A new general mathematical framework for bioluminescence tomography

Xiaoliang Cheng ${ }^{\mathrm{a}}$, Rongfang Gong ${ }^{\mathrm{a}, *}$, Weimin Han ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

Received 20 April 2007; received in revised form 16 July 2007; accepted 7 August 2007
Available online 25 September 2007

Abstract

Bioluminescence tomography (BLT) is a recently developed area in biomedical imaging. The goal of BLT is to quantitatively reconstruct a bioluminescent source distribution within a small animal from optical signals on the surface of the animal body. While there have been theoretical investigations of the BLT problem in the literature, in this paper, we propose a more general mathematical framework for a study of the BLT problem. For the proposed formulation, we establish a well-posedness result and explore its relation to the formulation studied previously in other papers. We introduce numerical methods for solving the BLT problem, show convergence, and derive error estimates for the discrete solutions. Numerical simulation results are presented showing improvement of solution accuracy with the new general mathematical framework over that with the standard formulation of BLT.

© 2007 Elsevier B.V. All rights reserved.
MSC: 2C55; 31B20; 49K40; 34K28; 65N15
Keywords: Bioluminescence tomography; Inverse problem; Well-posedness; Numerical solution; Error estimate

1. Introduction

Recently, molecular imaging has been developed rapidly in the study of physiological and pathological processes in vivo at the cellular and molecular levels, see, e.g. [$3,15,17,18]$ and references therein. As a recently developed optical imaging technique of molecular imaging modalities, bioluminescence tomography (BLT) provides quantitative and localized analysis on a bioluminescent source distribution in a living object [1,5,9-11]. Without going into detail, we notice that BLT problems reduce to determination of a light source function p in the differential equation
$-\operatorname{div}(D \nabla u)+\mu u=p \chi_{\Omega_{0}} \quad$ in Ω
with following possible boundary conditions:

[^0]$u+2 D \partial_{v} u=g^{-} \quad$ on Γ,
$D \partial_{v} u=-g \equiv g_{2} \quad$ on Γ,
$u=g^{-}+2 g \equiv g_{1} \quad$ on Γ.
Here $D=\left[3\left(\mu+\mu^{\prime}\right)\right]^{-1}, \mu$ and μ^{\prime} are given absorption and reduced scattering coefficients, both the function g and the influx g^{-}are measurement data, and ∂_{v} denotes the outward normal differentiation operator. Moreover, Ω_{0} is a measurable subset of Ω or Ω itself, $\chi_{\Omega_{0}}$ is the characteristic function of Ω_{0}, i.e., its value is 1 in Ω_{0} and is 0 outside Ω_{0}.

Note that only two of the three boundary conditions (2)-(4) are independent. As was pointed out in [9], to determine the source function p, we may associate one of the above three boundary conditions (2)-(4) with the differential equation (1) to form a boundary value problem while choosing one of the remaining boundary conditions to form the inverse problem for p. In particular, in [9], discussion of the inverse problem was made for the boundary
value problem (1) and (2) with the measurement matching for (4). As noted in [9], this pointwise formulation is illposed. In general, there are infinitely many solutions. When the form of the source function is pre-specified, there is no solution if data are inconsistent. In this regard, some uniqueness results on the pointwise formulation of the inverse problem are presented in [19]. Also, the source function does not depend continuously on the data. To circumvent these difficulties, a reformulation of the problem can be introduced through weak formulations of boundary value problems and Tikhonov regularization. For this purpose, we first introduce a few symbols for function spaces and sets. For a set G for Ω, Ω_{0} or Γ, we denote by $H^{s}(G)$ the standard Sobolev space with corresponding inner prod$\operatorname{uct}(\cdot, \cdot)_{s, G}$ and norm $\|\cdot\|_{s, G}$, and $H^{0}(G)$ refers to $L^{2}(G)$. Let $V=H^{1}(\Omega)$ and $Q=L^{2}\left(\Omega_{0}\right)$. We also introduce the space $V_{0}=H_{0}^{1}(\Omega)$, and for a given $g_{1} \in V$, we denote $g_{1}+V_{0}$ for the set $\left\{g_{1}+v \mid v \in V_{0}\right\}$.

For any $q \in Q$, we denote by $u_{1}=u_{1}(q) \in V$ the solution of the problem

$$
\begin{equation*}
\int_{\Omega}\left(D \nabla u_{1} \cdot \nabla v+\mu u_{1} v\right) \mathrm{d} x=\int_{\Omega_{0}} q v \mathrm{~d} x+\int_{\Gamma} g_{2} v \mathrm{~d} s \quad \forall v \in V \tag{5}
\end{equation*}
$$

Note that this is a weak formulation of the boundary value problem defined by (1) and (3). Suppose the admissible source function p belongs to a closed convex subset denoted $Q_{\text {ad }}$ of the space Q. Then introduce the functional
$J_{\varepsilon}^{(1)}(q)=\frac{1}{2}\left\|u_{1}(q)-g_{1}\right\|_{0, \Gamma}^{2}+\frac{\varepsilon}{2}\|q\|_{0, \Omega_{0}}^{2}, \quad \varepsilon \geqslant 0$,
and the following reformulation problem.
Problem 1.1. Find $p_{\varepsilon}^{(1)} \in Q_{\mathrm{ad}}$ such that
$J_{\varepsilon}^{(1)}\left(p_{\varepsilon}^{(1)}\right)=\inf _{q \in Q_{\mathrm{ad}}} J_{\varepsilon}^{(1)}(q)$.
In [9], well-posedness of this reformulation is studied. It is shown that the reformulated problem with $\varepsilon>0$ leads to stable and convergent numerical schemes.

Similar discussion of the inverse problem can be made for other choices of boundary value condition and measurement data. As an example, we may switch the roles played by the boundary conditions (3) and (4), i.e., we define the boundary value problem by (1) and (4), and treat (3) as a matching condition. The pointwise formulation of this problem is again ill-posed. So we turn to a regularized formulation. For any $q \in Q$, we denote by $u_{2}=u_{2}(q) \in g_{1}$ $+V_{0}$ the solution of the problem
$\int_{\Omega}\left(D \nabla u_{2} \cdot \nabla v+\mu u_{2} v\right) \mathrm{d} x=\int_{\Omega_{0}} q v \mathrm{~d} x \quad \forall v \in V_{0}$.
This is a weak formulation of the boundary value problem defined by (1) and (4). Introduce the functional
$J_{\varepsilon}^{(2)}(q)=\frac{1}{2}\left\|D \partial_{v} u_{2}(q)-g_{2}\right\|_{0, \Gamma}^{2}+\frac{\varepsilon}{2}\|q\|_{0, \Omega_{0}}^{2}, \quad \varepsilon \geqslant 0$,
and the problem:
Problem 1.2. Find $p_{\varepsilon}^{(2)} \in Q_{\mathrm{ad}}$ such that
$J_{\varepsilon}^{(2)}\left(p_{\varepsilon}^{(2)}\right)=\inf _{q \in Q_{\mathrm{ad}}} J_{\varepsilon}^{(2)}(q)$.
Results similar to those for Problem 1.1 are valid for Problem 1.2.

In this paper, we propose a more general mathematical framework for the reconstruction of the source function in BLT. This framework covers both Problems 1.1 and 1.2 as special cases, and it leads to more accurate numerical solutions. In Section 2, we introduce the new general mathematical framework for the BLT problem, and discuss solution existence, uniqueness, and continuous dependence on the data. In Section 3, we explore the limiting behaviors of the solution of the regularized solution as any of the parameters tends to 0 . In particular, we show how solutions of Problems 1.1 and 1.2 can be recovered in the limit. Finite elements approximations, including semi-discrete and full-discrete approximations, are introduced and studied in Section 4. In this part, we also obtain convergence and error estimates of numerical solutions. In Section 5, we report some numerical results that show how solution accuracy is improved with proper choices of parameters in the general framework. Some conclusion remarks are stated in the last section.

We comment that the new general mathematical framework in this paper is presented for the BLT problem. It is straightforward to extend this general framework to multispectral BLT problems studied in [11].

2. A general framework for BLT

In the rest of the paper, we use c to denote a positive constant taking possibly different values at different places.

We first introduce assumptions on the data for simplicity in the theoretical discussions below. The smoothness assumptions on the data can be substantially weakened for numerical simulations. We use d to denote the space dimension. For applications, $d \leqslant 3$. However, our discussions are valid for any space dimension. Let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded set with a boundary Γ. We assume either $\Gamma \in C^{2}$ or Ω is convex. It is shown in [8, Section 1.2] that the boundary of an open, bounded and convex set is Lipschitz continuous. We also assume $D \in C^{0,1}(\Omega)$, $D \geqslant D_{0}$ a.e. in Ω for some constant $D_{0}>0, \mu \in L^{\infty}(\Omega)$, $\mu \geqslant 0$ a.e. in Ω and $\mu>0$ a.e. in a subset of Ω with positive measure. Moreover, we assume $g_{1} \in H^{3 / 2}(\Gamma), g_{2} \in L^{2}(\Gamma)$. Note that the function g_{1} is the trace of an $H^{2}(\Omega)$ function, that will also be denoted as g_{1}. In other words, we use the same symbol g_{1} for both an $H^{2}(\Omega)$ function and its trace in $H^{3 / 2}(\Omega)$ such that for some constant $c>0$,
$\left\|g_{1}\right\|_{2, \Omega} \leqslant c\left\|g_{1}\right\|_{3 / 2, \Gamma}$.
See [8] for more details.
Under the above assumptions, we can apply the LaxMilgram lemma $[2,4,6]$ to show that the solutions $u_{1}(q)$
and $u_{2}(q)$ of the boundary value problems (5) and (6) exist and are unique. The following bound follows immediately from the definition (5):
$\left\|u_{1}(q)\right\|_{1, \Omega} \leqslant c\left(\|q\|_{0, \Omega_{0}}+\left\|g_{2}\right\|_{0, \Gamma}\right)$.
Applying regularity results for elliptic problems ([6] for the case $\Gamma \in C^{2}$ and [8, Section 3.2] for the case where Ω is convex), we have
$\left\|u_{2}(q)\right\|_{2, \Omega} \leqslant c\left(\|q\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right)$,
and if $g_{2} \in H^{1 / 2}(\Gamma)$, which we will assume
$\left\|u_{1}(q)\right\|_{2, \Omega} \leqslant c\left(\|q\|_{0, \Omega_{0}}+\left\|g_{2}\right\|_{1 / 2, \Gamma}\right)$.
By the regularity bound (8), we know in particular that $\partial_{v} u_{2}(q) \in L^{2}(\Gamma)$ and $\left\|\partial_{v} u_{2}(q)\right\|_{0, \Gamma}$ is well defined.

