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Numerical simulation results are reported in several contact problems; in particular, the
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1. Introduction

In physical and engineering sciences, many problems are modeled by partial differential equations with proper
oundary and/or initial conditions. More complex physical processes have been studied as variational inequalities (VIs),
hich form an important and very useful class of nonlinear problems arising in diverse application areas of physical,
ngineering, financial, and management sciences; some early references on modeling, mathematical theory and numerical
nalysis of variational inequalities include [1–6].
Variational inequalities are mathematical problems with convex structures. For problems involving nonsmooth and

on-convex relations, hemivariational inequalities arise. In 1983, Panagiotopoulos [7] coined the notion of hemivariational
nequalities, which is closely related to the concept of the generalized gradient of a locally Lipschitz function (allowed
o be non-convex) introduced by Clarke [8,9]. Since then, it has been shown that hemivariational inequalities are a
owerful tool for many applications in areas such as nonsmooth mechanics, physics, engineering, and economics. For this
eason, publications on hemivariational inequalities are growing rapidly, and the mathematical theory and applications of
emivariational inequalities can be found in several books [10–14] and the references therein. In comparison, systematic
nalysis of numerical methods for solving hemivariational inequalities is more recent. A comprehensive reference on the
inite element method for hemivariational inequalities is [15], where convergences of some numerical schemes were
hown, but no error estimate was derived. In [16], an optimal order error estimate was derived for the numerical solution
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of a hemivariational inequality with the linear finite element. Since then, there have been various developments on
convergences of numerical solutions under basic solution regularity and optimal order error estimates for linear finite
element solutions under suitable solution regularity assumptions for hemivariational inequalities; see a recent summary
account [17].

In recent years, as an extension of the classical finite element method, the virtual element method (VEM) has been
eveloped [18] and applied for solving a variety of partial differential equations; in particular, it was used to solve linear
lasticity problems, e.g., [19–22]. The virtual element space consists of polynomials up to a certain degree and some
dditional non-polynomial functions, and VEM is flexible in handling very general (non-convex) polygonal elements
ith an arbitrary number of edges. Furthermore, the h adaptive strategy is very suitable for VEM because it treats
he geometrical hanging nodes as the vertices of the polygonal elements. In the VEM framework, the stiffness matrix
s calculated without actually computing the non-polynomial functions with the help of proper projection operators.
n [23], the virtual element method was applied to solve a contact problem; however, there was no error estimate.
n [24,25], the VEMs were studied for solving an obstacle problem and a simplified friction problem, respectively, and
rror estimates were established. This appears to be the first time in the literature where the optimal first-order error
stimate is established for the lowest-order virtual element method for solving variational inequalities. In [26], the virtual
lement method was studied for solving elliptic variational inequalities of the second kind. In [27], a general framework
as established to study the conforming and nonconforming virtual element methods for solving a Kirchhoff plate contact
roblem with friction, which is a fourth-order elliptic variational inequality of the second kind. In a unified framework,
priori error estimates were derived for these virtual elements, and they achieve the optimal convergence order for

he lowest-order case. In [28], the lowest order VEM was developed and analyzed for solving an elliptic hemivariational
nequality without constraint. In this paper, we establish an abstract framework of VEM for solving general elliptic
emivariational inequalities with or without constraint and provide a unified a priori error analysis for both cases (with
nd without constraint). Then, we apply the VEM of arbitrary order to three HVIs arising from contact mechanics and
how that the lowest order VEM achieves the optimal convergence order. In general, optimal error estimates cannot be
erived for high-order methods due to the presence of error bound terms on the contact boundary. However, with proper
olution regularity assumptions, if we refine the elements along the contact boundary, the optimal convergence order will
e possible through adding certain degrees of freedom (cf. Remark 5.1), and such meshes can be easily created with the
irtual element framework. It is one advantage of using VEM to solve contact problems.
The rest of the paper is organized as follows: In Section 2, we introduce some notation and a general family of elliptic

emivariational inequalities with and without constraints. In Section 3, we introduce the framework of the virtual element
ethod for solving the hemivariational inequalities and derive Céa-type inequalities for error estimation. Then in the

emaining sections, we discuss the application of the virtual element method to solve the three contact problems in
wo-dimensions. In Section 4, we describe the construction of the virtual element. In Section 5, we apply the earlier error
nalysis to three contact problems, in which the material’s behavior is modeled with a linearly elastic constitutive law
nd contact conditions in subdifferential forms. Optimal first-order error estimates are shown for the lowest-order virtual
lement method under suitable solution regularity assumptions. Finally, in Section 6, we present some numerical results
hich support the theoretical error estimates.

. Elliptic hemivariational inequality

.1. Preliminaries

Given a bounded domain D ⊂ Rd, let V be a function space defined on D with the norm ∥ · ∥V ,D, which is usually
ritten as ∥ · ∥V . Denote its topological dual by V ∗, and the collection of all the subsets of V ∗ by 2V∗

. The duality pairing
etween V and V ∗ is denoted by ⟨·, ·⟩V∗×V , or simply ⟨·, ·⟩ where no confusion may arise. Given two normed spaces, V
nd W , let L(V ,W ) be the space of all continuous linear operators from V to W .
We recall the definitions of the convex and the Clarke subdifferentials.

efinition 2.1. Let ϕ: V → R∪{+∞} be a proper, convex and lower semicontinuous function. The mapping ∂cϕ: V → 2V∗

efined by

∂cϕ(u) := {u∗
∈ V ∗

: ⟨u∗, v − u⟩ ≤ ϕ(v) − ϕ(u) ∀ v ∈ V }

s called the (convex) subdifferential of ϕ. If ∂cϕ(u) is non-empty, any element u∗
∈ ∂cϕ(u) is called a subgradient of ϕ at u.

efinition 2.2. Let ψ: V → R be a locally Lipschitz function. The generalized (Clarke) directional derivative of ψ at u ∈ V
n the direction v ∈ V is defined by

ψ0(u; v) := lim sup
w→u, λ↓0

ψ(w + λv) − ψ(w)
λ

.

