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Abstract We consider the numerical solution of a nonlinear evolutionary variational
inequality, arising in the study of quasistatic contact problems. We study spatially
semi-discrete and fully discrete schemes for the problem with several discontinuous
Galerkin discretizations in space and finite difference discretization in time. Under
appropriate regularity assumptions on the solution, a unified error analysis is estab-
lished for the schemes, reaching the optimal convergence order for linear elements.
Numerical results are presented on a two dimensional test problem to illustrate numer-
ical convergence orders.
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772 F. Wang et al.

1 Introduction

Contact phenomena among deformable bodies or between deformable and rigid bod-
ies abound in industry and daily life; they play an important role in structural and
mechanical systems. Therefore, a considerable effort has been made in modeling and
numerical simulations of contact processes. The well-known Signorini problem is an
elastostatic problem describing the contact of a deformable body with a rigid friction-
less foundation [16]. In early mathematical publications on contact problems, only
static processes were studied. More recently, contact problems are studied involving
viscoelastic and viscoplastic materials, leading to one type of time dependent models,
known as quasistatic contact problems. These problems describe slowly evolving fric-
tional contact processes among deformable bodies under various contact and friction
conditions [15].

In this paper, we extend the ideas presented in [18] where discontinuous Galerkin
(DG) methods for the Signorini problem were studied, to solve quasistatic contact
problem. In the past two decades, DG methods have been widely used for solving
many kinds of mathematical and physical problems due to the flexibility in construct-
ing feasible local shape function spaces and the advantage to capture non-smooth or
oscillatory solutions effectively. DG methods provide discontinuous approximations
by using the Galerkin method element by element, and information is transferred
between two neighboring elements through the use of numerical traces (numerical
fluxes). One of the main advantages is the increase of locality in discretization, which
is ideally suited for parallel computing. In addition, DG methods permit an easy treat-
ment of nonhomogeneous boundary conditions, which greatly increases the robustness
and accuracy of any boundary condition implementation. We refer to [10] and the ref-
erences therein for a historical survey about DG methods.

In [12,13], a DG formulation and algorithm for gradient plasticity problem, in the
form of a quasistatic variational inequality of the second kind, was developed and
analyzed. In [17], the ideas in [1] were extended to solving an obstacle problem and a
simplified friction problem; a priori error estimates were established for these methods,
which reach optimal order for linear elements. The discontinuous property makes
DG methods easy to handle elements of arbitrary shapes and irregular meshes with
hanging nodes, and flexible to construct local shape function spaces (hp-adaptivity).
In [19], a posteriori error estimators of residual type were derived on DG methods for
an obstacle problem, and an h-adaptive DG algorithm was proposed for solving the
obstacle problem based on the a posteriori error analysis. In [18], ideas in [17] were
extended to solve the Signorini problem through DG methods with linear elements
and optimal order error estimate was derived. We will extend the ideas therein to
solving the quasistatic contact problem with DG methods. A priori error analysis will
be presented for these methods, which reaches optimal convergence order for linear
elements.

The paper is organized as follows. In Sect. 2, we introduce the quasistatic con-
tact problem and DG formulations for solving it; moreover, spatially semi-discrete
approximation and fully discrete approximation are given. In Sect. 3, we first prove
the consistency of the DG schemes, boundedness and stability of the bilinear forms,
then we establish a priori error estimates for spatially semi-discrete approximation
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Discontinuous Galerkin methods 773

with these DG methods. Error analysis for fully discrete approximation is given in
Sect. 4. In the final section, we present numerical results on a test problem, paying
particular attention to numerical convergence orders with different choices of penalty
constants in the DG schemes.

2 Quasistatic contact problem and DG formulations

2.1 Quasistatic contact problem and its weak formulation

The quasistatic contact problem is used to describe slowly evolving frictional contact
process of a linearly elastic body occupying a Lipschitz domain � ⊂ R

d (d = 2, 3).
The boundary � is divided into three parts �D , �F and �C with �D , �F and �C

relatively open and mutually disjoint such that meas (�D) > 0. Let t ∈ [0, T ] be the
time variable for some T > 0. Denote by u(·, t) : � → R

d a displacement variable.
The linearized strain tensor

ε(u) = 1

2
(∇u + (∇u)T )

and stress tensor σ are second order symmetric tensors, which take values in S
d ,

the space of second order symmetric tensors on R
d with the inner product σ : τ =

∑d
i, j=1 σi jτi j and norm |τ | = (τ : τ )

1
2 . Let ν be the unit outward normal vector on �.

For a vector v, denote its normal component and tangential component by vν = v·ν and
vτ = v − vνν on the boundary. Similarly for a tensor-valued function σ : � → S

d ,
we define its normal component and tangential component by σν = (σν) · ν and
σ τ = σν − σνν, respectively. We have the decomposition formula

(σν) · v = (σνν + σ τ ) · (vνν + vτ ) = σνvν + σ τ · vτ .

For a tensor-valued function σ , define its divergence by

div σ = (∂ jσi j )1≤i≤d .

Then, for any symmetric tensor σ and any vector field v, both being continuously
differentiable over �, we have the following integration by parts formula

∫

�

div σ · v dx =
∫

�

σν · v ds −
∫

�

σ : ε(v) dx . (2.1)

For the quasistatic contact problem, the displacement field u : � × [0, T ] → R
d

and the stress field σ : � × [0, T ] → S
d satisfy the relations

σ = Cε(u) in � × (0, T ), (2.2)

−div σ = f 1 in � × (0, T ), (2.3)
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774 F. Wang et al.

u = 0 on �D × (0, T ), (2.4)

σν = f 2 on �F × (0, T ), (2.5)

u(0) = u0 in �. (2.6)

Here, (2.2) is the constitutive relation of the elastic material, where C : � × S
d → S

d

denotes the fourth-order elasticity tensor of the material, and is assumed to be bounded,
symmetric and positive definite in �, i.e.

⎧
⎪⎨

⎪⎩

(a) Ci jkl ∈ L∞(�), 1 ≤ i, j, k, l ≤ d;
(b) Cσ : τ = σ : Cτ ∀ σ , τ ∈ S

d , a.e. in �;
(c) ∃ m > 0 s.t. Cτ : τ ≥ m|τ |2, ∀τ ∈ S

d , a.e. in �.

(2.7)

If the elastic behavior of the material is homogeneous and isotropic, then the elasticity
tensor is given by

Cε = λ (tr ε)I + 2 μ ε, (2.8)

where λ > 0 and μ > 0 are Lamé coefficients. In the equilibrium equation (2.3),
f 1 is the density of the volume forces. Boundary condition (2.4) means that the body
is clamped on �D and so the displacement field vanishes there all the time. Surface
traction of density f 2 acts on �F × (0, T ) in (2.5). On �C × (0, T ), we assume the
contact is bilateral (no loss of contact during the process) and the friction is modeled
with Tresca’s friction law (see, e.g., [15]):

uν = 0, |σ τ | ≤ g,

|σ τ | < g ⇒ u̇τ = 0,

|σ τ | = g ⇒ ∃λ ≥ 0 s.t. σ τ = −λu̇τ

⎫
⎪⎬

⎪⎭
on �C × (0, T ), (2.9)

where g ≥ 0 represents the friction bound function. Note that

u̇ = 0 on �D and u̇ν = 0 on �C (2.10)

from the boundary conditions (2.4) and (2.9).
To provide a variational formulation of the contact problem (2.2)–(2.9), we intro-

duce a Hilbert space

V =
{
v ∈ [H1(�)]d | v = 0 a.e. on �D, vν = 0 a.e. on �C

}
(2.11)

with the inner product and norm defined by

(u, v)V =
∫

�

ε(u) : ε(v) dx, ‖v‖V = √
(v, v)V .
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Discontinuous Galerkin methods 775

