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The paper is devoted to a posteriori quantitative analysis for errors caused by linearization of non-linear 
elliptic boundary value problems and their finite element realizations. We employ duality theory in convex 
analysis to derive computable bounds on the difference between the solution of a non-linear problem and 
the solution of the linearized problem, by using the solution of the linearized problem only. We also derive 
computable bounds on differences between finite element solutions of the nonlinear problem and finite 
element solutions of the linearized problem, by using finite element solutions of the linearized problem only. 
Numerical experiments show that our a posteriori error bounds are efficient. 

1. Introduction 

The aim of scientific computation is to reliably describe and predict physical 
phenomena of interest. The reliability of a numerical solution of a physical or 
engineering problem depends on mathematical idealization of the physical problem 
and numerical treatment of the idealized mathematical problem. An illuminating 
description of the basic flow chart of numerical analysis of a physical problem is found 
in [2]. To analyse a physical problem, a very first stage is to establish a basic 
mathematical formulation for the problem. It is a highly idealized assumption that we 
can have a mathematical problem which exactly describes the physical problem. The 
available data, which usually come from experiments, for the basic mathematical 
formulation cannot be obtained as accurately as one wishes. As a consequence, we 
solve a simplified, or idealized mathematical problem, instead. It is strongly desirable 
that we should be able to analyse the reliability and the error of the solution resulted 
from the idealization. This procedure forms the second stage. The next stage is to 
employ certain numerical method to solve the idealized mathematical problem, and 
analyse the reliability and the error of the numerical solution. Finally, if both the 
mathematical idealization and the numerical solution of the idealized problem are 
reliable, various information for the real problem is drawn based on the numerical 
solution of the idealized problem. 

There is a large amount of literature on numerical methods and their error analysis. 
Relatively few work has been done for reliability analysis of mathematical idealiz- 
ations, especially most desirably, certain good, practically useful quantitative assess- 
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ments of the quality of solutions of idealized problems. Such quantitative assessments 
should be (hopefully) available once we have computed the solutions of idealized 
problems. One should not assume the knowledge of the solutions of basic mathemat- 
ical problems for either exact decriptions of basic mathematical problems are usually 
not available in practice or, it is often too expensive to solve the basic mathematical 
problems. 

This paper is one in a series devoted to systematically analyse effects of mathemat- 
ical idealizations on solutions, and to provide a posteriori quantitative error estimates 
for the solutions of certain idealized problems. We employ the duality theory in 
convex analysis for a posteriori error analysis of solutions of idealized mathematical 
problems. The method used can be viewed as a systematic development of the 
conventional two-sided energy estimate technique. For some references on two-sided 
energy estimate technique, the reader is referred to [3, 6 8 ,  10, 141 and references 
therein. There are different approaches to establish a dual variational principle. We 
use the duality theory in convex analysis (cf. [4]) for this purpose. For some other 
approaches, see [l,  12-14]. 

In this paper, we consider one kind of constitutive law idealization: linearization. 
Detailed quantitative error analysis is given for linearizations of certain non-linear 
elliptic problems, whose linearizations are boundary value problems of Poisson’s 
equations. An example of a non-linear problem considered in this paper is the 
following: 

- div(a(lVu12)Vu) =f in R, 

u = g  on aR. 

When R E RZ is an open bounded domain, for suitable data, a, fand  g, problem (1.1) 
describes a non-linear torsion problem (cf. [ 111). In particular, when the coefficient 
function a(<) = 1, the problem reduces to 

- Auo = f  in R, 

uo = g on aR, 

which is a linear torsion problem. Owing to the difficulty associated with finding the 
material property function a((), in most elasticity theory books, it is taken for granted 
that the torsion problem of a real material has been described accurately enough by 
the linearized problem (1.2), since the coefficient function a(()  is usually close to some 
constant (taken as 1 here) for many commonly seen materials. In this paper, we give 
a posteriori quantitative error estimates for the effect of linearization on solutions of 
elliptic problems, using solutions of the linearized problems only. In particular, we 
provide error bounds on u - uo for the solutions of (1 .1)  and (1.2) in terms of the 
solution uo of the linearized problem (1.1). 

In practice, numerical methods are used to solve problems (1.1) and (1.2). Like the 
continuous problems, it is usually not easy to solve problem (1.1) numerically, and we 
may first solve the simpler problem (1.2) numerically and check if the numerical 
solution of (1.2) is close to, and can be used as a good approximation of the solution of 
(1.1). For finite element solutions of problems (1 .1)  and (1.2), we will provide a discrete 
version of a posteriori estimates for the error caused by the linearization, i.e. some 
computable error bounds for the difference between a finite element solution of 
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problem (1.1) and a finite element solution of problem (1.2), using the finite element 
solution of problem (1.2) only. 

