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Diffuse optical tomography is a novel molecular imaging technology for small animal studies. Most known reconstruction methods
use the diffusion equation (DA) as forward model, although the validation of DA breaks down in certain situations. In this work,
we use the radiative transfer equation as forward model which provides an accurate description of the light propagation within
biological media and investigate the potential of sparsity constraints in solving the diffuse optical tomography inverse problem.
The feasibility of the sparsity reconstruction approach is evaluated by boundary angular-averaged measurement data and internal
angular-averaged measurement data. Simulation results demonstrate that in most of the test cases the reconstructions with sparsity
regularization are both qualitatively and quantitatively more reliable than those with standard L, regularization. Results also
show the competitive performance of the split Bregman algorithm for the DOT image reconstruction with sparsity regularization

compared with other existing L, algorithms.

1. Introduction

Diffuse optical tomography (DOT) is an emerging imaging
modality that has attracted much attention in clinical diag-
nosis, for example, in breast cancer detection, monitoring of
infant brain tissue oxygenation level, and functional brain
activation studies, cerebral hemodynamic, and so forth;
compare [1-3]. With the use of near-infrared (NIR) light,
DOT probes the optical properties, mainly the absorption
coeflicient and the scattering coefficient of human tissues.
In experimental systems, a set of optical fibres and optodes
are attached to the boundary of the object as measurement
detectors and sources. NIR light as the inflow current is emit-
ted by laser and guided by some fibre optics into the object,
one position at a time. The light is transmitted, and then
the outflow current is measured from all the measurement
positions using light sensitive detectors.

By employing a setup comprising a set of external light
sources and detectors, the optical properties of a tissue can
be recovered by applying the principles of tomography. The
difference in absorption or scattering between the normal
and abnormal tissues can provide the imaging contrast for
tissue diagnostics. In this context, the aim of diffuse optical
tomography is to provide the spatial distribution of the
absorption and scattering coefficients of a tissue.

The forward problem in DOT describes the photon prop-
agation in tissues and the inverse problem involves estimating
the absorption and scattering coefficients of tissues from
light measurements on the surface. There are many models
describing the light propagation, for example, the Fokker-
Planck equation, differential approximations of the radiative
transfer equation (RTE) and so forth (cf. [4, 5]), and the
diffusion equation (DA), which is accepted as a popular for-
ward model describing light propagation in tissues. DA is
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a low-order approximation of RTE. However, the validation
of DA breaks down in the following situations. First, since
DA is only valid in the tissues with high scattering and
low absorption, while in many tissues of human body with
low scattering, such as skeleton, joint, DA is largely limited.
Second, DA is not suitable to describe the light propagation
in regions near to the light source, which will result in the
large error when using DA as the forward model to image
small animal or small tissue. For more on DA, we refer to
[1, 6,7]. Due to these limitations of DA, RTE is a more natural
choice to model the light propagation. In this paper, we will
present numerical evidence to show that DOT based on RTE
can achieve satisfactory resolution.

Since DOT suffers from severe ill-posedness caused by
noise and incomplete measurement data, its efficient, stable,
and accurate numerical treatment is very challenging. Due
to its immense range of prospective applications, there has
been a vast amount of research work on mathematical as
well as practical aspects of the inverse problem. In particular,
the design of efficient and stable numerical algorithms has
received considerable attention.

In the linearized Jacobian-based methods, a popular
approach for solving the minimization problem is to treat it
as a nonlinear least-square problem that can be solved with
many standard optimization techniques [8], among which
Levenberg-Marquardt method (LM) [9] is perhaps the most
commonly used one, which is a Gauss-Newton method with
L, regularization. Based on RTE, the authors in [10] discussed
in detail the LM method for parameter estimation problems.
We will describe the LM method briefly in Section 3. In the
nonlinear gradient-based methods, we directly minimize the
nonlinear functional; in the optimization process only the
gradient of the nonlinear functional needs to be computed,
for example, the BFGS (Broyden-Fletcher-Goldfarb-Shanno)
method and the L-BFGS method [8, 11].

The appropriate choice of regularization depends on a pri-
ori knowledge of the domain and the inclusions. Although L,
regularization is usually a natural choice for its simplicity, it
is not the optimal strategy. For example, when the coefficient
distribution is sparse or discontinuous, it is well known that
the L, regularization method [12, 13] or the bounded total
variation (TV) regularization method [14, 15] is more efficient
than L, regularization.

Sparse reconstruction has attracted much researchers’
attention, especially since Donoho et al. [16, 17] established
the theory of compressive sensing (CS). CS describes the
sparse reconstruction problem as an L, quasinorm optimiza-
tion [18]. However, Donoho in [19] proved that the L, regu-
larization can also obtain the sparsest solution and proposed
the equivalent condition between the L, regularization and
the L, regularization. In [20], Candes et al. studied the stable
signal recovery from incomplete and inaccurate measure-
ments and reduced a computationally difficult problem to the
basis pursuit problem. Because the sparsity regularization is
nonsmooth, it is still a challenge to find efficient methods to
solve this convex basis pursuit optimization problem, and the
choice of techniques for solving it becomes crucial. Classical
gradient-based methods usually bring high computational
burden [21]. Motivated by the inverse problem in imaging
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[22-25], the authors used and developed the Bregman itera-
tion technique for the L, regularization problems and proved
that the Bregman iteration method is an effective way to solve
the L, norm minimization problems.

In this paper, we adopt the split Bregman method for
solving sparsity regularization problems. The split Bregman
method is a simple and eflicient algorithm which can split
the minimization into L, and L, functionals and significantly
reduce the computational burden [24]. We will introduce the
split Bregman algorithm in detail in Section 3.

The organization of this paper is as follows. Section 2
introduces the DOT forward problem, briefly presents the
radiative transfer equation (RTE), and describes the imaging
modality of the forward problem. Section 3 presents in detail
the reconstruction algorithm, including the Levenberg-
Marquardt algorithm and the split Bregman algorithm. Sec-
tion 4 provides several simulations to show the validity of the
sparsity regularization reconstruction. Section 5 gives some
conclusion statements.

2. Forward Problem

In this section, we formulate our problem of RTE based
diffuse optical tomography.

