ � g1; u1ð0Þ � u1ðpe;r1;r2

ÞÞ0;C
þ r2ðDomu2ðpe;r1;r2

Þ � g2;Domðu2ð0Þ � u2ðpe;r1;r2
ÞÞÞ0;C

þ eðpe;r1;r2
;�pe;r1;r2

Þ0;X0
¼ 0:

Subtracting this equation from inequality (14), we get

r1ðu1ðpe;r1;r2
Þ � g1; u1ðqÞ � u1ð0ÞÞ0;C

þ r2ðDomu2ðpe;r1;r2
Þ � g2;Domðu2ðqÞ � u2ð0ÞÞÞ0;C

þ eðpe;r1;r2
; qÞ0;X0

P 0 8q 2 Qad: ð16Þ

Replace q by �q in (16) and use (12) again to get

r1ðu1ðpe;r1;r2
Þ � g1; u1ðqÞ � u1ð0ÞÞ0;C

þ r2ðDomu2ðpe;r1;r2
Þ � g2;Domðu2ðqÞ � u2ð0ÞÞÞ0;C

þ eðpe;r1;r2
; qÞ0;X0

6 0 8q 2 Qad: ð17Þ

We then combine (16) and (17) to obtain the variational
equation (15). h

As in [9,11], we can show that the solution pe;r1;r2
of

Problem 2.1 depends continuously on D, l, g1, g2, r1 > 0,
r2 > 0 and e > 0. We omit the detail in this paper.
3. Limiting behaviors

In this section, we analyze limiting behaviors of the solu-
tion pe;r1;r2

of Problem 2.1 in three cases: e! 0, r1 ! 0, or
r2 ! 0.
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By an argument similar to the proof of Theorem 2.2, we
know that a solution pr1;r2

2 Qad of Problem 2.1 with e ¼ 0
is characterized by a variational inequality

r1ðu1ðpr1;r2
Þ � g1; u1ðqÞ � u1ðpr1;r2

ÞÞ0;C þ r2ðDomu2ðpr1;r2
Þ

� g2;Domðu2ðqÞ � u2ðpr1;r2
ÞÞÞ0;C P 0 8q 2 Qad: ð18Þ

Denote by Sr1;r2
� Qad the set of solutions of Problem 2.1

with e ¼ 0. If Sr1;r2
6¼ ;, it is straightforward to show that

Sr1;r2
is closed and convex. We have the following result.

Proposition 3.1. Assume Sr1;r2
6¼ ;. Then
pe;r1;r2
! p0;r1;r2

in Q; as e! 0; ð19Þ

where p0;r1;r2
2 Sr1;r2

satisfies

kp0;r1;r2
k0;X0

¼ inf
q2Sr1 ;r2

kqk0;X0
: ð20Þ

Proof. First we note that since Sr1;r2
is non-empty, closed

and convex, the element p0;r1;r2
2 Sr1;r2

is uniquely defined
by (20).

Take q ¼ p0;r1;r2
in (14), q ¼ pe;r1;r2

in (18) for
pr1;r2

¼ p0;r1;r2
, and add the two resulting inequalities to get
eðpe;r1;r2
; p0;r1;r2

� pe;r1;r2
Þ0;X0

P r1ku1ðp0;r1;r2
Þ � u1ðp�;r1;r2

Þk2
0;C

þ r2kDomðu2ðp0;r1;r2
Þ � u2ðpe;r1;r2

ÞÞk2
0;C:

Thus, ðpe;r1;r2
; p0;r1;r2

� pe;r1;r2
Þ0;X0

P 0, then kpe;r1;r2
k0;X0

6

kp0;r1;r2
k0;X0

and fpe;r1;r2
ge is uniformly bounded in Q. So

there is a subsequence fpe0 ;r1;r2
ge0 of fpe;r1;r2

ge, that converges
weakly to some element pr1;r2

in Q. Since Sr1;r2
is closed and

convex in Q, pr1;r2
2 Sr1;r2

, and

kpr1;r2
k0;X0

6 lim
e0!0
kpe0 ;r1;r2

k0;X0
6 kp0;r1;r2

k0;X0
:

Since p0;r1;r2
2 Sr1;r2

defined by (20) is unique, pr1;r2
¼ p0;r1;r2

.
Now that the limit p0;r1;r2

does not depend on the subse-
quence selected, the entire sequence fpe;r1;r2

ge converges
weakly to p0;r1;r2

as e! 0 in Q. By

kpe;r1;r2
� p0;r1;r2

k2
0;X0

¼ kpe;r1;r2
k2

0;X0
� 2ðpe;r1;r2

; p0;r1;r2
Þ0;X0
þ kp0;r1;r2

k2
0;X0

6 2kp0;r1;r2
k2

0;X0
� 2ðpe;r1;r2

; p0;r1;r2
Þ0;X0
! 0

as e! 0, we obtain the strong convergence of pe;r1;r2
to

p0;r1;r2
in Q as e! 0. h

If Qad is a bounded set, then Sr1;r2
is non-empty. This can

be shown similar to the first part of the proof of Theorem
2.2. However, we cannot ascertain uniqueness of a solution
when e ¼ 0, see [13] in detail. In the case where the solution
set Sr1;r2

¼ fpr1;r2
g is a singleton, we conclude from Propo-

sition 3.1 that pe;r1;r2
! pr1;r2

, as e! 0 in Q.
Next we explore the behavior of the solution pe;r1;r2

as
r1 ! 0 with e > 0 and r2 > 0 being fixed. By Theorem
2.2, Problem 2.1 with r1 ¼ 0 has a unique solution pe;0;r2
.