The generalized gradient (subdifferential) of ψ at u is defined by

∂ψ(u) :=
{
ζ ∈ V ∗

: ψ0(u; v) ≥ ⟨ζ , v⟩ ∀ v ∈ V
}
.
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Details on the properties of the subdifferential mappings, both in the convex and Clarke sense, can be found in the
ooks [9,11,13,29]. In particular, knowing the generalized subdifferential, we can compute the generalized directional
erivative through the formula [9]

ψ0(u; v) = max {⟨ζ , v⟩ : ζ ∈ ∂ψ(u)} . (2.1)

he generalized directional derivative is subadditive with respect to the direction variable:

ψ0(u; v1 + v2) ≤ ψ0(u; v1) + ψ0(u; v2) ∀ u, v1, v2 ∈ V . (2.2)

2.2. A general elliptic hemivariational inequality

Let V be a reflexive Banach space, K a closed and convex subset of V with 0V ∈ K , and Vj a Banach space. Given a
symmetric bilinear form a(·, ·) : V × V → R, a functional j: Vj → R, a linear operator γj : V → Vj and f ∈ V ∗, a general
lliptic hemivariational inequality is as follows:

roblem 2.3. Find an element u ∈ K such that

a(u, v − u) + j0(γju; γjv − γju) ≥ ⟨f , v − u⟩ ∀ v ∈ K . (2.3)

As a particular case, when K = V , (2.3) is an elliptic hemivariational inequality without constraint.
To study Problem 2.3, we make the following assumptions:

ssumption 2.4. (A1) The linear operator γj ∈ L(V , Vj), and we denote by cj > 0 an upper bound of ∥γj∥:

∥γjv∥Vj ≤ cj∥v∥V ∀ v ∈ V . (2.4)

(A2) There are constants m > 0 and M > 0 such that

a(v, v) ≥ m∥v∥2
V ∀ v ∈ V , (2.5)

a(u, v) ≤ M∥u∥V∥v∥V ∀ u, v ∈ V . (2.6)

(A3) j: Vj → R is locally Lipschitz, and there are constants c0, c1, αj ≥ 0 such that

∥∂ j(z)∥V∗
j

≤ c0 + c1∥z∥Vj ∀ z ∈ Vj, (2.7)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj∥z1 − z2∥2
Vj ∀ z1, z2 ∈ Vj. (2.8)

(A4) The smallness condition holds

αjc2j < m. (2.9)

Remark 2.5. If we define an operator A: V → V ∗ related to the bilinear form a(u, v) by

a(u, v) = ⟨Au, v⟩,

then (2.5)–(2.6) implies that A is Lipschitz continuous, pseudomonotone and strongly monotone, i.e.,

∥Au − Av∥V∗ ≤ M∥u − v∥V ∀ u, v ∈ V ,

⟨Av1 − Av2, v1 − v2⟩ ≥ m∥v1 − v2∥
2
V ∀ v1, v2 ∈ V .

Remark 2.6. For contact problems leading to the hemivariational inequalities, the functional j(·) is an integral over the
contact boundary Γ3, and Vj can be chosen to be L2(Γ3) or L2(Γ3)d. The smallness assumption (2.9) poses a limit on the
degree of the non-convexity of j relative to the strong monotonicity of the bilinear form. When j: Vj → R is convex, (2.8)
holds with αj = 0 due to the monotonicity of the convex subdifferential.

In [30], the following existence and uniqueness result was proved.

Theorem 2.7. Under Assumption 2.4, Problem 2.3 has a unique solution u ∈ K .

Moreover, the assumption 0V ∈ K can be replaced by non-emptiness of K [30].

2.3. Contact problems

Consider the contact between a linearly elastic body and a foundation. Let the initial configuration of the linearly elastic
body be an open, bounded, Lipschitz domain Ω ⊂ Rd (d = 2, 3). The boundary Γ = ∂Ω is partitioned into three disjoint
and measurable parts Γ , Γ and Γ such that meas (Γ ) > 0. Denote the displacement field by u:Ω → Rd and the
1 2 3 1
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stress field by σ:Ω → Sd, the space of second order symmetric tensors on Rd with the inner product σ : τ = σij τij. The
inearized strain tensor associated with u is defined by

ε(u) =
1
2

(
∇u + (∇u)T

)
.

The unit outward normal vector ν on Γ exists a.e. since Ω is a Lipschitz domain. For a vector-valued function v, we use
vν := v · ν and vτ := v − vνν for the normal and tangential components of v on the boundary. Similarly, for the stress
field σ, its normal and tangential components on Γ are defined as σν := (σν) · ν and στ := σν − σνν, respectively.

Given f1 ∈ L2(Ω;Rd) and f2 ∈ L2(Γ2;Rd), the contact problem is to find a displacement field u:Ω → Rd and a stress
field σ:Ω → Sd such that

σ(u) = Cε(u) in Ω, (2.10)
−∇ · σ(u) = f1 in Ω, (2.11)

u = 0 on Γ1, (2.12)
σν = f2 on Γ2, (2.13)

together with a set of contact boundary conditions on Γ3. Different contact conditions will lead to different contact
problems. Here, (2.10) is the linearly elastic constitutive law. As usual, the elasticity operator C = (Cijkl): Sd

→ Sd is
assumed to be bounded, symmetric, and pointwise stable:⎧⎨⎩(a) LC = ∥C∥ < ∞;

(b) Cijkl = Cjikl = Cklij, 1 ≤ i, j, k, l ≤ d;
(c) Cijklεijεkl ≥ mC∥ε∥

2.

(2.14)

The relations (2.11)–(2.13) mean that the elastic body is fixed on Γ1, and is in equilibrium under the action of volume
forces of a total density f1 inΩ and surface tractions of a total density f2 on Γ2. Furthermore, the elastic body is in potential
contact on Γ3 with a foundation. Here and below we do not always display explicitly the dependence of a quantity on
the spatial variable x.

To study the contact problems, we introduce the function space

W =
{
v ∈ H1(Ω;Rd) : v = 0 a.e. on Γ1

}
. (2.15)

Since meas (Γ1) > 0, it is known that W is a Hilbert space with the inner product

(u, v)W :=

∫
Ω

ε(u) : ε(v) dx ∀ u, v ∈ W

and the associated norm ∥ · ∥W . For v ∈ H1(Ω;Rd), the same symbol v is used for its trace on Γ , and we have a constant
c > 0 such that

∥v∥L2(Γ3;Rd) ≤ c ∥v∥W ∀ v ∈ W ,

by the trace theorem. In addition, we define f ∈ W ∗ by

⟨f , v⟩W∗×W = (f1, v)L2(Ω;Rd) + (f2, v)L2(Γ2;Rd) ∀ v ∈ W . (2.16)

As examples of Problem 2.3, with the relations (2.10)–(2.13), we consider three choices of the contact boundary
conditions on Γ3, leading to three hemivariational inequalities below.

