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1. Introduction

In physical and engineering sciences, many problems are modeled by partial differential equations with proper
boundary and/or initial conditions. More complex physical processes have been studied as variational inequalities (VIs),
which form an important and very useful class of nonlinear problems arising in diverse application areas of physical,
engineering, financial, and management sciences; some early references on modeling, mathematical theory and numerical
analysis of variational inequalities include [1-6].

Variational inequalities are mathematical problems with convex structures. For problems involving nonsmooth and
non-convex relations, hemivariational inequalities arise. In 1983, Panagiotopoulos [7] coined the notion of hemivariational
inequalities, which is closely related to the concept of the generalized gradient of a locally Lipschitz function (allowed
to be non-convex) introduced by Clarke [8,9]. Since then, it has been shown that hemivariational inequalities are a
powerful tool for many applications in areas such as nonsmooth mechanics, physics, engineering, and economics. For this
reason, publications on hemivariational inequalities are growing rapidly, and the mathematical theory and applications of
hemivariational inequalities can be found in several books [10-14] and the references therein. In comparison, systematic
analysis of numerical methods for solving hemivariational inequalities is more recent. A comprehensive reference on the
finite element method for hemivariational inequalities is [15], where convergences of some numerical schemes were
shown, but no error estimate was derived. In [16], an optimal order error estimate was derived for the numerical solution
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of a hemivariational inequality with the linear finite element. Since then, there have been various developments on
convergences of numerical solutions under basic solution regularity and optimal order error estimates for linear finite
element solutions under suitable solution regularity assumptions for hemivariational inequalities; see a recent summary
account [17].

In recent years, as an extension of the classical finite element method, the virtual element method (VEM) has been
developed [18] and applied for solving a variety of partial differential equations; in particular, it was used to solve linear
elasticity problems, e.g., [19-22]. The virtual element space consists of polynomials up to a certain degree and some
additional non-polynomial functions, and VEM is flexible in handling very general (non-convex) polygonal elements
with an arbitrary number of edges. Furthermore, the h adaptive strategy is very suitable for VEM because it treats
the geometrical hanging nodes as the vertices of the polygonal elements. In the VEM framework, the stiffness matrix
is calculated without actually computing the non-polynomial functions with the help of proper projection operators.
In [23], the virtual element method was applied to solve a contact problem; however, there was no error estimate.
In [24,25], the VEMs were studied for solving an obstacle problem and a simplified friction problem, respectively, and
error estimates were established. This appears to be the first time in the literature where the optimal first-order error
estimate is established for the lowest-order virtual element method for solving variational inequalities. In [26], the virtual
element method was studied for solving elliptic variational inequalities of the second kind. In [27], a general framework
was established to study the conforming and nonconforming virtual element methods for solving a Kirchhoff plate contact
problem with friction, which is a fourth-order elliptic variational inequality of the second kind. In a unified framework,
a priori error estimates were derived for these virtual elements, and they achieve the optimal convergence order for
the lowest-order case. In [28], the lowest order VEM was developed and analyzed for solving an elliptic hemivariational
inequality without constraint. In this paper, we establish an abstract framework of VEM for solving general elliptic
hemivariational inequalities with or without constraint and provide a unified a priori error analysis for both cases (with
and without constraint). Then, we apply the VEM of arbitrary order to three HVIs arising from contact mechanics and
show that the lowest order VEM achieves the optimal convergence order. In general, optimal error estimates cannot be
derived for high-order methods due to the presence of error bound terms on the contact boundary. However, with proper
solution regularity assumptions, if we refine the elements along the contact boundary, the optimal convergence order will
be possible through adding certain degrees of freedom (cf. Remark 5.1), and such meshes can be easily created with the
virtual element framework. It is one advantage of using VEM to solve contact problems.

The rest of the paper is organized as follows: In Section 2, we introduce some notation and a general family of elliptic
hemivariational inequalities with and without constraints. In Section 3, we introduce the framework of the virtual element
method for solving the hemivariational inequalities and derive Céa-type inequalities for error estimation. Then in the
remaining sections, we discuss the application of the virtual element method to solve the three contact problems in
two-dimensions. In Section 4, we describe the construction of the virtual element. In Section 5, we apply the earlier error
analysis to three contact problems, in which the material’s behavior is modeled with a linearly elastic constitutive law
and contact conditions in subdifferential forms. Optimal first-order error estimates are shown for the lowest-order virtual
element method under suitable solution regularity assumptions. Finally, in Section 6, we present some numerical results
which support the theoretical error estimates.

2. Elliptic hemivariational inequality
2.1. Preliminaries

Given a bounded domain D C R let V be a function space defined on D with the norm | - ||y p, which is usually
written as || - ||v. Denote its topological dual by V*, and the collection of all the subsets of V* by 2V". The duality pairing
between V and V* is denoted by (-, -)y+«y, or simply (-, -) where no confusion may arise. Given two normed spaces, V
and W, let £(V, W) be the space of all continuous linear operators from V to W.

We recall the definitions of the convex and the Clarke subdifferentials.