2.1. Radiative Transfer Equation. Photon propagation in tis-
sues can be described by the radiative transfer equation. Let
X ¢ R", n = 2 or 3, denote the physical domain of the
medium with boundary 0X, Q := S§"! the unit sphere, ¥(x)
the unit outer normal vector, and I, € 0X x Q) the outgoing
and incoming boundaries defined by

[, ={xw)ecdXxQ|w-v(x) >0}

1
I ={(x,w) €0XxQ|w-v(x)<0}. W

The variables x € X and w € Q) denote the spatial position
and the angular direction. Then we consider the following
boundary value problem (BVP) of RTE:

w - Vu (X, w) + p, (X) u (X, w) = p, (x) Su (x, w)

+f(xw) inXxQ,

2)

u (x, CU) = U, (x,w) on I, (3)
where p,(x) = p,(x) +p,(x) is the total attenuation coefficient,
U, (x) describes the probability that a photon is absorbed in
unit length, its reciprocal 1/u, being the absorption mean
free path, and p (x) is the scattering coeflicient, describing
the probability that a photon is scattered in unit length, its
reciprocal 1/u, being the scattering mean free path. Further,
u(x, w) is the radiance and f(x, w) is the internal light source.
In this paper, we consider the case with no light source inside
X; f(x,w) = 0. u;, (x, ) is the inflow current on I, and the
boundary condition (3) implies that once a photon escapes
the domain X, it does not reenter it; compare [26]. S is
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the scattering operator. Denote by do(w) the infinitesimal
area element on the unit sphere Q. Then S is defined as

S (e = [ e Duxade@ @)
Q
with # a nonnegative normalized phase function:
J nxw-@)do@ =1 VxeX, weQ. (5
Q

In many applications, the function # is independent of x.
However, in our general study, we allow # to depend on x.
Indeed, we can even allow # to be a general function of x,
w, and o, that is, in the form #(x, w, ). The scattering phase
function #(x, w - @) describes the probability that a photon
with an initial direction @ will have a direction w after a
scattering event. In DOT, one typical example is the Henyey-
Greenstein phase function; compare [27]. Consider

2

-9
4(1+g%>-2gt)

n(t) = t=w-wel[-1,1], (6)

3/27

where the parameter g € (-1, 1) is the anisotropy factor of the
scattering medium. Note that g = 0 for isotropic scattering,
g > 0 for forward scattering, and g < 0 for backward
scattering. In biomedical imaging problems, the scattering is
strongly forward peaked and g is close to 1.

2.2. Forward Problem. Similar to the X-ray CT, DOT exper-
iments acquire the current distribution of detectors on the
boundary under the multi-incidents [28]. The experimental
procedure of acquiring potential measurements is as follows.
First, set a set of s laser devices and d detectors on the bound-
ary of the object. Then launch an incident impulse from one
laser device and record the resulting measurements from all
the detectors. In order to gather enough data information,
repeat this procedure on other laser devices.

We can model this procedure mathematically. Before
doing this, let us introduce some assumptions on the domain
and the coefficients, assumed to be valid throughout the rest
of this paper.

We assume that the absorption and scattering coefficients
are approximated piecewise-constant. It is known that the
BVP (2) and (3) has a unique solution [29], and the solution
depends continuously on the input current u;,, on the incom-
ing boundary .

The forward problem of DOT is to determine the out-
going current on the detectors when the incident impulse
and the absorption and scattering coefficients are known.
Excite the domain X with a sequence of incident impulses
Upip 1 <0 < s, and get a sequence of measurements M;
corresponding to each incident impulse, with its component

Mf , 1 < j < d, being the measurement value on d detectors.

Then a mathematical description of such an experiment is
provided by a sequence of forward operators:

Fi:D—>Rd, (yt,ys)»—>Mi, 1<i<s (7)

which maps prescribed optical parameters to the correspond-
ing measurements. Here, F; denotes the ith forward operator
with respect to the ith incident impulse and the resulting
detected measurement data on d detectors. Then, for 1 <i <
s, the domain of the operator F, is defined as

D = {(pp 1) € L (X) x L7 (X)}. (8)

M, € R is a column vector representing the measurement
data on d detectors.

We mention that, in DOT, the measured quantity is the
excitance on the boundary of the domain. Due to the limit of
measurement techniques of the optical devices, the angularly
resolved measurement data ul_is not practical. In this study,
fori=1,...,s, we use the boundary angularly averaged data
as our measurements [30]:

M,»=J' w-v(X)u; (x,w)do (w), x€dX, (9)
Q

X+

where u;(x, w) is the solution of the BVP (2) and (3) cor-
responding to the optical coefficients (y,,4,) and the ith
incident impulse u;, ; and ¥(x) is the unit outer normal vector,
whereas the set

Q,,={weQ|w x>0} (10)

In [30], a detailed analysis is given on properties of the
forward operator, including the Lipschitz continuity and the
Fréchet differentiability. The BVP (2) and (3) needs to be
solved by numerical methods, such as the finite difference
method or the finite element method in spatial discretization,
and the finite element method or Sy approximation in
angular discretization. For the simulation results in this
paper, we use the RTE2DMATLAB codes [6], in which the
finite element method in both spatial and angular spaces
is used to discretize the forward mapping. We refer the
reader to [4, 6, 31-34] for details about the finite element
implementation in both spatial and angular space.

3. Inverse Problems

In practice, due to the limitations of the experimental envi-
ronment and the laboratory equipment, the measurement M;
we get usually contains noise. Here, we assume that, for 1 <
i < s, the actual measurements have the noise level d; that is,
IIM;S —M;| < 6, where Mf represents the actual measurement
data and M, represents the true data corresponding to the
true optical coefficients. Then our inverse problem of DOT



is to determine (y,, ) such that the following nonlinear
equations hold:

Fi(pous) =M, (up) €D (1)

fori=1,...,s.

In this paper, we only reconstruct the scattering coef-
ficient, while assuming that the distribution of the total
attenuation coefficient g, is known.

As is typical for many inverse problems, the DOT inverse
problem is ill-posed. In order to reconstruct the optical
parameter stably, regularization is required. We minimize the
following Tikhonov functional:

1 S
J (4s) = EZ | () — Mi”i%aX) +aR (4),  (12)
i=1

over the admissible set
Qua = {1 € L7 (X)} (13)

for the coefficient y,. Here, R(y,) is a regularization penalty
functional that enforces a priori knowledge on the optical
parameter to be reconstructed and & > 0 is the regularization
parameter used to trade off the discrepancy term (the first
item of J(u,)) that incorporates the information contained in
the data and R(y,) [35]. Then we analyse the minimization
problem:

inf .
Jof ] (us) (14)
We consider two popular regularization formulations: the
L, norm penalty and the sparsity constraint regularization.
We will describe these two approaches below.