For fixed constants $r_{1}, r_{2} \geqslant 0$, we define the following functional with a Tikhonov regularization [12,14]

$$
\begin{align*}
J_{\varepsilon, r_{1}, r_{2}}(q)= & \frac{r_{1}}{2}\left\|u_{1}(q)-g_{1}\right\|_{0, \Gamma}^{2}+\frac{r_{2}}{2}\left\|D \partial_{v} u_{2}(q)-g_{2}\right\|_{0, \Gamma}^{2} \\
& +\frac{\varepsilon}{2}\|q\|_{0, \Omega_{0}}^{2}, \quad \varepsilon \geqslant 0 . \tag{10}
\end{align*}
$$

Then we reformulate the BLT problem as follows.
Problem 2.1. Find $p_{\varepsilon, r_{1}, r_{2}} \in Q_{\mathrm{ad}}$ such that
$J_{\varepsilon, r_{1}, r_{2}}\left(p_{\varepsilon, r_{1}, r_{2}}\right)=\inf _{q \in Q_{\mathrm{ad}}} J_{\varepsilon, r_{1}, r_{2}}(q)$.
When $r_{1}=1$ and $r_{2}=0$, Problem 2.1 reduces to Problem 1.1, which is the problem discussed in [9]. When $r_{1}=0$ and $r_{2}=1$, we obtain Problem 1.2 from Problem 2.1. Theoretically, it is natural to use $\left\|u_{1}(q)-g_{1}\right\|_{1 / 2, \Gamma}$ and $\left\|D \partial_{v} u_{2}(q)-g_{2}\right\|_{-1 / 2, \Gamma}$ to replace $\left\|u_{1}(q)-g_{1}\right\|_{0, \Gamma}$ and $\left\|D \partial_{v} u_{2}(q)-g_{2}\right\|_{0, \Gamma}$, respectively, in the definition (10). However, it is more convenient to use the $\|\cdot\|_{0, \Gamma}$ norm in the cost function for actual simulation. When g_{1} or g_{2} is known only on a part Γ_{0} of Γ, we can replace $\left\|u_{1}(q)-g_{1}\right\|_{0, \Gamma}$ or $\left\|D \partial_{v} u_{2}(q)-g_{2}\right\|_{0, \Gamma}$ by $\left\|u_{1}(q)-g_{1}\right\|_{0, \Gamma_{0}}$ or $\left\|D \partial_{v} u_{2}(q)-g_{2}\right\|_{0, \Gamma_{0}}$, respectively, in (10).

For any $p, q \in Q$, we can verify that $u_{1}(p+q)-u_{1}(p)$ and $u_{2}(p+q)-u_{2}(p)$ are linear in q. So we have

$$
\begin{align*}
& u_{i}\left(p_{1}+q\right)-u_{i}\left(p_{2}\right)=u_{i}\left(p_{1}\right)-u_{i}\left(p_{2}-q\right) \quad \forall p_{1}, p_{2}, q \in Q \\
& \quad i=1,2 \tag{12}
\end{align*}
$$

For the first and second Frechet derivatives of $J_{\varepsilon, r_{1}, r_{2}}$, we have the expressions

$$
\begin{align*}
J_{\varepsilon, r_{1}, r_{2}}^{\prime}(p) q= & r_{1}\left(u_{1}(p)-g_{1}, u_{1}(q)-u_{1}(0)\right)_{0, \Gamma} \\
& +r_{2}\left(D \partial_{v} u_{2}(p)-g_{2}, D \partial_{v}\left(u_{2}(q)-u_{2}(0)\right)\right)_{0, \Gamma} \\
+ & \varepsilon(p, q)_{0, \Omega_{0}} \tag{13}\\
J_{\varepsilon, r_{1}, r_{2}}^{\prime \prime}(p) q^{2}= & r_{1}\left\|u_{1}(q)-u_{1}(0)\right\|_{0, \Gamma}^{2}+r_{2} \| D \partial_{v}\left(u_{2}(q)\right. \\
& \left.-u_{2}(0)\right)\left\|_{0, \Gamma}^{2}+\varepsilon\right\| q \|_{0, \Omega_{0}}^{2}
\end{align*}
$$

Hence, for $\varepsilon>0, J_{\varepsilon, r_{1}, r_{2}}(\cdot)$ is strictly convex.
Now we are in the position to show the existence and uniqueness of the solution of Problem 2.1 and optimality condition.

Theorem 2.2. For any $\varepsilon>0$ and $r_{1}, r_{2} \geqslant 0$ with $r_{1}+r_{2}>0$, Problem 2.1 has a unique solution $p_{\varepsilon, r_{1}, r_{2}} \in Q_{\mathrm{ad}}$. Moreover, the solution $p_{\varepsilon, r_{1}, r_{2}} \in Q_{\mathrm{ad}}$ is characterized by the following variational inequality:

$$
\begin{align*}
& r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}(q)-u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)_{0, \Gamma} \\
& \quad+r_{2}\left(D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}, D \partial_{v}\left(u_{2}(q)-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)\right)_{0, \Gamma} \\
& \quad+\varepsilon\left(p_{\varepsilon, r_{1}, r_{2}}, q-p_{\varepsilon, r_{1}, r_{2}}\right)_{0, \Omega_{0}} \geqslant 0 \quad \forall q \in Q_{\mathrm{ad}} . \tag{14}
\end{align*}
$$

When Q_{ad} is a subspace of Q, the inequality above is reduced to an equation

$$
\begin{align*}
& r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}(q)-u_{1}(0)\right)_{0, \Gamma} \\
& \quad+r_{2}\left(D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}, D \partial_{v}\left(u_{2}(q)-u_{2}(0)\right)\right)_{0, \Gamma} \\
& \quad+\varepsilon\left(p_{\varepsilon, r_{1}, r_{2}}, q\right)_{0, \Omega_{0}}=0 \quad \forall q \in Q_{\mathrm{ad}} \tag{15}
\end{align*}
$$

Proof. Note that $Q_{\text {ad }}$ is a closed and convex set of Hilbert space $Q, J_{\varepsilon, r_{1}, r_{2}}: Q_{\text {ad }} \rightarrow \mathbb{R}$ is strictly convex and continuous with the property $J_{\varepsilon, r_{1}, r_{2}}(q) \rightarrow \infty$ as $\|q\|_{0, \Omega_{0}} \rightarrow \infty$. Then, by a standard result on convex problem [2,7], there is a unique solution $p_{\varepsilon, r_{1}, r_{2}} \in Q_{\mathrm{ad}}$ to Problem 2.1 and the solution is characterized by the condition
$J_{\varepsilon, r_{1}, r_{2}}^{\prime}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\left(q-p_{\varepsilon, r_{1}, r_{2}}\right) \geqslant 0 \quad \forall q \in Q_{\mathrm{ad}}$.
Due to the formula (13), this condition is exactly (14).
If Q_{ad} is a subspace of Q, then we can take $q=0$ and $q=2 p_{\varepsilon, r_{1}, r_{2}}$ in (14) and use the linearity (12) to conclude that

$$
\begin{aligned}
& r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}(0)-u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)_{0, \Gamma} \\
& \quad+r_{2}\left(D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}, D \partial_{v}\left(u_{2}(0)-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)\right)_{0, \Gamma} \\
& \quad+\varepsilon\left(p_{\varepsilon, r_{1}, r_{2}},-p_{\varepsilon, r_{1}, r_{2}}\right)_{0, \Omega_{0}}=0 .
\end{aligned}
$$

Subtracting this equation from inequality (14), we get

$$
\begin{align*}
& r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}(q)-u_{1}(0)\right)_{0, \Gamma} \\
& \quad+r_{2}\left(D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}, D \partial_{v}\left(u_{2}(q)-u_{2}(0)\right)\right)_{0, \Gamma} \\
& \quad+\varepsilon\left(p_{\varepsilon, r_{1}, r_{2}}, q\right)_{0, \Omega_{0}} \geqslant 0 \quad \forall q \in Q_{\mathrm{ad}} \tag{16}
\end{align*}
$$

Replace q by $-q$ in (16) and use (12) again to get

$$
\begin{align*}
& r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}(q)-u_{1}(0)\right)_{0, \Gamma} \\
& \quad+r_{2}\left(D \mathrm{\partial}_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}, D \mathrm{\partial}_{v}\left(u_{2}(q)-u_{2}(0)\right)\right)_{0, \Gamma} \\
& \quad+\varepsilon\left(p_{\varepsilon, r_{1}, r_{2}}, q\right)_{0, \Omega_{0}} \leqslant 0 \quad \forall q \in Q_{\mathrm{ad}} \tag{17}
\end{align*}
$$

We then combine (16) and (17) to obtain the variational equation (15).

As in [9,11], we can show that the solution $p_{\varepsilon, r_{1}, r_{2}}$ of Problem 2.1 depends continuously on $D, \mu, g_{1}, g_{2}, r_{1}>0$, $r_{2}>0$ and $\varepsilon>0$. We omit the detail in this paper.

3. Limiting behaviors

In this section, we analyze limiting behaviors of the solution $p_{\varepsilon, r_{1}, r_{2}}$ of Problem 2.1 in three cases: $\varepsilon \rightarrow 0, r_{1} \rightarrow 0$, or $r_{2} \rightarrow 0$.