Definition 2.1. Let p: V — RU{400} be a proper, convex and lower semicontinuous function. The mapping d.¢: V — 2V
defined by

Ocp(u) ={u* e V*: (u*,v—u) <p(v)—epu) YveV}
is called the (convex) subdifferential of ¢. If 9.¢(u) is non-empty, any element u* € d.¢(u) is called a subgradient of ¢ at u.
Definition 2.2. Let {/:V — R be a locally Lipschitz function. The generalized (Clarke) directional derivative of ¢ atu € V
in the direction v € V is defined by

WO v) = limsup YTV = v(w)
w—u, A0 A

The generalized gradient (subdifferential) of i at u is defined by
()= {¢ e V*: y°us;v) = (¢,v) YveV}.
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Details on the properties of the subdifferential mappings, both in the convex and Clarke sense, can be found in the
books [9,11,13,29]. In particular, knowing the generalized subdifferential, we can compute the generalized directional
derivative through the formula [9]

¥O(u; v) = max {(¢, v) : ¢ € 0y (u)}. (2.1)
The generalized directional derivative is subadditive with respect to the direction variable:
VOu; v1 + v2) < 0w v1) + 0w v2) Yu,vp, vy €V (2.2)

2.2. A general elliptic hemivariational inequality

Let V be a reflexive Banach space, K a closed and convex subset of V with Oy € K, and V; a Banach space. Given a
symmetric bilinear form a(-,-) : V x V — R, a functional j: V; — R, a linear operator y; : V — V; and f € V*, a general
elliptic hemivariational inequality is as follows:

Problem 2.3. Find an element u € K such that
a(u, v — u) +°(yu; yjv — yju) > (f,v—u) Yvek. (2.3)

As a particular case, when K =V, (2.3) is an elliptic hemivariational inequality without constraint.
To study Problem 2.3, we make the following assumptions:

Assumption 2.4. (A;) The linear operator y; € £(V, V;), and we denote by ¢; > 0 an upper bound of | y;||:
Iyvlly;, <gllvlly YveV. (2.4)
(A) There are constants m > 0 and M > 0 such that
a(v,v) > mlv||i VYveV,
a(u,v) = Mllullvlvlly Yu,veV.
(A3) j: V; = R is locally Lipschitz, and there are constants ¢y, ¢1, & > 0 such that
10j(2)llvs = co +calizlly ¥z €V, (2.7)
Pz —2)+ @iz —2) <gla -2l Yz.z eV (2.8)
(A4) The smallness condition holds

otjcj2 <m. (2.9)

Remark 2.5. If we define an operator A: V — V* related to the bilinear form a(u, v) by
a(u, v) = (Au, v),
then (2.5)-(2.6) implies that A is Lipschitz continuous, pseudomonotone and strongly monotone, i.e.,
lAu — Av|lyx <M|lu—v|y Yu,veV,
(Avy — Avy, v1 — v2) > mllvy —valy, Vvi, v €V,
Remark 2.6. For contact problems leading to the hemivariational inequalities, the functional j(-) is an integral over the
contact boundary I3, and V; can be chosen to be [2(I3) or [*(I3)?. The smallness assumption (2.9) poses a limit on the

degree of the non-convexity of j relative to the strong monotonicity of the bilinear form. When j: V; — R is convex, (2.8)
holds with «; = 0 due to the monotonicity of the convex subdifferential.

In [30], the following existence and uniqueness result was proved.

Theorem 2.7. Under Assumption 2.4, Problem 2.3 has a unique solution u € K.

Moreover, the assumption Oy € K can be replaced by non-emptiness of K [30].
2.3. Contact problems

Consider the contact between a linearly elastic body and a foundation. Let the initial configuration of the linearly elastic
body be an open, bounded, Lipschitz domain £2 C R? (d = 2, 3). The boundary I" = 342 is partitioned into three disjoint
and measurable parts Iy, I3 and I3 such that meas (/) > 0. Denote the displacement field by u: 2 — R? and the

3
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stress field by o: 22 — S the space of second order symmetric tensors on R with the inner product o : T = oj 7. The
linearized strain tensor associated with u is defined by

e(u) = % (Vu+(Vu)).

The unit outward normal vector v on I" exists a.e. since £2 is a Lipschitz domain. For a vector-valued function v, we use
v, :=v-vand v, .= v — v,v for the normal and tangential components of v on the boundary. Similarly, for the stress
field o, its normal and tangential components on I are defined as o, := (ov) - v and ¢, := ov — 0, v, respectively.

Given f; € [*(£2; R%) and f, € [*(I; RY), the contact problem is to find a displacement field u: 2 — R? and a stress
field : 2 — S such that

o(u) = Ce(u) in £2, (2.10)
—V.o(u)=f; in$2, (2.11)
u=20 on I, (2.12)
ov=F on I, (2.13)

together with a set of contact boundary conditions on 73. Different contact conditions will lead to different contact
problems. Here, (2.10) is the linearly elastic constitutive law. As usual, the elasticity operator C = (Cjju): st — s is
assumed to be bounded, symmetric, and pointwise stable:

(@) Le = llcll < o0 .
(b) Cijr = Cjit = Crijj, 1 =1,j,k, 1 <d; (2.14)
(€) Cijugijen > mellel|®.

The relations (2.11)-(2.13) mean that the elastic body is fixed on I, and is in equilibrium under the action of volume
forces of a total density f; in §2 and surface tractions of a total density f, on I3. Furthermore, the elastic body is in potential
contact on I's with a foundation. Here and below we do not always display explicitly the dependence of a quantity on
the spatial variable x.

To study the contact problems, we introduce the function space

W={veH'(2:R):v=0ae onI}. (2.15)
Since meas (/) > 0, it is known that W is a Hilbert space with the inner product

(u, vy = / e(u):e(v)dx YuveW

Q2

and the associated norm || - ||y. For v € H'(£2; R%), the same symbol v is used for its trace on I", and we have a constant
¢ > 0 such that

IVll2ryrey S CllViw YV EW,
by the trace theorem. In addition, we define f € W* by

F.Viwssxw = (fi, V(ourdy + (B, V)i2(yrey YV €W, (2.16)

As examples of Problem 2.3, with the relations (2.10)-(2.13), we consider three choices of the contact boundary
conditions on I3, leading to three hemivariational inequalities below.