Since meas(�D) > 0, Korn’s inequality holds [6], implying that ‖ · ‖V is a norm on
V , equivalent to the standard [H1(�)]d norm on V . For the force densities, assume

f 1 ∈ W 1,∞(0, T ; (L2(�))d), f 2 ∈ W 1,∞(0, T ; (L2(�F ))d), (2.12)

and for the friction bound function, assume

g ∈ L∞(�C ), g ≥ 0 a.e. on �C . (2.13)

We define a bilinear form a(·, ·) over V by

a(u, v) =
∫

�

Cε(u) : ε(v) dx ∀ u, v ∈ V, (2.14)

a functional j : V → R
+ by

j (v) =
∫

�C

g‖vτ‖ ds ∀ v ∈ V,

and �(t), an element of V given by

(�(t), v)V =
∫

�

f 1(t) · v dx +
∫

�F

f 2(t) · v ds ∀ v ∈ V . (2.15)

We know that �(t) ∈ W 1,∞(0, T ; V ) [15]. Assume the initial data satisfies

u0 ∈ V, a(u0, v) + j (v) ≥ (�(0), v)V ∀ v ∈ V . (2.16)

Following a standard argument [15], we can obtain the variational formulation of the
quasistatic contact problem (2.2–2.9): Find u : [0, T ] → V s.t. for a.e. t ∈ (0, T ),

a(u(t), v − u̇(t)) + j (v) − j (u̇(t)) ≥ (�(t), v − u̇(t))V ∀ v ∈ V, (2.17)

u(0) = u0. (2.18)

Under the assumptions (2.7), (2.12), (2.13) and (2.16), this problem has a unique solu-
tion u ∈ W 1,∞(0, T ; V ), moreover, the mapping (�, u0) 
→ u is Lipschitz continuous
from W 1,∞(0, T ; V ) × V to L∞(0, T ; V ) [15].

2.2 Notations and DG formulations

For brevity, in the following, we only consider the case d = 2, although the discussion
can be extended to the three dimensional case without problem. Given a bounded
domain D ⊂ R

2 and a positive integer m, Hm(D) is the Sobolev space with the usual
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776 F. Wang et al.

corresponding norm ‖ · ‖m,D and semi-norm | · |m,D . Let u = (u1, u2)
T ∈ [Hm(D)]2

and define the corresponding norm by ‖u‖2
m,D = ∑

i=1,2 ‖ui‖2
m,D and semi-norm

by |u|2m,D = ∑
i=1,2 |ui |2m,D . Similarly, τ ∈ [L2(�)]2×2

s is a matrix-valued function

with each component τi j ∈ L2(�) and τ12 = τ21. We assume � is a polygonal
domain and consider a regular family of triangulations {Th}h of � that is compatible
with the boundary splitting: � = �D ∪ �F ∪ �C , i.e., if an element edge has a non-
empty intersection with one of the sets �D, �F and �C , then the edge lies entirely in the
corresponding closed set �D , �F , or �C . Let hK = diam(K ), h = max{hK : K ∈ Th},
and he = length(e). Denote by Eh the union of the boundaries of the elements K of
Th, E i

h = Eh\� the set of all interior edges, and E0
h = Eh\(�F ∪ �C ). We introduce

the following finite element spaces:

Ṽ h =
{
vh ∈ [L2(�)]2 : vh

i |K ∈ P1(K ) ∀ K ∈ Th, i = 1, 2
}

,

V h =
{
vh ∈ Ṽ h : vh

ν (x) = 0 for all nodes x ∈ �C

}
,

W h =
{
τ h ∈ [L2(�)]2×2

s : τ h
i j |K ∈ Pl(K ) ∀ K ∈ Th, i, j = 1, 2

}
, l = 0 or1.

Here Pl(K ) stands for the set of all polynomials in K with the total degree no more than
l ≥ 0. We know that vh

ν = 0 at all nodes on �C guarantees vh
ν = 0 on �C , consequently

v̇h
ν = 0 on �C . For any vector-valued function v and matrix-valued function τ , εh(v)

and divhτ are defined by the relation εh(v) = ε(v) and divhτ = divτ on any element
K ∈ Th .

Let e be the common edge of two elements K + and K −, and nα = n|∂K α be the unit
outward normal vector on ∂K α with α = ±. For a scalar function q, let qα = q|∂K α

and similarly, for a vector-valued function v and a matrix-valued function τ , let vα =
v|∂K α , τα = τ |∂K α . Then define the averages {·} and the jumps [·], �·� on e ∈ E i

h by

{q} = 1

2
(q+ + q−), [q] = q+n+ + q−n−,

{v} = 1

2
(v+ + v−), �v� = 1

2
(v+ ⊗ n+ + n+ ⊗ v+ + v− ⊗ n− + n− ⊗ v−),

{τ } = 1

2
(τ+ + τ−), [τ ] = τ+n+ + τ−n−.

Here u ⊗ v is a matrix with uiv j as its (i, j)th element. If e ∈ Eh is an element edge
on �, we set

{q} = q, [q] = qν,

{v} = v, �v� = 1

2
(v ⊗ ν + ν ⊗ v),

{τ } = τ , [τ ] = τν.

For a vector-valued function v and a matrix-valued function τ , with a direct manip-
ulation, we have
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∑

K∈Th

∫

∂K

(τn) · v ds =
∑

e∈E i
h

∫

e

[τ ] · {v} ds +
∑

e∈Eh

∫

e

{τ } : �v� ds. (2.19)

The lifting operators r0 : (L2(E0
h )
)2×2

s → Wh , re : (L2(e)
)2×2

s → Wh are defined by

∫

�

r0(φ) : τ dx = −
∫

E0
h

φ : {τ } ds ∀ τ ∈ Wh, φ ∈
(

L2
(
E0

h

))2×2

s
, (2.20)

∫

�

re(φ) : τ dx = −
∫

e

φ : {τ } ds ∀ τ ∈ Wh, φ ∈
(

L2(e)
)2×2

s
. (2.21)

It is easy to check that the following identity and inequality hold

r0(φ) =
∑

e∈E0
h

re(φ|e) ∀φ ∈
(

L2
(
E0

h

))2×2

s
,

‖r0(φ)‖2 = ‖
∑

e∈E0
h

re(φ|e)‖2 ≤ 3
∑

e∈E0
h

‖re(φ|e)‖2. (2.22)

We now present some DG formulations for the quasistatic contact problem (2.2)–
(2.9). For this purpose, we multiply the Eqs. (2.2) and (2.3) by C−1τ and v, respectively,
integrate on an arbitrary element K , and apply the integration by parts formula (2.1),

∫

K

C−1σ : τ dx = −
∫

K

u · divτ dx +
∫

∂K

u · (τn) ds, (2.23)

∫

K

f 1 · v dx =
∫

K

σ : ε(v) dx −
∫

∂K

(σn) · v ds. (2.24)

In above equations, we append superscript h on σ , τ , u, v, div and ε, add over all the
elements, and use numerical trace ûh and σ̂ h to approximate u and σ over element
edges to obtain

∫

�

C−1σ h : τ h dx = −
∫

�

uh · divhτ h dx +
∑

K∈Th

∫

∂K

ûh ·
(
τ hnK

)
ds, (2.25)