2.3.1. A bilateral contact problem with friction
Given a potential function jτ :Γ3 × Rd

→ R, the first set of contact boundary conditions we consider is

uν = 0, −στ ∈ ∂ jτ (uτ ) on Γ3. (2.17)

The first relation in (2.17) is the bilateral contact condition, and the second relation indicates that the contact is frictional.
In Problem (2.3), let

K = V := {v ∈ W : vν = 0 a.e. on Γ3} , (2.18)

Vj = L2(Γ3;Rd), γjv = vτ for v ∈ V , (2.19)

and define a bilinear form

a(u, v) =

∫
Ω

σ(u) : ε(v) dx ∀ u, v ∈ V (2.20)

as well as a functional

j(z) =

∫
jτ (·, z(·)) ds ∀ z ∈ L2(Γ3;Rd). (2.21)
Γ3

4
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Assume the potential function jτ :Γ3 × Rd
→ R has the following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(a) jτ (·, z) is measurable on Γ3 for all z ∈ Rd and jτ (·, 0) ∈ L1(Γ3);
(b) jτ (x, ·) is locally Lipschitz on Rd for a.e. x ∈ Γ3;

(c) |∂ jτ (x, z)| ≤ cτ ,0 + cτ ,1∥z∥ for a.e. x ∈ Γ3,

for all z ∈ Rd with cτ ,0, cτ ,1 ≥ 0;
(d) j0τ (x, z1; z2 − z1) + j0τ (x, z2; z1 − z2) ≤ αjτ ∥z1 − z2∥2

for a.e. x ∈ Γ3, all z1, z2 ∈ Rd with αjτ ≥ 0.

(2.22)

hen it can be shown that the functional j defined by (2.21) satisfies the assumption (A3) with αj = αjτ .
The weak formulation of the contact problem is as follows:

Problem (P1). Find a displacement field u ∈ V such that

a(u, v) +

∫
Γ3

j0τ (uτ ; vτ ) ds ≥ ⟨f , v⟩V∗×V ∀ v ∈ V . (2.23)

Assume the smallness condition (2.9) that takes the form αjτ < λ
1/2
1,VmC for the contact problem under consideration,

where λ1,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ W ,
∫
Ω

ε(u) : ε(v) dx = λ

∫
Γ3

uτ ·vτ ds ∀ v ∈ W .

Then applying Theorem 2.7, we know that Problem (P1) has a unique solution [30].

2.3.2. A frictionless normal compliance contact problem
Given a potential function jν :Γ3 × R → R, the second set of contact boundary conditions is

− σν ∈ ∂ jν(uν), στ = 0 on Γ3. (2.24)

The first relation in (2.24) is a normal compliance contact condition, whereas the frictionless contact feature is reflected
by the condition στ = 0. Then the weak formulation of the second contact problem is the following:

Problem (P2). Find a displacement field u ∈ V such that

a(u, v) +

∫
Γ3

j0ν(uν; vν) ds ≥ ⟨f , v⟩V∗×V ∀ v ∈ V . (2.25)

This problem is a special case of Problem 2.3 with the following setting:

K = V = W , Vj = L2(Γ3), γjv = vν for v ∈ V , (2.26)

j(z) =

∫
Γ3

jν(·, z(·)) ds, z ∈ L2(Γ3). (2.27)

Assume the potential function jν :Γ3 × R → R has the following properties:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) jν(·, z) is measurable on Γ3 for all z ∈ R and jν(·, 0) ∈ L1(Γ3);
(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;

(c) |∂ jν(x, z)| ≤ cν,0 + cν,1|z| for a.e. x ∈ Γ3,

for all z ∈ R with cν,0, cν,1 ≥ 0;
(d) j0ν(x, z1; z2 − z1) + j0ν(x, z2; z1 − z2) ≤ αjν |z1 − z2|2

for a.e. x ∈ Γ3, all z1, z2 ∈ R with αjν ≥ 0.

(2.28)

Then j(z) defined by (2.27) satisfies (A3). The smallness assumption (2.9) now takes the form αjν < λ
1/2
2,VmC , where λ2,V > 0

is the smallest eigenvalue of the eigenvalue problem

u ∈ W ,
∫
Ω

ε(u) : ε(v) dx = λ

∫
Γ3

uνvν ds ∀ v ∈ W .

Then it can be shown that Problem (P2) has a unique solution u ∈ V by Theorem 2.7 [30].

2.3.3. A frictionless unilateral contact problem
The third set of contact boundary conditions is

uν ≤ g, σν + ξν ≤ 0, (uν − g)(σν + ξν) = 0, ξν ∈ ∂ jν(uν) on Γ3, (2.29)
στ = 0 on Γ3, (2.30)

5
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which models frictionless contact of the elastic body with a foundation made of a rigid body covered by a layer made of
elastic material. Penetration is restricted by the relation uν ≤ g , where g represents the thickness of the elastic layer. When
here is penetration and the normal displacement does not reach the bound g , the contact is described by a multivalued
ormal compliance condition: −σν = ξν ∈ ∂ jν(uν).
Corresponding to the constraint uν ≤ g on Γ3, we introduce a subset of the space W of (2.15):

U := {v ∈ W : vν ≤ g on Γ3} . (2.31)

The weak formulation of the contact problem is the following.

Problem (P3). Find a displacement field u ∈ U such that

a(u, v − u) +

∫
Γ3

j0ν(uν; vν − uν) ds ≥ ⟨f , v − u⟩V∗×V ∀ v ∈ U . (2.32)

To apply Theorem 2.7, we let

V = W , K = U, Vj = L2(Γ3), γjv = vν for v ∈ V ,

Assuming the smallness condition αjν < λ
1/2
2,VmC , it can be shown that Problem (P3) has a unique solution u ∈ U under

proper assumptions [30].

3. Virtual element method

In this section, we follow the ideas in [18,19] to set up the abstract framework of the virtual element method for
solving Problem 2.3. We keep Assumption 2.4 so that Problem 2.3 has a unique solution u ∈ K .

3.1. Abstract framework

Given a bounded polygonal domain Ω and let T h be a decomposition of Ω into elements denoted by T . Let hT =

iam(T ) and h = max{hT : T ∈ T h
}. We assume that the bilinear form a(u, v) is defined on the domain Ω , and can be

plit as

a(u, v) =

∑
T∈T h

aT (u, v),

here aT (u, v) is the restriction of a(u, v) on T , and

aT (u, v) ≤ M∥u∥V ,T∥v∥V ,T ∀ u, v ∈ VT . (3.1)

ere, VT is the restriction of V on T . In addition, we assume that the virtual element space V h
⊂ V and the bilinear form

h satisfy the following assumptions:

ssumption 3.1. For each h, there exists an element f h ∈ (V h)∗ such that

∥f h∥(Vh)∗ = sup
vh∈Vh

⟨f h, vh⟩
∥vh∥V

s uniformly bounded, and a symmetric bilinear form ah(·, ·) : V h
× V h

→ R such that

ah(uh, vh) =

∑
T∈T h

ahT (u
h, vh), (3.2)

where ahT (·, ·) is a bilinear form on V h
T × V h

T with V h
T is the restriction of V h on T . Furthermore, for each T , we have

k(T ) ⊂ V h
T , and the bilinear form ahT has the following properties:

(i) k-consistency:

ahT (v
h, p) = aT (vh, p) ∀ vh ∈ V h

T , p ∈ Pk(T ); (3.3)

ii) stability: there exist two positive constants α∗ and α∗, independent of h and T , s.t.