From the inequality

J e;r1;r2
ðpe;r1;r2

Þ 6 J e;r1;r2
ðpe;0;r2

Þ;

we see that the sequence fkpe;r1;r2
k0;X0
gr1

is uniformly
bounded. From (7) and (8), we have the bounds

ku1ðpe;r1;r2
Þk1;X 6 cðkpe;r1;r2

k0;X0
þ kg2k0;CÞ;

ku2ðpe;r1;r2
Þk2;X 6 cðkpe;r1;r2

k0;X0
þ kg1k3=2;CÞ:

Thus, fku1ðpe;r1;r2
Þk1;Xgr1

and fku2ðpe;r1;r2
Þk2;Xgr1

are
uniformly bounded. In particular, the sequence
fkomu2ðpe;r1;r2

Þk0;Cgr1
is also uniformly bounded. So we can

select a subsequence fpe;r0
1
;r2
gr0

1
of fpe;r1;r2

gr1
such that

pe;r0
1
;r2
* pe;r2

in Q; as r01 ! 0

for some element pe;r2
2 Qad, and fu1ðpe;r0

1
;r2
Þgr0

1
and

fu2ðpe;r0
1
;r2
Þgr0

1
converge weakly in V and H 2ðXÞ. Using the

definitions (5) and (6), we can show that the limits of
fu1ðpe;r0

1
;r2
Þgr0

1
and fu2ðpe;r0

1
;r2
Þgr0

1
are u1ðpe;r2

Þ and u2ðpe;r2
Þ,

respectively. So

u1ðpe;r0
1
;r2
Þ* u1ðpe;r2

Þ in V ; as r01 ! 0;

u2ðpe;r0
1
;r2
Þ* u2ðpe;r2

Þ in H 2ðXÞ; as r01 ! 0:

Take the limit r01 ! 0 in (14) with r1 ¼ r01 to obtain

r2ðDomu2ðpe;r2
Þ � g2;Domðu2ðqÞ � u2ðpe;r2

ÞÞÞ0;C
þ eðpe;r2

; q� pe;r2
Þ0;X0

P 0 8q 2 Qad: ð21Þ

Thus, pe;r2
¼ pe;0;r2

by the uniqueness of a solution of Prob-
lem 2.1 with r1 ¼ 0. Since the limit pe;0;r2

does not depend
on the subsequence we choose in the above argument, the
entire family fpe;r1;r2

gr1
converges weakly to pe;0;r2

in Q as
r1 ! 0. Strong convergence can be argued as follows. Take
q ¼ pe;0;r2

in (14) and q ¼ pe;r1;r2
in (21), and add the two

resulting inequalities to obtain

r2kDomðu2ðpe;r1;r2
Þ � u2ðpe;0;r2

ÞÞk2
0;C þ ekpe;r1;r2

� pe;0;r2
k2

0;X0

6 r1ðu1ðpe;r1;r2
Þ � g1; u1ðpe;0;r2

Þ � u1ðpe;r1;r2
ÞÞ0;C ! 0

as r1 ! 0:

We see that both kpe;r1;r2
� pe;0;r2

k0;X0
and komðu2ðpe;r1;r2

Þ�
u2ðpe;0;r2

ÞÞk0;C approach zero as r1 ! 0.
In summary, we have shown the following result.

Proposition 3.2. For fixed e > 0 and r2 > 0,

pe;r1;r2
! pe;0;r2

in Q; as r1 ! 0;

where pe;0;r2
is the solution of Problem 2.1 with r1 ¼ 0.

Similarly, we can show the next result.

Proposition 3.3. For fixed e > 0 and r1 > 0,

pe;r1;r2
! pe;r1;0

in Q; asr2 ! 0;

where pe;r1;0
is the solution of Problem 2.1 with r2 ¼ 0.
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4. Finite element approximation

In this section, we discretize Problem 2.1 and study con-
vergence of the numerical solutions. We use the finite ele-
ment method to discretize the boundary value problems
(5) and (6). For clarity of statement, we consider semi-dis-
crete and full-discrete approximation separately. In the for-
mer case, we use linear finite elements to approximate the
state variables u1 and u2, whereas for full-discrete approx-
imation, additional treatment with piecewise constant
space to approximate control variable q is needed. In order
to focus on the central ideas in derivation of error bounds
for the numerical methods to be introduced, we will assume
X � Rd to be a polyhedral convex set. Error analysis of the
numerical methods can be performed under the more gen-
eral assumption that X is an open, bounded and convex set,
through a rather delicate argument.

4.1. Semi-discrete approximation

Let fThgh be a regular family of finite element parti-
tions of X into simplicial elements. Define the linear finite
element space

V h ¼ fv 2 CðXÞjv linear in K; 8K 2Thg
and its subspace

V h
0 ¼ V h \ V 0 ¼ fv 2 CðXÞjv piecewise linear; v ¼ 0 on Cg:

Denote by PV h v for the piecewise linear interpolant of
v 2 H 2ðXÞ. Then we have the existence of a constant
c > 0 such that [4,16]

kv�PV h vk0;X þ hkv�PV h vk1;X 6 ch2kvk2;X 8v 2 H 2ðXÞ:
ð22Þ

Let gh
1 ¼ PV h g1 2 V h. Then

kg1 � gh
1km;X 6 ch2�mkg1k2;X 6 ch2�mkg1k3=2;C; m ¼ 0; 1:

ð23Þ
We will use the symbol gh

1 þ V h
0 for the set

fv 2 V hjvðaiÞ ¼ g1ðaiÞ 8 vertex ai 2 K \ C; 8K 2Thg:
For any q 2 Q, denote by uh