∫

�

f 1 · vh dx =
∫

�

σ h : εh(vh) dx −
∑

K∈Th

∫

∂K

(
σ̂ hnK

)
· vh ds, (2.26)

for all (τ h, vh) ∈ W h × V h . The numerical traces σ̂ h and ûh will be selected to
guarantee consistency and stability of the scheme.
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To derive a new formulation which does not rely on σ h explicitly, using (2.1) and
(2.19), we have from (2.25) and (2.26) that

∫

�

C−1σ h : τ h dx =
∫

�

εh(uh) : τ h dx +
∫

E i
h

{
ûh − uh

}
· [τ h] ds

+
∫

Eh

�ûh − uh� : {τ h} ds, (2.27)

∫

�

f 1 · vh dx =
∫

�

σ h : εh(vh) dx −
∫

E i
h

[
σ̂ h
]

·
{
vh
}

ds

−
∫

Eh

�vh� :
{
σ̂ h
}

ds. (2.28)

From now on, we assume the elasticity tensor C is constant. Then, we have Cεh(vh) ∈
W h . Choosing τ h = Cεh(vh) in (2.27), we get

∫

�

σ h : εh(vh) dx =
∫

�

Cεh(uh) : εh(vh) dx +
∫

E i
h

{
ûh − uh

}
·
[
Cεh(vh)

]
ds

+
∫

Eh

�ûh − uh� :
{
Cεh(vh)

}
ds.

Combination of this equation and (2.28) yields

∫

�

Cεh(uh) : εh(vh) dx +
∫

E i
h

{
ûh − uh

}
·
[
Cεh(vh)

]
ds

+
∫

Eh

�ûh − uh� :
{
Cεh(vh)

}
ds

−
∫

E i
h

[
σ̂ h
]

· {vh} ds −
∫

Eh

�vh� :
{
σ̂ h
}

ds =
∫

�

f 1 · vh dx . (2.29)

We can get DG schemes from (2.29) by proper choices of numerical fluxes σ̂ h and
ûh , respecting three requirements: conservation, consistency, and stability. Conserva-
tion requires the numerical fluxes to be single-valued over all edges; consistency of
the numerical fluxes needs ûh(u) = u|Eh and σ̂ h(σ ) = σ |Eh ; stability is not easily
ensured and it is usual to add a suitable penalty term (stability term) to guarantee it.
We will introduce four consistent and stable DG methods. For all the following DG
methods, we let ûh and σ̂ h satisfy the boundary condition (2.9), i.e.,
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ûh
ν = 0, |σ̂ h

τ | ≤ g,

|σ̂ h
τ | < g ⇒ ˙̂uh

τ = 0,

|σ̂ h
τ | = g ⇒ ∃λ ≥ 0 s.t. σ̂ h

τ = −λ
˙̂uh
τ

⎫
⎪⎪⎬

⎪⎪⎭

on �C × (0, T ). (2.30)

Choose
⎧
⎪⎨

⎪⎩

ûh =
{

uh
}

on {Eh\�D} × (0, T ), ûh = 0 on �D × (0, T ),

σ̂ h = {Cεh(uh)} − η

h̃
�uh� on E0

h × (0, T ), σ̂ hν = f 2 on �F × (0, T ),

where η is a positive, bounded, piecewise constant function on E0
h , and h̃ is a piecewise

constant function on E0
h with h̃|e = he for e ∈ E0

h . Denote ηe = η|e, e ∈ E0
h . Then we

obtain from (2.29) that

B(1)
1,h(uh, vh) =

∫

�

f 1 · vh dx +
∫

�F

f 2 · vh ds +
∫

�C

σ̂ hν · vh ds, (2.31)

where

B(1)
1,h(uh, vh) :=

∫

�

Cεh(uh) : εh(vh) dx −
∫

E0
h

�uh� : {Cεh(vh)} ds

−
∫

E0
h

�vh� : {Cεh(uh)} ds +
∫

E0
h

η

h̃
�uh� : �vh� ds. (2.32)

Let vh = wh − u̇h with wh ∈ V h . Using (2.30), we can derive from the Eq. (2.31) that
(see also [15])

B(1)
1,h(uh, wh − u̇h) + j (wh) − j (u̇h) ≥ (�(t), wh − u̇h)V ∀ wh ∈ V h . (2.33)

The penalty term in B(1)
1,h(uh, vh) is

∫
E0

h
ηh̃−1�uh� : �vh� ds and (2.33) is an interior

penalty (IP) formulation [14]. With the lift operator r0, we can rewrite B(1)
1,h as

B(1)
2,h(uh, vh) :=

∫

�

Cεh(uh) :
(
εh(vh) + r0

(
�vh�

))
dx

+
∫

�

r0

(
�uh�

)
: Cεh(vh) dx +

∫

E0
h

η

h̃
�uh� : �vh� ds. (2.34)

Notice that (2.32) and (2.34) are equivalent on V h , implying that either one can be
used to define the numerical solution uh . In this paper, we give a priori error estimate

123
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for the first formula (2.32). Because (2.32) and (2.34) are equivalent on V h , we will
prove the stability for the second formula B(1)

2,h on V h , which guarantees the stability

for the first formulation B(1)
1,h on V h . This comment is valid for the other DG methods

to be introduced below.
Using the local lifting operator re, we can give the second example. Taking

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ûh =
{

uh
}

on {Eh\�D} × (0, T ), ûh = 0 on �D × (0, T ),

σ̂ h = {Cεh(uh)} +
{
Cr0

(
�uh�

)}
+ η

{
Cre

(
�uh�

)}
on E0

h × (0, T ),

σ̂ hν = f 2 on �F × (0, T )

in (2.29), we get

B(2)
1,h(uh, vh) :=

∫

�

Cεh(uh) : εh(vh) dx −
∫

E0
h

�uh� :
{
Cεh(vh)

}
ds

−
∫

E0
h

�vh� :
{
Cεh(uh)

}
ds +

∫

�

r0

(
�vh�

)
: Cr0

(
�uh�

)
dx

+
∑

e∈E0
h

∫

�

ηCre

(
�uh�

)
: re

(
�vh�

)
dx,

or equivalently,

B(2)
2,h(uh, vh) :=

∫

�

C
(
εh(uh) + r0

(
�uh�

))
:
(
εh(vh) + r0

(
�vh�

))
dx

+
∑

e∈E0
h

∫

�

ηCre

(
�uh�

)
: re

(
�vh�

)
dx,

which is an extension of the method of Brezzi et al. [7].
With the choice

⎧
⎪⎪⎨

⎪⎪⎩

ûh =
{

uh
}

on {Eh\�D} × (0, T ), ûh = 0 on �D × (0, T ),

σ̂ h =
{
Cεh(uh)

}
+η

{
Cre

(
�uh�

)}
on E0

h × (0, T ), σ̂ hν = f 2 on �F × (0, T ),

we obtain a DG formulation extended from the method of Bassi et al. [4],
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B(3)
1,h(uh, vh) :=

∫

�

Cεh(uh) : εh(vh) dx −
∫

E0
h

�uh� :
{
Cεh(vh)

}
ds

−
∫

E0
h

�vh� :
{
Cεh(uh)

}
ds +

∑

e∈E0
h

∫

�

ηCre

(
�uh�

)
: re

(
�vh�

)
dx,

or equivalently,

B(3)
2,h(uh, vh) :=

∫

�

Cεh(uh) :
(
εh(vh) + r0

(
�vh�

))
dx

+
∫

�

r0

(
�uh�

)
: Cεh(vh) dx +

∑

e∈E0
h

∫

�

ηCre

(
�uh�

)
: re

(
�vh�

)
dx .