The organization of the paper is as follows. In section 2, we review some standard 
results from duality theory in convex analysis, and provide a general framework for 
a posteriori error estimates. In section 3, we derive a quantitative bound for the 
difference between the solution of a nonlinear problem and that of a related linearized 
problem. The quantitative error bound is given in terms of the solution of the 
linearized problem and an auxiliary function subjected to some constraint. We discuss 
the problem on selecting suitable auxiliary functions in section 4. In section 5, we give 
a discrete version of a posteriori error estimates for finite element solutions of 
problems (1.1) and (1.2). Numerical experiments are presented in section 6 showing 
that our error bounds are efficient. Finally, some further discusions are given concern- 
ing a posteriori error analysis for effects of mathematical idealizations on solutions. 

2. Duality theory, u posteriori error estimate 

The results of the first two subsections can be found in [4]. We include them here 
for readers' convenience. 

2.1. Convexity, conjugate functions 

values + co and - 00. F is said to be convex if 
Let V be a real normed vector space, F :  V +  Cw be a mapping which can take the 

F(Au + (1 - A)v) < AF(u) + (1 - L)F(v),  V U ,  v E V, V A  E [0, I], (2.1) 
whenever the right-hand side is defined. F is said to be strictly convex if the strict 
inequality in (2.1) holds for any u # U ,  A E (0, 1). F is said to be proper if F f + co , 
and F ( v )  # - 03, V v  E V. F is said to be lower semi-continuous on V if V a  E R, 
{ v  E V I F ( U )  < a} is closed. 

Let V* be the dual space of V with duality pairing (. , a). The conjugate function 
F * : V* -+ of F is defined by 

F*(v*)  = SUP [ ( u ,  v * )  - F ( v ) ] .  
o o v  

Often, we shall have to calculate the conjugate function for a function defined by an 
integral of the form 

G(u) = g(x, v(x))dx.  sn 
Before stating a theorem on how to calculate its conjugate function, we introduce the 
following notion. 

Definition 2.1. Let Q be an open set of R", g:R x R'+ R, g is said to be 
a Carathdodory function if 

V< E R', x H g ( x ,  <) is a measurable function, 

for a.e. x E R, 5 H g(x, <) is a continuous function. 
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Let mi E (1, a), i = 1, .. . ,1. For each i, denote 

We have the following theorem. 

Theorem 2.2, Let g :  R x R'+ R be a Carathiodory function. For any 
u E V = ni= Lmi(Q), dejine 

Then for the conjugate function of G, 

g*(x, u*(x))dx,  Vu* E V*, 

where 

s*(x,  Y )  = SUP CY - 5  - s(x ,  01. 
<aR' 

In our calculation later, we will use Gdteaux differentials. Recall that F is said to be 
Gateaux diferentiable at u if 3u* E V*, such that 

F ( u  + Au) - F(u)  
A = ( u ,  u*),  v u  E v, lim 

1-0 

u* is called the Gsteaux differential of F at u, and is denoted by F'(u). 

2.2. Duality theory 

Let V,Q be two normed spaces, V*,Q* their dual spaces. Assume there exists 
a linear continuous operator A E 9 ( V ,  Q), with transpose A* E 9 ( Q * ,  V*). Let J be 
a function of V x  Q into a. Consider the minimization problem: 

inf J(u, Au). 

Define its dual problem by 
v a v  

SUP c - J*(A*q*, - 4*)1, 
@EQ* 

where J* is the conjugate function of J :  

(2.3) 

(2.4) 

For the relation between problems (2.3) and (2.4), we have the following duality 
theorem. 

Theorem 2.3. Assume 
( 1 )  V is  a rejexiue Banach space, Q a normed space, 
(2) J : V x Q + is a proper, lower semi-continuous, conuex function, 
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(3) 3uo E V such that J(uo ,  Auo) c co and q H J ( u o ,  q )  is continuous at Auo, 
(4) J(u,  Au) + + 03, as 11 0 1 1  + 00, u E V. 

%en problem (2.3) has a solution u E V, problem (2.4) has a solution p* E Q*, and 

J(u,  Au) = - J*(A*p*, - p*). (2.6) 
Furthermore, i f  J is strictly convex, then a solution u of problem (2.3) is unique. 