α∗aT (vh, vh) ≤ ahT (v
h, vh) ≤ α∗aT (vh, vh) ∀ vh ∈ V h

T . (3.4)

The symmetry of ah(·, ·), stability (3.4) and the continuity (3.1) of aT (·, ·) easily imply the continuity

ahT (u
h, vh) ≤ α∗M∥uh

∥V ,T∥v
h
∥V ,T ∀ uh, vh ∈ V h

T . (3.5)

n addition, from (3.2), (3.4) and (3.5), it follows that

α a(vh, vh) ≤ ah(vh, vh) ≤ α∗a(vh, vh) ∀ vh ∈ V h, (3.6)
∗

6
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ah(uh, vh) ≤ α∗M∥uh
∥V ,h∥v

h
∥V ,h ∀ uh, vh ∈ V h. (3.7)

ere, ∥ · ∥V ,h =
(∑

T∈T h ∥ · ∥
2
V ,T

)1/2.
In the rest of the paper, we will use c > 0 to represent a generic constant that is independent of the mesh size h, and

it may take different values at different appearances.

3.2. Virtual element scheme for HVI with constraint

We use K h
:= V h

∩ K to approximate the convex set K . The virtual element method for solving Problem 2.3 is the
following.

Problem 3.2. Find uh
∈ K h such that

ah(uh, vh − uh) + j0(γjuh
; γjv

h
− γjuh) ≥ ⟨f h, vh − uh

⟩ ∀ vh ∈ K h. (3.8)

Remark 3.3. With Assumption 2.4 and a further assumption α∗m > αjc2j replacing (2.9), we can prove that Problem 3.2
has a unique solution uh

∈ K h. Indeed, defining Ah: V h
→ (V h)∗ by the relation

⟨Ahu, v⟩ := ah(u, v) ∀ u, v ∈ V h

and following arguments in the proof of Theorem 3.1 in [30], we can show the existence and uniqueness of Problem 3.2.

Proposition 3.4. Assume α∗m > αjc2j . Then the solution uh
∈ K h of Problem 3.2 is uniformly bounded independent of h.

Proof. We let vh = 0 in (3.8) to get

ah(uh, uh) ≤ j0(γjuh
; −γjuh) + ⟨f h, uh

⟩. (3.9)

From (2.8), (2.7) and (2.4),

j0(γjuh
; −γjuh) ≤ αj∥γjuh

∥
2
Vj − j0(0; γjuh)

≤ αj∥γjuh
∥
2
Vj + c0∥γjuh

∥Vj

≤ αjc2j ∥u
h
∥
2
V + c∥uh

∥V . (3.10)

Also, ⟨f h, uh
⟩ ≤ ∥f h∥(Vh)∗∥uh

∥V and recall that ∥f h∥(Vh)∗ is uniformly bounded. Apply (2.5), (3.6) and (3.10) in (3.9),(
α∗m − αjc2j

)
∥uh

∥
2
V ≤ c∥uh

∥V .

We then conclude that uh
∈ K h is uniformly bounded independent of h. ■

In the following theorem, we present a general Céa’s inequality that will be the starting point for deriving convergence
order error estimates of the virtual element scheme (3.8) for solving the hemivariational inequality (2.3).

Theorem 3.5. Assume α∗m > αjc2j . Let u and uh be the solutions of Problems 2.3 and 3.2, respectively. For any approximation
uI

∈ K h of u and for any piecewise polynomial approximation uπ of u, i.e. uπ |T∈ Pk(T ) for all T ∈ T h, we have

∥u − uh
∥V ≤ c

(
∥u − uI

∥V + ∥u − uπ∥V ,h + ∥f − f h∥(Vh)∗ + ∥γju − γjuI
∥
1/2
Vj

+ |Re|1/2
)
, (3.11)

where the constant c depends only on α, M, α∗ and α∗. Here,

∥f − f h∥(Vh)∗ := sup
vh∈Vh

⟨f , vh⟩ − ⟨f h, vh⟩
∥vh∥V

,

nd

Re := a(u, eh) − j0(γju; −γjeh) − ⟨f , eh⟩.

roof. First, we split the error e = u − uh into two parts:

e = eI + eh,

here

eI := u − uI , eh := uI
− uh.

rom (2.5) and (3.6),

α m∥eh∥2
≤ α a(eh, eh) ≤ ah(eh, eh) = ah(uI , eh) − ah(uh, eh).
∗ V ∗

7
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By (3.8),

α∗m∥eh∥2
V ≤ ah(uI , eh) − ⟨f h, eh⟩ + j0(γjuh

; γjeh).

Applying (3.3), we rewrite the right hand side of the above inequality:

α∗m∥eh∥2
V ≤

∑
T

(
ahT (u

I
− uπ , eh) + ahT (u

π , eh)
)
− ⟨f h, eh⟩ + j0(γjuh

; γjeh)

=

∑
T

(
ahT (u

I
− uπ , eh) + aT (uπ , eh)

)
− ⟨f h, eh⟩ + j0(γjuh

; γjeh)

=

∑
T

(
ahT (u

I
− uπ , eh) + aT (uπ − u, eh)

)
+ a(u, eh) − ⟨f h, eh⟩ + j0(γjuh

; γjeh),

.e.,

α∗m∥eh∥2
V ≤ R1 + R2 + R3 + Re, (3.12)

here

R1 =

∑
T

(
ahT (u

I
− uπ , eh) + aT (uπ − u, eh)

)
,

R2 = ⟨f , eh⟩ − ⟨f h, eh⟩,

R3 = j0(γjuh
; γjeh) + j0(γju; −γjeh),

Re = a(u, eh) − j0(γju; −γjeh) − ⟨f , eh⟩.

Next, we bound the first three terms on the right side of (3.12). By (2.6) and (3.5), we get

R1 ≤ α∗M∥uI
− uπ∥V ,h∥eh∥V + M∥uπ − u∥V ,h∥eh∥V . (3.13)

n addition,

R2 ≤ ∥f − f h∥(Vh)∗∥e
h
∥V . (3.14)

pplying the properties (2.2), (2.7) and (2.8), we have

R3 = j0(γjuh
; γjuI

− γjuh) + j0(γju; γjuh
− γjuI )

≤ j0(γjuh
; γjuI

− γju) + j0(γjuh
; γju − γjuh)

+ j0(γju; γjuh
− γju) + j0(γju; γju − γjuI )

≤ (c0 + c1∥γjuh
∥Vj )∥γju − γjuI

∥Vj + αj∥γju − γjuh
∥
2
Vj

+ (c0 + c1∥γju∥Vj )∥γju − γjuI
∥Vj .

y Proposition 3.4, ∥uh
∥V is uniformly bounded independent of h. Hence, by (2.4), we have

R3 ≤ αjc2j ∥u − uh
∥
2
V + c∥γju − γjuI

∥Vj . (3.15)