If we choose
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ûh =
{

uh
}

on {Eh\�D} × (0, T ), ûh = 0 on �D × (0, T ),

σ̂ h =
{
Cεh(uh)

}
+
{
Cr0

(
�uh�

)}
− η

h̃
�uh� on E0

h × (0, T ),

σ̂ hν =f 2 on �F × (0, T ),

then

B(4)
1,h(uh, vh) :=

∫

�

Cεh(uh) : εh(vh) dx −
∫

E0
h

�uh� :
{
Cεh(vh)

}
ds

−
∫

E0
h

�vh� :
{
Cεh(uh)

}
ds +

∫

�

Cr0

(
�uh�

)
: r0

(
�vh�

)
dx

+
∫

E0
h

η

h̃
�uh� : �vh� ds,

or equivalently,

B(4)
2,h(uh, vh) :=

∫

�

C
(
εh(uh) + r0

(
�uh�

))
:
(
εh(vh) + r0

(
�vh�

))
dx

+
∫

E0
h

η

h̃
�uh� : �vh� ds,

which is an extension of the local DG (LDG) method [11].
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Spatially semi-discrete DG approximation. Let Bh(uh, vh) be one of the bilinear
forms B( j)

1,h(uh, vh) with j = 1, . . . , 4. Then a spatially semi-discrete DG approxi-

mation for the quasistatic contact problem (2.17) is: Find uh : [0, T ] → V h such
that

Bh

(
uh(t), vh − u̇h(t)

)
+ j (vh) − j (u̇h(t)) ≥ (�(t), vh − u̇h(t))V ∀ vh ∈ V h,

(2.35)

uh(0) = Ph
Bu0. (2.36)

Here Ph
B is the Bh-projection from V to V h defined by

Bh(Ph
Bu0 − u0, v

h) = 0 ∀vh ∈ V h .

As we will see later, the bilinear form Bh is bounded (Lemma 3.3) and coercive
(Lemma 3.4) on V h ; so Ph

Bu0 exists and is unique.

Fully discrete approximation schemes. In addition to the finite element V h , we need a
partition of the time interval: [0, T ] = ⋃N

n=1[tn−1, tn] with 0 = t0 < t1 < · · · < tN =
T . Denote kn = tn −tn−1 for the length of the sub-interval [tn−1, tn], and k = maxn kn .
We allow an arbitrary partition. For the given function f 1 ∈ W 1,∞(0, T ; (L2(�))d),
f 2 ∈ W 1,∞(0, T ; (L2(�F ))d) and the solution u ∈ W 1,∞(0, T ; V ), we use the nota-
tion un = u(tn) and �n = �(tn), which are well-defined due to the Sobolev embedding
W 1,∞(0, T ; V ) ↪→ C(0, T ; V ). The symbol �un is used to denote the backward
difference un − un−1, and δnun = �un/kn for the backward divided difference. No
summation is implied over the repeated index n.

Let Bh(uh, vh) be one of the bilinear forms B( j)
1,h(uh, vh) with j = 1, . . . , 4. Then

a fully discrete approximation of (2.17) is: Find uhk = {uhk
n }N

n=0 ⊂ V h such that

Bh

(
uhk

n , vh − δnuhk
n

)
+ j (vh) − j

(
δnuhk

n

)
≥
(
�n, vh − δnuhk

n

)

V
∀ vh ∈ V h,

(2.37)

uhk
0 = Ph

Bu0. (2.38)

In the following two sections, we will derive a priori error analysis for the spatially
semi-discrete DG approximation and fully discrete approximation schemes, respec-
tively.

3 Error estimates for the spatially semi-discrete approximation

As a preparation for error analysis, we first consider the consistency of the DG schemes,
and the boundedness and stability of the bilinear forms.
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3.1 Consistency, boundedness and stability

We notice that if the solution of (2.17) has the regularity u ∈ L2(0, T ; [H2(�)]2),
then (2.2)–(2.5) and (2.9) are valid a.e., and on any interior edge e, �u� = 0, {u} =
u, {ε(u)} = ε(u), [σ ] = 0, {σ } = σ . For all DG methods introduced in the previous
section, we first show the consistency of the DG schemes.

Lemma 3.1 (Consistency) Assume u ∈ L2(0, T ; [H2(�)]2) for the solution of
(2.17). Then for the DG methods Bh(w, v) = B( j)

1,h(w, v) with j = 1, . . . , 4, we
have

Bh(u, vh − u̇) + j (vh) − j (u̇) ≥ (�(t), vh − u̇) ∀ vh ∈ V h . (3.1)

Proof Using (2.2), we obtain, for any vh ∈ V h ,

Bh(u, vh − u̇) =
∫

�

Cε(u) : εh(vh − u̇) dx −
∫

E0
h

�vh − u̇� : Cε(u) ds

=
∑

K∈Th

∫

K

σ : εh(vh − u̇) dx −
∫

E0
h

�vh − u̇� : σ ds.

By (2.1), (2.19) and noting that [σ ] = 0 on E i
h , we get

∑

K∈Th

∫

K

σ : εh(vh − u̇) dx =
∑

K∈Th

∫

K

−divσ · (vh − u̇) dx

+
∑

K∈Th

∫

∂K

(σnK ) · (vh − u̇) ds =
∑

K∈Th

∫

K

f 1 · (vh − u̇) dx +
∫

Eh

�vh − u̇� : σ ds.

Then

Bh(u, vh − u̇) =
∫

�

f 1 · (vh − u̇) dx +
∫

�F

f 2 · (vh − u̇) ds +
∫

�C

(σν) · (vh − u̇) ds

= (�, vh − u̇)V +
∫

�C

(σ τ · vh
τ − σ τ · u̇τ ) ds

≥ (�, vh − u̇)V − j (vh) + j (u̇).

The last inequality is obtained by (2.9). Hence, (3.1) holds. ��
To consider the boundedness and stability of the bilinear form Bh , as in [18], let

V (h) = V h + V ∩ [H2(�)]2, and for v ∈ V (h), define seminorms as follows:

|v|2K :=
∫

K

ε(v) : ε(v) dx, |v|2h :=
∑

K∈Th

|v|2K , |v|2∗ :=
∑

e∈E0
h

h−1
e ‖�v�‖2

0,e,
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where

‖�v�‖2
0,e =

∫

e

�v� : �v� ds.

Then define norms by

� v�2∗ := |v|2h + |v|2∗, �v�2 := �v �2∗ +
∑

K∈Th

h2
K |v|22,K . (3.2)

The norm � ·�∗ defined in (3.2) is equivalent to the usual DG-norm (| · |21,h +| · |2∗)1/2,

thanks to Korn’s inequality (see [5] or [2, Proposition 4.6]). Here, |·|21,h =∑K∈Th
|·|21,K .

In the following, we also need the norm ‖ · ‖0,h defined through the relation ‖ · ‖2
0,h =

∑
K∈Th

‖ · ‖2
0,K .

Before presenting the boundedness and stability properties of the bilinear forms,
we state a useful estimate for the lifting operator re, which is a trivial extension to
vector-valued functions of Lemma 2 of [8]; see also [18].