1 ¼ uh
1ðqÞ 2 V h and

uh
2 ¼ uh

2ðqÞ 2 gh
1 þ V h

0 the solutions of the problemsZ
X

Druh
1 � rvh þ luh

1vh
� �

dx

¼
Z

X0

qvh dxþ
Z

C
g2vh ds 8vh 2 V h ð24Þ

andZ
X

Druh
2 � rvh þ luh

2vh
� �

dx ¼
Z

X0

qvh dx 8vh 2 V h
0; ð25Þ

respectively.
By the Lax–Milgram lemma and the assumptions made

on the data, the solutions uh
1ðqÞ and uh

2ðqÞ uniquely exist.
Define the functional

J h
e;r1;r2
ðqÞ ¼ r1

2
uh

1ðqÞ � gh
1

�� ��2

0;C
þ r2

2
kDomuh

2ðqÞ � g2k
2
0;C

þ e
2
kqk2

0;X0
; e > 0: ð26Þ

Then the semi-discrete approximation of Problem 2.1 is the
following formulation.

Problem 4.1. Find ph
e;r1;r2

2 Qad such that

J h
e;r1;r2

ph
e;r1;r2

� �
¼ inf

q2Qad

J h
e;r1;r2
ðqÞ: ð27Þ

Note that in the standard BLT formulation [9], r2 ¼ 0
and only the finite element problem (24) needs to be formu-
lated and solved. In our proposed general framework, we
need to formulate and solve both (24) and (25). However,
due to the structure similarity of the two finite element
problems, the cost of solving both (24) and (25) can be
made only slightly more than that of solving (24) alone.

We summarize in the next theorem some results on
Problem 4.1 as discrete analogues of Theorem 2.2 and
Propositions 3.1–3.3.

Theorem 4.2. For any e > 0, r1; r2 P 0 with r1 þ r2 > 0,

Problem 4.1 has a unique solution ph
e;r1;r2

2 Qad, which is

characterized by a variational inequality

r1 uh
1 ph

e;r1;r2

� �
� gh

1; u
h
1ðqÞ � uh

1 ph
e;r1;r2

� �� �
0;C

þ r2 Domuh
2 ph

e;r1;r2

� �
� g2;Dom uh

2ðqÞ � uh
2ðph

e;r1;r2
Þ

� �� �
0;C

þ e ph
e;r1;r2

; q� ph
e;r1;r2

� �
0;X0

P 0 8q 2 Qad: ð28Þ

When Qad is a subspace of Q, the above inequality is reduced

to an equation

r1 uh
1 ph

e;r1;r2

� �
� gh

1; u
h
1ðqÞ � uh

1ð0Þ
� �

0;C
þ r2 Domuh

2 ph
e;r1;r2

� ��
� g2;Dom uh

2ðqÞ � uh
2ð0Þ

� ��
0;C
þ e ph

e;r1;r2;d
; q

� �
0;X0

¼ 0

8q 2 Qad: ð29Þ

The solution ph
e;r1;r2

depends continuously on D, l, e, r1, r2, g1

and g2.

Assume the solution set Sh
r1;r2

for Problem 4.1 with e ¼ 0 is

non-empty. Then for fixed r1; r2 P 0 with r1 þ r2 > 0,

ph
e;r1;r2

! ph
0;r1;r2

in Q; as e! 0; ð30Þ

where ph
0;r1;r2

2 Sh
r1;r2

is uniquely defined by

ph
0;r1;r2

��� ���
0;X0

¼ inf
q2Sh

r1 ;r2

kqk0;X0
: ð31Þ

For fixed e > 0 and r2 > 0, we have

ph
e;r1;r2

! ph
e;0;r2

in Q; as r1 ! 0;

where pe;0;r2
2 Qad is the unique solution of Problem 4.1 with

r1 ¼ 0.
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For fixed e > 0 and r1 > 0, we have

ph
e;r1;r2

! ph
e;r1;0

in Q; as r2 ! 0;

where pe;r1;0
2 Qad is the unique solution of Problem 4.1 with

r2 ¼ 0.

For an error analysis of the numerical solution defined
by Problem 4.1, we first preset some error bounds for the
finite element solutions uh

1 and uh
2 of (24) and (25).

Lemma 4.3. There is a constant independent of h, e, r1 and r2

such that for any q; q1; q2 2 Q, the following inequalities
hold:

u1ðqÞ � uh
1ðqÞ

�� ��
0;C
6 ch3=2ðkqk0;X0

þ kg2k1=2;CÞ; ð32Þ

omðu2ðqÞ � uh
2ðqÞÞ

�� ��
0;C
6 ch1=2ðkqk0;X0

þ kg1k3=2;CÞ; ð33Þ

ðu1ðq1Þ � u1ðq2ÞÞ � uh
1ðq1Þ � uh

1ðq2Þ
� ��� ��

0;C

6 ch3=2kq1 � q2k0;X0
; ð34Þ

komðu2ðq1Þ � u2ðq2ÞÞ � om uh
2ðq1Þ � uh

2ðq2Þ
� �

k0;C

6 ch1=2kq1 � q2k0;X0
: ð35Þ

Proof. Proof of the relations (32) and (34) can be found in
[9]. Here we prove (33) and (35). By Céa’s Lemma [4], (23)
and (22),

u2ðqÞ � uh
2ðqÞ

�� ��
1;X

6 c inf
vh2gh

1
þV h

0

ku2ðqÞ � vhk1;X

6 c

 
kg1 � gh

1k1;X þ inf
vh2V h

0

kðu2ðqÞ � g1Þ � vhk1;X

!