By an argument similar to the proof of Theorem 2.2, we know that a solution $p_{r_{1}, r_{2}} \in Q_{\mathrm{ad}}$ of Problem 2.1 with $\varepsilon=0$ is characterized by a variational inequality

$$
\begin{align*}
& r_{1}\left(u_{1}\left(p_{r_{1}, r_{2}}\right)-g_{1}, u_{1}(q)-u_{1}\left(p_{r_{1}, r_{2}}\right)\right)_{0, \Gamma}+r_{2}\left(D \partial_{v} u_{2}\left(p_{r_{1}, r_{2}}\right)\right. \\
& \left.\quad-g_{2}, D \partial_{v}\left(u_{2}(q)-u_{2}\left(p_{r_{1}, r_{2}}\right)\right)\right)_{0, \Gamma} \geqslant 0 \quad \forall q \in Q_{\mathrm{ad}} . \tag{18}
\end{align*}
$$

Denote by $S_{r_{1}, r_{2}} \subset Q_{\mathrm{ad}}$ the set of solutions of Problem 2.1 with $\varepsilon=0$. If $S_{r_{1}, r_{2}} \neq \emptyset$, it is straightforward to show that $S_{r_{1}, r_{2}}$ is closed and convex. We have the following result.

Proposition 3.1. Assume $S_{r_{1}, r_{2}} \neq \emptyset$. Then
$p_{\varepsilon, r_{1}, r_{2}} \rightarrow p_{0, r_{1}, r_{2}}$ in Q, as $\varepsilon \rightarrow 0$,
where $p_{0, r_{1}, r_{2}} \in S_{r_{1}, r_{2}}$ satisfies
$\left\|p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}=\inf _{q \in S_{r_{1}, r_{2}}}\|q\|_{0, \Omega_{0}}$.
Proof. First we note that since $S_{r_{1}, r_{2}}$ is non-empty, closed and convex, the element $p_{0, r_{1}, r_{2}} \in S_{r_{1}, r_{2}}$ is uniquely defined by (20).

Take $q=p_{0, r_{1}, r_{2}}$ in (14), $q=p_{\varepsilon, r_{1}, r_{2}}$ in (18) for $p_{r_{1}, r_{2}}=p_{0, r_{1}, r_{2}}$, and add the two resulting inequalities to get

$$
\begin{aligned}
& \varepsilon\left(p_{\varepsilon, r_{1}, r_{2}}, p_{0, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}\right)_{0, \Omega_{0}} \\
& \quad \geqslant r_{1}\left\|u_{1}\left(p_{0, r_{1}, r_{2}}\right)-u_{1}\left(p_{\epsilon, r_{1}, r_{2}}\right)\right\|_{0, \Gamma}^{2} \\
& \quad+r_{2}\left\|D \partial_{v}\left(u_{2}\left(p_{0, r_{1}, r_{2}}\right)-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)\right\|_{0, \Gamma}^{2}
\end{aligned}
$$

Thus, $\left(p_{\varepsilon, r_{1}, r_{2}}, p_{0, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}\right)_{0, \Omega_{0}} \geqslant 0$, then $\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \leqslant$ $\left\|p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}$ and $\left\{p_{\varepsilon, r_{1}, r_{2}}\right\}_{\varepsilon}$ is uniformly bounded in Q. So there is a subsequence $\left\{p_{\varepsilon^{\prime}, r_{1}, r_{2}}\right\}_{\varepsilon^{\prime}}$ of $\left\{p_{\varepsilon, r_{1}, r_{2}}\right\}_{\varepsilon}$, that converges weakly to some element $p_{r_{1}, r_{2}}$ in Q. Since $S_{r_{1}, r_{2}}$ is closed and convex in $Q, p_{r_{1}, r_{2}} \in S_{r_{1}, r_{2}}$, and
$\left\|p_{r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \leqslant \lim _{\varepsilon^{\prime} \rightarrow 0}\left\|p_{\varepsilon^{\prime}, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \leqslant\left\|p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}$.
Since $p_{0, r_{1}, r_{2}} \in S_{r_{1}, r_{2}}$ defined by (20) is unique, $p_{r_{1}, r_{2}}=p_{0, r_{1}, r_{2}}$. Now that the limit $p_{0, r_{1}, r_{2}}$ does not depend on the subsequence selected, the entire sequence $\left\{p_{\varepsilon, r_{1}, r_{2}}\right\}_{\varepsilon}$ converges weakly to $p_{0, r_{1}, r_{2}}$ as $\varepsilon \rightarrow 0$ in Q. By

$$
\begin{aligned}
& \left\|p_{\varepsilon, r_{1}, r_{2}}-p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}^{2} \\
& \quad=\left\|p_{\varepsilon, r_{1}, r_{2}}^{2}\right\|_{0, \Omega_{0}}^{2}-2\left(p_{\varepsilon, r_{1}, r_{2}}, p_{0, r_{1}, r_{2}}\right)_{0, \Omega_{0}}+\left\|p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}^{2} \\
& \quad \leqslant 2\left\|p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}^{2}-2\left(p_{\varepsilon, r_{1}, r_{2}}, p_{0, r_{1}, r_{2}}\right)_{0, \Omega_{0}} \rightarrow 0
\end{aligned}
$$

as $\varepsilon \rightarrow 0$, we obtain the strong convergence of $p_{\varepsilon, r_{1}, r_{2}}$ to $p_{0, r_{1}, r_{2}}$ in Q as $\varepsilon \rightarrow 0$.

If Q_{ad} is a bounded set, then $S_{r_{1}, r_{2}}$ is non-empty. This can be shown similar to the first part of the proof of Theorem 2.2. However, we cannot ascertain uniqueness of a solution when $\varepsilon=0$, see [13] in detail. In the case where the solution set $S_{r_{1}, r_{2}}=\left\{p_{r_{1}, r_{2}}\right\}$ is a singleton, we conclude from Proposition 3.1 that $p_{\varepsilon, r_{1}, r_{2}} \rightarrow p_{r_{1}, r_{2}}$, as $\varepsilon \rightarrow 0$ in Q.

Next we explore the behavior of the solution $p_{\varepsilon, r_{1}, r_{2}}$ as $r_{1} \rightarrow 0$ with $\varepsilon>0$ and $r_{2}>0$ being fixed. By Theorem
2.2, Problem 2.1 with $r_{1}=0$ has a unique solution $p_{\varepsilon, 0, r_{2}}$. From the inequality
$J_{\varepsilon, r_{1}, r_{2}}\left(p_{\varepsilon, r_{1}, r_{2}}\right) \leqslant J_{\varepsilon, r_{1}, r_{2}}\left(p_{\varepsilon, 0, r_{2}}\right)$,
we see that the sequence $\left\{\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}\right\}_{r_{1}}$ is uniformly bounded. From (7) and (8), we have the bounds
$\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right\|_{1, \Omega} \leqslant c\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}+\left\|g_{2}\right\|_{0, \Gamma}\right)$,
$\left\|u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right\|_{2, \Omega} \leqslant c\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right)$.
Thus, $\quad\left\{\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right\|_{1, \Omega}\right\}_{r_{1}} \quad$ and $\quad\left\{\left\|u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right\|_{2, \Omega}\right\}_{r_{1}} \quad$ are uniformly bounded. In particular, the sequence $\left\{\left\|\partial_{\nu} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right\|_{0, \Gamma}\right\}_{r_{1}}$ is also uniformly bounded. So we can select a subsequence $\left\{p_{\varepsilon, r_{1}^{\prime}, r_{2}}\right\}_{r_{1}^{\prime}}$ of $\left\{p_{\varepsilon, r_{1}, r_{2}}\right\}_{r_{1}}$ such that
$p_{\varepsilon, r_{1}^{\prime}, r_{2}} \rightharpoonup p_{\varepsilon, r_{2}}$ in Q, as $r_{1}^{\prime} \rightarrow 0$
for some element $p_{\varepsilon, r_{2}} \in Q_{\mathrm{ad}}$, and $\left\{u_{1}\left(p_{\varepsilon, r_{1}^{\prime}, r_{2}}\right)\right\}_{r_{1}^{\prime}}$ and $\left\{u_{2}\left(p_{\varepsilon, r_{1}^{\prime}, r_{2}}\right)\right\}_{r_{1}^{\prime}}$ converge weakly in V and $H^{2}(\Omega)$. Using the definitions (5) and (6), we can show that the limits of $\left\{u_{1}\left(p_{\varepsilon, r_{1}^{\prime}, r_{2}}\right)\right\}_{r_{1}^{\prime}}$ and $\left\{u_{2}\left(p_{\varepsilon, r_{1}^{\prime}, r_{2}}\right)\right\}_{r_{1}^{\prime}}$ are $u_{1}\left(p_{\varepsilon, r_{2}}\right)$ and $u_{2}\left(p_{\varepsilon, r_{2}}\right)$, respectively. So

$$
\begin{aligned}
& u_{1}\left(p_{\varepsilon, r_{1}^{\prime}, r_{2}}\right) \rightharpoonup u_{1}\left(p_{\varepsilon, r_{2}}\right) \text { in } V, \text { as } r_{1}^{\prime} \rightarrow 0, \\
& u_{2}\left(p_{\varepsilon, r_{1}^{\prime}, r_{2}}\right) \rightharpoonup u_{2}\left(p_{\varepsilon, r_{2}}\right) \text { in } H^{2}(\Omega), \text { as } r_{1}^{\prime} \rightarrow 0
\end{aligned}
$$

Take the limit $r_{1}^{\prime} \rightarrow 0$ in (14) with $r_{1}=r_{1}^{\prime}$ to obtain

$$
\begin{align*}
& r_{2}\left(D \partial_{v} u_{2}\left(p_{\varepsilon, r_{2}}\right)-g_{2}, D \partial_{v}\left(u_{2}(q)-u_{2}\left(p_{\varepsilon, r_{2}}\right)\right)\right)_{0, \Gamma} \\
& \quad+\varepsilon\left(p_{\varepsilon, r_{2}}, q-p_{\varepsilon, r_{2}}\right)_{0, \Omega_{0}} \geqslant 0 \quad \forall q \in Q_{\mathrm{ad}} \tag{21}
\end{align*}
$$