Lemma 3.2 For any v ∈ V (h) and e ∈ E0
h ,

C1h−1
e ‖�v�‖2

0,e ≤ ‖re(�v�)‖2
0,h ≤ C2h−1

e ‖�v�‖2
0,e. (3.3)

From (3.3) and (2.22), we have

‖r0(�v�)‖2
0,h = ‖

∑

e∈E0
h

re(�v�)‖2
0,h ≤ 3C2

∑

e∈E0
h

h−1
e ‖�v�‖2

0,e = 3C2|v|2∗.

For boundedness of the primal forms Bh , recalling (2.7) for the boundedness, sym-
metry and positive definiteness of C, we know that the seminorm | · |a,h defined by

|v|2a,h =
∑

K∈Th

aK (v, v) =
∑

K∈Th

∫

K

Cε(v) : ε(v) dx, v ∈ V (h),

is equivalent to | · |h on V (h). Then we have the boundedness of Bh as follows.

Lemma 3.3 (Boundedness) For 1 ≤ j ≤ 4, Bh = B( j)
1,h satisfies

Bh(w, v) � �w � �v � ∀ w, v ∈ V (h). (3.4)

Proof We use the Cauchy-Schwarz inequality to bound them term by term,

∫

�

Cεh(w) : εh(v) dx � |w|h |v|h, (3.5)
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∫

�

Cr0(�w�) : r0(�v�) dx � |w|∗|v|∗, (3.6)

∫

E0
h

ηh̃−1�w� : �v� ds ≤ max
e∈E0

h

ηe|w|∗|v|∗, (3.7)

∑

e∈E0
h

∫

�

η re(�w�) : re(�v�) dx � max
e∈E0

h

ηe|w|∗|v|∗. (3.8)

Here “� · · · ” stands for “≤ C · · · ”, where C is a positive generic constant independent
of h and k, which may take on different values at different places. Applying the trace
inequality for a scalar function ([3, Exercise 10.3.2]) to each component of a vector
function, we can get the trace inequality

‖εh(v)‖2
0,e � h−1

e |v|21,K + hK |v|22,K .

Using this inequality, we have

∫

E0
h

�w� : {Cεh(v)} ds �

⎛

⎜
⎝
∑

e∈E0
h

h−1
e ‖�w�‖2

0,e

⎞

⎟
⎠

1/2 ⎛

⎜
⎝
∑

e∈E0
h

he‖{εh(v)}‖2
0,e

⎞

⎟
⎠

1/2

� |w|∗
⎛

⎝
∑

K∈Th

(
|v|21,K + h2

K |v|22,K

)
⎞

⎠

1/2

≤ |w|∗ � v � .

(3.9)

The inequalities (3.5) and (3.9) are needed in the analysis of all bilinear forms. For
the DG methods with the bilinear form B( j)

1,h, j = 1, 4, the inequality (3.7) is needed.

The inequality (3.6) is needed by the formulas B( j)
1,h with j = 2, 4. For the methods

with the bilinear forms B( j)
1,h , j = 2, 3, the inequality (3.8) is needed. Proof for the

boundedness of Bh is completed. ��

For the stability, note that �v� = �v�∗ for any v ∈ V h . Denote

η0 := min
e∈E0

h

ηe. (3.10)

Since B( j)
1,h and B( j)

2,h coincide on V h , once we have proved the stability for B( j)
2,h on

V h , the stability of B( j)
1,h on V h follows. We use the Cauchy-Schwarz inequality and

Lemma 3.2 to get
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B(1)
2,h(v, v) = |v|2a,h + 2

∫

�

Cεh(v) : r0(�v�) dx +
∫

E0
h

ηh̃−1�v� : �v� ds

� |v|2h − ε|v|2h − 1

ε
‖r0(�v�)‖2

0,h + η0

∑

e∈E0
h

h−1
e ‖�v�‖2

0,e

� (1 − ε)|v|2h +
(

η0 − 3C2

ε

)

|v|2∗.

Here 0 < ε < 1 is a constant and C2 is the positive constant in (3.3). Therefore,
stability is valid for the IP method when η0 > 3C2. For other bilinear forms, we can
similarly obtain

B(2)
2,h(v, v) � (1 − ε)|v|2h +

(

3C2

(

1 − 1

ε

)

+ C1η0

)

|v|2∗,

B(3)
2,h(v, v) � (1 − ε)|v|2h +

(

η0C1 − 3C2

ε

)

|v|2∗,

B(4)
2,h(v, v) � (1 − ε)|v|2h +

(

η0 + 3C2 − 3C2

ε

)

|v|2∗.

For B(2)
2,h, η0 > 3C2(ε

−1 − 1)/C1 ensures stability holds, letting ε be close to 1, we
see that η0 > 0 is sufficient for the stability. It is easy to see that stability is valid for
B(3)

2,h when η0 > 3C2/C1. For B(4)
2,h , it is clear that stability holds when η0 > 0. For

convenience, we define the following conditions on η0 of (3.10):

η0 > 0 for the methods with j = 2, 4, and

η0 is large enough for the methods with j = 1, 3. (3.11)

We summarize the above argument in the next result.

Lemma 3.4 (Stability) Assume (3.11). Then for 1 ≤ j ≤ 4, Bh = B( j)
1,h and B( j)

2,h
satisfy

Bh(v, v) � �v �2∗ ∀ v ∈ V h . (3.12)

From now on, we will assume the conditions (3.11) on η.

3.2 Error analysis

Denote by �hu ∈ V h the usual continuous piecewise linear interpolant of the exact
solution u(t) ∈ [H2(�)]2, t ∈ [0, T ]. Then �u − �hu� = 0 on the interelement
boundaries. By the definition of norm (3.2), we have the approximation property

� u − �hu�2 = |u − �hu|2h +
∑

K∈Th

h2
K |u − �hu|22,K � h2|u|22,�. (3.13)
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To extend the analysis to nonconforming meshes, it is convenient to take an interpolant
�hu which is discontinuous across the interelement boundaries. Then, we just require
the local approximation property

|u − �hu|1,K � hK |u|2,K ;

hence, for the global approximation error, we have

�u − �hu� � h|u|2,�.

Similarly,

� u̇ − �h u̇� � h|u̇|2,�. (3.14)

Next, we introduce another interpolation of u.

Lemma 3.5 Assume (3.11) and u(t), u̇(t) ∈ V ∩ [H2(�)]2. Define uI (t) ∈ V h by

Bh(uI (t) − u(t), vh) = 0 ∀ vh ∈ V h . (3.15)

Then

� uI (t) − u(t)� � h, �u̇I (t) − u̇(t)� � h. (3.16)

Proof First we notice that because the bilinear form Bh = B( j)
1,h with j = 1, . . . , 4 is

bounded and coercive on V h, uI (t) is well defined. Letting vh = uI (t) − �hu(t) in
(3.15), we get

Bh(uI (t) − u(t), uI (t) − �hu(t)) = 0.

Notice that uI (t) − �hu(t) ∈ V h . We obtain

�uI (t) − �hu(t)�2 � Bh(uI (t) − �hu(t), uI (t) − �hu(t))

= Bh(u(t) − �hu(t), uI (t) − �hu(t))

� �u(t) − �hu(t) � �uI (t) − �hu(t) � .

Then

�uI (t) − �hu(t)� � �u(t) − �hu(t)� � h.