Theorem 2.4. Assume 

If the assumptions are weakened, then a weaker form of the theorem holds. 

(1) V, Q are normed spaces, 
(2) J :  V x  Q + R is convex, 
(3) 3uo E V such that J(uo ,  Auo) c 00 and q H J(uo,  q)  is continuous at Auo, 
(4) info,, J(u,  Au) is jinite. 

Then problem (2.4) has a solution p* E Q*, and 

inf J(u,  Au) = - J*(A*p*, - p*). 
U E  v 

Furthermore, if J is strictly convex, then a solution u (i f i t  exists) of problem (2.3) is 
unique. 

We will often encounter the situation where the function J is of a separated form, i.e. 

(2.8) 

(2.9) 

J(0,  4 )  = F ( 4  + G(q). 

J*(u*, q*) = F*(u*) + G*(q*), 

It is easily calculated that the conjugate function of J is 

where F*,G* are the conjugate functions of F ,  G. Specializing Theorem 2.3 in this 
case, we have the following theorem. 

Theorem 2.5. Assume 

(1) V is a rejexiue Banach space, Q a normed space, 
(2) F : V + R, G : Q -P 
(3) 3uo E V such that F(uo) -= 00, G(Auo) c 00, q H G(q)  is continuous at Auo, 
(4) F(u) + G(Au) + + co as (1 u (1 + 00,  u E V. 

are proper, lower semi-continuous, convex functions, 

Then the conclusions of Theorem 2.3 hold. 

2.3. A general framework for a posteriori error estimates 

differentiable at u. Let u E V be any element with J(u, Au) < co. We set 
Let u E V be a solution of the minimization problem (2.3). Assume J is Gdteaux 

D(u, U) = J(u,  Au) - J(u,  Au) - (J’(u, Au), (U - U, AU - Au)), (2.10) 

where <. , -) is the duality pairing between ( V  x Q)* and V x Q. 

Theorem 2.6. Make the same assumptions as in Theorem 2.3 (or in Theorem 2.4) 
together with the existence of the solution of problem (2.3). If J is Gateaux diflerentiable 
at u, then 

D(u, U) 6 J(u,  Au) + J*(A*q*, - q*), Vq* E Q*. (2.1 1) 
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Proof: From the inequality 

J ( u  + A(u - u), AU + A ( h  - Au)) 2 J(u,  Au), VA E (0, l), 
we claim that 

(J'(u, Au), (U - U,AU - Au)) 2 0. (2.12) 

Thus, applying Theorem 2.3 or Theorem 2.4 (with p* a solution of the dual problem 
(2.4113 

D(u, U )  < J(u, Au) - J(u,  Au) 

= J(u ,  Au) - [ - J*(A*p*, - p*)]  

< J(u,  Au) + J*(A*q*, - q*), Vq* E Q*. tl 
Remark 2.7. The inequality (2.12) holds even if Vis assumed to be a convex subset of 
a normed space. When Vis a normed space, (2.12) is actually an equality, as can easily 
be seen by replacing u by 2u - u in (2.12). Hence, if V is a normed space, we have the 
equality 

D(u, 0) = J(u ,  Au) - J(u,  Au). 

Armed with Theorem 2.6, the procedure of deriving an estimate for the difference 
between u and u is decomposed into two steps. 

Step 1. Find a suitable lower bound for D(u, u) which measures the difference between 
u and u. Usually, this lower bound will be the error in energy, or some quantity 
depending on I /  u - u 1 1 .  
Step 2. Take an appropriate q* so that the estimate (2.1 1) is as accurate as possible. If 
4* is chosen to be a solution p* of the dual problem, then the right-hand side of (2.11) 
attains its minimum. However, usually it is not easy to find p*. So it is desirable to 
have a strategy on determining a q* that is easy to get and that produces a good 
bound for the right-hand side of (2.1 1). 

To use Theorem 2.6 for an error estimate for the linearization of the problem (l.l), 
we will take u to be the solution of (l.l), u = uo the solution of the linearized problem 
(1.2). We will construct suitable auxiliary functions q*, based on information from the 
solution uo of the linearized problem, to produce good estimates for the error u - uo. 

3. A posteriori error estimates for linearization (continuous problems) 

In this section, we use the results of last section to derive a posteriori error estimates 
for linearization of non-linear problems of the form (1.1). We state our results for 
two-dimensional problems only. It is straightforward to give similar results for any 
finite-dimensional problems. 