Combining (3.12)–(3.15), we have

∥eh∥2
V ≤

1
α∗m

(
α∗M∥uI

− uπ∥V ,h + M∥uπ − u∥V ,h + ∥f − f h∥(Vh)∗

)
∥eh∥V

+
αjc2j
α∗m

∥u − uh
∥
2
V + c

(
∥γju − γjuI

∥Vj + |Re|
)
. (3.16)

ote that if x2 ≤ ax + b and x > 0, a > 0, b > 0, we have x ≤ a + b1/2. Thus,

∥eh∥V ≤
1
α∗m

(
α∗M∥uI

− uπ∥V ,h + M∥uπ − u∥V ,h + ∥f − f h∥(Vh)∗

)
+

(
αjc2j
α∗m

∥u − uh
∥
2
V + c

(
∥γju − γjuI

∥Vj + |Re|
))1/2

. (3.17)

inally, the proof is completed by the triangle inequality

∥u − uh
∥V ≤ ∥u − uI

∥V + ∥uI
− uh

∥V

ith the assumption that α∗m > αjc2j . ■
8
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3.3. Virtual element scheme for HVI without constraint

For the special case that K = V , we have K h
= V h, then Problem 2.3 and its virtual element approximation (3.8)

become

a(u, v) + j0(γju; γjv) ≥ ⟨f , v⟩ ∀ v ∈ V , (3.18)

nd

ah(uh, vh) + j0(γjuh
; γjv

h) ≥ ⟨f h, vh⟩ ∀ vh ∈ V h. (3.19)

y an argument similar to that of the proof in Theorem 3.5, we can derive same result that

α∗m∥eh∥2
V ≤ R1 + R2 + R3 + Re.

o bound the terms R1, R2 and R3, we use the same arguments in Theorem 3.5. Let us consider the residual term Re.
ecause −eh ∈ V , by (3.18), we have

a(u,−eh) + j0(γju; −γjeh) ≥ ⟨f ,−eh⟩ ∀ v ∈ V .

ence,

Re = a(u, eh) − j0(γju; −γjeh) − ⟨f , eh⟩

≤ a(u, eh) + a(u,−eh) − ⟨f ,−eh⟩ − ⟨f , eh⟩
= 0.

hen the general estimation (3.11) reduces to

∥u − uh
∥V ≤ c

(
∥u − uI

∥V + ∥u − uπ∥V ,h + ∥f − f h∥(Vh)∗ + ∥γju − γjuI
∥
1/2
Vj

)
. (3.20)

The above inequality and Theorem 3.5 are starting points for the error estimation for specific elliptic hemivariational
nequalities arising in contact problems discussed in Section 2.3.

. Construction of the VEM

To make this paper self-contained, following [19,23], we present ideas for construction of the virtual element space
h

⊂ V , the corresponding bilinear form ah and the right-hand side f h satisfying Assumption 3.1.
For simplicity, we only consider two-dimensional case in the rest of the paper. Assume Ω is a polygonal domain and

xpress the three parts of the boundary, Γk, 1 ≤ k ≤ 3, as unions of closed line segments with disjoint interiors:

Γk = ∪
ik
i=1Γk,i, 1 ≤ k ≤ 3.

et {T h
} be a family of partitions of Ω into elements T that are compatible with the partition of the boundary ∂Ω into

k,i, 1 ≤ i ≤ ik, 1 ≤ k ≤ 3, in the sense that if one side e ⊂ ∂T satisfies meas(e ∩ Γk,i) > 0, then e ⊂ Γk,i. Let Eh stand
or the set of all the edges of T h, and let Eh

i be the set of all the interior edges. Denote by Eh
1 , E

h
2 and Eh

3 the set of all the
dges lie on Γ1, Γ2 and Γ3, respectively. Let Eh

0 = Eh
i ∪ Eh

2 ∪ Eh
3 be the set of all the edges that do not lie on Γ1. Denote Ph

0
as the set of all the vertices that do not lie on Γ1. Set hT = diam(T ) and h = max{hT : T ∈ T h

}.
As in [18,19,31], we make the following assumption.

Assumption 4.1. There exists a constant number δ > 0 such that for each h and every T ∈ T h,

• T is star-shaped with respect to a ball of radius δhT ;
• The distance between any two vertices of T is greater than or equal to δhT .

4.1. Construction of the virtual element space

Let T be a polygon with n edges. For k ≥ 1, we define the local finite dimensional space W h
T on the element T ,

W h
T := {v ∈ H1(T ;R2) : ∇ · Cε(v) ∈ Pk−2(T ;R2), v|∂T∈ C0(∂T ), v|e∈ Pk(e;R2) ∀ e ⊂ ∂T } (4.1)

ith the convention that P−1(T ) = {0}. For a function v ∈ W h
T , we choose the following degrees of freedom:

• The values of v(a) ∀ vertex a ∈ T , (4.2)

• The moments
∫
e
q · v ds ∀ q ∈ Pk−2(e;R2) ∀ edge e ⊂ ∂T , k ≥ 2, (4.3)

• The moments
∫

q · v dx ∀ q ∈ Pk−2(T ;R2), k ≥ 2. (4.4)

T

9
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Fig. 1. Local d.o.f. of the virtual element for k = 1 (left) and k = 2 (right).

In Fig. 1, we show the degrees of freedom for the first two low-order elements with k = 1 and k = 2. It is easy to
heck that the degree of freedom corresponding to T is

NT
dof = 2nk + k(k − 1).

For every decomposition T h and k ≥ 1, define the global virtual element space W h as

W h
:= {v ∈ W : v|T∈ W h

T ∀ T ∈ T h
}, (4.5)

nd the global degrees of freedom for v ∈ W h can then be taken as

• The values of v(a) ∀ vertex a ∈ Ph
0 , (4.6)

• The moments
∫
e
q · v ds ∀ q ∈ Pk−2(e;R2) ∀ edge e ∈ Eh

0 , k ≥ 2, (4.7)

• The moments
∫
T
q · v dx ∀ q ∈ Pk−2(T ;R2) ∀ element T ∈ T h, k ≥ 2. (4.8)

he dimension of W h coincides with the total number of degrees of freedom (4.6)–(4.8), which is given by

Ndof = 2NV + 2(k − 1)NE + k(k − 1)NT ,

here NV is the number of vertices in Ph
0 , NE is the number of edges in Eh

0 , and NT is the number of elements. It was
proved in [19] that the degrees of freedom (4.6)–(4.8) are unisolvent for W h.

Denote by χi the ith degree of freedom for W h, i = 1, 2, . . . ,Ndof. From the above construction, it follows that for
every sufficiently smooth function w, there exists a unique element w I

∈ W h such that

χi(w − w I ) = 0, i = 1, 2, . . . ,Ndof.