3.1. Standard Reconstruction. First, we use the traditional
L, norm squared penalty, which consists of minimizing the
following functional:

2 (4% %112
rex) T3 s = g ||L2(X) (15)

](Aus) = %Z “Fl(“s) - ]VIl(S
i=1

with a specified y based on a priori information on the solu-
tion. In the statistical inversion framework, the correspond-
ing prior constructions are known as smoothness priors [36].
To compute a minimizer of problem (14), many iterative
regularization methods are available. We use the Levenberg-
Marquardt method based on linearization. Specifically, for
every 1 < i < s, the forward operator F;(u,) is linearized
around some initial guess ‘uf; that is,

Fi(u) =F (u0) + F () (s - ) + R (usi),  (16)

where E/(110) is the Fréchet derivative of F;(y,) with respect
to the coefficient y at ’ and R(u’;i) denotes the Taylor
remainder for the linearization around p{. Then substituting
the above linearized expression into the functional J(y,)
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and ignoring the higher-order remainder R(u;1), we get a
linearized problem

1R
inf D F (1) + B (1) (1.~ 1) ~ M2
Hs i=1 (17)
2

L(X)"

T

2

The Euler equation of the discrete problem is

S

D F ()" (B () + () (s = i) - 1) .
=1 18

tou-p) =05

that is,

(19)

_ -ZF ()" (F () - )

with I the identity matrix. The system can be solved directly to
geta new estimate for ¢, based on the initial guess . Then we
iteratively update the reconstruction by taking the solution as
an initial guess. In practice, the iterative procedure achieves
required accuracy within a few iterations. The complete
algorithm is given in Algorithm 1. The stopping criterion
can be defined based on monitoring the relative change of
consecutive iterations.

3.2. Sparsity Reconstruction. In the sparsity reconstruction,
the functional to be minimized is of the form

2 o
12(9X) + 5 ”Al’ls“l1 . (20)

J (Ms) = %Z ||F,([/ls) - M:s
i=1

We will apply the Bregman framework to solve (20). The key
to our method is to “decouple” the L, and L* portions in (20).
Rather than (20), we will consider the constrained problem
[23]:

ol 5%
;ngiz |Fitu) - 227, ox Tl such that d = .
o L]

(21)

To solve the above minimization problem, the corresponding
unconstrained optimization problem is

S
= argmin Y [Eu) - M| v,
#s 24 (22)

B 2
Ela-nlp,
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Input: Set the initial guess of u’; The regularization parameter e, .
Output: Approximate minimizer y,.
1) fork=1,...,K do

2) fori=1,...,sdo
(i) Compute the Fréchet derivative F, (), and F,.'(,uf)*
(3) end for

i=1"1i i=1"i

(ii) Update /,tf” by solving the linearization problem

(iii) Check the stopping criterion.

(i) Compute Y5, F/(u*) F/(uf) + al, and - ¥_, F/ ()" (F, () - M?)

(Xi E ) F () + ad) g = 1) = = Xoo L ()" (F () = M)

(4) end for

ALGORITHM 1: Reconstruction algorithm based on the regularizing Levenberg-Marquardt method.

where 8 > 0 is the split parameter. Then we can iteratively
solve the following subproblems [37, 38]:

S
(4, d") = arg r;n;l%; |F: () - M7 ||i o T ldll,
s> i=

_ (23)
T

vy =+l - dh
The minimization of the above subproblems can be iteratively

solved by splitting it into the minimizations of y, and d
separately. This suggests the following steps.

Step 1. Consider

k L1 52
ue = argmin=3 |F, (1) = M7
= (24)
By -1 k-1]|%
LR
Step 2. Consider
d* = argmin |||, + B “d k- bk_lnz (25)
=arg d I P Hs d 2"
Step 3. Consider
vy =6+ it - ds. (26)

For the solving of Step 1, we can use an iterative method,
for example, the Landweber iteration method, the Levenberg-
Marquardt method, and so forth. Since the Levenberg-
Marquardt method has a higher convergence rate than
the conventional Landweber iteration method, we use the
Levenberg-Marquardt method on Step 1. Thus, we will solve
a minimization problem as follows.

Step 1*. Consider
Kk 13 FOEY + F (! =1yl
e =argmin= 3 [FGus™) + F (s — i - M
i=1

T
(27)

To solve Step 1%, we solve the explicitly given variational
equation as follows:

(30 ) B+ ) i)
) YE (47 (5 () - ).

(28)

_ ﬁ(dk—l _ !

Step 2 is an L, norm regularization problem and it can be
solved efficiently through the shrinkage operator; that is,

d* = shrink < uF B %) : (29)

where the shrinkage operator

x—-t x2>t,
shrink (x, t) = sign (x) max (|x| - £,0) = 10, |x| < t,
x+t, x< -t
(30)

From the three steps, we can see that the speed of the split
Bregman method is largely dependent on the speed of solving
Step 1, where the computation of the Jacobian matrix Fi'(ys)
is very time-consuming. We list the split Bregman method in
Algorithm 2.

3.3. Analysis of Standard Reconstruction and Sparsity Recon-
struction. The appropriate choice of regularization depends
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Output: Output an approximation y, = ptf.
while || y* — 451 > e do
(i) For every 1 < i < s, compute (28) to get u';
(ii) d* = shrink(u* + b5, o/ B);
(iii) Compute by = b + u* - d*.
(iv) g, = 4l
end while

Input: set the initial guess y); the regularization parameter a > 0, > 0; d” = bJ = 0, and the tolerance e.

ALGORITHM 2: Reconstruction algorithm based on the split Bregman method.

X2

H,

X2

H,

X1

L;-ball: [x;| + |x,| = constant

(a)

LN
o

L,-ball: x? + x5 = constant

(b)

FIGURE 1: L, regularization and L, regularization.

on a priori knowledge of the solutions. Although L,-norm
regularization is a natural choice for its simplicity, it is not
always the optimal strategy.

For the DOT reconstruction, the sought-for optical coef-
ficients distribution usually consists of an essentially unin-
teresting background plus some small inclusions. Thus we
will require the solution of the reconstruction in a sparse
coefficient vector form; that is, the coefficient vector of the
optical parameter contains only a finite number of nonzero
elements.

The standard reconstruction and sparsity reconstruction
add L,-norm penalization and L, -norm penalization into the
problem, respectively, which allow additional constraints or
prior information towards the approximate solution. Figure
1(a) illustrates how L,-norm penalization leads to sparse
solutions. Take a linear problem as an example; suppose we
are looking for a solution of the linear equation Ax = y
in a model space with two degrees of freedom and the line
H, consists of x that satisfy Ax = y. To find the solution
with smallest L,-norm, we can imagine taking a small circle
around the origin and increase its radius until it first touches
the solution line H): the tangent point is the minimum;
see Figure 1(b). Obviously, the point of solution has both x,
and x, components. In a similar way, to find the solution
with smallest L,-norm, we take a small L,-ball around

the origin and increase its radius until it first touches Hy: the
touching point is the minimum L,-norm solution, which is
sparser than the solution achieved with smallest L,-norm,
because it is on one axis only; only one component is non-
Zero.