2.3.1. A bilateral contact problem with friction
Given a potential function j,: I's x R? — R, the first set of contact boundary conditions we consider is

u, =0, —o;€dj.(u;) onI3. (2.17)

The first relation in (2.17) is the bilateral contact condition, and the second relation indicates that the contact is frictional.
In Problem (2.3), let

K=V ={veW:v,=0a.e. on I3}, (2.18)
Vi =LI'3;RY, yv=vforveV, (2.19)

and define a bilinear form
a(u,v) = / o(u):e(v)dx Yu,veV (2.20)
2
as well as a functional

j(z)zf Ji2()ds ¥z e (I3 RY), (2.21)
I3
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Assume the potential function j,: I's x R — R has the following properties:

(a) j:(-, z) is measurable on I3 for all z € R? and j, (-, 0) € L'(I3);
(b) j(x, -) is locally Lipschitz on RY for a.e. x € I's;
(€) 10j:(%,2)| < cr 0+ Crallz|l for ae. x € I3,
for all z € RY with ¢, ¢, ¢;.1 > 0;
(d) 2%, 21; 220 — 21) + 2%, 22, 21 — 22) < 0, |21 — 221
for a.e. x € I3, all 2,2, € RY with @, > 0.

(2.22)

Then it can be shown that the functional j defined by (2.21) satisfies the assumption (As) with ¢ = «;j,.
The weak formulation of the contact problem is as follows:

Problem (P;). Find a displacement field u € V such that

a(u,v)—i—/ P v)ds > (F,v)yeny Vv ev. (2.23)
I3

Assume the smallness condition (2.9) that takes the form «;, < Ai/ 5mc for the contact problem under consideration,
where A1y > 0 is the smallest eigenvalue of the eigenvalue problem

uew, / e(u) : e(v)dx = A/ u,-v.ds vveW.
2 I3
Then applying Theorem 2.7, we know that Problem (P;) has a unique solution [30].

2.3.2. A frictionless normal compliance contact problem
Given a potential function j,: I's x R — R, the second set of contact boundary conditions is

— o, € dj,(u,), o,=0 on 3. (2.24)

The first relation in (2.24) is a normal compliance contact condition, whereas the frictionless contact feature is reflected
by the condition o, = 0. Then the weak formulation of the second contact problem is the following:

Problem (P,). Find a displacement field u € V such that

a(u,v)+/ P v)ds > F,v)yy YVeV. (2.25)
I3
This problem is a special case of Problem 2.3 with the following setting:
K=V=W, V,=I*I3), yv=uv,forveV, (2.26)
i@ = [ dtznds. zerr) @27)
I3

Assume the potential function j,: I3 x R — R has the following properties:

(@) j,(-, z) is measurable on I for all z € R and j,(-, 0) € L'(I3);
(b) ju(x, -) is locally Lipschitz on R for a.e. x € I'3;
(©) 19j,(%, 2)| < cpo+Cy1lz| for ae x € I3,

for all z € R with ¢, 0, ¢,1 > 0; (2.28)

(d) jo(x, 215 20 — 21) + jO(&, 225 21 — 22) < 0}, |21 — 25)*
forae. x € I3, all z1,2; € R with o, > 0.

Then j(z) defined by (2.27) satisfies (A3). The smallness assumption (2.9) now takes the form ¢j, < k;(‘amc, where A,y > 0
is the smallest eigenvalue of the eigenvalue problem '

ueWw, / e(u) :e(v)dx = A/ u,v,ds VveW.
2 I3
Then it can be shown that Problem (P,) has a unique solution u € V by Theorem 2.7 [30].

2.3.3. A frictionless unilateral contact problem
The third set of contact boundary conditions is

u, <g, o,+& <0, (u, —g)o, +&,)=0, & €9j,(u,) onlrz, (2.29)
o, =0 on 3, (2.30)
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which models frictionless contact of the elastic body with a foundation made of a rigid body covered by a layer made of
elastic material. Penetration is restricted by the relation u,, < g, where g represents the thickness of the elastic layer. When
there is penetration and the normal displacement does not reach the bound g, the contact is described by a multivalued
normal compliance condition: —o, = &, € 3j,(u,).

Corresponding to the constraint u, < g on I3, we introduce a subset of the space W of (2.15):

U={veW:v, <gonIl3}. (2.31)

The weak formulation of the contact problem is the following.
Problem (P;3). Find a displacement field u € U such that
a(u, v — u)—i—/ P v, —u)ds > (f,v—u)yey Vv eU. (2.32)
I3

To apply Theorem 2.7, we let
V=W, K=U, Vi=IXI3), yv=v,forveV,
Assuming the smallness condition o, < A;,/émc, it can be shown that Problem (P3) has a unique solution u € U under
proper assumptions [30].

3. Virtual element method

In this section, we follow the ideas in [18,19] to set up the abstract framework of the virtual element method for
solving Problem 2.3. We keep Assumption 2.4 so that Problem 2.3 has a unique solution u € K.