Then by the scaling argument and Bramble–Hilbert Lemma, the following approximation property holds [19]

∥w − w I
∥t,Ω ≤ Chs−t

|w|s,Ω , t = 0, 1, 2 ≤ s ≤ k + 1. (4.9)

Furthermore, for every T ∈ T h and every w ∈ Hs(T ;R2), there exists a function wπ
∈ Pk(T ;R2) such that [19,32]

∥w − wπ
∥t,T ≤ Chs−t

T |w|s,T , t = 0, 1, 1 ≤ s ≤ k + 1. (4.10)

4.2. Construction of ah

Using the ideas in [19,23], we now present a symmetric and computable discrete bilinear form ah satisfying Assump-
tion 3.1.

In order to construct ah(·, ·), we first define a projection operator Π T
k : W h

T → Pk(T ;R2) by

aT (Π T
k v

h, q) = aT (vh, q) ∀ q ∈ Pk(T ;R2). (4.11)

This equation determines Π T
k v

h only up to a rigid motion. In order to ensure the uniqueness, we adopt the idea in [23]
to use the following conditions

1
nT
V

nTV∑
i=1

Π T
k v

h(xi) =
1
nT
V

nTV∑
i=1

vh(xi),

1
nT
V

nTV∑
i=1

xi ×Π T
k v

h(xi) =
1
nT
V

nTV∑
i=1

xi × vh(xi),

where xi are the coordinates of the vertices of the element T and nT
V denotes the number of the vertices. Here, ‘‘×’’ denotes

the cross product of two vectors.
10
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Then we define the local bilinear form

ahT (u
h, vh) := aT (Π T

k u
h,Π T

k v
h) + ST

(
(I −Π T

k )u
h, (I −Π T

k )v
h)

∀ uh, vh
∈ W h

T , (4.12)

here

ST (uh, vh) =

Ndof
T∑
i=1

χi(uh) χi(vh)

s the stabilization term. The construction of ah(uh, vh) =
∑

T∈T h ahT (u
h, vh) ensures the properties (3.3) and (3.4). Note

hat the bilinear form ah can be constructed in other ways to guarantee the properties (3.3) and (3.4), for example, the
onstruction of the bilinear form proposed in [21], which is adopted in [28].

.3. Construction of the right-hand side f h

Note that the first term (f1, v)L2(Ω;R2) in (2.16) is not computable for v ∈ W h. Therefore, for k ≥ 2, let

f h1T = PT
k−2f1 ∀ T ∈ T h,

.e. on each element T , f h1T is the L2-projection of f1 onto the space of polynomials of order k − 2. Then we define

⟨f h1 , v
h
⟩ =

∑
T∈T h

∫
T
f h1T · vh dx ∀ vh

∈ W h.

For k = 1, we choose

f h1T = PT
0 f1 ∀ T ∈ T h

nd define

⟨f h1 , v
h
⟩ =

∑
T∈T h

∫
T
f h1T · vh dx ∀ vh

∈ W h.

ere, vh denotes the average value of the function vh over all vertices of T .
Finally, to approximate the right-hand side term ⟨f , v⟩W∗×W , we set

⟨f h, vh
⟩ = ⟨f h1 , v

h
⟩ + (f2, vh)L2(Γ2;R2) ∀ v ∈ W h.

Then the following approximation property holds [19]

∥f − f h∥(Wh)∗ ≤ C hk
|f |k−1, (4.13)

which ensures the optimal error bound.

5. Error analysis for contact problems

We illustrate applications of the framework developed in Section 3 on error estimation for the virtual element solutions
of the three static contact problems.

5.1. VEM for Problem (P1)

The function space corresponding to the virtual element method:

V h
=
{
vh

∈ W h
: vhν = 0 on Γ3

}
. (5.1)

The virtual element scheme for Problem (P1) is the following:

Problem (Ph
1). Find a displacement field uh

∈ V h such that

ah(uh, vh) +

∫
Γ3

j0τ (u
h
τ ; v

h
τ ) ds ≥ ⟨f h, vh

⟩ ∀ vh
∈ V h. (5.2)

Note that the discussion and result from Section 3 are still valid with j0(γju, γjv) replaced by
∫
Γ3

j0τ (uτ ; vτ ) ds. Under
ssumption 2.4, Problem (Ph

1) has a unique solution uh
∈ V h. The conditions (2.5)–(2.6) follow from (2.14) (a)–(b). By

pplying the estimation (3.20), we have

∥u − uh
∥ ≤ c

(
∥u − uI

∥ + ∥u − uπ∥ + ∥f − f h∥ h ∗ + ∥u − uI
∥
1/2

)
. (5.3)
V V V ,h (V ) τ τ L2(Γ3;R2)

11
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Then we conclude the optimal order error bound for k = 1,

∥u − uh
∥V ≤ c h (5.4)

nder the regularity assumptions

u ∈ H2(Ω;R2), uτ ∈ H2(Γ3,i;R2), 1 ≤ i ≤ i3. (5.5)

5.2. VEM for Problem (P2)

We use the virtual element space V h
= W h of (4.5) and introduce the following approximation of Problem (P2).

Problem (Ph
2). Find a displacement field uh

∈ V h such that

ah(uh, vh) +

∫
Γ3

j0ν(u
h
ν; v

h
ν ) ds ≥ ⟨f h, vh

⟩ ∀ vh
∈ V h. (5.6)

The discussion and result from Section 3 are still valid with j0(γju, γjv) replaced by
∫
Γ3

j0ν(u
h
ν; v

h
ν ) ds. From the error

stimate (3.20), we obtain

∥u − uh
∥V ≤ c

(
∥u − uI

∥V + ∥u − uπ∥V ,h + ∥f − f h∥(Vh)∗ + ∥uν − uI
ν∥

1/2
L2(Γ3)

)
. (5.7)

oreover, under the regularity assumptions

u ∈ H2(Ω;R2), uν ∈ H2(Γ3,i), 1 ≤ i ≤ i3, (5.8)

e have the optimal order error bound for k = 1

∥u − uh
∥V ≤ c h. (5.9)

emark 5.1. Note that we cannot derive optimal order error estimate from (5.3) and (5.7) for higher order virtual
lements. For example, if we set k = 2 in defining the virtual element space V h, we can only get a sub-optimal error
stimate

∥u − uh
∥V ≤ c h3/2.

ven under higher solution regularity assumptions

u ∈ H3(Ω;R2), uτ ∈ H3(Γ3,i;R2), 1 ≤ i ≤ i3,

r

u ∈ H3(Ω;R2), uν ∈ H3(Γ3,i), 1 ≤ i ≤ i3,

ue to the error bound terms on the contact boundary Γ3. However, if we refine the elements along Γ3 several times such
hat h3 = O(h

4
3 ) (h3 = max{he : e ∈ Eh

3 }), the optimal convergence order can be achieved with respect to the degrees of
reedom. See Fig. 2 for a local refined mesh along the contact boundary Γ3 = [0, L]× {0}. We know that such meshes can
e easily obtained with the virtual element framework since the hanging nodes are allowed, which is one advantage of
EM for solving contact problems.