Thus, $p_{\varepsilon, r_{2}}=p_{\varepsilon, 0, r_{2}}$ by the uniqueness of a solution of Problem 2.1 with $r_{1}=0$. Since the limit $p_{\varepsilon, 0, r_{2}}$ does not depend on the subsequence we choose in the above argument, the entire family $\left\{p_{\varepsilon, r_{1}, r_{2}}\right\}_{r_{1}}$ converges weakly to $p_{\varepsilon, 0, r_{2}}$ in Q as $r_{1} \rightarrow 0$. Strong convergence can be argued as follows. Take $q=p_{\varepsilon, 0, r_{2}}$ in (14) and $q=p_{\varepsilon, r_{1}, r_{2}}$ in (21), and add the two resulting inequalities to obtain

$$
\begin{aligned}
& r_{2}\left\|D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}\left(p_{\varepsilon, 0, r_{2}}\right)\right)\right\|_{0, \Gamma}^{2}+\varepsilon\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, 0, r_{2}}\right\|_{0, \Omega_{0}}^{2} \\
& \quad \leqslant r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}\left(p_{\varepsilon, 0, r_{2}}\right)-u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)_{0, \Gamma} \rightarrow 0 \\
& \quad \text { as } r_{1} \rightarrow 0 .
\end{aligned}
$$

We see that both $\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, 0, r_{2}}\right\|_{0, \Omega_{0}}$ and $\| \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-\right.$ $\left.u_{2}\left(p_{\varepsilon, 0, r_{2}}\right)\right) \|_{0, \Gamma}$ approach zero as $r_{1} \rightarrow 0$.

In summary, we have shown the following result.
Proposition 3.2. For fixed $\varepsilon>0$ and $r_{2}>0$,
$p_{\varepsilon, r_{1}, r_{2}} \rightarrow p_{\varepsilon, 0, r_{2}}$ in Q, as $r_{1} \rightarrow 0$,
where $p_{\varepsilon, 0, r_{2}}$ is the solution of Problem 2.1 with $r_{1}=0$.
Similarly, we can show the next result.
Proposition 3.3. For fixed $\varepsilon>0$ and $r_{1}>0$,
$p_{\varepsilon, r_{1}, r_{2}} \rightarrow p_{\varepsilon, r_{1}, 0}$ in $Q, \operatorname{as} r_{2} \rightarrow 0$,
where $p_{\varepsilon, r_{1}, 0}$ is the solution of Problem 2.1 with $r_{2}=0$.

4. Finite element approximation

In this section, we discretize Problem 2.1 and study convergence of the numerical solutions. We use the finite element method to discretize the boundary value problems (5) and (6). For clarity of statement, we consider semi-discrete and full-discrete approximation separately. In the former case, we use linear finite elements to approximate the state variables u_{1} and u_{2}, whereas for full-discrete approximation, additional treatment with piecewise constant space to approximate control variable q is needed. In order to focus on the central ideas in derivation of error bounds for the numerical methods to be introduced, we will assume $\Omega \subset \mathbb{R}^{d}$ to be a polyhedral convex set. Error analysis of the numerical methods can be performed under the more general assumption that Ω is an open, bounded and convex set, through a rather delicate argument.

4.1. Semi-discrete approximation

Let $\left\{\mathcal{T}_{h}\right\}_{h}$ be a regular family of finite element partitions of $\bar{\Omega}$ into simplicial elements. Define the linear finite element space
$V^{h}=\left\{v \in C(\bar{\Omega}) \mid v\right.$ linear in $\left.K, \forall K \in \mathscr{T}_{h}\right\}$
and its subspace
$V_{0}^{h}=V^{h} \cap V_{0}=\{v \in C(\bar{\Omega}) \mid v$ piecewise linear, $v=0$ on $\Gamma\}$.
Denote by $\Pi_{V^{h}} v$ for the piecewise linear interpolant of $v \in H^{2}(\Omega)$. Then we have the existence of a constant $c>0$ such that $[4,16]$
$\left\|v-\Pi_{V^{h}} v\right\|_{0, \Omega}+h\left\|v-\Pi_{V^{h}} v\right\|_{1, \Omega} \leqslant c h^{2}\|v\|_{2, \Omega} \quad \forall v \in H^{2}(\Omega)$.

Let $g_{1}^{h}=\Pi_{V^{h}} g_{1} \in V^{h}$. Then
$\left\|g_{1}-g_{1}^{h}\right\|_{m, \Omega} \leqslant c h^{2-m}\left\|g_{1}\right\|_{2, \Omega} \leqslant c h^{2-m}\left\|g_{1}\right\|_{3 / 2, \Gamma}, \quad m=0,1$.

We will use the symbol $g_{1}^{h}+V_{0}^{h}$ for the set
$\left\{v \in V^{h} \mid v\left(a_{i}\right)=g_{1}\left(a_{i}\right) \forall\right.$ vertex $\left.a_{i} \in K \cap \Gamma, \forall K \in \mathscr{T}_{h}\right\}$.
For any $q \in Q$, denote by $u_{1}^{h}=u_{1}^{h}(q) \in V^{h} \quad$ and $u_{2}^{h}=u_{2}^{h}(q) \in g_{1}^{h}+V_{0}^{h}$ the solutions of the problems

$$
\begin{align*}
& \int_{\Omega}\left(D \nabla u_{1}^{h} \cdot \nabla v^{h}+\mu u_{1}^{h} v^{h}\right) \mathrm{d} x \\
& \quad=\int_{\Omega_{0}} q v^{h} \mathrm{~d} x+\int_{\Gamma} g_{2} v^{h} \mathrm{~d} s \quad \forall v^{h} \in V^{h} \tag{24}
\end{align*}
$$

and
$\int_{\Omega}\left(D \nabla u_{2}^{h} \cdot \nabla v^{h}+\mu u_{2}^{h} v^{h}\right) \mathrm{d} x=\int_{\Omega_{0}} q v^{h} \mathrm{~d} x \quad \forall v^{h} \in V_{0}^{h}$,
respectively.
By the Lax-Milgram lemma and the assumptions made on the data, the solutions $u_{1}^{h}(q)$ and $u_{2}^{h}(q)$ uniquely exist.

Define the functional

$$
\begin{align*}
J_{\varepsilon, r_{1}, r_{2}}^{h}(q)= & \frac{r_{1}}{2}\left\|u_{1}^{h}(q)-g_{1}^{h}\right\|_{0, \Gamma}^{2}+\frac{r_{2}}{2}\left\|D \partial_{v} u_{2}^{h}(q)-g_{2}\right\|_{0, \Gamma}^{2} \\
& +\frac{\varepsilon}{2}\|q\|_{0, \Omega_{0}}^{2}, \quad \varepsilon>0 . \tag{26}
\end{align*}
$$

Then the semi-discrete approximation of Problem 2.1 is the following formulation.
Problem 4.1. Find $p_{\varepsilon, r_{1}, r_{2}}^{h} \in Q_{\mathrm{ad}}$ such that
$J_{\varepsilon, r_{1}, r_{2}}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)=\inf _{q \in Q_{\mathrm{ad}}} J_{\varepsilon, r_{1}, r_{2}}^{h}(q)$.
Note that in the standard BLT formulation [9], $r_{2}=0$ and only the finite element problem (24) needs to be formulated and solved. In our proposed general framework, we need to formulate and solve both (24) and (25). However, due to the structure similarity of the two finite element problems, the cost of solving both (24) and (25) can be made only slightly more than that of solving (24) alone.

We summarize in the next theorem some results on Problem 4.1 as discrete analogues of Theorem 2.2 and Propositions 3.1-3.3.

Theorem 4.2. For any $\varepsilon>0, r_{1}, r_{2} \geqslant 0$ with $r_{1}+r_{2}>0$, Problem 4.1 has a unique solution $p_{\varepsilon, r_{1}, r_{2}}^{h} \in Q_{\mathrm{ad}}$, which is characterized by a variational inequality

$$
\begin{align*}
& r_{1}\left(u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)-g_{1}^{h}, u_{1}^{h}(q)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right)_{0, \Gamma} \\
& \quad+r_{2}\left(D \partial_{v} u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)-g_{2}, D \partial_{v}\left(u_{2}^{h}(q)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right)\right)_{0, \Gamma} \\
& \quad+\varepsilon\left(p_{\varepsilon, r_{1}, r_{2}}^{h}, q-p_{\varepsilon, r_{1}, r_{2}}^{h}\right)_{0, \Omega_{0}} \geqslant 0 \quad \forall q \in Q_{\mathrm{ad}} \tag{28}
\end{align*}
$$

When Q_{ad} is a subspace of Q, the above inequality is reduced to an equation

$$
\begin{align*}
& r_{1}\left(u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)-g_{1}^{h}, u_{1}^{h}(q)-u_{1}^{h}(0)\right)_{0, \Gamma}+r_{2}\left(D \partial_{v} u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right. \\
& \left.\quad-g_{2}, D \partial_{v}\left(u_{2}^{h}(q)-u_{2}^{h}(0)\right)\right)_{0, \Gamma}+\varepsilon\left(p_{\varepsilon, r_{1}, r_{2}, \delta}^{h}, q\right)_{0, \Omega_{0}}=0 \tag{29}
\end{align*}
$$

$\forall q \in Q_{\mathrm{ad}}$.
The solution $p_{\varepsilon, r_{1}, r_{2}}^{h}$ depends continuously on $D, \mu, \varepsilon, r_{1}, r_{2}, g_{1}$ and g_{2}.