There is also an extreme penalty term, say, L,-norm
penalization, which is simply the number of nonzero coef-
ficients and leads to the sparsest solution. Nevertheless, the
optimization problem with this penalty is not computation-
ally tractable. Hence L,-norm penalization is preferred in
practical problems. In addition, it has been proven that,
for some large matrices A, if there exist sufficiently sparse
solutions, the sparsest solution can be achieved by the L,-
norm minimization [19, 20]. Under certain conditions, the L,
penalty term can provide an accurate result even with limited
observations [17]. These phenomena are further investigated
in different fields such as electrical impedance tomography
and tomographic inversion [39, 40].

4. Numerical Implementations
In this section, we report simulation results on numerical

examples in two dimensions (2D). We perform the sim-
ulations on a 3.0 GHz PC with 8 GB RAM in MATLAB
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FIGURE 2: Angular discretization in 2D.
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FIGURE 3: Standard regularization reconstruction for a small spot with 132 boundary angular-averaged measurements. (a) Mesh for the

forward problem, (b) mesh for the inverse problem, (c) the true scattering distribution, and (d) the image reconstructed from standard
regularization.
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FIGURE 4: Sparsity regularization reconstruction for a small spot with 132 boundary angular-averaged measurements, images with (a) 0%, (b)

0.1%, (c) 1%, and (d) 10% Gaussian noise, respectively.

2013b environment under Windows 7. In our simulations,
the scattering coefficient y, is reconstructed both with the
standard regularization reconstruction and with the sparsity
regularization reconstruction. We use two kinds of mea-
surements for reconstruction: boundary angular-averaged
measurements and internal angular-averaged measurements.
The boundary measurements are the excitance received by
detectors attached to the boundary of tissue. Due to the limit
of measurement techniques of the optical devices, we cannot
accurately receive the excitance from all angles; instead we
receive a boundary angular-averaged data J‘W u(x, w)do(w)
which can be regarded as the integration of radiance on
the boundary of the domain in all outgoing directions.
The internal angular-averaged measurements are the same
as boundary angular-averaged measurements except for the
location of detectors which we assumed to be inside the
domain.

We design different simulations to demonstrate the fol-
lowing points.

First, for sparse coeflicient distribution, the sparsity reg-
ularization reconstruction localizes the location of the inclu-
sion better than standard regularization reconstruction, espe-
cially when there is noise and the data are incomplete. See
Figures 4, 9, and 10.

Second, the proposed sparsity regularization reconstruc-
tion works better when g = 0.9 than g = 0.1. See Figures 6
and 7.

Third, when the internal angular-averaged measurements
are available, the proposed sparsity regularization reconstruc-
tion works better with internal angular-averaged measure-
ments than with boundary angular-averaged measurements.
See Figures 13 and 14.

Last, the split Bregman algorithm can efficiently solve the
DOT image reconstruction problem with sparsity regulariza-
tion. The results reconstructed by the Bregman algorithm are
more accurate than those achieved by three other algorithms.
See Figures 16 and 17.



Computational and Mathematical Methods in Medicine

0.5

-0.5

0.5

-0.5

0.5

-0.5

. : — 2
V4
N RS
QPN WO
XA RN VAVAZ¢
RO R KA
Javavzias OPaVay N avavav NS AYAV,y, oVavay, N
Pavavayt)AVAVAY, v, vsVAVAVAVAy,9AYAVAV. v AVAVAYS 7 N ]
%7, 7. YAVAVAVAVAV.TAVAVAVAV.VaYAVAVAVAY, AVAVaY ;9
AN PN Y AN AVAVAYAY( VANAVAVAVAVAVAVAVAV s & SVAVAVAY,V,
SR KIS IIIN, PAATAVAVAVAY
R RN XK
SRS St
Wavs! A 'Y
R R SO ARSI RREPRRRE
IS RIRISISIAAIAKINN KIS ’
R NI P RSSOV IR
RS R I ORRR RO SRR
<RN
RIS IR AA AR
SNSSERRIKIAA RIS
ORI A NN AZSROSD
SRS RSOOSR SRS
R e S S
RS
SRR K S DOOOORKIRKR g
AVAVAVAY L Va VAV
A AVAVAYAYAVAV)
. . 1
-1 0 1
(a)
. . — 2
VEA'A INANTH
RO
SRS YRS
O (vsYAYAVAVAY S S\vs
OSONISAANERISRINS
ORI
AR ORIRISITIORIRIARITSN
AN SISO RSN
ORISR SISO KER 1
B R R DL
"“}?v A\ X ’Av# X N % Vavy v\
KDOOAZARTOO00 VAYAY, MOASKIRP
VAV VeV, ARSI
A s AV AV o AVAVAYA A% vAVAVAVAVAYAR:) (A (G4 S TaSh o |
RIS SRS ORI ORI
N IARKIKONEZSISNRS oYy i
S AKX, ‘?FAQAQA LR ORNRRRBAAN] 1.5
AV, Dy NVAVAVA GRS
(AVAYAYAV) % KTy
A
N
AVAVAV.2avanad < )
NRKSRRRIAKISRRS
OISR ANKSSKY
KSR TNINNY
SRR TN
ARSI
. ATAVIAVAY . 1
-1 0 1 -0.5 0 0.5
(©) (d)
r T — 2
KX
X
K]
RISKAA
QPRI
AR JAVAY
VAVAVAVAVav, 5,908 as gV SOSanS YAV, Vi
RO RN LRI, '
BRESER TSN 000
s <\ % YA
N % K A
N AR RIS K\
R R RARR SRR 16
e SN s
BRPRRSEOCRERE B OORRR  |
IR RSN OO RNA ARSI
R S A O RN
A 14
ravaXlavavivisoam 4‘§A§VA§§’¢>‘,«V VAVAVAV&X"‘\%& KD
- :5%'5”"‘ VORVAVAVAYaY, e
YA
NNARDAA
> 4
S 1.2
KA DRI '
RSO
T VAT AT A
. ORI . 1

(e)

)

FIGURE 5: Meshes for square cases. (a), (c), and (e) are forward meshes for three square cases, respectively. (b), (d), and (f) are the true
scattering coeflicient distribution for big square case, middle square case, and small square case, respectively.

We mention here that, in the DOT reconstruction prob-
lems, the measurement data are usually synthesized from the
numerical solution of the forward problem. Under this situa-
tion, the phenomenon of inverse crime will happen especially
when the same discretization is used for the forward and
inverse process, because it will make the ill-posedness of the

inverse problem not evident [41, 42]. Hence, in order to avoid
the inverse crime, we will use different discretization meshes
in the forward and inverse problems.