3.1. The non-linear problem and its linearization 

Let R c R2 be an open bounded domain. Let aR = r1 u f 2  with rl n r2 = 8. We 
assume 

meas (r,) # 0. 
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Let 

f ~ ~ a ) ,  g1 E ~ n ) ,  9, E L2(rz). 
We will use the same notation g1 to denote the trace of g1 E H1(R) on the boundary. 

To have a class of problems for which we can make specific computations, we 
introduce the following scalar function as the coefficient function: 

for some to > 0, E (0, 1). 
We take 

Y = H’(Q), v* = (P(Q))*; 
Q = Q* = (L’(S2))’ x Lz(r2); 
Au = (VV, vlr,). 

Denote 

H+,(R) = {uEH~(R)Iu = 0 on r1}, 
ff:,,,,(R) = { U E  ff’(Q)IV - 91 E H:,(W. 

We define the energy function on V: 

J(u,  Au) = F(u) + G(Au), 

where 

Iv42 1 
G ( W  = I p ( 5 ) d t d x  - jr2g,uds. (3.4) 

R O  

By Theorem 2.3, we have a unique solution u to the minimization problem: 

inf J(u,  Au). (3.5) 
V € V  

The solution u is easily seen to be the weak solution of the non-linear elliptic boundary 
value problem 

- div(a((Vu1’)Vu) =f in R. 

u = g l  on rl, 
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the linear region of the non-linear solution u, and 

Q,(u) = {x E RI IVU(X)l2 > t o }  

the non-linear region of u. Since the solution depends continuously on the input data, 
whenf, g1 and g 2  are small, the non-linear region R,(u) is small. Note that on R,(u), 
a(lVu12) = 1. Hence, whenf, g1 and g 2  are small, we expect that the solution uo of the 
following linear problem is a good approximation of u: 

- Auo = f  in R, 

u o =  91 on l -1 ,  (3.7) 

aU0 - = g 2  on T2. 
an 

However, if R is a plane corner domain, e.g. if its boundary aR is smooth 
everywhere except at a corner 0 (taken as the origin of the co-ordinate system we are 
working on) with an internal angle o > n, then no matter how smooth J ;  g1 and g2 
are, the solution uo of the linearized problem (3.7) is, in general, singular at 0; for 
detail, see [S]. Let a = n/o. When on both sides of the part of the boundary around 0, 
either a Dirichlet or a Neumann boundary condition is specified, we have 

)Vuo(x)I - O(ra-')  for r = 1x1 close to 0. 

When on one side a Dirichlet condition is specified, while on the other side 
a Neumann condition is specified, we have 

IVuo(x)I - O(ra'2-1 ) 

Since a < 1, IVuo(x)I -+ co as x -+ 0. Hence, it is doubtful whether the linearized 
problem (3.7) is in any sense close to the non-linear problem (3.6). In the next 
subsection, we derive an estimate for the difference between u and uo.  

Remark 3.1. Why the coefficient function a ( ( )  is chosen in the form (3.1)? The 
stress-strain relation corresponding to the nonlinear problem (3.6) is CJ = ~ ( I E ~ ' ) E .  For 
scalars CT and E, we require a stress-strain relation as illustrated in Fig. 1, where we 

for r = 1x1 close to 0. 

U 

t 

Fig. 1 .  Stress-strain relation (cy = yield strain) 
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omit the part of the graph for negative cr and E, which can be obtained by reflecting the 
graph for positive c and E with respect to the origin. Hence, the coefficient a(()is of the 
form (3.1) with fl  = E, /E ,  to = E;.  

3.2. Quantitative error estimate 

notation is used for q* E Q*. We now compute the conjugate functions. 
For q E Q, we write q = (ql, q2) with q1 E (L’(i2))’ and q2 E L2(r2) .  A similar 

F*(A* q*) = sup{(Au,q*) - F(u)} 
V E V  

= 1 {n(q:Vs, +fgl)dx + q: g1 ds if divq: = f in  a, 
Jr2 

1 + co otherwise; - q:n = q2 on r2, 
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where t = b((q:J) is the solution of the equation: 

1q:1 = 4 t 2 k  
thus, 

In computing C*( - q*), we used Theorem 2.2, also we assumed q: # 0. Obviously, 
the expression for C*( - 4*) holds for 4: = 0, too. 