6 chðkg1k3=2;C þ ku2ðqÞk2;XÞ:

Recalling the regularity bound (8), we have

u2ðqÞ � uh
2ðqÞ

�� ��
1;X
6 chðkqk0;X0

þ kg1k3=2;CÞ:

By the trace inequality

kvk2
0;C 6 ckvk1;Xkvk0;X;

we obtain

om u2ðqÞ � uh
2ðqÞ

� ��� ��2

0;C
6 cku2ðqÞk2;X u2ðqÞ � uh

2ðqÞ
�� ��

1;X

6 chðkqk0;X0
þ kg1k3=2;CÞ

2
:

Thus (33) holds.
By noting that u2ðq1Þ � u2ðq2Þ 2 V 0 is the solution of

Problem 2.1 with q ¼ q1 � q2 and g1 ¼ 0, and
uh

2ðq1Þ � uh
2ðq2Þ 2 V h

0 is the corresponding finite element
solution, we obtain (35) from (33). h

With the above preparation, we now present an error
estimate. Denote
Eh
e;r1;r2

¼ r1 u1ðpe;r1;r2
Þ � uh

1 ph
e;r1;r2

� ���� ���2

0;C

þ r2 Dom u2ðpe;r1;r2
Þ � uh

2 ph
e;r1;r2

� �� ���� ���2

0;C

þ e pe;r1;r2
� ph

e;r1;r2

��� ���2

0;X0

:

We have the following error bound.

Theorem 4.4. There is a constant c > 0 independent of e,
r1; r2 and h such that

Eh
e;r1;r2

6 cr1h3 kpe;r1;r2
k2

0;X0
þ kg2k

2
1=2;C

� �
þ cr2h kpe;r1;r2

k2
0;X0
þ kg1k

2
3=2;C

� �
þ cr1h3=2ku1ðpe;r1;r2

Þ � g1k0;Ckpe;r1;r2
� ph

e;r1;r2
k0;X0

þ cr1h3=2kg1k3=2;C pe;r1;r2
� ph

e;r1;r2

��� ���
0;X0

þ cr2h1=2kDomu2ðpe;r1;r2
Þ � g2k0;C

� pe;r1;r2
� ph

e;r1;r2

��� ���
0;X0

: ð36Þ

Proof. We take q ¼ pe;r1;r2
in (28), q ¼ ph

e;r1;r2
in (14), and

use the two resulting inequalities to get

Eh
e;r1;r2

6 r1 u1ðpe;r1;r2
Þ � uh

1 ph
e;r1;r2

� �
; u1ðpe;r1;r2

Þ
�
� uh

1ðpe;r1;r2

��
0;C
þ r1

�
u1ðpe;r1;r2

Þ � g1; u
h
1ðpe;r1;r2

Þ

� uh
1 ph

e;r1;r2

� �
þ u1 ph

e;r1;r2

� �
� u1ðpe;r1;r2

Þ
�

0;C

þ r1 g1 � gh
1; u

h
1ðpe;r1;r2

Þ � uh
1 ph

e;r1;r2

� �� �
0;C

þ r2

�
Dom u2ðpe;r1;r2

Þ � uh
2 ph

e;r1;r2

� �� �
;Domðu2ðpe;r1;r2

Þ

� uh
2ðpe;r1;r2

ÞÞ
�

0;C
þ r2

�
Domu2ðpe;r1;r2

Þ

� g2;Dom uh
2ðpe;r1;r2

Þ � u2ðpe;r1;r2
Þ þ u2ðph

e;r1;r2
Þ

�
� uh

2 ph
e;r1;r2

� ���
0;C

6
r1

2
u1ðpe;r1;r2

Þ � uh
1 ph

e;r1;r2

� ���� ���2

0;C
þ r1

2
u1ðpe;r1;r2

Þ
��

� uh
1ðpe;r1;r2

Þ
��2

0;C
þ r1ku1ðpe;r1;r2

Þ � g1k0;Ckuh
1ðpe;r1;r2

Þ

� u1ðpe;r1;r2
Þ þ u1ðph

e;r1;r2
Þ � uh

1 ph
e;r1;r2

� �
k0;C

þ r1kg1 � gh
1k0;C uh

1ðpe;r1;r2
Þ � uh

1 ph
e;r1;r2

� ���� ���
0;C

þ r2

2
Dom u2ðpe;r1;r2

Þ � uh
2 ph

e;r1;r2

� �� ���� ���2

0;C

þ r2

2
Dom u2ðpe;r1;r2

Þ � uh
2ðpe;r1;r2

Þ
� ��� ��2

0;C

þ r2kDomu2ðpe;r1;r2
Þ � g2k0;C

���Dom uh
2ðpe;r1;r2

Þ
�

� u2ðpe;r1;r2
Þ þ u2 ph

e;r1;r2

� �
� uh

2 ph
e;r1;r2

� �����
0;C
:
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Hence, (36) follows by using relations (8), (23) and (32)–
(35) in Lemma 4.3. h

More concrete error bounds can be derived from Theo-
rem 4.4 under additional assumptions. For example,
assuming Qad to be a bounded set in the space Q, we can
deduce from (36) that there is a constant c > 0 independent
of r1; r2; e and h such that

Eh
e;r1;r2

6 cðr1h3=2 þ r2h1=2Þ: ð37Þ

The error bound (37) indicates a need to choose r2 to be of
the same order as the meshsize h in order to get better solu-
tion accuracy.
4.2. Full-discrete approximation

Next, we turn to the full-discrete approximation with
finite element to Problem 2.1. We use the linear finite ele-
ment to discretize state variables and piecewise constant
functions to approximate the control variable. We continue
to use Th, V h, gh

1 þ V h
0 and V h

0 defined in the previous sub-
section. In addition, we assume fT0;HgH is a regular family
of triangulations of X0 such that each element T of T0;H

joint to boundary oX0 has at most one curved face (for a
three-dimensional domain) or side (for a plane domain)
with mesh parameter H. Define the space

QH ¼ fq 2 QjqjT 2 P 0ðT Þ 8T 2T0;Hg;
where P 0ðT Þ is the constant function space, QH

ad ¼
QH \ Qad. Then the full-discrete approximation of Problem
2.1 is the following formulation.