Now let us state our numerical experiments. Before
stating the details of every experiment, we first state some
common experiment settings that will be used in all of our
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FIGURE 6: Comparison of sparsity regularization reconstruction and standard regularization reconstruction with 132 boundary angular-
averaged measurements when g = 0.1. (a), (c), and (e) are reconstructed images with sparsity regularization for big square, middle square,
and small square, respectively. (b), (d), and (f) are reconstructed images with standard regularization for big square, middle square, and small
square, respectively.
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FIGURE 7: The same reconstructions as in Figure 6 but with g = 0.9. (a), (c), and (e) are reconstructed images with sparsity regularization for
big square, middle square, and small square, respectively. (b), (d), and (f) are reconstructed images with standard regularization algorithm

for big square, middle square, and small square, respectively.
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experiments. Our purpose is to reconstruct the scattering
coeflicient p, based on the BVP (2) and (3), where we assume
that the following 2D simulations are all performed on a unit
circular domain centered at (0 mm, 0 mm), corresponding to
the the internal light source f = 0, the inflow current for
every incident impulse u;,, ; that is settled as

in,i
i=1,...,s. (31)

The boundary value B; is a piecewise linear function whose
spatial support is S; and achieves the value 1 at the center
node of S;; here S; denotes the finite element through which
the ith incident impulse passes. The direction of the ith
incident impulse w; is node of the angular mesh that points
approximately from the center of S; to the center of X.

If we denote the domains that contain the inclusions as
X, then the background domain is X; = X \ X,. Then

the true value of absorption coefficient y,(x) in BVP (2) and
(3) is defined as

0.1, xe€X,

Yo (X) = (32)

0.01, xe€ X,

Since the absorption coeflicient is assumed to be known
in our scattering reconstruction problems, we only give
the mathematical formulation of the absorption coefficient.
While in order to compare explicitly the true value and the
reconstructed value of scattering coefficient, we demonstrate
the true value and the reconstructed results of scattering
coefficient in figures.

In order to make discretization in angle, we can divide the
angular space [0, 277) uniformly into M directions with equal
interval length as shown in Figure 2. And we set M = 32 in
all examples; that is, there are 32 angular directions.

In the first example, Figure 3, a small inclusion with
0.1 mm diameter, is centered at (—=0.43, —0.43). 12 sources and
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FIGURE 9: Reconstruction with boundary data when g = 0.1. (a) and (c) are reconstructed images by sparsity regularization with 132
boundary angular-averaged measurements and 380 boundary angular-averaged measurements. (b) and (d) are reconstructed images by
standard regularization with 132 boundary angular-averaged measurements and 380 boundary angular-averaged measurements.

12 detectors are equally spaced attached to the boundary of
the circle domain. The simulated boundary angular-averaged
measurements performing on the boundary are generated
with a spatial mesh (a) of 1097 nodes and 2104 elements and
reconstruction mesh (b) having 286 nodes and 526 elements.

The image from standard regularization reconstruction
without noise is displayed in (d) in Figure 3. The images
from sparsity regularization reconstruction without or with
noise are displayed in Figure 4 with the noise defined as
Mf = M;(1 + 6N), where § is the signal-to-noise ratio
and N is a Gaussian random variable with zero mean and
unity variation. In Figure 4, we vary & from 0 percent to 10
percent and plot the sparsity regularization reconstruction
image. Comparing images from standard regularization and
sparsity regularization, we conclude that sparsity regulariza-
tion can efficiently localize the sparse inclusion with a few

measurements, even in the presence of different degrees of
noise, while standard regularization fails to reconstruct the
sparse inclusion even without noise.

In the second example, we compare the sparsity reg-
ularization reconstruction and the standard regularization
reconstruction on squares of three different sizes.

In Figure 5, (a), (c), and (e) show the forward mesh of
three different sizes squares. (b), (d), and (f) show the true
distribution of the scattering coefficient in three different
experiments.

Comparing (a), (c), and (e) in Figures 6 and 7 and (b), (d),
and (f) in Figures 6 and 7, clearly, the sparsity regularization
can localize the position of the inclusion better than the
standard regularization in all the three kinds of squares and
has a clear contrast with the backgrounds. But the standard
regularization also has its advantages. Comparing (a) and
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FIGURE 10: The same reconstructions as in Figure 9 but with g = 0.9. (a) and (c) are reconstructed images by sparsity regularization with
132 boundary angular-averaged measurements and 380 boundary angular-averaged measurements. (b) and (d) are reconstructed images by
standard regularization with 132 boundary angular-averaged measurements and 380 boundary angular-averaged measurements.

(b), (c) and (d), and (e) and (f) in Figure 6, when g = 0.1,
there are many blurred dots in the standard regularization
reconstructed images; we can not identify the distribution
domain of the reconstructed scattering coeflicient, but the
value of the scattering coeflicient in standard regularization
reconstruction is much closer to the true value of the
scattering coefficient than that in the sparsity regularization
reconstruction. However, this advantage is broken when g =
0.9; see Figure 7.

On the other hand, the proposed sparsity regularization
reconstruction performs better when g = 0.9 than when
g = 0.1 in localizing the position of the inclusions as well
as identifying the value of the scattering coefficient.

In conclusion, when the anisotropic factor is small,
the standard regularization can identify the value of the
scattering coefficient better than the sparsity regularization.
Although there are some blurred dots in standard regu-

larization reconstructed images, one can remove them by
using multilevel approach. On the other hand, the sparsity
regularization can localize the position of the inclusion
better than standard regularization and has a clear contrast,
especially in the forward-peaking regime with big anisotropic
factor g.

In the third example (Figure 8), three-letter inclusions
(a) are put in the domain to evaluate our reconstruction
algorithms; the forward mesh (a) has 1077 nodes and 2072
elements; the reconstruction mesh (b) has 280 nodes and 518
elements.

In Figures 9 and 10, the reconstructions with g = 0.1
and 0.9, respectively, are carried out to demonstrate that
sparsity regularization ((a), (c) in Figures 9 and 10) in general
reconstructs better images than standard regularization ((b),
(d) in Figures 9 and 10).
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FIGURE 11: Meshes for Case 1. (a) is the forward mesh. (b) is the inverse mesh. (c) is the true scattering coefficient distribution.

Comparing (a) and (c) in Figures 9 and 10, respectively,
we find that the proposed sparsity regularization reconstruc-
tion performed better when the inverse problem is more
severely ill-posed due to fewer measurements.