Assume the solution set $S_{r_{1}, r_{2}}^{h}$ for Problem 4.1 with $\varepsilon=0$ is non-empty. Then for fixed $r_{1}, r_{2} \geqslant 0$ with $r_{1}+r_{2}>0$,
$p_{\varepsilon, r_{1}, r_{2}}^{h} \rightarrow p_{0, r_{1}, r_{2}}^{h}$ in Q, as $\varepsilon \rightarrow 0$,
where $p_{0, r_{1}, r_{2}}^{h} \in S_{r_{1}, r_{2}}^{h}$ is uniquely defined by
$\left\|p_{0, r_{1}, r_{2}}^{h}\right\|_{0, \Omega_{0}}=\inf _{q \in S_{r_{1}, r_{2}}^{h}}\|q\|_{0, \Omega_{0}}$.
For fixed $\varepsilon>0$ and $r_{2}>0$, we have
$p_{\varepsilon, r_{1}, r_{2}}^{h} \rightarrow p_{\varepsilon, 0, r_{2}}^{h}$ in Q, as $r_{1} \rightarrow 0$,
where $p_{\varepsilon, 0, r_{2}} \in Q_{\mathrm{ad}}$ is the unique solution of Problem 4.1 with $r_{1}=0$.

For fixed $\varepsilon>0$ and $r_{1}>0$, we have
$p_{\varepsilon, r_{1}, r_{2}}^{h} \rightarrow p_{\varepsilon, r_{1}, 0}^{h}$ in Q, as $r_{2} \rightarrow 0$,
where $p_{\varepsilon, r_{1}, 0} \in Q_{\mathrm{ad}}$ is the unique solution of Problem 4.1 with $r_{2}=0$.

For an error analysis of the numerical solution defined by Problem 4.1, we first preset some error bounds for the finite element solutions u_{1}^{h} and u_{2}^{h} of (24) and (25).

Lemma 4.3. There is a constant independent of h, ε, r_{1} and r_{2} such that for any $q, q_{1}, q_{2} \in Q$, the following inequalities hold:

$$
\begin{align*}
& \left\|u_{1}(q)-u_{1}^{h}(q)\right\|_{0, \Gamma} \leqslant c h^{3 / 2}\left(\|q\|_{0, \Omega_{0}}+\left\|g_{2}\right\|_{1 / 2, \Gamma}\right) \tag{32}\\
& \left\|\partial_{v}\left(u_{2}(q)-u_{2}^{h}(q)\right)\right\|_{0, \Gamma} \leqslant c h^{1 / 2}\left(\|q\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right) \tag{33}\\
& \left\|\left(u_{1}\left(q_{1}\right)-u_{1}\left(q_{2}\right)\right)-\left(u_{1}^{h}\left(q_{1}\right)-u_{1}^{h}\left(q_{2}\right)\right)\right\|_{0, \Gamma} \\
& \quad \leqslant c h^{3 / 2}\left\|q_{1}-q_{2}\right\|_{0, \Omega_{0}} \tag{34}\\
& \left\|\partial_{v}\left(u_{2}\left(q_{1}\right)-u_{2}\left(q_{2}\right)\right)-\partial_{v}\left(u_{2}^{h}\left(q_{1}\right)-u_{2}^{h}\left(q_{2}\right)\right)\right\|_{0, \Gamma} \\
& \quad \leqslant c h^{1 / 2}\left\|q_{1}-q_{2}\right\|_{0, \Omega_{0}} \tag{35}
\end{align*}
$$

Proof. Proof of the relations (32) and (34) can be found in [9]. Here we prove (33) and (35). By Céa's Lemma [4], (23) and (22),

$$
\begin{aligned}
& \left\|u_{2}(q)-u_{2}^{h}(q)\right\|_{1, \Omega} \\
& \quad \leqslant c \inf _{v^{h} \in g_{1}^{h}+V_{0}^{h}}\left\|u_{2}(q)-v^{h}\right\|_{1, \Omega} \\
& \quad \leqslant c\left(\left\|g_{1}-g_{1}^{h}\right\|_{1, \Omega}+\inf _{v^{h} \in V_{0}^{h}}\left\|\left(u_{2}(q)-g_{1}\right)-v^{h}\right\|_{1, \Omega}\right) \\
& \quad \leqslant \operatorname{ch}\left(\left\|g_{1}\right\|_{3 / 2, \Gamma}+\left\|u_{2}(q)\right\|_{2, \Omega}\right)
\end{aligned}
$$

Recalling the regularity bound (8), we have $\left\|u_{2}(q)-u_{2}^{h}(q)\right\|_{1, \Omega} \leqslant \operatorname{ch}\left(\|q\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right)$.

By the trace inequality
$\|v\|_{0, \Gamma}^{2} \leqslant c\|v\|_{1, \Omega}\|v\|_{0, \Omega}$,
we obtain

$$
\begin{aligned}
\left\|\partial_{v}\left(u_{2}(q)-u_{2}^{h}(q)\right)\right\|_{0, \Gamma}^{2} & \leqslant c\left\|u_{2}(q)\right\|_{2, \Omega}\left\|u_{2}(q)-u_{2}^{h}(q)\right\|_{1, \Omega} \\
& \leqslant \operatorname{ch}\left(\|q\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right)^{2}
\end{aligned}
$$

Thus (33) holds.
By noting that $u_{2}\left(q_{1}\right)-u_{2}\left(q_{2}\right) \in V_{0}$ is the solution of Problem 2.1 with $q=q_{1}-q_{2}$ and $g_{1}=0$, and $u_{2}^{h}\left(q_{1}\right)-u_{2}^{h}\left(q_{2}\right) \in V_{0}^{h}$ is the corresponding finite element solution, we obtain (35) from (33).

With the above preparation, we now present an error estimate. Denote

$$
\begin{aligned}
E_{\varepsilon, r_{1}, r_{2}}^{h}= & r_{1}\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right\|_{0, \Gamma}^{2} \\
& +r_{2}\left\|D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right)\right\|_{0, \Gamma}^{2} \\
& +\varepsilon\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h}\right\|_{0, \Omega_{0}}^{2}
\end{aligned}
$$

We have the following error bound.
Theorem 4.4. There is a constant $c>0$ independent of ε, r_{1}, r_{2} and h such that

$$
\begin{align*}
E_{\varepsilon, r_{1}, r_{2}}^{h} \leqslant & c r_{1} h^{3}\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}^{2}+\left\|g_{2}\right\|_{1 / 2, \Gamma}^{2}\right) \\
& +c r_{2} h\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}^{2}+\left\|g_{1}\right\|_{3 / 2, \Gamma}^{2}\right) \\
& +c r_{1} h^{3 / 2}\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}\right\|_{0, \Gamma}\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h}\right\|_{0, \Omega_{0}} \\
& +c r_{1} h^{3 / 2}\left\|g_{1}\right\|_{3 / 2, \Gamma}\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h}\right\|_{0, \Omega_{0}} \\
& +c r_{2} h^{1 / 2}\left\|D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}\right\|_{0, \Gamma} \\
& \times\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h}\right\|_{0, \Omega_{0}} \tag{36}
\end{align*}
$$

Proof. We take $q=p_{\varepsilon, r_{1}, r_{2}}$ in (28), $q=p_{\varepsilon, r_{1}, r_{2}}^{h}$ in (14), and use the two resulting inequalities to get

$$
\begin{aligned}
E_{\varepsilon, r_{1}, r_{2}}^{h} \leqslant & r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right), u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)_{0, \Gamma}+r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)+u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)-u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)_{0, \Gamma} \\
& +r_{1}\left(g_{1}-g_{1}^{h}, u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right)_{0, \Gamma} \\
& +r_{2}\left(D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right), D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right.\right. \\
& \left.\left.-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)\right)_{0, \Gamma}+r_{2}\left(D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& -g_{2}, D \partial_{v}\left(u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right. \\
& \left.\left.-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right)\right)_{0, \Gamma} \\
\leqslant & \frac{r_{1}}{2}\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right\|_{0, \Gamma}^{2}+\frac{r_{1}}{2} \| u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right) \\
& -u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\left\|_{0, \Gamma}^{2}+r_{1}\right\| u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}\left\|_{0, \Gamma}\right\| u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right) \\
& -u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right) \|_{0, \Gamma} \\
& +r_{1}\left\|g_{1}-g_{1}^{h}\right\|_{0, \Gamma}\left\|_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right\|_{0, \Gamma} \\
& +\frac{r_{2}}{2}\left\|D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right)\right\|_{0, \Gamma}^{2} \\
& +\frac{r_{2}}{2}\left\|D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)\right\|_{0, \Gamma}^{2} \\
& +r_{2}\left\|D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}\right\|_{0, \Gamma} \| D \partial_{v}\left(u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h}\right)\right) \|_{0, \Gamma}
\end{aligned}
$$

Hence, (36) follows by using relations (8), (23) and (32)(35) in Lemma 4.3.

More concrete error bounds can be derived from Theorem 4.4 under additional assumptions. For example, assuming $Q_{\text {ad }}$ to be a bounded set in the space Q, we can deduce from (36) that there is a constant $c>0$ independent of $r_{1}, r_{2}, \varepsilon$ and h such that
$E_{\varepsilon, r_{1}, r_{2}}^{h} \leqslant c\left(r_{1} h^{3 / 2}+r_{2} h^{1 / 2}\right)$.
The error bound (37) indicates a need to choose r_{2} to be of the same order as the meshsize h in order to get better solution accuracy.

4.2. Full-discrete approximation

Next, we turn to the full-discrete approximation with finite element to Problem 2.1. We use the linear finite element to discretize state variables and piecewise constant functions to approximate the control variable. We continue to use $\mathscr{T}_{h}, V^{h}, g_{1}^{h}+V_{0}^{h}$ and V_{0}^{h} defined in the previous subsection. In addition, we assume $\left\{\mathscr{T}_{0, H}\right\}_{H}$ is a regular family of triangulations of $\overline{\Omega_{0}}$ such that each element T of $\mathscr{T}_{0, H}$ joint to boundary $\partial \Omega_{0}$ has at most one curved face (for a three-dimensional domain) or side (for a plane domain) with mesh parameter H. Define the space
$Q^{H}=\left\{q \in Q|q|_{T} \in P_{0}(T) \forall T \in \mathscr{T}_{0, H}\right\}$,
where $P_{0}(T)$ is the constant function space, $Q_{\mathrm{ad}}^{H}=$ $Q^{H} \cap Q_{\mathrm{ad}}$. Then the full-discrete approximation of Problem 2.1 is the following formulation.