Thus, 

J*(A*q*, - q*) = F*(A*q*) + C*( - q*) 

+ J qTgl ds if divq: =f in R, - qTn = 4: = g2 on Tz, 
r2 

+ ca otherwise. 

Using Theorem 2.6, we then have the following estimate for the difference in energy: 

-a ( t )d tdx  - fuodx - 
J(uo ,  Auo) - J(u ,  Au) < jR rl’: .La jr2g2uds 

Since in the above estimate, the second component q: of the auxiliary function q* 
does not play a role, we will use the notation q* for the first component 4:. Hence, the 
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above estimate is rewritten as 

0 0 ,  Auo) - J(u, A 4  

= Jb' (G'(Au + tA(uo - u))  - G'(Au),A(u0 - u ) )  dt 

- a ( ( V ~ ( ~ ) V u ) V ( u o  - u)dxdt 

x V ( U ~  - U) dr  dx dt. 

If IVu + tzV(uo - u)l < ,/to, then the integrand is tlV(uo - u)12. When 
IVu + tzV(uo - u)l > Jt0, using the definition of a, we see that the integrand is not 
less than fltlV(uo - u)I2. Now, on Q ( u ,  uo), IVu + tzV(uo - u) l<  ,/to, thus, 

D(u, uO) = J(u0, A u ~ )  - J(u,  Au) - (J'(u, Au), ( ~ g  - U, AuO - Au)) 

Hence, by (3.9), we obtain the following estimate: 

(3.1 1) 

Vq* E (L2(R))', div q* = f i n  R, - 4*n = g2 on r2. 
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4. Selection of the auxiliary function q* 

We state two kinds of selections for q* in the estimates (3.9) and (3.1 1). 

Selection 1. We simply take 

q* = - vuo. (4.1) 
It is an admissible function, i.e. it satisfies: divq* = f in  R and - q*n = g2 on T2. 
Then (3.9) says 

IVUOlZ 1 
J(u0 ,  Auo) - J(u ,  Au) < -4Od5dx  + - IVuo12)dx 

n b(lVuolP 2 

And, (3.1 1) gives 

For not close to 0, numerical experiments below will show that the selection (4.1) 
provides a good error bound. However, if fl is close to 0, then the factor 1/j  in (4.2) and 
(4.3) leads to useless error bound. To overcome this difficulty, we introduce another 
selection. 

Selection 2.  We describe this selection for a problem on a corner domain as shown in 
Fig. 2. 

First consider the case when the boundary condition around the corner is of 
Dirichlet type. We assume there is an ro > 0 such that in Ro = R n { r  > ro} ,  
IVuoJ < , /50 / , / [ (0 /2)2  + 11, where o is the internal angle of the corner. Denote 
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Fig. 2. A typical plane corner domain 

To = Q n { r  = ro>,  no the unit normal vector on To in the direction of being away 
from 0. We further assume 

(4.4) f(x) = 0, x E Q\Qo. 

We define a function in R\Qo: 

Then we take 

This function is admissible, since Vu E Hh(Q), we have 

= jG f u  dx 

= fu dx. 

The chosen q* has the property that Iq*(x)l < Jt0. The inequality is obvious for 
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x E Qo. For x E Q\Qzo, we have 

Now, the estimates (3.9) and (3.1 1) give 

and, 

(4.7) 

I1 V(u - uo) 1122(*,(u,uo)) + B II V(u - uo) 1122(*\*,(u,uo)) 

< ~ ~ ~ ~ . ( 5 ) d 5  + 2(q* + Vuo)Vgl + 2(1q*I2 - IVuOl2) dx. (4.8) I 
When the boundary condition around the corner is of Neumann type, we assume 

there exists an ro > 0 such that in Qo = R n ( r  > r0},  IVuol < ,/So/,/(w2 + 1). Again, 
denote To = Q n {I = ro } .  Besides the assumption 
vanishes around 0, i.e. 

g2 = 0 on T2 n a(Q\Q,). 
Then we take 

- vuo in no, 
" in n\ao, 

q* = 

- ( F )  -a,> 
where, instead of (4.5), 

V(r, 8) = r -do, 0 < 8 < w, 0 < r < ro .  1: ;:: 
From the linear problem for uo and the assumptions 
equality 

hence, q* is an admissible function. And once more, 
estimates (4.7) and (4.8) hold. 

The situation where the boundary condition around 
be treated similarly. 