In conclusion, efficient algorithm and proper regulariza-
tion, for example, sparsity regularization reconstruction for
sparse coeflicient distribution, are essential to recover high-
resolution images. On the other hand, we can notice that there
are blurred dots in the middle of the reconstructed images
in (a) and (c) in Figures 9 and 10, due to the ill-posedness
of inverse problem. These blurred dots have small contrast
and thus can be removed through sparsity regularization
reconstruction by choosing proper « and f or, beyond our
paper, through multilevel approach [43].

Next, using sparsity regularization reconstruction, we
will show the superiority of the internal angular-averaged
measurements over the boundary angular-averaged measure-
ments with two relatively complicated cases. The detectors
for internal angular-average measurements in two cases lie
on a 0.95-radius circle equidistant from the center at (0 mm,
0mm). Case 1 is shown in the first column in Figures 13
and 14; Case 2 is shown in the second column in Figures 13
and 14.

Figure 11 shows the meshes for Case 1. (a) shows the
forward mesh; it has 1131 nodes and 2160 elements. (b)
shows the inverse mesh; it has 296 nodes and 540 elements.
(c) shows the true distribution of the scattering coeflicient.
Figure 12 shows the meshes for Case 2. (a) shows the forward
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FIGURE 12: Meshes for Case 2. (a) is the forward mesh. (b) is the inverse mesh. (c) is the true scattering coefficient distribution.

mesh; it has 1347 nodes and 2592 elements. (b) shows the
inverse mesh; it has 350 nodes and 648 elements.
Comparing (a) and (c) in Figures 13 and 14, we find that,
for Case 1, the internal angular-averaged measurements ((c)
in Figures 13 and 14) can localize the position of the outside
inclusion, although the internal inclusion is localized blurred
while the boundary angular-averaged measurements ((a) in
Figures 13 and 14) can not completely localize any inclusion.
For the complicated Case 2 ((b) and (d) in Figures 13
and 14), we increase the measurement data by increasing the
number of detectors to 16, respectively, in order to get more
information from the boundary measurements. Both of the
two kinds of measurements can not accurately identify the
inclusion, but the internal angular-averaged measurements

((d) in Figures 13 and 14) performed relatively better than
the boundary angular-averaged measurements ((b) in Figures
13 and 14). A justification of this phenomenon is that the
energy of the incident current is decayed much due to the
large and relatively frequently change of the scattering coef-
ficient of the inclusion. One can alleviate this phenomenon
by increasing the number of detectors or measurement data.
In conclusion, the internal data can better-pose the inverse
problem.

As the last simulation, we compute Case 3 in Figure 15
to investigate the performance of split Bregman algorithm
for DOT image reconstruction with sparsity regularization.
The results are compared with Gauss-Newton algorithm [44]
and the state-of-the-art L, algorithms including GPSR [45]
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FIGURE 13: Sparsity regularization reconstruction when g = 0.1. (a) and (c) are reconstructed images for Case 1 with 132 boundary angular-
averaged measurements and 132 internal angular-averaged measurements, respectively. (b) and (d) are reconstructed images for Case 2 with
240 boundary angular-averaged measurements and 240 internal angular-averaged measurements, respectively.

and YALLI [46]. To deal with the nondifferentiability of the
absolute value |x| at x = 0 in Gauss-Newton algorithm, we

replace |x| by |x| = \/xz + 7,y > 0. We choose y = le — 6 in
Gauss-Newton algorithm.

In Case 3, two circle inclusions are embedded at the top
and bottom of the circle domain with 1137 nodes and 2168 ele-
ments for the forward mesh and 298 nodes and 542 elements
for the inverse mesh. We use 132 boundary angular-averaged
measurements with 0.1% Gaussian noise for reconstruction.
The reconstructed images are shown in Figures 16 and 17, and
we summarize the results with g = 0.9 in Table 1, containing
the parameters for the four methods, computational time,
data misfit Zle IE;(pg) — Mflliz(ax), relative solution error
norm (RE), and signal-to-noise ratio (SNR). The relatively
optimal parameters are chosen empirically.

The RE is calculated as

_ ,,true
RE — ntus t::z nZ’ (33)
latree],
and SNR is calculated as
signall,
SNR = 101 —_— . 34
%81 noisel|, G4

The reconstruction results in Figures 16 and 17 show
that all of the four algorithms can locate the position of
two inclusions. The split Bregman and GPSR algorithm
can achieve more accurate shape of the inclusions, and the
reconstructed scattering coeflicients achieved by the two
algorithms are closer to the true value. The Gauss-Newton
algorithm can find the approximate location of the inclusions,
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0.9. (a) and (c) are reconstructed images for Case 1 with 132

boundary angular-averaged measurements and 132 internal angular-averaged measurements, respectively. (b) and (d) are reconstructed
images for Case 2 with 240 boundary angular-averaged measurements and 240 internal angular-averaged measurements, respec-

tively.

but the reconstructed circle inclusion is smaller in size and
the reconstructed scattering coefficient departs from actual
ones.

The results displayed in Table 1 also demonstrate that the
split Bregman algorithm performs better. It leads to the lowest
RE and data misfit with less calculation. The GPSR algorithm
achieves higher SNR at the expense of about 25% extra
computational time. The Gauss-Newton algorithm spends
least computational time, but the reconstruction error is not
very satisfactory.

These results are justified by the fact that the split Breg-
man algorithm decouple the sparsity reconstruction problem
into L, and L, portions leading to a better compromise in

the efficiency and quality of the reconstructed optical param-
eters.

5. Conclusion

In this paper, by using the image modalities in DOT, we
employ the sparsity regularization method on the RTE-
based coefhicient identification problems, which is proven to
perform in general better than the standard regularization
reconstruction, especially for sparse distribution coefficient
and large noise, and in the forward-peaking regime with big
anisotropic factor g. On the other hand, we construct cases
and compare the reconstruction results with boundary and



Computational and Mathematical Methods in Medicine 19

COOLAD
SSKARERD
N
ORIRRIITRN,
PRROCORS

1%

0.5}

%
AV

Véy
KERE
RSP

A
&3
N ﬁ‘

K7
5
J
%
7
RQIOKR
N
N
AYAY

KRN
RPN
IVAVAViYe

NNV
YAV
NS

L
LN
VAV

<
%
%
<N
\/
VAV
N
aVAV

A
\/

A

%
IR

<X
2
N
K
N
A,
!
D

/\
JAVAY
VK
N
?
\/
KRF
:é \V)
N
AVAIAY

]
<5%§h o
5
D%

\WAVAVAY
avA
X]
K
R
Va\|
VAVAN
XX
AVAY

5
>
/|
XK
N
VA
s
S
%
i
i
=
SRRk
<\
X
%
KR
Y,
gﬁhve'
200
KO
</
YA
VA#A"
IVAVAV
AYAVAV

s
5
)
5
0

/A
N
Val
%

/\
&

<
DN
' 7>

V)
VAV
N
/\/
S
4; <
A,

7
7 YAYA
av

&
/\/

va

X

\V
b
3

l"

a»

o
\/
A%V

]
[>
N
ey
/\

A
\/
7

—05F

D
2
<
vﬂé

K]