Problem 4.5. Find ph;H
e;r1;r2

2 QH
ad such that

J h
e;r1;r2

ph;H
e;r1;r2

� �
¼ inf

q2QH
ad

J h
e;r1;r2
ðqÞ:

Define the orthogonal projection operator PH : Q! QH

by

ðPH q; qH Þ0;X0
¼ ðq; qH Þ0;X0

8q 2 Q; qH 2 QH : ð38Þ

Then we have the formula

ðPH qÞjT ¼
1

jT j

Z
T

qdx 8T 2T0;H ð39Þ

and the inequalities

jPH qk0;X0
6 kqk0;X0

8q 2 Q; ð40Þ
kq�PH qk0;X0

6 cH jqj1;X0
8q 2 H 1ðX0Þ: ð41Þ

Similar to Lemma 4.3, we have the following result that
will be used in deriving an error bound in Theorem 4.7.

Lemma 4.6. There is a constant c > 0 independent of h and

H such that

uh
1ðqÞ � uh

1ðPH qÞ
�� ��

0;C
6 cHkq�PH qk0;X0

; ð42Þ
u1ðqÞ � uh
1ðPH qÞ

�� ��
0;C
6 cHkq�PH qk0;X0

þ ch3=2ðkqk0;X0
þ kg2k1=2;CÞ; ð43Þ

om uh
2ðqÞ � uh

2ðPH qÞ
� ��� ��

0;C
6 cH 1=2kq�PH qk0;X0

; ð44Þ

om u2ðqÞ � uh
2ðPH qÞ

� ��� ��
0;C
6 cH 1=2kq�PH qk0;X0

þ ch1=2ðkqk0;X0
þ kg1k3=2;CÞ: ð45Þ

Proof. Denote eh;H
1 ðqÞ ¼ uh

1ðqÞ � uh
1ðPH qÞ. Then from defi-

nition (24), we have

Z
X
ðDreh;H

1 ðqÞ � rvh þ leh;H
1 ðqÞvhÞdx

¼
Z

X0

ðq�PH qÞvh dx 8vh 2 V h: ð46Þ

By (9), the inequality

eh;H
1 ðqÞ

�� ��
2;X
6 ckq�PH qk0;X0

ð47Þ

holds.
By (39), we haveZ

X0

ðq�PH qÞwH dx ¼
X

T2T0;H

Z
T
ðq�PH qÞwH dx ¼ 0

8wH 2 QH :

Thus, for any v 2 H 1ðXÞ,Z
X0

ðq�PH qÞvdx 6 kq�PH qk0;X0
inf

wH2QH
kv� wHk0;X0

6 cHkq�PH qk0;X0
kvk1;X:

Choosing vh ¼ eh;H
1 ðqÞ in (46), we have

eh;H
1 ðqÞ

�� ��
1;X
6 cHkq�PH qk0;X0

: ð48Þ

Similarly, denoting eh;H
2 ðqÞ ¼ uh

2ðqÞ � uh
2ðPH qÞ, we get

eh;H
2 ðqÞ

�� ��
2;X
6 ckq�PH qk0;X0

ð49Þ

and

eh;H
2 ðqÞ

�� ��
1;X
6 cHkq�PH qk0;X0

: ð50Þ

Hence, by (48)–(50), we obtain

eh;H
1 ðqÞ

�� ��
0;C
6 c eh;H

1 ðqÞ
�� ��1=2

1;X
eh;H

1 ðqÞ
�� ��1=2

0;X
6 cHkq�PH qk0;X0

and

ome
h;H
2 ðqÞ

�� ��
0;C
6 c eh;H

2 ðqÞ
�� ��1=2

2;X
eh;H

2 ðqÞ
�� ��1=2

1;X

6 cH 1=2kq�PH qk0;X0
:

So we have proved (42) and (44).
Noticing

u1ðqÞ � uh
1ðPH qÞ

�� ��
0;C
6 u1ðqÞ � uh

1ðqÞ
�� ��

0;C

þ uh
1ðqÞ � uh

1ðPH qÞ
�� ��

0;C
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and

omðu2ðqÞ � uh
2ðPH qÞÞ

�� ��
0;C
6 omðu2ðqÞ � uh

2ðqÞÞ
�� ��

0;C

þ om uh
2ðqÞ � uh

2ðPH qÞ
� ��� ��

0;C
;

by (42), (44) and Lemma 4.3, we conclude relations (43)
and (45). h

Denote by

Eh;H
e;r1;r2

¼ r1 u1ðpe;r1;r2
Þ � uh

1 ph;H
e;r1;r2

� ���� ���2

0;C

þ r2 Dom u2ðpe;r1;r2
Þ � uh

2 ph;H
e;r1;r2

� �� ���� ���2

0;C

þ e pe;r1;r2
� ph;H

e;r1;r2

��� ���2

0;X0

for the full-discrete error. We have the following error
bound.