4.4), we alsd assume that g2 

(4.9) 

nade on f and g2, we have the 

Iq * (x ) )  < Jto. Therefore, the 

the corner is of mixed type can 
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5. A posteriori error estimates for linearization (discrete problems) 

Let S c V be a finite element subspace based on some triangulation of the domain 
z2 and some selection of finite element degrees. For simplicity, we assume the Dirichlet 
boundary condition on rl can be represented exactly as the trace on rl of some 
function in S, i.e. we assume g1 E S. We denote the finite element subset 

and the finite element subspace 

Sr, = { u  E S 1 u = 0 on rl}. 
The corresponding finite element solution of the non-linear problem (3.6) solves: 

I- l l  c 

and the corresponding finite element solution of the linearized problem (3.7) solves: 

Our task of the section is to give computable bounds on the error uFE - uEE by 
using uEE only. To do this, we apply the duality theory presented in section 2. We take 

V = S, with H'(S2) - norm and V* = S algebraically; 

Q = Q* = ( L ~ ( Q ) ) z  x ~ ( r , ) ;  

AU = (VU, v I r2). 

We easily see that the operator A* from Q* to V* is uniquely determined by the 
relation: 

(A*q*, u) = Vuq: dx + jr2 uq: ds, V u  E S, q* = (q:, 4:) E Q*, 

and that A* E 9(Q*, V*). As in section 3, we define the energy function on V = S: 

J(u, Av) = F(u) + G(Au), 

where 

- jnfudx if v E Srl,gl ,  

+oo otherwise; 
F(u) = 

I V u P  1 
-a(<)d<dx - g 2 ~ d s .  

G(/\u)=J n o  j 2 !r2 

The finite element solution uFE is also the unique solution of the minimization 
problem 

inf J ( u ,  Au). 
oes 
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where 

To use (5.3) to get a good error bound on uFE - uEE, we need to make some suitable 
selection of the auxiliary function 4*. Comparing the constraint on the auxiliary 
function q* with the finite element system (5.2), we see that 

q* = - VUEE (5.4) 

I /  V(UFE - U$> I 1 2 2 ( n , ( U F E , U g E ) )  + P II V(UFE - UEE) I 1 2 2 ( n \ n , ( u F E , u ~ E ) )  

is an admissible function. With the simple selection (5.4), we get from (5.3) that 

where 

R,(uE") = {x E R I V U y ( X ) I  > Jro} .  
If j? > 0 is not close to 0, (5.5) will produce a good error bound (at least when finite 

element solutions are sufficiently close to the solutions of the continuous problems, 
cf. Remark 6.3). If is close to 0, however, the estimate (5.5) will give useless error 
bound, because of the factor 1/P. Thus, an alternative selection of the auxiliary 
function q* is needed. Once more, let us have the situation as described in Selection 
2 of section 4. 

Take an rtE > 0 such that in QEE = R n { I  > rFE}, IVuFEI < f i 0 / J [ ( w / 2 ) 2  + 11. 
Denote r$ = !2 n { r  = rEE}, no the unit normal vector on I$" in the direction of 
being away from 0. We assume 

f ( x )  = 0. x E sz\REE, 
and define, in R\REE, a function 

Then it can be proved that 

is an admissible function satisfying Iq*(x)l < Jr,. With the selection (5.6), we obtain 
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the following computable error estimate which is insensitive to fi as fl approaches 0 

II V(UFE - UEE) II t’(n,(uFE,”:E)) + B II V(UFE - GE) I I Z q n \ n , ( u F E , u : E ) )  

6. Numerical experiments 

We present two numerical examples to show the use of the estimates (4.2), (4.3), (4.7) 
and (4.8). We will compare the estimates resulted from the two different selections of 
the auxiliary function q*. For the first example, we know the exact solutions for both 
the non-linear problem and the linear problem. Hence, we will see how effective our 
estimates are by comparing our error bounds with exact errors. 

Experiment 6.1. We take R a unit disk excluding a small hole: 

R = {(I, 0) 1 r* < r < l}, (6.1) 
where r* > 0 is a small number. Let us consider a family of non-linear problems with 
a small parameter 1 > 0: 

- div(a( 1 Vu 1’)Vu = 0 in 52, 

u = A. log(l/r*) for r = 1, (6.2) 
u = o  for r = r* ,  

where a is the function defined in (3.1). The exact solution is 

for rl < r c 1, 
1 

r* 
,/torl logr + 1 log- 

a. 

where rl is the unique positive solution of the equation: 

logr;rl - (1 - B)(logrl - l )r l  = (1 - p)r* + plogr,.ro 

with 

ro = 1IJt0. 
The linearized problem: 

- AuO = 0 in 0, 

for r = 1, 

for r = r* ,  

u = 1 log(l/r*) 

uo = 0 

has the solution: 

(4.3) 
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It is easily verified that r l  < ro.  Therefore, 

Rl(uo) = ( (r ,  8)lro < r < l} c Q,(u) = {(r ,  8 ) l r1  < r < l}. 