T~

N

<P
V4
N
V‘
7
5
5
5
K

d
wy,

E
%
YaVA
N
5
K

&L

Vave
<
K
Vi

A\

%
%
K
s
2L
1
e
)
vy
XK
YAV,
\VaV

VRIS
SRR

1.8
0.5}

1.6

—05 ¢+

-1 -0.5 0 0.5 1
(c)

FIGURE 15: Meshes for Case 3. (a) is the forward mesh. (b) is the inverse mesh. (c) is the true scattering coefficient distribution.

TaBLE 1: Comparison of sparsity reconstructions for Case 3 when g = 0.9 with the regularization parameter &« = le—5, f3 is the split parameter
of split Bregman method, 7 represents the tolerance for stopping criterion of YALL] and GPSR method, and A is the control parameter of
Gauss-Newton method.

Algorithms Split Bregman YALLI GPSR Gauss-Newton
Parameter B=1e-06 T=1e-8 T=1e-8 A=1le—-04
CPU time (s) 79.426 90.761 101.321 75.197
Data misfit 0.0044 0.0120 0.0046 0.03087
RE 0.1464 0.2252 0.1624 0.2141

SNR 4.9827 4.6311 5.2010 4.3402
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FIGURE 16: Sparsity regularization reconstruction when g = 0.9 with the measurement noise level of 0.1% and 132 boundary angular-averaged
measurements, using four different algorithms. (a)-(d) are reconstruction results by the split Bregman, YALL], GPSR, and Gauss-Newton

algorithm, respectively.

internal measurement to test the validity of the proposed
method; results show that the proposed method is practicable
and feasible; it performs steadily with various measurement
data; meanwhile, the internal measurement can better-pose
the inverse problem and achieve more accurate results.
However, we usually cannot obtain the internal measurement
data in practice. Hence, our method cannot reconstruct
inclusions with complicated internal structure accurately
with small amount of boundary angular-averaged measure-
ments. One can alleviate this phenomenon by increasing the
number of detectors or measurement data. In the further
work we will consider seeking for multi-imaging modal-
ity which can further improve the inversion quality with
boundary angular-averaged measurements. Results show the
competitive performance of the split Bregman algorithm for

the DOT image reconstruction compared with other existing
L, algorithms.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to express their gratitude to the
referees for their careful reading and detailed suggestions,
which helped to improve the revised version of this paper.



Computational and Mathematical Methods in Medicine

21

1.8

1.6

14

1.2

1.8

1.6

(d)

FIGURE 17: Sparsity regularization reconstruction when g = 0.1 with the measurement noise level of 0.1% and 132 boundary angular-averaged
measurements, using four different algorithms. (a)-(d) are reconstruction results by the split Bregman, YALL], GPSR, and Gauss-Newton

algorithm, respectively.

This work is supported by the National Nature Science
Foundation of China under Grant no. 91230119, no. 81071207,
and no. 81271622, and by “the Fundamental Research Funds
for the Central Universities” (HITIBRSEM.B.201416).

References

[1] S.R.Arridge, “Optical tomography in medical imaging,” Inverse
Problems, vol. 15, no. 2, pp. R41-R93, 1999.

[2] S.R.Arridgeand]. C. Schotland, “Optical tomography: forward
and inverse problems,” Inverse Problems, vol. 25, no. 12, Article
ID 123010, 2009.

[3] A.P Gibson,J. C. Hebden, and S. R. Arridge, “Recent advances
in diffuse optical imaging,” Physics in Medicine and Biology, vol.
50, no. 4, article R1, 2005.

(4]

(5]

W. Han, J. A. Eichholz, X. L. Cheng, and G. Wang, “A theoretical
framework of x-ray dark-field tomography,” SIAM Journal on
Applied Mathematics, vol. 71, no. 5, pp. 1557-1577, 2011.

W. Han, J. A. Eichholz, and G. Wang, “On a family of differential
approximations of the radiative transfer equation,” Journal of
Mathematical Chemistry, vol. 50, no. 4, pp. 689-702, 2012.

H. Gao and H. K. Zhao, “A fast-forward solver of radiative
transfer equation,” Transport Theory and Statistical Physics, vol.
38, no. 3, pp. 149-192, 20009.

K. Ren, G. Bal, and A. H. Hielscher, “Transport- and diffusion-
based optical tomography in small domains: a comparative
study;” Applied Optics, vol. 46, no. 27, pp. 6669-6679, 2007.

J. Nocedal and S. J. Wright, Numerical Optimization, Springer
Series in Operations Research, Springer, New York, NY, USA,
1999.



22

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(20]

[25]

(26]

M. Hanke, “The regularizing Levenberg-Marquardt scheme is
of optimal order,” Journal of Integral Equations and Applications,
vol. 22, no. 2, pp- 259-283, 2010.

T. Feng, P. Edstrom, and M. Gulliksson, “Levenberg-Marquardt
methods for parameter estimation problems in the radiative
transfer equation,” Inverse Problems, vol. 23, no. 3, pp. 879-891,
2007.

H. Gao, S. Osher, and H. K. Zhao, “Quantitative photoacoustic
tomography,” in Mathematical Modeling in Biomedical Imaging
II, Lecture Notes in Mathematics, pp. 131-158, Springer, Berlin,
Germany, 2012.

1. Daubechies, M. Defrise, and C. de Mol, “An iterative thresh-
olding algorithm for linear inverse problems with a sparsity
constraint,” Communications on Pure and Applied Mathematics,
vol. 57, no. 11, pp. 1413-1457, 2004.

R. Ramlau, “Regularization properties of Tikhonov regular-
ization with sparsity constraints,” Electronic Transactions on
Numerical Analysis, vol. 30, pp. 54-74, 2008.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An
iterative regularization method for total variation-based image
restoration,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp.
460-489, 2005.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phenom-
ena, vol. 60, no. 1-4, pp. 259-268, 1992.

Y. Tsaig and D. L. Donoho, “Extensions of compressed sensing,”
Signal Processing, vol. 86, no. 3, pp. 549-571, 2006.

D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289-1306, 2006.

B. K. Natarajan, “Sparse approximate solutions to linear sys-
tems,” SIAM Journal on Computing, vol. 24, no. 2, pp. 227-234,
1995.