.3. VEM for Problem (P3)

To approximate the admissible set U , let us use a related function subset of the virtual element space V h
= W h with

k = 1 defined in (4.5):

Uh
=
{
vh

∈ V h
: vhν ≤ g at node points on Γ3

}
. (5.10)

Assume g is a concave function. Then Uh
⊂ U . We define the following numerical method for Problem (P3).

Problem (Ph
3). Find a displacement field uh

∈ Uh such that

ah(uh, vh
− uh) +

∫
Γ3

j0ν(u
h
ν; v

h
ν − uh

ν) ds ≥ ⟨f h, vh
− uh

⟩ ∀ vh
∈ Uh. (5.11)

Note that the discussion and result from Section 3 are still valid with j0(γju, γjv) replaced by
∫
Γ3

j0ν(u
h
ν; v

h
ν ) ds, with the

uantity Re modified as

Re = a(u, eh) −

∫
j0ν(uν; −ehν) ds − ⟨f , eh⟩.
Γ3

12
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Fig. 2. A local refined mesh along Γ3 = [0, L] × {0}.

e apply Theorem 3.5 to derive an error estimate. The key step is to bound the residual term |Re|1/2. With the regularity
ssumption (5.8), we can deduce the following relations:

−∇ · σ = f1 a.e. in Ω, (5.12)

σν = f2 a.e. on Γ2, (5.13)

στ = 0 a.e. on Γ3, (5.14)∫
Γ3

σν(vν − uν) ds +

∫
Γ3

j0ν(uν; vν − uν) ds ≥ 0 ∀ v ∈ U . (5.15)

by the argument similar to that in [33, Section 8.1]. We write

Re =

∫
Ω

(−∇ · σ) · eh dx +

∫
Γ

(σν) · eh ds −

∫
Γ3

j0ν(uν; −ehν) ds − ⟨f , eh⟩

=

∫
Γ3

σν(uI
ν − uh

ν) ds −

∫
Γ3

j0ν(uν; u
h
ν − uI

ν) ds

=

∫
Γ3

σν(uI
ν − uν) ds +

∫
Γ3

σν(uν − uh
ν) ds −

∫
Γ3

j0ν(uν; u
h
ν − uν) ds

+

∫
Γ3

j0ν(uν; u
h
ν − uν) ds −

∫
Γ3

j0ν(uν; u
h
ν − uI

ν) ds.

ote that uh
∈ U , and by (5.15),∫

Γ3

σν(uν − uh
ν) ds −

∫
Γ3

j0ν(uν; u
h
ν − uν) ds ≤ 0.

ence,

Re ≤

∫
Γ3

σν(uI
ν − uν) ds +

∫
Γ3

j0ν(uν; u
h
ν − uν) ds −

∫
Γ3

j0ν(uν; u
h
ν − uI

ν) ds

=

∫
Γ3

σν(uI
ν − uν) ds +

∫
Γ3

j0ν(uν; u
I
ν − uν) ds

≤ c∥uν − uI
ν∥L2(Γ3)

y the subadditivity (2.2). Then

|Re|1/2 ≤ c1/2∥uν − uI
ν∥

1/2
L2(Γ3)

.

Recalling the solution regularity (5.8), an assumption made earlier in order to derive the pointwise equations (5.12)
nd (5.14), we conclude the optimal order error bound for k = 1,

∥u − uh
∥V ≤ c h.

emark 5.2.

1. In this paper, we only consider the 2-dimensional virtual element method for solving the hemivariational inequal-
ities and derive error estimates. For the 3-dimensional case, we may follow the ideas presented in [20,34,35] to
13
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Fig. 3. Physical configuration for Example 6.1.

construct the virtual element method for solving these problems. However, development and analysis of virtual
element methods to solve the 3-dimensional contact problems are more complicated and further studies are needed.

2. Compared with conforming VEM, the lowest-order nonconforming VEM [22] can avoid locking phenomena for
solving nearly incompressible elasticity problems. The analysis in this paper can be extended to the nonconforming
VEM, as did in [36], and it is worth studying in the future.

. Numerical examples

In this section, we report numerical results on the lowest order VEM for the elliptic HVI problems. To solve the
iscretized problems, the Lagrange multiplier [37] approach and the convexification iteration method [38–40] can be
sed.
In the following examples, the elasticity tensor C satisfies

σij = (Cε)ij =
Eκ

1 − κ2 (ε11 + ε22)δij +
E

1 + κ
εij, 1 ≤ i, j ≤ 2,

where E is the Young modulus, κ is the Poisson ratio of the material and δα,β denotes the Kronecker symbol.
First, let us consider an example of Problem (P1), the bilateral contact problem with friction. A similar example was

reported in [39] using the finite element method.

Example 6.1. LetΩ = (0, L1)×(0, L2) with its boundary Γ divided into three subsets: Γ1 = {0}×[0, L2], Γ3 = [0, L1]×{0},
Γ2 = Γ \(Γ1 ∪ Γ3). No body force acts on Ω . On Γ1, the elastic body is clamped, and therefore, the displacement field
vanishes there. Vertical traction acts on the boundary [0, L1] × {L2}, and it is traction free on {L1} × [0, L2]. The body is in
bilateral frictional contact with a rigid foundation on Γ3. The physical setting is depicted in Fig. 3.

The friction is modeled by a nonmonotone law in which the friction coefficient µ depends on the tangential
isplacement |uτ |. Let us consider the following friction bound function

µ(|uτ |) = (a − b) · e−α|uτ | + b,

ith a ≥ b > 0 and α > 0. In the example, we take a = 1.5, b = 0.5 and α = 100.
For the computation, we used the following data:

L1 = 2 m, L2 = 1 m, E = 1000 N/m2, κ = 0.3,
f0(x) = (0, 0) N/m2,

f2(x) =

{
(0, 0) N/m for x ∈ {2} × [0, 1],

(0,−200x1) N/m for x ∈ [0, 2] × {1}.

In the bilateral friction boundary condition (2.17), we choose

jτ (uτ ) = S
∫

|uτ |

0
µ(t) dt

with S = 1. Then, by the Clark subdifferential, we have

∂ jτ (uτ )

{
∈ µ(0)B1(0), if uτ = 0,
= µ(|uτ |)

uτ
|uτ |

, if uτ ̸= 0.

ere, B (0) is the unit circle centered at the origin.
1
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Table 1
Errors and numerical convergence orders of the lowest order VEM for Example 6.1.
h 2−2 2−3 2−4 2−5 2−6

Errors 6.6520e−2 3.4214e−2 1.7752e−2 9.2284e−3 4.6945e−3
Convergence orders – 0.95919 0.94661 0.94383 0.97511

Fig. 4. Numerical solution for square mesh with h = 2−5 .