3.1. Abstract framework

Given a bounded polygonal domain £2 and let 7" be a decomposition of 2 into elements denoted by T. Let hy =
diam(T) and h = max{hr : T € T"}. We assume that the bilinear form a(u, v) is defined on the domain £2, and can be
split as

a(u,v) =Y ar(u, v),
TeTh
where ar(u, v) is the restriction of a(u, v) on T, and

ar(u, v) < Mllully rllvllv,y Yu,v e Vr. (3.1)

Here, V; is the restriction of V on T. In addition, we assume that the virtual element space V" C V and the bilinear form
a" satisfy the following assumptions:

Assumption 3.1. For each h, there exists an element f" e (V")* such that

h .k

h ("o
If llyny = sup ;1

shevh Vv

is uniformly bounded, and a symmetric bilinear form a”(-, -) : V* x V" — R such that

d'(' ") =) ap(u®, "), (32)

TeTh

where afi(-, -) is a bilinear form on V/ x VI with V/ is the restriction of V" on T. Furthermore, for each T, we have
P«(T) C V!, and the bilinear form a? has the following properties:
(i) k-consistency:

al(v", p) = ar(v", p) Vo' € V!, p e B(T); (3.3)
(ii) stability: there exist two positive constants «, and «*, independent of h and T, s.t.

aar(o, o) < dl(v", o) < atar(™, V") Vol e VI (34)

The symmetry of a”(-, -), stability (3.4) and the continuity (3.1) of a(-, -) easily imply the continuity

ap(u®, v") < My il v VU " e vy (35)
In addition, from (3.2), (3.4) and (3.5), it follows that
a.a(v", v") < d"", oM < afa(ut, o) Vol e VI, (3.6)
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"', v") < &M lvallo"llv e Vu' ot e VI (3.7)

2 1/2
Here, || - lvh = (XCrern Il - ”V,T) :
In the rest of the paper, we will use ¢ > 0 to represent a generic constant that is independent of the mesh size h, and

it may take different values at different appearances.
3.2, Virtual element scheme for HVI with constraint

We use K" := V" N K to approximate the convex set K. The virtual element method for solving Problem 2.3 is the
following.

Problem 3.2. Find u" € K" such that

a'(ut, o' — uh) +j0(yjuh; ijh - )/juh) > (fh, o —uhy vl e K. (3.8)
Remark 3.3. With Assumption 2.4 and a further assumption a,m > ozjcf replacing (2.9), we can prove that Problem 3.2
has a unique solution u" € K", Indeed, defining A": V! — (V")* by the relation

(Ahu, v) = ah(u, v) Yu,ve vh

and following arguments in the proof of Theorem 3.1 in [30], we can show the existence and uniqueness of Problem 3.2.

Proposition 3.4. Assume a,m > ozjcjz. Then the solution u" € K" of Problem 3.2 is uniformly bounded independent of h.

Proof. We let v" = 0 in (3.8) to get
a'(u, u") < Py’ —yu") + (7, u). (3.9)
From (2.8), (2.7) and (2.4),
Py —ypu") < egllyu® G, —1°(0: yyu®)
< allyu Iy, + coll vy,
< ot lu" |15 + cllu"ly. (3.10)
Also, (f", uy < ||f"[|yny lu"[lv and recall that ||f"[|yn)- is uniformly bounded. Apply (2.5), (3.6) and (3.10) in (3.9),
(ctam — o] [IU"[1§ < cllu™]y.
We then conclude that u" € K" is uniformly bounded independent of h. ®

In the following theorem, we present a general Céa’s inequality that will be the starting point for deriving convergence
order error estimates of the virtual element scheme (3.8) for solving the hemivariational inequality (2.3).

Theorem 3.5. Assume o,m > ozjcjz. Let u and u" be the solutions of Problems 2.3 and 3.2, respectively. For any approximation
u' € K" of u and for any piecewise polynomial approximation u™ of u, i.e. u™|r€ PX(T) for all T € T", we have

= ully < ¢ (lu = ull + 1w =0 e+ 1 = llgnys + v = v 13/ + Rel 2 (3.11)
where the constant ¢ depends only on «, M, a, and «o*. Here,
(f, oM — (", o
IIf —fh”(vh)* =Ssup e,
wheyh [lv"lv

and
Re := a(u, e") — °(yju; —ye") — (f, ).
Proof. First, we split the error e = u — u" into two parts:
e=c¢e +e
where
e=u—u, e":=u —ut
From (2.5) and (3.6),
a.mlet|Z < a,a(e, e < a'(e", e") = a"(u', e") — a"(u", eM).

7
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By (3.8),
a.mlle"|[f < a"(u', e") — (", e") + P(yu"; ye").
Applying (3.3), we rewrite the right hand side of the above inequality:

amle"f < (dh —u, ") + diw™, €M) — (", e") + (s yieh)
T

- Z (P —u™ ") +ar(u™, ") — (", e + Py yie™)
T

=Y (d —um € +ar(u” —u, €M) +a(u, e") — (", e") + 2 (yu"; e,

-
ie,

a.mlle"|Z <Ry + R, +Rs + Re, (3.12)
where

Ri = Z (b —um, e+ ar(u™ —u,e"),

T
R2 = <f7 eh> - (fhﬂ eh>a
Rs = j°(p5u; yie") + 2yus —ye"),
Re = a(u, e") — °(yju; —y;e") — (f, ).
Next, we bound the first three terms on the right side of (3.12). By (2.6) and (3.5), we get
Ri < @*Mu' — ™ [lylle"llv + Mllu™ — ullvnlle"llv. (3.13)
In addition,
Ry < IIf = f"llwny-lle"llv. (3.14)
Applying the properties (2.2), (2.7) and (2.8), we have
Rs = °(pu"s yyu' — ") + 0 (yus " — yju)
< POsu"s ' = i) +1°05u"s yiu — yu)
+ Pz " — yu) + (s yiu — yu')
< (o + crllyu" vl — it lly, + el — yiu |5,
+ (co + crllyulv)llyu — yiud lly;.
By Proposition 3.4, ||u"||y is uniformly bounded independent of h. Hence, by (2.4), we have
Rs < ojct |u—u"|I§ + cllyu — yud Iy, (3.15)

Combining (3.12)-(3.15), we have

1
€13 < — (@Ml = ullv + MW" = ullva + 1 = lony ) 1€l
*

2
C(jC
+ ﬁ||u—uh||5+c(||yju—yju'||vj + [Rel). (3.16)

*

Note that if x> <ax+bandx > 0,a > 0, b > 0, we have x < a + b'/2. Thus,

1
€'y < — ("Ml = u v + MIW™ = ully+ I =l ony)
*
2
O‘J‘Cjz hj2 I !
+ | o= utly el = ylly, + Rel) | (3.17)
*