D. L. Donoho, “For most large underdetermined systems of lin-
ear equations the minimal [, -norm solution is also the sparsest
solution,” Communications on Pure and Applied Mathematics,
vol. 59, no. 6, pp. 797-829, 2006.

E.J. Candes, ]. K. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements;,” Communica-
tions on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207-
1223, 2006.

J. Chamorro-Servent, J. E P. J. Abascal, J. Aguirre et al,
“Use of split bregman denoising for iterative reconstruction in
fluorescence diffuse optical tomography;” Journal of Biomedical
Optics, vol. 18, no. 7, Article ID 076016, 2013.

J.-E Cai, S. Osher, and Z. W. Shen, “Linearized Bregman iter-
ations for compressed sensing,” Mathematics of Computation,
vol. 78, no. 267, pp. 1515-1536, 2009.

T. Goldstein and S. Osher, “The split Bregman method for L -
regularized problems,” SIAM Journal on Imaging Sciences, vol.
2, no. 2, pp. 323-343, 2009.

W. T. Yin, S. Osher, J. Darbon, and D. Goldfarb, “Bregman
iterative algorithms for [,-minimization with applications to
compressed sensing,” SIAM Journal on Imaging Science, vol. 1,
no. 1, pp. 143-168, 2008.

W. T. Yin, “Analysis and generalizations of the linearized
Bregman model,” SIAM Journal on Imaging Sciences, vol. 3, no.
4, pp. 856-877, 2010.

T. Tarvainen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio,
“Image reconstruction in diffuse optical tomography using

(36]
[37]

(38]

[41]

(42]

[43]

(44]

Computational and Mathematical Methods in Medicine

the coupled radiative transport-diffusion model,” Journal of
Quantitative Spectroscopy and Radiative Transfer, vol. 112, no.
16, pp. 2600-2608, 2011.

L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the
galaxy;,” The Astrophysical Journal, vol. 93, pp. 70-83, 1941.
H. B. Jiang, Diffuse Optical Tomography: Principles and Applica-
tions, CRC Press, Boca Raton, Fla, USA, 1st edition, 2010.
V. Agoshkov, Boundary Value Problems for Transport Equations,

Modeling and Simulation in Science, Engineering and Technol-
ogy, Birkhéduser, Boston, Mass, USA, 1998.

J. Tang, W. Han, and B. Han, “A theoretical study for RTE-based
parameter identification problems,” Inverse Problems, vol. 29,
no. 9, Article ID 095002, 2013.

H. Gao and H. K. Zhao, “Analysis of a numerical solver for
radiative transport equation,” Mathematics of Computation, vol.
82, no. 281, pp. 153-172, 2013.

W. Han, J. A. Eichholz, J. Huang, and J. Lu, “RTE-based biolu-
minescence tomography: a theoretical study,” Inverse Problems
in Science and Engineering, vol. 19, no. 4, pp. 435-459, 2011.

W. Han, J. Huang, and J. A. Eichholz, “Discrete-ordinate dis-
continuous Galerkin methods for solving the radiative transfer
equation,” SIAM Journal on Scientific Computing, vol. 32, no. 2,
pp. 477-497, 2010.

E.E. Lewis and W. E. Miller, Computational Methods for Neutron
Transport, Wiley-Interscience, 1984.

M. Gehre, T. Kluth, A. Lipponen et al., “Sparsity reconstruction
in electrical impedance tomography: an experimental evalua-
tion,” Journal of Computational and Applied Mathematics, vol.
236, no. 8, pp. 2126-2136, 2012.

J. Kaipio and E. Somersalo, Statistical and Computational Inverse
Problems, Springer, New York, NY, USA, 2005.

J. Bush, Bregman algorithms [M.S. thesis], University of Califor-
nia, Santa Barbara, Calif, USA, 2011.

J. Wang, J. Ma, B. Han, and Q. Li, “Split Bregman iterative
algorithm for sparse reconstruction of electrical impedance
tomography,” Signal Processing, vol. 92, no. 12, pp. 2952-2961,
2012.

B. Jin, T. Khan, and P. Maass, “A reconstruction algorithm
for electrical impedance tomography based on sparsity reg-
ularization,” International Journal for Numerical Methods in
Engineering, vol. 89, no. 3, pp. 337-353, 2012.

I. Loris, G. Nolet, I. Daubechies, and E A. Dahlen, “Tomo-
graphic inversion using ¢l-norm regularization of wavelet
coeflicients,” Geophysical Journal International, vol. 170, no. 1,
pp. 359-370, 2007,

D. L. Colton and R. Kress, Inverse Acoustic and Elctromagnetic
Scattering Theory, Springer, Berlin, Germany, 2nd edition, 1998.

M. Jiang, T. Zhou, J. Cheng, W. X. Cong, and G. Wang, “Image
reconstruction for bioluminescence tomography from partial
measurement;,” Optics Express, vol. 15, no. 18, pp. 11095-11116,
2007.

H. Gao and H. K. Zhao, “Multilevel bioluminescence tomogra-
phy based on radiative transfer equation. Part 2: total variation
and [, data fidelity;” Optics Express, vol. 18, no. 3, pp. 2894-2912,
2010.

M. Schweiger, S. R. Arridge, and I. Nissild, “Gauss-Newton
method for image reconstruction in diffuse optical tomogra-
phy,” Physics in Medicine and Biology, vol. 50, no. 10, pp. 2365-
2386, 2005.



Computational and Mathematical Methods in Medicine

[45] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient
projection for sparse reconstruction: application to compressed
sensing and other inverse problems,” IEEE Journal on Selected
Topics in Signal Processing, vol. 1, no. 4, pp. 586-597, 2007.

[46] J. Yang and Y. Zhang, “Alternating direction algorithms for [,
problems in compressive sensing,” SIAM Journal on Scientific
Computing, vol. 33, no. 1, pp. 250-278, 2011.

23



MEDIATORS

INFLAMMATION

The SCientiﬁc Gastroentero\ogy & . Journal of )
World Journal Research and Practice Diabetes Research Disease Markers

International Journal of

Endocrinology

Journal of
Immunology Research

Hindawi

Submit your manuscripts at
http://www.hindawi.com

BioMed
PPAR Research Research International

Journal "’f
Obesity

Evidence-Based

Journal of Stem CGHS Complementary and L o' ‘ Journal of
Ophthalmology International Alternative Medicine & Oncology

Parkinson’s
Disease

Computational and . z
Mathematical Methods Behavioural AI DS Oxidative Medicine and
in Medicine Neurology Research and Treatment Cellular Longevity