Theorem 4.7. There is a constant c > 0 independent of

e; r1; r2; h;H such that

Eh;H
e;r1;r2

6 cr1½HEHðpe;r1;r2
Þ þ h3=2ðkpe;r1;r2

k0;X0
þ kg2k1=2;CÞ�

2

þ cr1ku1ðpe;r1;r2
Þ � g1k0;C

�
HEH ðpe;r1;r2

Þ

þ h3=2 pe;r1;r2
� ph;H

e;r1;r2

��� ���
0;X0

�

þ cr1h3=2kg1k3=2;X

�
EHðpe;r1;r2

Þ

þ pe;r1;r2
� ph;H

e;r1;r2

��� ���
0;X0

�
þ cr2½H 1=2EH ðpe;r1;r2

Þ

þ h1=2ðkpe;r1;r2
k0;X0

þ kg1k3=2;CÞ�
2

þ cr2kDomu2ðpe;r1;r2
Þ

� g2k0;C H 1=2EHðpe;r1;r2
Þ þ h1=2 pe;r1;r2

� ph;H
e;r1;r2

��� ���
0;X0

� �
;

ð51Þ

where

EHðpe;r1;r2
Þ ¼ kpe;r1;r2

�PH pe;r1;r2
k0;X0

¼ inf
wH2QH

ad

kpe;r1;r2
� wHk0;X0

ð52Þ

is the best approximation error of pe;r1;r2
by piecewise con-

stant function in L2ðX0Þ.

Proof. Take q ¼ PH pe;r1;r2
in (28) with ph

e;r1;r2
instead by

ph;H
e;r1;r2

and q ¼ ph;H
e;r1;r2

in (14) and add the two resulting
inequalities to get

Eh;H
e;r1;r2

6 I1 þ I2 þ I3 þ I4 þ I5 þ I6; ð53Þ

where
I1 ¼ r1 uh
1 ph;H

e;r1;r2

� �
� u1ðpe;r1;r2

Þ;
�

uh
1ðPH pe;r1;r2

Þ � u1ðpe;r1;r2
Þ
�

0;C
;

I2 ¼ r1

�
u1ðpe;r1;r2

Þ � g1; u
h
1ðPH pe;r1;r2

Þ � u1ðpe;r1;r2
Þ

þu1 ph;H
e;r1;r2

� �
� uh

1 ph;H
e;r1;r2

� ��
0;C
;

I3 ¼ r1 g1 � gh
1; u

h
1ðPH pe;r1;r2

Þ � uh
1 ph;H

e;r1;r2

� �� �
0;C
;

I4 ¼ r2 Dom uh
2 ph;H

e;r1;r2

� �
� u2ðpe;r1;r2

Þ
� �

;
�

Dom uh
2ðPH pe;r1;r2

Þ � u2ðpe;r1;r2
Þ

� ��
0;C
;

I5 ¼ r2

�
Domu2ðpe;r1;r2

Þ � g2;Dom uh
2 PH pe;r1;r2

� ��
�u2ðpe;r1;r2

Þ þ u2 ph;H
e;r1;r2

� �
� uh

2 ph;H
e;r1;r2

� ���
0;C
;

I6 ¼ e ph;H
e;r1;r2

;PH pe;r1;r2
� pe;r1;r2

� �
0;X0

:

By (43) and (45), we have

I1 6
r1

2
u1ðpe;r1;r2

Þ � uh
1 ph;H

e;r1;r2

� ���� ���2

0;C
þ cr1½HEH ðpe;r1;r2

Þ

þ h3=2ðkpe;r1;r2
k0;X0

þ kg2k1=2;CÞ�
2 ð54Þ

and

I4 6
r2

2
Dom u2ðpe;r1;r2

Þ � uh
2 ph;H

e;r1;r2

� �� ���� ���2

0;C

þ cr2½H 1=2EH ðpe;r1;r2
Þ þ h1=2ðkpe;r1;r2

k0;X0
þ kg1k3=2;CÞ�

2
:

ð55Þ
By (43), (34), (44) and (35), we can prove

I26cr1

���u1ðpe;r1;r2
Þ�g1

���
0;C

h
HEH ðpe;r1;r2

Þþh3=2
���pe;r1;r2

�ph;H
e;r1;r2

���
0;X0

i
; ð56Þ

and

I5 6 cr2kDomu2ðpe;r1;r2
Þ

� g2k0;C H 1=2EH ðpe;r1;r2
Þ þ h1=2 pe;r1;r2

� ph;H
e;r1;r2

��� ���
0;X0

� �
:

ð57Þ
By using (8) and (23)

I3 6 cr1h3=2kg1k3=2;X EH ðpe;r1;r2
Þ þ pe;r1;r2

� ph;H
e;r1;r2

��� ���
0;X0

� �
:

ð58Þ
Finally, by (38), we get

I6 ¼ 0: ð59Þ
Hence, the error bound (51) follows from (53)–(59). h

Regarding the quantity EH ðpe;r1;r2
Þ ¼ kpe;r1;r2

�
PH pe;r1;r2

k0;X0
, we note the next result.
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Proposition 4.8. If Sr1;r2
defined in Section 2 is non-empty,

then we have the following convergence result:
kpe;r1;r2
�PH pe;r1;r2

k0;X0
! 0; as H ; e! 0: ð60Þ

Moreover, if pe;r1;r2
2 H 1ðX0Þ,

kpe;r1;r2
�PH pe;r1;r2

k0;X0
6 cHkpe;r1;r2

k1;X0
: ð61Þ

Proof. By Proposition 3.1, kpe;r1;r2
� p0;r1;r2

k0;X0
! 0 as

e! 0. Using the relation (40), we obtain

kpe;r1;r2
�PH pe;r1;r2

k0;X0

6 kpe;r1;r2
� p0;r1;r2

k0;X0
þ kp0;r1;r2

�PH p0;r1;r2
k0;X0

þ kPH ðp0;r1;r2
� pe;r1;r2

Þk0;X0

6 2kpe;r1;r2
� p0;r1;r2

k0;X0
þ kp0;r1;r2

�PH p0;r1;r2
k0;X0

! 0 as H ; e! 0:

Moreover, from (41), we get (61). h

As in the previous subsection, under additional assump-
tions, we can deduce more concrete error bounds from
Theorem 4.7. If Qad is a bounded set in the space Q, then
there is a constant c > 0 independent of e, r1, r2, h and H

such that

Eh;H
e;r1;r2

6 cr1

h
h3=2 þ HEH ðpe;r1;r2

Þ
i

þ cr2

h
h1=2 þ H 1=2EH ðpe;r1;r2

Þ
i
:

If we further assume pe;r1;r2
2 H 1ðX0Þ, then there is a con-

stant c > 0 independent of e, r1, r2, h and H such that

Eh;H
e;r ;r 6 cr1ðh3=2 þ H 2Þ þ cr2ðh1=2 þ H 3=2Þ:
1 2

Fig. 1. ph;h
e;r1 ;r2

for r1 ¼ r2 ¼ 0:5
Both these error bounds suggest the need to choose r2 in
the order of h to achieve better solution accuracy.

With proper choice of e related to h and H, we can verify
the convergence of ph

e;r1;r2
and ph;H

e;r1;r2
to p0;r1;r2

, see [9].

5. A numerical example

In this section, we present numerical results on a model
problem. The main purpose is to demonstrate solution
accuracy improvement achieved through the new general
mathematical framework over that from the standard for-
mulation of the BLT problem studied in [9]. Let X ¼
ð0; 1Þ � ð0; 1Þ be the problem domain and X0 ¼
ð0:5; 0:75Þ � ð0:5; 0:75Þ the permissible region. Assume the
absorption coefficient l ¼ 0:02 and the reduced scattering
coefficient l0 ¼ 1:00 in the whole domain X. We take
p � 1 pW for the true light source in X0 and set g2 � 0
on the boundary C ¼ oX. The admissible set is taken to
be Qad ¼ fq 2 L2ðX0Þjq P 0 a:e: in X0g. We use uniform
square partitions of the regions X and X0 with mesh
parameters h ¼ H , where h and H are the maximal diame-
ters of the elements in the partitions Th and T0;H . For
finite element spaces V h, V h

0 and QH
ad, we use continuous

piecewise bilinear functions and piecewise constant func-
tions corresponding to the partitions Th and T0;h. The
error analysis presented in Section 4 for the linear element
is valid also for the bilinear element we use for the numer-
ical example. The boundary value of the finite element
solution defined in (24) for a small meshsize is taken as
the function g1, and in this example, we choose 1/512 for
the small meshsize.

For a variety of choices of the parameters h, e, r1 and r2,
we compute the approximate source function ph;h

e;r1;r2
. We
, e ¼ 10�4 and h ¼ 1=32.
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distinguish two cases according to whether the measure-
ment data g1 is noise-free or perturbed by noise at certain
level.

Case 1. In this case, we use the exact measurement g1. We
show the reconstructed source function ph;h

e;r1;r2
and the error

p � ph;h
e;r1;r2

for h ¼ 1=32 with r1 ¼ r2 ¼ 0:5 and h ¼ 1=64
with r1 ¼ 0:8; r2 ¼ 0:2 in Figs. 1–4, the regularization
parameter e ¼ 10�4 being used in both. The L1 and L2

norms of the error p � ph;h
e;r1;r2

are provided in Tables 1–4.
Tables 1 and 2 show the dependence of accuracy of the
approximate solution ph;h

e;r1;r2
on the regularization param-
Fig. 2. ph;h
e;r1 ;r2

for r1 ¼ 0:8; r2 ¼

Fig. 3. p � ph;h
e;r1 ;r2

for r1 ¼ r2 ¼
eter e. We observe that accuracy of discrete solution
improves when regularization parameter e gets smaller. In
Tables 3 and 4, we explore numerically improvement in the
solution accuracy offered by our generalized formulation
when the parameter r2 is chosen properly, as compared to
the standard formulation (r2 ¼ 0) studied in [9]. Moreover,
Tables 3 and 4 provide numerical evidence of the theoret-
ical results recorded in Theorems 4.4 and 4.7 in that the
accuracy of approximate source function ph;h

e;r1;r2
improves

as mesh parameter h gets smaller and r2 gets small
accordingly. We also observe that, for fixed r2 (corre-
spondingly r1 ¼ 1� r2) and e, the error p � ph;h

e;r1;r2

��� ���
0:2, e ¼ 10�4 and h ¼ 1=64.

0:5, e ¼ 10�4 and h ¼ 1=32.



Fig. 4. p � ph;h
e;r1 ;r2

for r1 ¼ 0:8; r2 ¼ 0:2, e ¼ 10�4 and h ¼ 1=64.