Problem 4.5. Find $p_{\varepsilon, r_{1}, r_{2}}^{h, H} \in Q_{\mathrm{ad}}^{H}$ such that
$J_{\varepsilon, r_{1}, r_{2}}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)=\inf _{q \in Q_{\mathrm{ad}}^{H}} J_{\varepsilon, r_{1}, r_{2}}^{h}(q)$.
Define the orthogonal projection operator $\Pi^{H}: Q \rightarrow Q^{H}$ by

$$
\begin{equation*}
\left(\Pi^{H} q, q^{H}\right)_{0, \Omega_{0}}=\left(q, q^{H}\right)_{0, \Omega_{0}} \quad \forall q \in Q, q^{H} \in Q^{H} \tag{38}
\end{equation*}
$$

Then we have the formula
$\left.\left(\Pi^{H} q\right)\right|_{T}=\frac{1}{|T|} \int_{T} q \mathrm{~d} x \quad \forall T \in \mathscr{T}_{0, H}$
and the inequalities
$\mid \Pi^{H} q\left\|_{0, \Omega_{0}} \leqslant\right\| q \|_{0, \Omega_{0}} \quad \forall q \in Q$,
$\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}} \leqslant c H|q|_{1, \Omega_{0}} \quad \forall q \in H^{1}\left(\Omega_{0}\right)$.
Similar to Lemma 4.3, we have the following result that will be used in deriving an error bound in Theorem 4.7.

Lemma 4.6. There is a constant $c>0$ independent of h and H such that

$$
\begin{equation*}
\left\|u_{1}^{h}(q)-u_{1}^{h}\left(\Pi^{H} q\right)\right\|_{0, \Gamma} \leqslant c H\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}} \tag{42}
\end{equation*}
$$

$$
\begin{align*}
& \left\|u_{1}(q)-u_{1}^{h}\left(\Pi^{H} q\right)\right\|_{0, \Gamma} \leqslant c H\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}} \\
& \quad+c h^{3 / 2}\left(\|q\|_{0, \Omega_{0}}+\left\|g_{2}\right\|_{1 / 2, \Gamma}\right) \tag{43}\\
& \left\|\partial_{v}\left(u_{2}^{h}(q)-u_{2}^{h}\left(\Pi^{H} q\right)\right)\right\|_{0, \Gamma} \leqslant c H^{1 / 2}\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}} \tag{44}\\
& \left\|\partial_{v}\left(u_{2}(q)-u_{2}^{h}\left(\Pi^{H} q\right)\right)\right\|_{0, \Gamma} \leqslant c H^{1 / 2}\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}} \\
& \quad+c h^{1 / 2}\left(\|q\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right) \tag{45}
\end{align*}
$$

Proof. Denote $e_{1}^{h, H}(q)=u_{1}^{h}(q)-u_{1}^{h}\left(\Pi^{H} q\right)$. Then from definition (24), we have

$$
\begin{align*}
\int_{\Omega} & \left(D \nabla e_{1}^{h, H}(q) \cdot \nabla v^{h}+\mu e_{1}^{h, H}(q) v^{h}\right) \mathrm{d} x \\
& =\int_{\Omega_{0}}\left(q-\Pi^{H} q\right) v^{h} \mathrm{~d} x \quad \forall v^{h} \in V^{h} \tag{46}
\end{align*}
$$

By (9), the inequality
$\left\|e_{1}^{h, H}(q)\right\|_{2, \Omega} \leqslant c\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}}$
holds.
By (39), we have

$$
\begin{aligned}
& \int_{\Omega_{0}}\left(q-\Pi^{H} q\right) w^{H} \mathrm{~d} x=\sum_{T \in \mathscr{T}_{0, H}} \int_{T}\left(q-\Pi^{H} q\right) w^{H} \mathrm{~d} x=0 \\
& \forall w^{H} \in Q^{H}
\end{aligned}
$$

Thus, for any $v \in H^{1}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega_{0}}\left(q-\Pi^{H} q\right) v \mathrm{~d} x & \leqslant\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}} \inf _{w^{H} \in Q^{H}}\left\|v-w^{H}\right\|_{0, \Omega_{0}} \\
& \leqslant c H\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}}\|v\|_{1, \Omega}
\end{aligned}
$$

Choosing $v^{h}=e_{1}^{h, H}(q)$ in (46), we have
$\left\|e_{1}^{h, H}(q)\right\|_{1, \Omega} \leqslant c H\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}}$.
Similarly, denoting $e_{2}^{h, H}(q)=u_{2}^{h}(q)-u_{2}^{h}\left(\Pi^{H} q\right)$, we get
$\left\|e_{2}^{h, H}(q)\right\|_{2, \Omega} \leqslant c\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}}$
and

$$
\begin{equation*}
\left\|e_{2}^{h, H}(q)\right\|_{1, \Omega} \leqslant c H\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}} \tag{50}
\end{equation*}
$$

Hence, by (48)-(50), we obtain

$$
\left\|e_{1}^{h, H}(q)\right\|_{0, \Gamma} \leqslant c\left\|e_{1}^{h, H}(q)\right\|_{1, \Omega}^{1 / 2}\left\|e_{1}^{h, H}(q)\right\|_{0, \Omega}^{1 / 2} \leqslant c H\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}}
$$

and

$$
\begin{aligned}
\left\|\partial_{v} e_{2}^{h, H}(q)\right\|_{0, \Gamma} & \leqslant c\left\|e_{2}^{h, H}(q)\right\|_{2, \Omega}^{1 / 2}\left\|e_{2}^{h, H}(q)\right\|_{1, \Omega}^{1 / 2} \\
& \leqslant c H^{1 / 2}\left\|q-\Pi^{H} q\right\|_{0, \Omega_{0}}
\end{aligned}
$$

So we have proved (42) and (44).
Noticing

$$
\begin{aligned}
\left\|u_{1}(q)-u_{1}^{h}\left(\Pi^{H} q\right)\right\|_{0, \Gamma} \leqslant & \left\|u_{1}(q)-u_{1}^{h}(q)\right\|_{0, \Gamma} \\
& +\left\|u_{1}^{h}(q)-u_{1}^{h}\left(\Pi^{H} q\right)\right\|_{0, \Gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\partial_{v}\left(u_{2}(q)-u_{2}^{h}\left(\Pi^{H} q\right)\right)\right\|_{0, \Gamma} \leqslant & \left\|\partial_{v}\left(u_{2}(q)-u_{2}^{h}(q)\right)\right\|_{0, \Gamma} \\
& +\left\|\partial_{v}\left(u_{2}^{h}(q)-u_{2}^{h}\left(\Pi^{H} q\right)\right)\right\|_{0, \Gamma},
\end{aligned}
$$

by (42), (44) and Lemma 4.3, we conclude relations (43) and (45).

Denote by

$$
\begin{aligned}
E_{\varepsilon, r_{1}, r_{2}}^{h, H}= & r_{1}\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)\right\|_{0, \Gamma}^{2} \\
& +r_{2}\left\|D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)\right)\right\|_{0, \Gamma}^{2} \\
& +\varepsilon\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right\|_{0, \Omega_{0}}^{2}
\end{aligned}
$$

for the full-discrete error. We have the following error bound.

Theorem 4.7. There is a constant $c>0$ independent of $\varepsilon, r_{1}, r_{2}, h, H$ such that

$$
\begin{align*}
E_{\varepsilon, r_{1}, r_{2}}^{h, H} \leqslant & c r_{1}\left[H E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+h^{3 / 2}\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}+\left\|g_{2}\right\|_{1 / 2, \Gamma}\right)\right]^{2} \\
& +c r_{1}\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}\right\|_{0, \Gamma}\left[H E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.+h^{3 / 2}\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right\|_{0, \Omega_{0}}\right] \\
& +c r_{1} h^{3 / 2}\left\|g_{1}\right\|_{3 / 2, \Omega}\left[E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.+\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right\|_{0, \Omega_{0}}\right]+c r_{2}\left[H^{1 / 2} E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.+h^{1 / 2}\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right)\right]^{2} \\
& +c r_{2} \| D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right) \\
& -g_{2} \|_{0, \Gamma}\left[H^{1 / 2} E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+h^{1 / 2}\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right\|_{0, \Omega_{0}}\right] \tag{51}
\end{align*}
$$

where

$$
\begin{align*}
E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right) & =\left\|p_{\varepsilon, r_{1}, r_{2}}-\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \\
& =\inf _{w^{H} \in Q_{a d}^{H}}\left\|p_{\varepsilon, r_{1}, r_{2}}-w^{H}\right\|_{0, \Omega_{0}} \tag{52}
\end{align*}
$$

is the best approximation error of $p_{\varepsilon, r_{1}, r_{2}}$ by piecewise constant function in $L^{2}\left(\Omega_{0}\right)$.