Thus, in some sense, the linearized problem is more rigid than the non-linear problem. 
We take to = 1, r* = 0.01. For various values of P,A ,  we compute the following 

quantities: 

(a) ro = A / J l o  = A. 
(b) rl  , determined from equation (6.4). 
(c) The square root of the (non-linear) energy of the linear solution: 

(d) The square root of the (non-linear) energy of the non-linear solution: 

(e) The square root of the difference in energy: 

E,(u, uo)  = J C J ( U 0 ,  Auo) - 4% WI.  
(f) The error in ‘energy norm’: 

- B ( r 1  - ProI(r1 - I*)  

(8) An error estimate resulted from Selection 1. We take 

q* = - vu,, 

then an upper bound for EJ(u, uo) and E(u, uo) is (cf. (4.2) and (4.3)): 

Estedl = ( 1  - P ) A  

(h) An error estimate resulted from Selection 2. We take 

r 2 < r < l  

, r* < r < r 2 ,  
- I (  (0 - n)sin0 + cos0 

r2 - (8 - n)cos8 + sin0 

where 

r2 = roJn2 + 1 
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Then an upper bound for EJ(u,  uo) and E(u, uo) is (cf. (4.7), (4.8)): 

+ '(1 2 - /3) p>')'". 
Tables 1-3 show the numerical results. We denote J o  = J(uo ,  h0), J = J(u, hu). 

1. For 
should use Ested2 as our error bound. 

Experiment 6.2. Let SZ be a circular corner domain: 

We see that min {Estedl, Ested2} is a very good error bound for any values of 1 and 
away from 0, Estedl provides a better bound, while when /? is close to 0, we 

SZ = { ( r ,  8)lO < r < 1, 0 < 8 < o}, o > n. (6.9) 

We use again the notation CI = n/o. Consider a particular case when the linear 
solution is 

(6.10) uo = Ira  sin u8, 

Table 1. Exact errors and estimated error bounds (1 = 0.1) 

P rl JJO J J  E,(u, uo) E(u, uo) Ested, Estedz 
~ 

0.9 0.97-' 0.3762" 0.3760f0 0.1383-' 0.1383-' 0.1866-' 0.3367" 
0.5 0.79-' 0.3592" 0.3498" 0.8141-' 0.8080-' 0.1252" 0.3171'' 
0.1 0.43-' 0.3413" 0.2774" 0.1988" 0.1867" 0.5038'O 0.2967" 
0.01 0.20-' 0.3371" 0.2088" 0.2646+' 0.2304" 0.1753'' 0.2919" 
0.001 0.13-' 0.3367" 0.1804'O 0.2843" 0.2391" 0.5593'' 0.2914" 

Table 2. Exact errors and estimated error bounds (A = 0.015) 

P r l  J J O  J J  E,(u,u,) E(u ,uo)  Ested, Estedz 

0.9 0.15-' 0.5704-' 0.570K' 0.3470-3 0.3470-3 0.360K3 0.3814-' 
0.5 0.15-' 0.5700-' 0.5696-' 0.226C2 0.2263-2 0.2420-2 0.3808-' 
0.1 0.14-' 0.56966' 0.5645-' 0.7595-2 0.7579-' 0.9742-2 0.3802-' 
0.01 0.12-' 0.5695-' 0.5522-' 0.1394-' 0.1376-' 0.3389-' 0.3801-' 
0.001 0.11-' 0.5695-' 0.5434-' 0.170C' 0.1665-' 0.1081"0 0.3801-' 

Table 3. Exact errors and estimated error bounds (d = 0.0101) 

P r l  JJO J J  E,(u, uo) E(u,  uo) Ested, Ested2 

0.9 0.10-' 0.3842-' 0.3842-' 0.1076C5 0.1076-5 0.1077T' 0.2372-' 
0.5 O.lO-'  0.3842-' 0.3842-' 0.721Y5 0.7215Y5 0.7227-5 0.2372-' 
0.1 0.10-' 0.3842-' 0.3842-' 0.2886-4 0.2886-4 0.2909-4 0.2372-' 
0.01 0.10-' 0.3842-' 0.3842-' 0.9414-4 0.9414-4 0.1012-3 0.2372-' 
0.001 0.10-' 0.3842-' 0.3842-' 0.213Y3 0.2135-3 0.3229-3 0.2372-' 
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where I > 0 is a parameter. Since lVuol = Lura-l, the linear region of uo is 

Rl(uo) = {xERIr  2 ro), 

where the radius 
l/(l -a) 

r o = ( % )  . 