Fig. 5. Numerical solution for polygonal mesh of 2048 polygons.

To show the numerical convergence orders, we calculate the numerical solutions on a family of square meshes T h

ith h = 2−n, n = 2, . . . , 6. Since the exact solution u is not available, we use the numerical solution corresponding to a
ine mesh as the ‘‘reference’’ solution uref for computing the errors of the numerical solution uh. In Table 1, we report the
1 error of the numerical solutions and the corresponding convergence orders. Because the virtual element solution uh is
ot computable, instead, we compute the relative error

Π1(uh − uref )

H1 /

Π1uref

H1 with Π1 is the projection defined

by (4.11). Here, we use the numerical solution on the mesh T h with h = 2−8 as the ‘‘reference’’ solution uref . We observe
that the convergence is almost linear, which matches the theoretical expectation.

In Fig. 4, the components of the numerical solution uh
= (u1, u2)T on square mesh with h = 2−5 are displayed.

In addition, the numerical solution on a polygonal mesh is shown in Fig. 5. Comparing these figures, we see that the
numerical displacements are almost the same on both square and polygonal meshes.

Next, we consider an example of Problem (P2), the normal compliance contact problem without friction. A similar
example was reported in [41] using the finite element method.

Example 6.2. Let Ω = (0, L) × (0, L), Γ2 = [0, L] × {L}, Γ3 = [0, L] × {0}, and Γ1 = Γ \(Γ2 ∪ Γ3). The physical setting is
shown in Fig. 6. For the numerical simulation, we use

L = 1 m, E = 70 GPa, κ = 0.3,( 2 )

f0(x) = (0, 0) GPa, f2(x) = 0, 32 (x1 − 0.5) − 10 GPa m on Γ2.

15
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H

Fig. 6. Physical configuration for Example 6.2.

Table 2
Errors and numerical convergence orders for Example 6.2 (α = 120).
h 2−2 2−3 2−4 2−5 2−6

Errors 3.3734e−1 1.9093e−1 1.0308e−1 5.5144e−2 2.8661e−2
Convergence orders – 0.82119 0.88926 0.90248 0.94413

Table 3
Errors and numerical convergence orders for Example 6.2 (α = 40).
h 2−2 2−3 2−4 2−5 2−6

Errors 3.3966e−1 1.9102e−1 1.0325e−1 5.5262e−2 2.8707e−2
Convergence orders – 0.83036 0.88759 0.90178 0.94488

We consider a particular version of Problem (P2), in which the contact condition (2.24) is given by −σν = ξν(uν) with

ξν(r) = α(βr+
+ p(r)) and p(r) =

⎧⎪⎨⎪⎩
0 if r < 0,
r if r ∈ [0, 0.01],
0.02 − r if r ∈ (0.01, 0.02],
r − 0.02 if r > 0.02.

ere and below r+ represents the positive part of r , i.e., r+
= max{r, 0}, α > 0 and β > 0 are the stiffness coefficients of

the foundation.

Let β = 0.5, so the σν is nonmonotone, and set α = 120 or α = 40. To show the convergence orders, we calculate the
numerical solutions on a family of square meshes T h with h = 2−n, n = 2, . . . , 6. In Tables 2 and 3, we list the relative
errors

Π1(uh
− uref )


H1 /

Π1uref

H1 and the convergence orders, which are around first order. Here, the ‘‘reference’’

solution uref is the numerical solution on the mesh T h with h = 2−8.
To observe the behaviors of the normal displacement uν and normal stress σν on contact boundary Γ3, we consider the

numerical solution on mesh with h = 2−6. For the case α = 120, the normal displacement and normal stress on Γ3 are
plotted in Fig. 7; while the case with α = 40 is shown in Fig. 8. In Fig. 7, we see that for 0 ≤ uν < 0.01 the normal force
σν increases with respect to uν , and for 0.01 ≤ uν < 0.02 the normal force decreases with respect to uν . In Fig. 8, we can
divide the nodes as three parts: 0 ≤ uν < 0.01, 0.01 ≤ uν < 0.02, and uν ≥ 0.02. We observe that for 0 ≤ uν < 0.01 the
normal force increases with respect to the penetration, for 0.01 ≤ uν < 0.02 it decreases, and the normal force increases
when uν ≥ 0.02.

Finally, we consider an example of Problem (P3), a frictionless contact with a foundation made of a rigid body covered
by a layer made of elastic material. A similar example was reported in [41] using the finite element method.

Example 6.3. The basic physical setting (see Fig. 9) of this example is similar as Example 6.2, but the contact condition
(2.29) is given by

uν ≤ g, σν + ξν(uν) ≤ 0, (uν − g)(σν + ξν(uν)) = 0

where

ξ (r) = α(βr+
+ p(r))
ν

16
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s
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w
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Fig. 7. Normal displacement and normal stress with α = 120 in Example 6.2.

Fig. 8. Normal displacement and normal stress with α = 40 in Example 6.2.

Fig. 9. Physical configuration for Example 6.3.

and p(r) is the same function defined in Example 6.2. In Fig. 9, we see that the foundation is made of a rigid material
covered by a layer composed of soft material, say asperities, with thickness g . From the contact boundary condition, we
ee that it follows a normal compliance condition as far as the penetration is less than the bound g , and it follows a
nilateral constraint when the rigid obstacle is reached. For the numerical simulation, we choose g = 0.02 m, α = 40
nd β = 0.5, then we can observe the situation that the rigid obstacle is touched, i.e., uν > 0.02.

To show the numerical convergence orders, we calculate the numerical solutions on a family of square meshes T h

ith h = 2−n, 2, . . . , 6. The relative errors
Π1(uh

− uref )

H1 /

Π1uref

H1 and convergence orders are listed in Table 4.

e clearly observe that the convergence order is nearly one, which again matches the theoretical prediction.
17
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Table 4
Errors and numerical convergence orders of lowest-order VEM for Example 6.3.
h 2−2 2−3 2−4 2−5 2−6

Errors 3.3572e−1 1.8988e−1 1.0312e−1 5.5324e−2 2.8768e−2
Convergence orders – 0.82220 0.88070 0.89841 0.94343

Fig. 10. Numerical normal displacement and normal stress in Example 6.3.

In Fig. 10, we show the behaviors of the normal displacement uν and normal stress σν on contact boundary Γ3 of
the numerical solution on the mesh with h = 2−6. For 0 ≤ uν < 0.01 the normal stress increases with respect to the
penetration, and for 0.01 ≤ uν < 0.02 it decreases. Furthermore, when the rigid obstacle is reached, i.e., uν = 0.02, the
normal stress is active.
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