Finally, the proof is completed by the triangle inequality
lu = u"lly < flu—u'llv + lu" = u"lly

with the assumption that a,m > ajcjz. [ |
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3.3. Virtual element scheme for HVI without constraint

For the special case that K = V, we have K" = V", then Problem 2.3 and its virtual element approximation (3.8)
become
a(u, v) +j0()/ju; yiv) > (f,v) YveV, (3.18)
and
a"(uh, "y 4+ Pputs oy > (0" vl e VI (3.19)
By an argument similar to that of the proof in Theorem 3.5, we can derive same result that
amlle"||}; < Ry + Ry + Rs + Re.

To bound the terms Ri, R, and Rz, we use the same arguments in Theorem 3.5. Let us consider the residual term Re.
Because —e" € V, by (3.18), we have

a(u, —e") + (yju; —ye") = (f, —e") Vv eV.
Hence,
Re = a(u, e") — *(yu; —yie") — (f, ")
< a(u, ")+ a(u, —e") — (f, —") — (f. ")
=0.
Then the general estimation (3.11) reduces to
= uly < ¢ (N =l + 1w =0 e+ 1 = P llgny + = v 137 (3:20)
The above inequality and Theorem 3.5 are starting points for the error estimation for specific elliptic hemivariational
inequalities arising in contact problems discussed in Section 2.3.

4. Construction of the VEM

To make this paper self-contained, following [19,23], we present ideas for construction of the virtual element space
V" C V, the corresponding bilinear form a" and the right-hand side f" satisfying Assumption 3.1.

For simplicity, we only consider two-dimensional case in the rest of the paper. Assume £2 is a polygonal domain and
express the three parts of the boundary, I, 1 < k < 3, as unions of closed line segments with disjoint interiors:

Ti=U" N. 1<k<3.

Let {7"} be a family of partitions of 2 into elements T that are compatible with the partition of the boundary 8£2 into
I, 1 <i<i,1<k< 3 in the sense that if one side e C 9T satisfies meas(e N I';;) > O, then e C Ik;. Let &M stand
for the set of all the edges of 7, and let £ be the set of all the interior edges. Denote by &f, £ and &} the set of all the
edges lie on I, I'; and I3, respectively. Let £} = £ U £l U £l be the set of all the edges that do not lie on I'1. Denote P!
as the set of all the vertices that do not lie on I7. Set hy = diam(T) and h = max{hr : T € T"}.

As in [18,19,31], we make the following assumption.

Assumption 4.1. There exists a constant number § > 0 such that for each h and every T € 77,

e T is star-shaped with respect to a ball of radius 8hr;
e The distance between any two vertices of T is greater than or equal to Shr.

4.1. Construction of the virtual element space

Let T be a polygon with n edges. For k > 1, we define the local finite dimensional space W# on the element T,

W= (v e H\(T; R?): V.Ce(v) € Py_»(T; R?), v|yre CO(AT), v|.€ Py(e; R*) Ve C 9T} 4.1
with the convention that P_;(T) = {0}. For a function v € W, we choose the following degrees of freedom:
e The values of v(a) VvertexaeT, (4.2)
o The moments /q .vds VqePi_y(e;R?) Vedgee C 9T, k> 2, (4.3)
e
o The moments /q -vdx VYqe P (T; R?), k> 2. (4.4)
T

9
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Fig. 1. Local d.o.f. of the virtual element for k = 1 (left) and k = 2 (right).

In Fig. 1, we show the degrees of freedom for the first two low-order elements with k = 1 and k = 2. It is easy to
check that the degree of freedom corresponding to T is

Njos = 2nk + k(k — 1).
For every decomposition 7" and k > 1, define the global virtual element space W" as
Wh=(vew:vjieW! vTeTh, (4.5)

and the global degrees of freedom for v € W" can then be taken as

e The values of v(a) Vvertex a € P!, (4.6)

o The moments /q -vds VqePiy(e;R?) Vedgeee &l k> 2, (4.7)
e

e The moments /q vdx VqePo(T;R?) VelementT € 7" k> 2. (4.8)
T

The dimension of W" coincides with the total number of degrees of freedom (4.6)-(4.8), which is given by

Ngof = 2Ny + 2(k — 1)Ng + k(k — 1)Nr,
where Ny is the number of vertices in Pg, Ng is the number of edges in £", and Ny is the number of elements. It was
proved in [19] that the degrees of freedom (4.6)-(4.8) are unisolvent for W".

Denote by x; the ith degree of freedom for W", i = 1,2, ..., Ngor. From the above construction, it follows that for
every sufficiently smooth function w, there exists a unique element w' € W" such that
xiw—w) =0, i=1,2,..., Nr

Then by the scaling argument and Bramble-Hilbert Lemma, the following approximation property holds [19]
lw—we <Ch ' wl, t=012<s<k+1. (4.9)

Furthermore, for every T € 7" and every w € H%(T; R?), there exists a function w™ e P(T; R?) such that [19,32]
lw—w"r <Chi‘lwlgy, t=0,1, 1<s<k+1 (4.10)

4.2. Construction of a"

Using the ideas in [19,23], we now present a symmetric and computable discrete bilinear form a” satisfying Assump-
tion 3.1.
In order to construct a"(-, -), we first define a projection operator HkT : W{’ — P(T; R?) by

ar(ITv", q) = ar(v", q) ¥ q € By(T; R?). (4.11)

This equation determines H,fvh only up to a rigid motion. In order to ensure the uniqueness, we adopt the idea in [23]
to use the following conditions

nT TlT
1 - T,,h 1 E h
— D V) = — 3 v,
i=1

L Vi

T T
1 1
— ) i x IV = = & x vi(x)
nT 1 k 1) — nT 1 1)
Vo= V=1

where x; are the coordinates of the vertices of the element T and n!, denotes the number of the vertices. Here, “x” denotes
the cross product of two vectors.