Let us estimate the difference between uo and u, the solution of the non-linear 
problem: 

- div(u((Vu1')Vu) = 0 in R, 

u = Lr"sina0 on aR. 
(6.1 1) 

We try to give an upper bound for both EJ(u, uo)  and E(u, uo), which were defined 
in Experiment 6.1. If we use Selection 1 

q* = - vuo, 

then an upper bound for the error u - uo is 

If we use Selection 2 

(6.12) 

where 

and 

V(r, e) = - ur;-lrcos M e  in R1, 
then an upper bound for the error is 

- I l / ( I - a )  Jn4za/2(1 -a)  
2 -  

We take to = 1, and o = 3n/2 (i.e. R is an L-shape domain), the numerical results 
are shown in Table 4. 

We see, as in the last example, Estedl provides a better bound for p away from 0, 
while Estedz is better than Estedl when 8 is close to 0. 

Remark 6.3. We have seen in the numerical examples that our a posteriori error 
bounds for the continuous problems are effective. When 8 is not close to 0, the error 



A Posteriori Error Analysis for Linearization 507 

Table 4. Estimated error bounds for problems on an L-shape domain 

1 P JCJ(U0,  V U 0 ) l  Ested1 Ested, 

0.4 0.9 0.3549 i. ' 0.6861-3 0.1624- ' 
0.5 0.3545+' 0.4602 - 0.1571 - ' 
0.1 0.3544' ' 0.1852-' 0.15 16- ' 
0.01 0.3544+ ' 0.6444- 0.1504- ' 
0.001 0.3 544 + 0.2056'' 0.1 503 - 

0.0 1 0.9 0.8862- 0.1072- 0.2538-6 
0.5 0.8862- 0.7 191 - 0.245S6 
0.1 0.8862- 0.2894-6 0.2369-6 
0.01 0.8862-2 0.1007- 0.235W6 
0.001 0.8862- 0.3213 - 0.2348 - 

bound from the simple Selection 1 is better than that from the Selection 2. On the 
other hand, when /I is close to 0, the error bound from the Selection 2 is better than 
that from the Selection 1. By continuity, at least when finite element solutions are 
sufficient close to the exact solutions, we can claim that our a posteriori error bounds 
for the discrete problems are effective, too. When is not close to 0, the error bound 
(5.5) is better than (5.7), while when /3 is close to 0, the error bound (5.7) is better 
than (5.5). 

7. Some Remarks 

Remarks 7.1. In the above discussions, we assumed a concrete form for the non-linear 
problem. This is only for the purpose of making specific computations and of showing 
the effectiveness of the error estimates. In fact, we do not depend on a concrete form 
for the non-linear problem. To be able to provide error estimates for the effects of 
mathematical idealizations on solutions, we only need a description on the range of 
the coefficient function. This is a crucial point which allows the useful applications of 
the suggested a posteriori error estimates on practical problems, where all the data 
contain certain degree of uncertainty. Of course, the more accurate the description of 
the non-linear problem, the more accurate the error estimates. 

Remark 7.2. In the above discussions, we considered the effect of the linearization. 
The mathematical idealizations of a practical problem can be more complicated than 
the linearization, and the general framework for deriving a posteriori error estimates 
discussed earlier allows us to get similar estimates. 

Remark 7.3. The sample problem discussed above is an elliptic boundary value 
problem for a Laplacian-like differential operator. The idea for deriving a posteriori 
error estimates works for more complicated problems commonly seen in mechanics. 

Remark 7.4. In fluid mechanics, most problems are time-dependent. Derivation of 
a posteriori error estimates for the effects of mathematical idealizations on solutions is 
more involved. We will present related results in a future paper. 

Remark 7.5. A posteriori error estimates can be used to devise some adaptive numer- 
ical procedures. In [9], such estimates are given for the regularization of 
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non-differentiable minimization problems. As another application in numerical 
procedures, we will study iterative procedures for solving non-linear problems. A pos- 
teriori error estimates will provide us a convenient and efficient stopping criterion. 
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