By the triangle inequality, we have

�uI (t) − u(t)� ≤ �uI (t) − �hu(t) � + � �hu(t) − u(t)� � h,
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which completes the proof for the first inequality in (3.16). The second inequality can
be obtained by differentiating (3.15) with respect to time,

Bh(u̇I (t) − u̇(t), vh) = 0 ∀ vh ∈ V h,

and by repeating the argument in proving the first inequality. ��

Note that uI (0) = Ph
Bu0. Thus,

uI (0) = uh(0). (3.17)

Now we write the error as

e = u − uh = (u − uI ) + (uI − uh).

In the next result, we need some additional solution regularity assumption. We express
the contact boundary �C as the union of some line segments:

�C = ∪i0
i=1�i .

Theorem 3.6 Assume (3.11). Let u and uh be the solutions of (2.17)–(2.18) and
(2.35)–(2.36), respectively. Assume u ∈ L2(0, T ; [H2(�)]2), u̇∈ L2(0, T ; [H2(�)]2)

and u̇|�i ∈ L2(0, T ; [H2(�i )]2) for 1 ≤ i ≤ i0. Then for the DG methods with
j = 1, . . . , 4, we have

� u(t) − uh(t)� � h for any t ∈ [0, T ]. (3.18)

Proof Let vh = u̇h(t) in (3.1). Combining with (2.35), we obtain for all vh ∈ V h ,

− Bh(uh, vh − u̇h) ≤ Bh(u, u̇h − u̇) + j (vh) − j (u̇) − (�, vh − u̇)V (3.19)

Using (3.19) and (3.15), we have

1

2

d

dt
Bh(uI (t) − uh(t), uI (t) − uh(t)) = Bh(uI (t) − uh(t), u̇I (t) − u̇h(t))

≤ T1 + T2 + T3, (3.20)

where

T1 = Bh(uI (t) − uh(t), u̇I (t) − u̇(t)),

T2 = Bh(uI (t) − uh(t), u̇(t) − vh),

T3 = Bh(u(t), vh − u̇(t)) + j (vh) − j (u̇(t)) − (�(t), vh − u̇(t))V .
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By the boundedness of the bilinear form Bh , we get

T1 � �uI − uh � �u̇I − u̇� � �uI − uh �2 + � u̇I − u̇�2, (3.21)

T2 � �uI − uh � �u̇ − vh� � �uI − uh �2 + � u̇ − vh�2, (3.22)

We turn to bound T3. Note that on an interior edge, �u� = 0, {u} = u, {σ } = σ ,
and on �D , �u� = 0. Then

Bh(u, vh − u̇) =
∫

�

Cε(u) : εh(vh − u̇) dx −
∫

E0
h

Cε(u) : �vh − u̇� ds

=
∑

K∈Th

∫

K

σ : εh(vh − u̇) dx −
∫

E0
h

�vh − u̇� : σ ds

Since [σ ] = 0 on an interior edge and remembering (2.3), we have

∑

K∈Th

∫

K

σ : εh(vh − u̇) dx =
∑

K∈Th

∫

K

−divσ · (vh − u̇) dx

+
∑

K∈Th

∫

∂K

(σnK ) · (vh − u̇) ds

=
∑

K∈Th

∫

K

f 1 · (vh − u̇) dx +
∫

Eh

�vh − u̇� : σ ds.

Then

Bh(u, vh − u̇) =
∫

�

f 1 · (vh − u̇) dx +
∫

�F

f 2 · (vh − u̇) ds +
∫

�C

(σν) · (vh − u̇) ds

= (�(t), vh − u̇)V +
∫

�C

(
σ τ · vh

τ − σ τ · u̇τ

)
ds. (3.23)

Hence, we get

T3 =
∫

�C

σ τ ·
(
vh

τ − u̇τ

)
ds + j (vh) − j (u̇(t))

≤ 2
∫

�C

g‖vh
τ − u̇τ‖ ds � ‖vh − u̇‖L2(�C )2 . (3.24)
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Then we obtain by (3.20), (3.21), (3.22) and (3.24),

d

dt
Bh(uI (t) − uh(t), uI (t) −uh(t)) � �uI (t) − uh(t) �2 + � u̇I (t) − u̇(t) �2

+ � u̇(t) − vh(t) �2+‖vh(t) − u̇(t)‖L2(�C )2 .

Integrating the above inequality from 0 to t , applying Gronwall’s inequality, and using
the stability of the bilinear form Bh , we obtain

� uI (t) − uh(t)� � �uI (0) − uh(0) � + � u̇I − u̇ �L2(0,T ;V (h))

+ � u̇ − vh �L2(0,T ;V (h)) + ‖vh − u̇‖1/2
L2(0,T ;L2(�C )2)

= �u̇I − u̇ �L2(0,T ;V (h)) + � u̇ − vh �L2(0,T ;V (h))

+‖vh − u̇‖1/2
L2(0,T ;L2(�C )2)

, (3.25)

where in the last equality, the condition (3.17) was used.
Choosing vh(t) = �h u̇(t) in (3.25), we get

�uI (t) − uh(t)� � �u̇I − u̇ �L2(0,T ;V (h)) + � u̇ − �h u̇ �L2(0,T ;V (h))

+‖�h u̇ − u̇‖1/2
L2(0,T ;L2(�C )2)

.

By (3.14), (3.16) and using

‖�h u̇(t) − u̇(t)‖L2(�C )2 � h2

(
i0∑

i=1

‖u̇(t)‖2
H2(�i )

)1/2

,

we obtain

�uI (t) − uh(t)� � h.

Finally, by the triangle inequality

�u(t) − uh(t)� ≤ �u(t) − uI (t) � + � uI (t) − uh(t)�,

we get the error bound (3.18). ��

4 Error estimates for fully discrete approximation

In this section, we analyze the fully discrete schemes. First, we show the well-
posedness of problem (2.37)–(2.38).
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Theorem 4.1 Assume (3.11). The problem (2.37)–(2.38) admits a unique solution uhk ,
which is stable in the sense that for given u1,0, u2,0 ∈ V and �1, �2 ∈ W 1,∞(0, T ; V ),
the corresponding solutions uhk

1,n and uhk
2,n, 0 ≤ n ≤ N, satisfy the inequality

max
0≤n≤N

�uhk
1,n − uhk

2,n� � �Ph
Bu1,0 − Ph

Bu2,0 � +‖�1 − �2‖W 1,∞(0,T ;V ). (4.1)

Proof Because j is positively homogeneous, the inequality (2.37) can be rewritten as

Bh

(
�uhk

n , vh − �uhk
n

)
+ j (vh) − j

(
�uhk

n

)

≥
(
�n, vh − �uhk

n

)

V
− Bh

(
uhk

n−1, v
h − �uhk

n

)
∀ vh ∈ V h .

This inequality problem admits a unique solution �uhk
n ∈ V h by the boundedness and

stability of the bilinear form Bh .
Then we turn to deduce the inequality (4.1). With n = 1, 2, . . . , N , we have

Bh

(
uhk

1,n, vh − δnuhk
1,n

)
+ j (vh) − j

(
δnuhk

1,n

)
≥
(
�1,n, vh − δnuhk

1,n

)

V
∀ vh ∈ V h,

(4.2)

Bh

(
uhk

2,n, vh − δnuhk
2,n

)
+ j (vh) − j

(
δnuhk

2,n

)
≥
(
�2,n, vh − δnuhk

2,n

)

V
∀ vh ∈ V h,

(4.3)

Denote en = uhk
1,n − uhk

2,n . Taking vh = δnuhk
2,n in (4.2) and vh = δnuhk

1,n in (4.3), and
adding the two inequalities, we obtain

An := Bh(en, δnen) ≤ (�1,n − �2,n, δnen)V .