10
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Then we define the local bilinear form
diu" V") = ar (", V) + Sp(( = ), (1 — I w") vu' v e Wi, (4.12)
where

dof
NT

St vy =) xilu") x(v")
i=1

is the stabilization term. The construction of a"(u®, v") = >, a?(u", v") ensures the properties (3.3) and (3.4). Note
that the bilinear form a" can be constructed in other ways to guarantee the properties (3.3) and (3.4), for example, the
construction of the bilinear form proposed in [21], which is adopted in [28].

4.3. Construction of the right-hand side f"

Note that the first term (fi, v)2(5.z2) in (2.16) is not computable for v € WH". Therefore, for k > 2, let
=Pl fi VT eTh,
i.e. on each element T, f{} is the L2-projection of f; onto the space of polynomials of order k — 2. Then we define
IRAEDS /f]hr vhdx vvt e wh
Terh’T
For k = 1, we choose

fi=pPlfy VT et
and define
v = Z /f]hT vhdx vy ewh
Terh T

Here, v denotes the average value of the function v" over all vertices of T.

Finally, to approximate the right-hand side term (f, v)w+xw, we set
(" = @V + (B V)2 rym2) YV EWR
Then the following approximation property holds [19]

U — £ llwnye < CR Flicy, (4.13)
which ensures the optimal error bound.

5. Error analysis for contact problems

We illustrate applications of the framework developed in Section 3 on error estimation for the virtual element solutions
of the three static contact problems.

5.1. VEM for Problem (Py)
The function space corresponding to the virtual element method:
Vi={v"eWw": vl =0o0n 3}, (5.1)

The virtual element scheme for Problem (P;) is the following:
Problem (P!). Find a displacement field u" € V" such that
a”(u”,v”)+f Rl viyds = (F"v") v e v (5.2)
I3

Note that the discussion and result from Section 3 are still valid with jo(yju, yjv) replaced by f r j%(u;; v;)ds. Under

Assumption 2.4, Problem (P!) has a unique solution u" € V". The conditions (2.5)-(2.6) follow from (2.14)(a)-(b). By
applying the estimation (3.20), we have

1/2
= wlly < ¢ (= u'lly + = 0+ U = gy + e = w1007 o)) (53)

11
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Then we conclude the optimal order error bound for k = 1,
lu—utlly <ch (5.4)
under the regularity assumptions

ue HY(2;R?), u, e H (I3 R?), 1<i<is. (5.5)
5.2. VEM for Problem (P;)
We use the virtual element space V" = W" of (4.5) and introduce the following approximation of Problem (P,).
Problem (P}). Find a displacement field u" € V" such that
a"(u",v")+/ Pt ohyds > (ft, vy vl e v (5.6)
I3

The discussion and result from Section 3 are still valid with jo(yju, y;jv) replaced by fr; jg(uﬁ; v’J)ds. From the error
estimate (3.20), we obtain

= wlly < ¢ (Jlu—w'lly + = 0+ 0 = gy + s = w17 (5.7)
Moreover, under the regularity assumptions

ueHX(2;R?Y), u, e H*(I3;), 1<i<is, (5.8)
we have the optimal order error bound for k = 1

lu —u"lly < ch. (5.9)
Remark 5.1. Note that we cannot derive optimal order error estimate from (5.3) and (5.7) for higher order virtual

elements. For example, if we set k = 2 in defining the virtual element space V", we can only get a sub-optimal error
estimate

lu—utlly < ch®?.
even under higher solution regularity assumptions
ueH(2;R?), u, e H (3R, 1<i<is,
or
ueH}2;R?Y), u, e H I3), 1<i<is,

due to the error bound terms on the contact boundary I'3. However, if we refine the elements along I'; several times such

that h; = O(h%) (hs = max{h, : e € Sg’}), the optimal convergence order can be achieved with respect to the degrees of
freedom. See Fig. 2 for a local refined mesh along the contact boundary I'; = [0, L] x {0}. We know that such meshes can
be easily obtained with the virtual element framework since the hanging nodes are allowed, which is one advantage of
VEM for solving contact problems.

5.3. VEM for Problem (P3)

To approximate the admissible set U, let us use a related function subset of the virtual element space V" = W" with
k = 1 defined in (4.5):

U" = {v" e V" : v]! < g at node points on I} . (5.10)
Assume g is a concave function. Then U" C U. We define the following numerical method for Problem (Ps).
Problem (P%). Find a displacement field u" € U" such that

d'(u”, v — u”)+/ P ot —ulyds > (F" vt —uly vt e UM (5.11)
I3

Note that the discussion and result from Section 3 are still valid with jo(yju, yjv) replaced by fr3 jg(u"f; v"}) ds, with the
quantity Re modified as

Re = a(u, e") —/ Puy; —eMyds — (f, €.
I3

12
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Fig. 2. A local refined mesh along I'; = [0, L] x {0}.