Table 1
kp � ph;h

e;r1 ;r2
k1 for r1 ¼ r2 ¼ 0:5

e 1 1� 10�1 1� 10�2 1� 10�3 1� 10�4

h ¼ 1=4 2.3884e�2 2.1180e�2 2.0909e�2 2.0882e�2 2.0879e�2
h ¼ 1=8 3.2687e�1 1.3853e�2 1.3839e�2 1.3837e�2 1.3837e�2
h ¼ 1=16 5.7368e�1 7.9307e�3 7.8020e�3 7.7893e�3 7.7881e�3
h ¼ 1=32 6.2180e�1 3.0223e�3 2.9281e�3 2.4965e�3 2.9389e�3
h ¼ 1=64 8.3383e�1 4.9602e�3 4.2834e�3 4.6899e�3 4.2158e�3

Table 2
kp � ph;h

e;r1 ;r2
k0 for r1 ¼ r2 ¼ 0:5

e 1 1� 10�1 1� 10�2 1� 10�3 1� 10�4

h ¼ 1=4 5.9709e�3 5.2950e�3 5.2273e�3 5.2204e�3 5.2197e�3
h ¼ 1=8 6.4347e�2 2.9377e�3 2.8698e�3 2.8632e�3 2.8626e�3
h ¼ 1=16 7.4374e�2 1.4438e�3 1.3779e�3 1.3714e�3 1.3707e�3
h ¼ 1=32 8.5888e�2 4.7031e�4 4.1167e�4 4.2203e�4 4.0359e�4
h ¼ 1=64 8.1559e�2 5.4279e�4 5.1204e�4 5.5401e�4 4.8618e�4

Table 3
kp � ph;h

e;r1 ;r2
k1 for e ¼ 1� 10�4

h 1/4 1/8

r1 ¼ 0:1; r2 ¼ 0:9 2.0994e�2 9.6667e�3
r1 ¼ 0:2; r2 ¼ 0:8 2.0489e�2 1.2257e�2
r1 ¼ 0:5; r2 ¼ 0:5 2.0879e�2 1.3837e�2
r1 ¼ 0:8; r2 ¼ 0:2 2.0976e�2 1.4250e�2
r1 ¼ 0:9; r2 ¼ 0:1 2.0994e�2 1.4329e�2
r1 ¼ 1; r2 ¼ 0 2.1009e�2 1.4395e�2

Table 4
kp � ph;h

e;r1 ;r2
k0 for e ¼ 1� 10�4

h 1/4 1/8

r1 ¼ 0:1; r2 ¼ 0:9 5.2486e�3 2.0291e�3
r1 ¼ 0:2; r2 ¼ 0:8 5.1224e�3 2.5484e�3
r1 ¼ 0:5; r2 ¼ 0:5 5.2197e�3 2.8626e�3
r1 ¼ 0:8; r2 ¼ 0:2 5.2441e�3 2.9412e�3
r1 ¼ 0:9; r2 ¼ 0:1 5.2486e�3 2.9558e�3
r1 ¼ 1; r2 ¼ 0 5.2522e�3 2.9675e�3
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stabilizes as h becomes small. This is expected from our
theoretical analysis. In fact, from Theorems 4.4 or 4.7, a
relation of the form r2 ¼ Oðr1hÞ is needed if we want to get

the best bound for pe;r1;r2
� ph;h

e;r1;r2

��� ���, that is, smaller r2 is

needed corresponding to smaller h for better solution
accuracy.
Case 2. In applications, the measured data g1 is subject to
noise. The effect of the noise on the accuracy of the approx-
imate solution ph;h

e;r1;r2
for different meshes is reported in

Table 5. For each grid parameter h, we consider the noise
level d at 1%, 10%, and 20%, respectively. Because we use
random noise, at the same noise level d, we compute the
discrete solution ph;h

e;r1;r2
10 times and use their average value

in computing the L2-norm errors. We observe that the
1/16 1/32 1/64

2.3319 3.3488 5.1812e�2
4.0590e�3 7.8846e�3 2.2117e�3
7.7881e�3 2.4831e�3 4.2158e�3
8.7734e�3 4.3573e�3 1.4211e�3
8.9622e�3 4.5554e�3 2.0181e�3
9.1163e�3 4.8785e�3 2.5156e�3

1/16 1/32 1/64

2.5410e�1 3.1858e�1 6.8901e�3
7.8245e�4 9.3063e�4 2.9745e�3
1.3707e�3 4.0359e�4 4.8618e�4
1.5256e�3 7.3534e�4 2.4890e�4
1.5545e�3 7.8147e�4 3.4250e�4
1.5778e�3 8.1757e�4 4.2404e�4



Table 5
kp � ph;h

e;r1 ;r2
k0 for r1 ¼ r2 ¼ 0:5, e ¼ 1� 10�4

d 0 1% 10% 20%

h ¼ 1=4 5.2197e�3 5.4890e�3 1.3006e�2 2.4969e�2
h ¼ 1=8 2.8626e�3 3.1263e�3 1.3386e�2 2.4202e�2
h ¼ 1=16 1.3707e�3 1.7355e�3 1.1974e�2 2.3674e�2
h ¼ 1=32 4.0359e�4 1.2963e�3 1.1979e�2 2.3882e�2
h ¼ 1=64 4.8618e�4 1.2076e�3 1.1100e�2 2.2164e�2
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numerical solution is quite stable with respect to the pertur-
bation in the measurement data g1.
6. Conclusion remarks

Bioluminescence tomography is a new modality in opti-
cal imaging and is attracting more and more attention. In
this paper, we present a new general reconstruction method
for BLT based on finite element discretization. Because of
the ill-posedness of BLT, we adopt Tikhonov regulariza-
tion by introducing a parameter e and explore the solution
behavior as e! 0. We analyze the theoretical properties of
BLT including the existence, uniqueness and stability of
light source function in our new general framework. Finite
element methods are applied to the practical reconstruction
and numerical results are reported to illustrate improve-
ment of solution accuracy obtainable from the proposed
general framework over the standard formulation for
BLT. The improvement is achieved with a slight increment
in the amount of work as compared to the standard
formulation.
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