We can get the lower bound as

An = 1

kn

(
Bh(en, en) − Bh(en, en−1)

)
� 1

kn

(
� en �2 − � en � �en−1 �

)

� 1

kn

(

�en �2 −1

2

(
�en �2 + � en−1�

2
))

� 1

2kn

(
�en �2 − � en−1�

2
)

.

(4.4)

Then for 1 ≤ n ≤ N , we obtain

�en �2 − � en−1�
2 � (�1,n − �2,n, en − en−1)V .
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A simple induction yields

�en�2 � �e0 �2 +
n∑

j=1

(�1, j − �2, j , e j − e j−1)V

= �e0 �2 +(�1,n − �2,n, en)V − (�1,1 − �2,1, e0)V

+
n−1∑

j=1

((�1, j − �1, j+1) − (�2, j − �2, j+1), e j )V .

Let M = maxn �en�. Then we obtain

�en�2 � �e0 �2 +(‖�1,n − �2,n‖V + ‖�1,1 − �2,1‖V

+
n−1∑

j=1

‖(�1, j − �1, j+1) − (�2, j − �2, j+1)‖V
)
M.

Therefore,

M2 � �e0 �2 +(max
n

‖�1,n − �2,n‖V + ‖�1,1 − �2,1‖V

+
N−1∑

j=1

‖(�1, j − �1, j+1) − (�2, j − �2, j+1)‖V
)
M

� �e0 �2 +M‖�1 − �2‖W 1,∞(0,T ;V ).

Applying the following inequality

x, a, b ≥ 0 and x2 ≤ ax + b �⇒ x ≤ a + b1/2,

we then obtain the stability inequality (4.1). ��
Now we show error estimates for the fully discrete scheme. Define en = un − uhk

n
for n = 1, 2, . . . , N . We have

en =
(

un − uI
n

)
+
(

uI
n − uhk

n

)
:= ηn + eh

n,

where uI
n = uI (t). Denote

Ah
n = Bh

(
eh

n, δneh
n

)
.

As (4.4), we have

Ah
n � 1

2kn

(
�eh

n �2 − � eh
n−1�

2
)

. (4.5)
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For an upper bound of Ah
n , write

Ah
n = Bh

(
uI

n − un, δnuI
n − δnuhk

n

)
+ Bh

(
un, δnuI

n − δnuhk
n

)

−Bh

(
uhk

n , δnuI
n − vh

n

)
− Bh

(
uhk

n , vh
n − δnuhk

n

)
, (4.6)

where vh
n ∈ V h is arbitrary. We take vh = δnuhk

n ∈ V h in (3.1) at t = tn to get

Bh

(
un, δnuhk

n − u̇n

)
+ j

(
δnuhk

n

)
− j (u̇n) ≥

(
�n, δnuhk

n − u̇n

)
.

Combining the above inequality with (2.37), we have

− Bh

(
uhk

n , vh
n −δnuhk

n

)
≤ j

(
vh

n

)
− j (u̇n)−

(
�n, v

h
n −u̇n

)
+Bh

(
un, δnuhk

n − u̇n

)
.

(4.7)

In Eq. (4.6), inserting Bh(uI
n, δnuI

n − vh
n)− Bh(uI

n, δnuI
n − vh

n) and applying (4.7), we
get

Ah
n ≤ 1

kn
Bh

(
−ηn, eh

n − eh
n−1

)
+ Bh

(
ηn, δnuI

n − vh
n

)

+Bh

(
eh

n, δnuI
n − vh

n

)
+ Rn

(
un, vh

n

)
, (4.8)

where

Rn

(
un, vh

n

)
= Bh

(
un, vh

n − u̇n

)
+ j

(
vh

n

)
− j (u̇n) −

(
�n, v

h
n − u̇n

)
.

From the lower bound (4.5) and the upper bound (4.8), we obtain inequality

1

2kn

(
�eh

n �2 − � eh
n−1�

2
)

� 1

kn
Bh

(
−ηn, eh

n − eh
n−1

)
+ �ηn � �δnuI

n − vh
n �

+M � δnuI
n − vh

n � +
∣
∣
∣Rn

(
un, vh

n

)∣
∣
∣ . (4.9)

Here, M = maxn �eh
n�. By an induction, we get

�eh
n�2 � 2

n∑

j=1

Bh

(
−η j , eh

j − eh
j−1

)
+ max

n
�ηn �

n∑

j=1

k j � δ j uI
j − vh

j �

+M
n∑

j=1

k j � δ j uI
j − vh

j � +
n∑

j=1

k j

∣
∣
∣R j

(
u j , v

h
j

)∣
∣
∣+ �eh

0 �2 .
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Noticing that

n∑

j=1

Bh

(
−η j , eh

j − eh
j−1

)
= Bh

(
−ηn, eh

n

)
+

n−1∑

j=1

Bh

(
η j+1 − η j , eh

j

)

and

δ j uI
j = uI

j − uI
j−1

k j
=

uI
j −

(
uI

j − k j u̇I
j

)

k j
= u̇I

j ,

we have

M2 � M

⎛

⎝max
n

�ηn � +
N−1∑

j=1

�η j+1 − η j � +
N∑

j=1

k j � u̇I
j − vh

j �

⎞

⎠

+ max
n

�ηn �

N∑

j=1

k j � u̇I
j − vh

j � +
N∑

j=1

k j |R j

(
u j , v

h
j

)
|. (4.10)

Using the relation

x, a, b ≥ 0 and x2 ≤ ax + b �⇒ x ≤ a + b1/2,

we obtain from (4.10) that

max
n

�uI
n − uhk

n � � max
n

�ηn � +
N−1∑

j=1

�η j+1 − η j � +
N∑

j=1

k j � u̇I
j − vh

j �

+
⎛

⎝max
n

�ηn �

N∑

j=1

k j � u̇I
j − vh

j �

⎞

⎠

1/2

+
⎛

⎝
N∑

j=1

k j |R j (u j , v
h
j )|
⎞

⎠

1/2

. (4.11)

By (3.16), we know that

�ηn� = �uI
n − un� � h.

From Taylor’s theorem, we have

η j+1 − η j =
(

uI
j+1 − uI

j

)
− (u j+1 − u j ) = k j+1u̇I

j − k j+1u̇ j

−
t j+1∫

t j

(t j+1 − t)ü(t) dt.
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Then

N−1∑

j=1

�η j+1 − η j� ≤
N−1∑

j=1

k j+1 � u̇I
j − u̇ j � +

N−1∑

j=1

k j+1 �

t j+1∫

t j

ü(t) dt �

� h + k � ü�L1(0,T ;V ),

where

�ü�L1(0,T ;V ) =
T∫

0

�ü(t) � dt.

Choose vh
j = �h u̇ j , then �u̇I

j − �h u̇ j� � h. To estimate the term |R j (u j , v
h
j )|,

doing similar argument for deriving (3.24), we obtain

R j

(
u j , v

h
j

)
� ‖�h u̇ j − u̇ j‖L2(�C )2 � h2

(
i0∑

i=1

‖u̇ j‖2
H2(�i )

)1/2

.

Finally, we apply the triangle inequality

�un − uhk
n � ≤ �un − uI

n � + � uI
n − uhk

n �

to obtain

max
n

�un − uhk
n � � h + k. (4.12)

Summarizing, we have shown the following results.