1/2

We apply Theorem 3.5 to derive an error estimate. The key step is to bound the residual term |Re|"/“. With the regularity

assumption (5.8), we can deduce the following relations:

—V-.o=f; ae.in g2, (5.12)

ov=/f, ae.onl}, (5.13)

o, =0 a.e.on 3, (5.14)

/ o,,(vv—uv)ds+/ P v, —u)ds>0 VYvel. (5.15)
I3 I3

by the argument similar to that in [33, Section 8.1]. We write

Re=/(—V~a)‘ehdx+/(av)~ehds—/ Puy; —eMyds — (F, e
2 r I3

:/ o,,(u’v—uﬁ)ds—f Pl u —ul)ds
I3 I3

= / o, (ul — uu)ds+/ o, (u, —uMyds —/ P u —u,)ds

r3 r3 r3
[ Pl —uyds— [ Rl - u)as
I3 I3
Note that u" € U, and by (5.15),
/ oy (u, —umyds — / P u —u,)ds <o.
I3 I3
Hence,

Ref/ av(u’v—uu)ds+f jg(uv;u’v‘—uu)ds—/ Py u —ul)ds
I3 I3

I3
= / o,(u —u,)ds + / P v —u,)ds
I3 I3
< clluy — 2y
by the subadditivity (2.2). Then

172
12(13)°

Recalling the solution regularity (5.8), an assumption made earlier in order to derive the pointwise equations (5.12)
and (5.14), we conclude the optimal order error bound for k = 1,

1/2 1/2 I
IRe|"? < ¢"?||u, — ul||

lu—u"lly <ch.

Remark 5.2.

1. In this paper, we only consider the 2-dimensional virtual element method for solving the hemivariational inequal-
ities and derive error estimates. For the 3-dimensional case, we may follow the ideas presented in [20,34,35] to

13
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vy b ,

l> - Q) Deformable body

> K
, T2

X1 |> FS
>

Rigid Obstacle

Fig. 3. Physical configuration for Example 6.1.

construct the virtual element method for solving these problems. However, development and analysis of virtual
element methods to solve the 3-dimensional contact problems are more complicated and further studies are needed.

2. Compared with conforming VEM, the lowest-order nonconforming VEM [22] can avoid locking phenomena for
solving nearly incompressible elasticity problems. The analysis in this paper can be extended to the nonconforming
VEM, as did in [36], and it is worth studying in the future.

6. Numerical examples

In this section, we report numerical results on the lowest order VEM for the elliptic HVI problems. To solve the
discretized problems, the Lagrange multiplier [37] approach and the convexification iteration method [38-40] can be
used.

In the following examples, the elasticity tensor C satisfies

Ex E ..
ojj = (Ce)j = m(é“n + £22)85 + m&'j, 1<i,j<2,

where E is the Young modulus, « is the Poisson ratio of the material and §, g denotes the Kronecker symbol.

First, let us consider an example of Problem (P;), the bilateral contact problem with friction. A similar example was
reported in [39] using the finite element method.

Example 6.1. Let 2 = (0, L;)x(0, L,) with its boundary I" divided into three subsets: Iy = {0} x [0, L], I'; = [0, L] x {0},
I = I'\(I1 U Is). No body force acts on £2. On [T, the elastic body is clamped, and therefore, the displacement field
vanishes there. Vertical traction acts on the boundary [0, L] x {L,}, and it is traction free on {L{} x [0, L,]. The body is in
bilateral frictional contact with a rigid foundation on I'3. The physical setting is depicted in Fig. 3.

The friction is modeled by a nonmonotone law in which the friction coefficient © depends on the tangential
displacement |u.|. Let us consider the following friction bound function

I’L(Iul") = (a — b) . efa|"r| + b,

witha > b > 0 and @ > 0. In the example, we take a = 1.5, b = 0.5 and o = 100.
For the computation, we used the following data:

Ly=2m, L,=1m, E=1000N/m? « =0.3,
Jo(x) =(0,0) N/m?,

3 (0,0)N/m forx € {2} x [0, 1],
£®) =10, —200x,)N/m  forx € [0, 2] x {1},

In the bilateral friction boundary condition (2.17), we choose

|uz|
jolu) = s/ u(t)dt
0

with S = 1. Then, by the Clark subdifferential, we have

€ u(0)B:(0),  ifu, =0,
05 (M) Y = (=, ifu, #£0.
.|

Here, B1(0) is the unit circle centered at the origin.

14
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Table 1

Errors and numerical convergence orders of the lowest order VEM for Example 6.1.
h 272 23 274 25 276
Errors 6.6520e—2 3.4214e-2 1.7752e—-2 9.2284e—3 4.6945e—3
Convergence orders - 0.95919 0.94661 0.94383 0.97511

Approximate Solution Approximate Solution

0.8

06

04

02

0 05 1 15 2 0 0.5 1 15 2

(a) displacement u; (b) displacement us

Fig. 4. Numerical solution for square mesh with h =275,

Approximate Solution Approximate Solution

0.8
06
04

02

N !."
(T e

e

by

(a) displacement u; (b) displacement s

Fig. 5. Numerical solution for polygonal mesh of 2048 polygons.

To show the numerical convergence orders, we calculate the numerical solutions on a family of square meshes 7"
with h=2""n=2,...,6. Since the exact solution u is not available, we use the numerical solution corresponding to a

fine mesh as the “reference” solution u,; for computing the errors of the numerical solution uy,. In Table 1, we report the
H! error of the numerical solutions and the corresponding convergence orders. Because the virtual element solution u, is

not computable, instead, we compute the relative error | I7y(uy — ttrer)| 1 /| Tittres |, with ITy is the projection defined
by (4.11). Here, we use the numerical solution on the mesh 7" with h = 28 as the “reference” solution u,r. We observe
that the convergence is almost linear, which matches the theoretical expectation.

In Fig. 4, the components of the numerical solution u" = (uj, u;)" on square mesh with h = 27> are displayed.
In addition, the numerical solution on a polygonal mesh is shown in Fig. 5. Comparing these figures, we see that the
numerical displacements are almost the same on both square and polygonal meshes.