Proof. Take $q=\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}$ in (28) with $p_{\varepsilon, r_{1}, r_{2}}^{h}$ instead by $p_{\varepsilon, r_{1}, r_{2}}^{h, H}$ and $q=p_{\varepsilon, r_{1}, r_{2}}^{h, H}$ in (14) and add the two resulting inequalities to get
$E_{\varepsilon, r_{1}, r_{2}}^{h, H} \leqslant I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}$,
where

$$
\begin{aligned}
I_{1}= & r_{1}\left(u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)-u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.u_{1}^{h}\left(\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)_{0, \Gamma} \\
I_{2}= & r_{1}\left(u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}, u_{1}^{h}\left(\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.+u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)\right)_{0, \Gamma} \\
I_{3}= & r_{1}\left(g_{1}-g_{1}^{h}, u_{1}^{h}\left(\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)\right)_{0, \Gamma} \\
I_{4}= & r_{2}\left(D \partial_{v}\left(u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)\right. \\
& \left.D \partial_{v}\left(u_{2}^{h}\left(\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right)\right)_{0, \Gamma} \\
I_{5}= & r_{2}\left(D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{2}, D \partial_{v}\left(u_{2}^{h}\left(\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right)\right.\right. \\
& \left.\left.-u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)\right)\right)_{0, \Gamma} \\
I_{6}= & \varepsilon\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}, \Pi^{H} p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}\right)_{0, \Omega_{0}}
\end{aligned}
$$

By (43) and (45), we have

$$
\begin{align*}
I_{1} \leqslant & \frac{r_{1}}{2}\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{1}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)\right\|_{0, \Gamma}^{2}+c r_{1}\left[H E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right. \\
& \left.+h^{3 / 2}\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}+\left\|g_{2}\right\|_{1 / 2, \Gamma}\right)\right]^{2} \tag{54}
\end{align*}
$$

and

$$
\begin{align*}
I_{4} \leqslant & \frac{r_{2}}{2}\left\|D \partial_{v}\left(u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-u_{2}^{h}\left(p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right)\right)\right\|_{0, \Gamma}^{2} \\
& +c r_{2}\left[H^{1 / 2} E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+h^{1 / 2}\left(\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}+\left\|g_{1}\right\|_{3 / 2, \Gamma}\right)\right]^{2} \tag{55}
\end{align*}
$$

By (43), (34), (44) and (35), we can prove

$$
\begin{align*}
I_{2} \leqslant & c r_{1}\left\|u_{1}\left(p_{\varepsilon, r_{1}, r_{2}}\right)-g_{1}\right\|_{0, \Gamma}\left[H E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+h^{3 / 2} \| p_{\varepsilon, r_{1}, r_{2}}\right. \\
& \left.-p_{\varepsilon, r_{1}, r_{2}}^{h, H} \|_{0, \Omega_{0}}\right] \tag{56}
\end{align*}
$$

and
$I_{5} \leqslant c r_{2} \| D \partial_{v} u_{2}\left(p_{\varepsilon, r_{1}, r_{2}}\right)$

$$
\begin{equation*}
-g_{2} \|_{0, \Gamma}\left[H^{1 / 2} E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+h^{1 / 2}\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right\|_{0, \Omega_{0}}\right] . \tag{57}
\end{equation*}
$$

By using (8) and (23)
$I_{3} \leqslant c r_{1} h^{3 / 2}\left\|g_{1}\right\|_{3 / 2, \Omega}\left[E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)+\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{\varepsilon, r_{1}, r_{2}}^{h, H}\right\|_{0, \Omega_{0}}\right]$.

Finally, by (38), we get
$I_{6}=0$.
Hence, the error bound (51) follows from (53)-(59).
Regarding the quantity $\quad E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)=\| p_{\varepsilon, r_{1}, r_{2}}-$ $\Pi^{H} p_{\varepsilon, r_{1}, r_{2}} \|_{0, \Omega_{0}}$, we note the next result.

Proposition 4.8. If $S_{r_{1}, r_{2}}$ defined in Section 2 is non-empty, then we have the following convergence result:
$\left\|p_{\varepsilon, r_{1}, r_{2}}-\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \rightarrow 0, \quad$ as $H, \varepsilon \rightarrow 0$.
Moreover, if $p_{\varepsilon, r_{1}, r_{2}} \in H^{1}\left(\Omega_{0}\right)$,
$\left\|p_{\varepsilon, r_{1}, r_{2}}-\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \leqslant c H\left\|p_{\varepsilon, r_{1}, r_{2}}\right\|_{1, \Omega_{0}}$.
Proof. By Proposition 3.1, $\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Using the relation (40), we obtain

$$
\begin{aligned}
& \left\|p_{\varepsilon, r_{1}, r_{2}}-\Pi^{H} p_{\varepsilon, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} \\
& \leqslant
\end{aligned} \quad\left\|p_{\varepsilon, r_{1}, r_{2}}-p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}}+\left\|p_{0, r_{1}, r_{2}}-\Pi^{H} p_{0, r_{1}, r_{2}}\right\|_{0, \Omega_{0}} .
$$

Moreover, from (41), we get (61).
As in the previous subsection, under additional assumptions, we can deduce more concrete error bounds from Theorem 4.7. If $Q_{\text {ad }}$ is a bounded set in the space Q, then there is a constant $c>0$ independent of $\varepsilon, r_{1}, r_{2}, h$ and H such that

$$
\begin{aligned}
E_{\varepsilon, r_{1}, r_{2}}^{h, H} \leqslant & c r_{1}\left[h^{3 / 2}+H E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right] \\
& +c r_{2}\left[h^{1 / 2}+H^{1 / 2} E^{H}\left(p_{\varepsilon, r_{1}, r_{2}}\right)\right]
\end{aligned}
$$

If we further assume $p_{\varepsilon, r_{1}, r_{2}} \in H^{1}\left(\Omega_{0}\right)$, then there is a constant $c>0$ independent of $\varepsilon, r_{1}, r_{2}, h$ and H such that
$E_{\varepsilon, r_{1}, r_{2}}^{h, H} \leqslant c r_{1}\left(h^{3 / 2}+H^{2}\right)+c r_{2}\left(h^{1 / 2}+H^{3 / 2}\right)$.

Both these error bounds suggest the need to choose r_{2} in the order of h to achieve better solution accuracy.

With proper choice of ε related to h and H, we can verify the convergence of $p_{\varepsilon, r_{1}, r_{2}}^{h}$ and $p_{\varepsilon, r_{1}, r_{2}}^{h, H}$ to $p_{0, r_{1}, r_{2}}$, see [9].

5. A numerical example

In this section, we present numerical results on a model problem. The main purpose is to demonstrate solution accuracy improvement achieved through the new general mathematical framework over that from the standard formulation of the BLT problem studied in [9]. Let $\Omega=$ $(0,1) \times(0,1)$ be the problem domain and $\Omega_{0}=$ $(0.5,0.75) \times(0.5,0.75)$ the permissible region. Assume the absorption coefficient $\mu=0.02$ and the reduced scattering coefficient $\mu \prime=1.00$ in the whole domain Ω. We take $p \equiv 1 \mathrm{pW}$ for the true light source in Ω_{0} and set $g_{2} \equiv 0$ on the boundary $\Gamma=\partial \Omega$. The admissible set is taken to be $Q_{\mathrm{ad}}=\left\{q \in L^{2}\left(\Omega_{0}\right) \mid q \geqslant 0\right.$ a.e. in $\left.\Omega_{0}\right\}$. We use uniform square partitions of the regions $\bar{\Omega}$ and $\overline{\Omega_{0}}$ with mesh parameters $h=H$, where h and H are the maximal diameters of the elements in the partitions \mathscr{T}_{h} and $\mathscr{T}_{0, H}$. For finite element spaces V^{h}, V_{0}^{h} and Q_{ad}^{H}, we use continuous piecewise bilinear functions and piecewise constant functions corresponding to the partitions \mathscr{T}_{h} and $\mathscr{T}_{0, h}$. The error analysis presented in Section 4 for the linear element is valid also for the bilinear element we use for the numerical example. The boundary value of the finite element solution defined in (24) for a small meshsize is taken as the function g_{1}, and in this example, we choose $1 / 512$ for the small meshsize.

For a variety of choices of the parameters h, ε, r_{1} and r_{2}, we compute the approximate source function $p_{\varepsilon, r_{1}, r_{2}}^{h, h}$. We

Fig. 1. $p_{\varepsilon, r_{1}, r_{2}}^{h, h}$ for $r_{1}=r_{2}=0.5, \varepsilon=10^{-4}$ and $h=1 / 32$.
distinguish two cases according to whether the measurement data g_{1} is noise-free or perturbed by noise at certain level.

Case 1. In this case, we use the exact measurement g_{1}. We show the reconstructed source function $p_{k, r_{1}, r_{2}}^{h, h}$ and the error $p-p_{e_{2,1}, r_{2}}^{h, h}$ for $h=1 / 32$ with $r_{1}=r_{2}=0.5$ and $h=1 / 64$ with $r_{1}=0.8, r_{2}=0.2$ in Figs. 1-4, the regularization parameter $\varepsilon=10^{-4}$ being used in both. The L^{∞} and L^{2} norms of the error $p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}$ are provided in Tables 1-4. Tables 1 and 2 show the dependence of accuracy of the approximate solution $p_{\varepsilon, r_{1}, r_{2}}^{k, h}$ on the regularization param-
eter ε. We observe that accuracy of discrete solution improves when regularization parameter ε gets smaller. In Tables 3 and 4, we explore numerically improvement in the solution accuracy offered by our generalized formulation when the parameter r_{2} is chosen properly, as compared to the standard formulation ($r_{2}=0$) studied in [9]. Moreover, Tables 3 and 4 provide numerical evidence of the theoretical results recorded in Theorems 4.4 and 4.7 in that the accuracy of approximate source function $p_{\varepsilon, r_{1}, r_{2}}^{h, h}$ improves as mesh parameter h gets smaller and r_{2} gets small accordingly. We also observe that, for fixed r_{2} (correspondingly $r_{1}=1-r_{2}$) and ε, the error $\| p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}$

Fig. 2. $p_{\varepsilon, r_{1}, r_{2}}^{h, h}$ for $r_{1}=0.8, r_{2}=0.2, \varepsilon=10^{-4}$ and $h=1 / 64$.

Fig. 3. $p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}$ for $r_{1}=r_{2}=0.5, \varepsilon=10^{-4}$ and $h=1 / 32$.