Theorem 4.2 Assume (3.11). Let u and uhk be the solutions of (2.17)–(2.18) and
(2.37)–(2.36), respectively. Assume u∈ L2(0, T ; [H2(�)]2), u̇∈ L2(0, T ; [H2(�)]2),

ü ∈ L1(0, T ; V )and u̇|�i ∈ L2(0, T ; [H2(�i )]2) for 1 ≤ i ≤ i0. Then the error bound
(4.12) holds.

5 Numerical example

We report numerical results from a two dimensional test example discretized by the
DG schemes in space and uniform finite difference scheme in time. We use Matlab
to implement the numerical examples. The physical setting is shown in Fig. 1. The
domain � = (0, 1) × (0, 1) is the cross section of a linearized elastic body. On the
boundary �D = {1}× (0, 1), the body is clamped and therefore the displacement field
vanishes there. The traction f 2 acts on the boundary {0}×(0, 1) whereas the boundary
of (0, 1) × {1} is traction free. Thus �F = {{0} × (0, 1)} ∪ {(0, 1) × {1}}. On the
boundary �C = (0, 1) × {0}, the body is in bilateral frictional contact with a rigid

123



796 F. Wang et al.

Γ
D

Γ
F

Ω elastic body

Γ
C

Γ
F

f
2

                              rigid obstacle

Fig. 1 An elastic body in contact with a frictional rigid obstacle

Fig. 2 A uniform triangulation of the domain

obstacle, and the friction is modeled with Tresca’s law. No volume force is assumed
to act on the body �.

We consider a homogeneous and isotropic elastic body. Let E be the Young’s
modulus and κ be the Poisson’s ratio of the material. Then the Lamé coefficients are

λ = Eκ

(1 + κ)(1 − 2κ)
, μ = E

2(1 + κ)
.

For computation, we use the following data

E = 200 daN/mm2, κ = 0.3, f 1 = 0 daN/mm2,

f 2(x1, x2, t) = (0.08(1.25 − x2)t,−0.01t) daN/mm2,

g = 0.004 daN/mm2, u0 = 0 m, T = 1s.

Here, the unit daN/mm2 denotes decanewtons per square millimeter.
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Fig. 3 Numerical errors of method of Bassi et al. [4] for several discretization parameters of h and k when
t = 1s
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Fig. 4 Numerical errors of method of Brezzi et al. [7] for several discretization parameters of h and k when
t = 1s

To observe the convergence behavior of the fully discrete scheme, we solve this
problem on a family of uniform triangular meshes of the kind shown in Fig. 2. We
start with h = 1/2 and k = 1/2 which are then decreased by half several times. To
compute errors of numerical solutions, we adopt the numerical solution corresponding
to h = 1/128 and k = 1/128 as “true” solution. The convergence behavior of the
four DG schemes in the norm � · � is shown in Figs. 3, 4, 5, 6, respectively. To
show the effect of the size of the penalty parameter η on the convergence, we let
ηe = η be the same on every edge. In Figs. 3 and 4, the linear asymptotic convergence
behavior is clearly observed for the method of Bassi et al. and that of Brezzi et al.
with every penalty constant choice ηe = 1,10,100 and 1,000, matching well the
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Fig. 5 Numerical errors of LDG method [11] for several discretization parameters of h and k when t = 1s
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Fig. 6 Numerical errors of IP method [14] for several discretization parameters of h and k when t = 1s

theoretical prediction (4.12). For h not too large, the difference of numerical errors is
invisible for the choices ηe = 100 and ηe = 1,000. The solid line for the variation of
the meshsize h is included for convenience in concluding linear convergence of the
numerical solutions. It is seen from Fig. 5 that the LDG method does not work well
with ηe = 1, 10 for the test problem. From Lemma 3.4, we know that a drawback of
the IP method is that the penalty parameter can not be precisely quantified a priori,
which must be chosen suitably large to guarantee stability. However, a large penalty
parameter has a negative impact on accuracy. In Fig. 6, we only give the numerical
error of the IP method for ηe = 10,000 and 100,000. We did the numerical test for
the case ηe = 1,10,100 and 1,000, but the IP method fails to be convergent.
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Fig. 7 Comparison of the numerical errors for the four DG methods
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Fig. 8 Deformed mesh (amplified by 200) solved by LDG method for h = 1/32 with t = 1s

To compare the performance of the four DG methods, we pick up the best one error
curve from each of Figs. 3, 4, 5, 6, and put them together into Fig. 7. In Fig. 8, we
show the deformed mesh (amplified by 200) solved by LDG method with ηe = 100
for h = 1/32 when t = 1s.

Acknowledgments We thank the two anonymous referees for their valuable comments that lead to an
improvement of the paper.

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

2. Arnold, D.N., Brezzi, F., Marini, L.D.: A family of discontinuous Galerkin finite elements for the
Reissner-Mindlin plate. J. Sci. Comput. 22, 25–45 (2005)

123



800 F. Wang et al.

3. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn.
Springer, Berlin (2009)

4. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite
element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.)
Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics,
pp. 99–108. Technologisch Instituut, Antwerpen, Belgium (1997)

5. Brenner, S.C.: Korn’s inequalities for piecewise H1 vector fields. Math. Comput. 73, 1067–1087 (2004)
6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer,

Berlin (2008)
7. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous finite elements for diffusion

problems. In: Atti Convegno in onore di F. Brioschi (Milan, 1997) Istituto Lombardo. Accademia di
Scienze e Lettere, Milan, Italy, pp. 197–217 (1999)

8. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for
elliptic problems. Numer. Methods Partial Differ. Equ. 16, 365–378 (2000)

9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)
10. Cockburn, B., Karniadakis, G. E., Shu, C.-W. (eds): Discontinuous Galerkin Methods. Theory,

Computation and Applications, Lecture Notes in Computer Science engineering, vol. 11. Springer,
New York (2000)

11. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-
diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

12. Djoko, J.K., Ebobisse, F., McBride, A.T., Reddy, B.D.: A discontinuous Galerkin formulation for
classical and gradient plasticity—part 1: formulation and analysis. Comput. Methods Appl. Mech.
Eng. 196, 3881–3897 (2007)

13. Djoko, J.K., Ebobisse, F., McBride, A.T., Reddy, B.D.: A discontinuous Galerkin formulation for
classical and gradient plasticity—part 2: algorithms and numerical analysis. Comput. Methods Appl.
Mech. Eng. 197, 1–21 (2007)

14. Douglas, Jr, J., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods,
Lecture Notes in Physics, vol. 58. Springer, Berlin (1976)

15. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American
Mathematical Society and International Press, USA (2002)

16. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite
Element Methods. SIAM, Philadelphia (1988)

17. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving elliptic variational inequal-
ities. SIAM J. Numer. Anal. 48, 708–733 (2010)

18. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving Signorini problem. IMA
J. Numer. Anal. 31, 1754–1772 (2011)

19. Wang, F., Han, W., Eichholz, J.: A posteriori error estimates of discontinuous Galerkin methods for
obstacle problems (submitted)

123


	Discontinuous Galerkin methods for solving a quasistatic contact problem
	Abstract
	1 Introduction
	2 Quasistatic contact problem and DG formulations
	2.1 Quasistatic contact problem and its weak formulation
	2.2 Notations and DG formulations

	3 Error estimates for the spatially semi-discrete approximation
	3.1 Consistency, boundedness and stability
	3.2 Error analysis

	4 Error estimates for fully discrete approximation
	5 Numerical example
	Acknowledgments
	References