Next, we consider an example of Problem (P,), the normal compliance contact problem without friction. A similar
example was reported in [41] using the finite element method.

Example 6.2. Let 2 = (0,L) x (0,L), I3 = [0, L] x {L}, I3 = [0, L] x {0}, and I'y = I"'\(I U I'3). The physical setting is
shown in Fig. 6. For the numerical simulation, we use

L=1m, E=70GPa, « =0.3,
fo(®)=(0,0) GPa, fo(x) = (0,32 (x; —0.5)> — 10) GPam on I}.
15
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Iy

Q2 Deformable body

2 1 1
Xy D Iy

Rigid obstacle

VAV,
JANWAN

Fig. 6. Physical configuration for Example 6.2.

Table 2
Errors and numerical convergence orders for Example 6.2 (¢ = 120).
h 2—2 2—3 2—4 275 276
Errors 3.3734e—1 1.9093e—1 1.0308e—1 5.5144e—2 2.8661e—2
Convergence orders - 0.82119 0.88926 0.90248 0.94413
Table 3
Errors and numerical convergence orders for Example 6.2 (o = 40).
h 272 273 27 275 276
Errors 3.3966e—1 1.9102e—1 1.0325e—1 5.5262e—2 2.8707e—2
Convergence orders - 0.83036 0.88759 0.90178 0.94488

We consider a particular version of Problem (P, ), in which the contact condition (2.24) is given by —o, = &,(u, ) with

0 if r<0,
_ + ) if r €[0,0.01],
Sy =o(fro+pr) and prI=1005 1 if r € (0.01,0.02],
r—002 if r>0.02.

Here and below r* represents the positive part of r, i.e., r™ = max{r, 0}, « > 0 and 8 > 0 are the stiffness coefficients of
the foundation.

Let 8 = 0.5, so the o, is nonmonotone, and set @ = 120 or « = 40. To show the convergence orders, we calculate the
numerical solutions on a family of square meshes 7" with h = 27", n = 2, ..., 6. In Tables 2 and 3, we list the relative
errors ”171(u” — uref)” . / HHluref || 1 and the convergence orders, which are around first order. Here, the “reference”
solution U, is the numerical solution on the mesh Th with h = 278,

To observe the behaviors of the normal displacement u, and normal stress o, on contact boundary I3, we consider the
numerical solution on mesh with h = 278, For the case & = 120, the normal displacement and normal stress on I are
plotted in Fig. 7; while the case with & = 40 is shown in Fig. 8. In Fig. 7, we see that for 0 < u,, < 0.01 the normal force
o, increases with respect to u,, and for 0.01 < u, < 0.02 the normal force decreases with respect to u,. In Fig. 8, we can
divide the nodes as three parts: 0 < u, < 0.01, 0.01 < u, < 0.02, and u, > 0.02. We observe that for 0 < u, < 0.01 the
normal force increases with respect to the penetration, for 0.01 < u, < 0.02 it decreases, and the normal force increases
when u, > 0.02.

Finally, we consider an example of Problem (P3), a frictionless contact with a foundation made of a rigid body covered
by a layer made of elastic material. A similar example was reported in [41] using the finite element method.

Example 6.3. The basic physical setting (see Fig. 9) of this example is similar as Example 6.2, but the contact condition
(2.29) is given by

u, <g o, +&w) <0, (u, —g)ow+&(u,)=0
where

&(r) = a(Br* +p(r))

16
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Fig. 7. Normal displacement and normal stress with « = 120 in Example 6.2.
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Fig. 8. Normal displacement and normal stress with o« = 40 in Example 6.2.

ANVANVANVAN

\VAVAVAV/

- Asperities
Rigid obstacle

Fig. 9. Physical configuration for Example 6.3.

and p(r) is the same function defined in Example 6.2. In Fig. 9, we see that the foundation is made of a rigid material
covered by a layer composed of soft material, say asperities, with thickness g. From the contact boundary condition, we
see that it follows a normal compliance condition as far as the penetration is less than the bound g, and it follows a
unilateral constraint when the rigid obstacle is reached. For the numerical simulation, we choose g = 0.02 m, « = 40
and B8 = 0.5, then we can observe the situation that the rigid obstacle is touched, i.e., u, > 0.02.

To show the numerical convergence orders, we calculate the numerical solutions on a family of square meshes 7"
with h = 27", 2, ..., 6. The relative errors ||ITy(u" — ttrer)|| ;1 /| IT1ttres || ,1 and convergence orders are listed in Table 4.
We clearly observe that the convergence order is nearly one, which again matches the theoretical prediction.
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Table 4
Errors and numerical convergence orders of lowest-order VEM for Example 6.3.
h 272 23 274 25 276
Errors 3.3572e—1 1.8988e—1 1.0312e—1 5.5324e—-2 2.8768e—2
Convergence orders - 0.82220 0.88070 0.89841 0.94343
0.025 T T T T Olwu u ““‘
0,02 F == == == == =~ =~ — iRk~~~ —— —— ———— | 00er l H l |
al *,
ﬁ** K % -0.04 g
0.015 * *
* *
* *
* * -0.06
* *
0.01 & *
* * -0.08
* *
;é *%
0.005 - ;é ;; 01
* *
* *|
- - - - -0.12 - - - -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1

(a) normal displacement u,, (b) normal stress o,

Fig. 10. Numerical normal displacement and normal stress in Example 6.3.

In Fig. 10, we show the behaviors of the normal displacement u, and normal stress o, on contact boundary I3 of
the numerical solution on the mesh with h = 276, For 0 < u, < 0.01 the normal stress increases with respect to the
penetration, and for 0.01 < u, < 0.02 it decreases. Furthermore, when the rigid obstacle is reached, i.e., u, = 0.02, the
normal stress is active.
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