Fig. 4. $p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}$ for $r_{1}=0.8, r_{2}=0.2, \varepsilon=10^{-4}$ and $h=1 / 64$.
Table 1

$\left\\|p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}\right\\|_{\infty}$ for $r_{1}=r_{2}=0.5$					
ε	1	1×10^{-1}	1×10^{-2}	1×10^{-3}	1×10^{-4}
$h=1 / 4$	$2.3884 \mathrm{e}-2$	$2.1180 \mathrm{e}-2$	$2.0909 \mathrm{e}-2$	$2.0882 \mathrm{e}-2$	$2.0879 \mathrm{e}-2$
$h=1 / 8$	$3.2687 \mathrm{e}-1$	$1.3853 \mathrm{e}-2$	$1.3839 \mathrm{e}-2$	$1.3837 \mathrm{e}-2$	$1.3837 \mathrm{e}-2$
$h=1 / 16$	$5.7368 \mathrm{e}-1$	$7.9307 \mathrm{e}-3$	$7.8020 \mathrm{e}-3$	$7.7893 \mathrm{e}-3$	$7.7881 \mathrm{e}-3$
$h=1 / 32$	$6.2180 \mathrm{e}-1$	$3.0223 \mathrm{e}-3$	$2.9281 \mathrm{e}-3$	$2.4965 \mathrm{e}-3$	$2.9389 \mathrm{e}-3$
$h=1 / 64$	$8.3383 \mathrm{e}-1$	$4.9602 \mathrm{e}-3$	$4.2834 \mathrm{e}-3$	$4.6899 \mathrm{e}-3$	$4.2158 \mathrm{e}-3$

Table 2

$\left\\|p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}\right\\|_{0}$ for $r_{1}=r_{2}=0.5$					
ε	1	1×10^{-1}	1×10^{-2}	1×10^{-3}	1×10^{-4}
$h=1 / 4$	$5.9709 \mathrm{e}-3$	$5.2950 \mathrm{e}-3$	$5.2273 \mathrm{e}-3$	$5.2204 \mathrm{e}-3$	$5.2197 \mathrm{e}-3$
$h=1 / 8$	$6.4347 \mathrm{e}-2$	$2.9377 \mathrm{e}-3$	$2.8698 \mathrm{e}-3$	$2.8632 \mathrm{e}-3$	$2.8626 \mathrm{e}-3$
$h=1 / 16$	$7.4374 \mathrm{e}-2$	$1.4438 \mathrm{e}-3$	$1.3779 \mathrm{e}-3$	$1.3714 \mathrm{e}-3$	$1.3707 \mathrm{e}-3$
$h=1 / 32$	$8.5888 \mathrm{e}-2$	$4.7031 \mathrm{e}-4$	$4.1167 \mathrm{e}-4$	$4.2203 \mathrm{e}-4$	$4.0359 \mathrm{e}-4$
$h=1 / 64$	$8.1559 \mathrm{e}-2$	$5.4279 \mathrm{e}-4$	$5.1204 \mathrm{e}-4$	$5.5401 \mathrm{e}-4$	$4.8618 \mathrm{e}-4$

Table 3
$\left\|p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}\right\|_{\infty}$ for $\varepsilon=1 \times 10^{-4}$

h	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$
$r_{1}=0.1, r_{2}=0.9$	$2.0994 \mathrm{e}-2$	$9.6667 \mathrm{e}-3$	2.3319	3.3488
$r_{1}=0.2, r_{2}=0.8$	$2.0489 \mathrm{e}-2$	$1.2257 \mathrm{e}-2$	$7.8846 \mathrm{e}-3$	
$r_{1}=0.5, r_{2}=0.5$	$2.0879 \mathrm{e}-2$	$1.3837 \mathrm{e}-2$	$7.7881 \mathrm{e}-3$	$2.4831 \mathrm{e}-3$
$r_{1}=0.8, r_{2}=0.2$	$2.0976 \mathrm{e}-2$	$1.4250 \mathrm{e}-2$	$4.3573 \mathrm{e}-3$	
$r_{1}=0.9, r_{2}=0.1$	$2.0994 \mathrm{e}-2$	$1.4329 \mathrm{e}-2$	$4.1812 \mathrm{e}-2$	
$r_{1}=1, r_{2}=0$	$2.1009 \mathrm{e}-2$	$1.4395 \mathrm{e}-2$	$8.9622 \mathrm{e}-3$	$4.2117 \mathrm{e}-3$

Table 4
$\underline{\left\|p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}\right\|_{0} \text { for } \varepsilon=1 \times 10^{-4}}$

h	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$
$r_{1}=0.1, r_{2}=0.9$	$5.2486 \mathrm{e}-3$	$2.0291 \mathrm{e}-3$	$2.5410 \mathrm{e}-1$	$3.1858 \mathrm{e}-1$
$r_{1}=0.2, r_{2}=0.8$	$5.1224 \mathrm{e}-3$	$2.5484 \mathrm{e}-3$	$9.8245 \mathrm{e}-4$	$4.3063 \mathrm{e}-4$
$r_{1}=0.5, r_{2}=0.5$	$5.2197 \mathrm{e}-3$	$2.8626 \mathrm{e}-3$	$1.3707 \mathrm{e}-3$	$7.0359 \mathrm{e}-4$
$r_{1}=0.8, r_{2}=0.2$	$5.2441 \mathrm{e}-3$	$2.9412 \mathrm{e}-3$	$7.3534 \mathrm{e}-4$	
$r_{1}=0.9, r_{2}=0.1$	$5.2486 \mathrm{e}-3$	$2.9558 \mathrm{e}-3$	$7.8147 \mathrm{e}-4$	$8.9745 \mathrm{e}-3$
$r_{1}=1, r_{2}=0$	$5.2522 \mathrm{e}-3$	$2.9675 \mathrm{e}-3$	$1.5545 \mathrm{e}-3$	$4.8618 \mathrm{e}-4$

Table 5

$\left\\|p-p_{\varepsilon, r_{1}, r_{2}}^{h, h}\right\\|_{0}$ for $r_{1}=r_{2}=0.5, \varepsilon=1 \times 10^{-4}$				
δ	0	1%	10%	20%
$h=1 / 4$	$5.2197 \mathrm{e}-3$	$5.4890 \mathrm{e}-3$	$1.3006 \mathrm{e}-2$	$2.4969 \mathrm{e}-2$
$h=1 / 8$	$2.8626 \mathrm{e}-3$	$3.1263 \mathrm{e}-3$	$1.3386 \mathrm{e}-2$	$2.4202 \mathrm{e}-2$
$h=1 / 16$	$1.3707 \mathrm{e}-3$	$1.7355 \mathrm{e}-3$	$1.1974 \mathrm{e}-2$	$2.3674 \mathrm{e}-2$
$h=1 / 32$	$4.0359 \mathrm{e}-4$	$1.2963 \mathrm{e}-3$	$1.1979 \mathrm{e}-2$	$2.3882 \mathrm{e}-2$
$h=1 / 64$	$4.8618 \mathrm{e}-4$	$1.2076 \mathrm{e}-3$	$1.1100 \mathrm{e}-2$	$2.2164 \mathrm{e}-2$

numerical solution is quite stable with respect to the perturbation in the measurement data g_{1}.

6. Conclusion remarks

Bioluminescence tomography is a new modality in optical imaging and is attracting more and more attention. In this paper, we present a new general reconstruction method for BLT based on finite element discretization. Because of the ill-posedness of BLT, we adopt Tikhonov regularization by introducing a parameter ε and explore the solution behavior as $\varepsilon \rightarrow 0$. We analyze the theoretical properties of BLT including the existence, uniqueness and stability of light source function in our new general framework. Finite element methods are applied to the practical reconstruction and numerical results are reported to illustrate improvement of solution accuracy obtainable from the proposed general framework over the standard formulation for BLT. The improvement is achieved with a slight increment in the amount of work as compared to the standard formulation.

Acknowledgements

We thank Dr. X. Hu of Zhejiang University for his help in the numerical experiment and thank two anonymous referees for their valuable comments and suggestions. The work of the first two authors was supported by National Natural Science Foundation (Grant No. 10471129) of China, and the work of the third author was supported by a Mathematical and Physical Sciences Funding Program fund.

References

[1] G. Alexandrakis, F.R. Rannou, A.F. Chatziioannou, Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study, Phys. Med. Biol. 50 (2005) 4225-4241.
[2] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, second ed., Springer-Verlag, New York, 2005.
[3] S.R. Cherry, In vivo molecular and genomic imaging: new challenges for imaging physics, Phys. Med. Biol. 49 (2004) 13-48.
[4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[5] A.X. Cong, G. Wang, Multispectral bioluminescence tomography: methodology and simulation, Int. J. Biomed. Imag. 2006 (2006). Article ID 57614, 7 pages.
[6] L.C. Evans, Partial Differential Equations, American Mathematical Society, Rhode Island, 1998.
[7] K. Glashoff, S.A. Gustafson, Linear Optimization and Approximation: An Introduction to the Theoretical Analysis and Numerical Treatment of Semi-infinite Programs, Springer-Verlag, New York, 1983.
[8] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[9] W. Han, W.X. Cong, G. Wang, Mathematical theory and numerical analysis of bioluminescence tomography, Inverse Probl. 22 (2006) 1659-1675.
[10] W. Han, W.X. Cong, G. Wang, Mathematical study and numerical simulation of multispectral bioluminescence tomography, Int. J. Biomed. Imag. 2006 (2006). Article ID 54390, 10 pages.
[11] W. Han, G. Wang, Theoretical and numerical analysis on multispectral bioluminescence tomography, IMA J. Appl. Math. 72 (2007) 67-85.
[12] V. Isakov, Inverse Problems for Partial Differential Equations, second edition., Springer, New York, 2006.
[13] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equation, Springer, Berlin, 1971.
[14] D. Marco, Multigrid for image deblurring with Tikhonov regularization, Numer. Linear Alg. Appl. 12 (2005) 715-729.
[15] T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes Dev. 17 (2003) 545-580.
[16] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, 1994.
[17] P. Ray, A.M. Wu, S.S. Gambhir, Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice, Cancer Res. 63 (2003) 1160-1165.
[18] T. Troy, D.J. Mcmullen, L. Sambucetti, B. Rice, Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models, Mol. Imaging 3 (2004) 9-23.
[19] G. Wang, Y. Li, M. Jiang, Uniqueness theorems in bioluminescence tomography, Med. Phys. 31 (2004) 2289-2299.

[^0]: * Corresponding author. Tel.: +86057185922179.

 E-mail addresses: xiaoliangcheng@zju.edu.cn (X. Cheng), gongrongfang319@yahoo.com.cn (R. Gong), whan@math.uiowa.edu (W. Han).

