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1. Introduction

In this paper we extend the ideas inWanget al. (2010) in which the discontinuous Galerkin methods
(DGMs) for variational inequalities were analysed to solve the well-known Signorini problem. The ini-
tial DGM was introduced byReed & Hill (1973) for numerically solving the neutron transport equation.
In the past two decades DGMs have been widely used for a variety of partial differential equations, such
as hyperbolic equations, convection–diffusion equations, Navier–Stokes equations, Hamilton–Jacobi
equations and so on. We refer toCockburnet al. (2000) for a historical survey about DGMs.

DGMs provide discontinuous approximations by using the Galerkin method element-by-element
and transfer information between two neighbouring elements through the use of numerical traces (nu-
merical fluxes). The discontinuity property means that DGMs easily handle elements of arbitrary shapes
and irregular meshes with hanging nodes and have the flexibility to construct local shape function spaces
(hp-adaptivity). The increase of locality in discretization, which enhances the degree of paralleliz-
ability, is one of the main advantages. In addition, DGMs permit easy treatment of nonhomogeneous
boundary conditions, which greatly increases the robustness and accuracy of any boundary condition
implementation.

For elliptic problems there are two basic ways to construct DGMs. The first way is to replace the
bilinear form of a weak formulation by a new bilinear form with a penalty term penalizing the inter-
element discontinuity, see, e.g.Babǔska & Zlámal (1973), Douglas & Dupont(1976), Rivièreet al.
(1999), Brezzi et al. (2000). The second one is to choose suitable numerical fluxes to make the DG
schemes consistent, conservative and stable, see, e.g.Bassi & Rebay(1997), Cockburn & Shu(1998),
Cockburn(2003). Arnold et al. (2002, 2005) provide a unified error analysis of DGMs for elliptic
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1755

problems and succeed in building a bridge between these two families, establishing a framework to
understand their properties, differences and the connections between them. InWang et al. (2010) a
priori error estimates were established for the DGMs for solving an obstacle problem and a simplified
frictional problem, which reach optimal order for linear elements. We will extend the ideas therein to
solve the Signorini problem with DGMs.

The paper is organized as follows: in Section2 we introduce the Signorini problem and the DG
formulations for solving it. Then we show the consistency of the DG schemes and the boundedness and
stability of the bilinear forms in Section3. In Section4 we establisha priori error estimates for these
DGMs. In the last section we present results from a numerical example, paying particular attention to
numerical convergence orders.

2. Signorini problem and DG formulations

2.1 Signorini problem and its weak formulation

The Signorini problem is an elastostatics problem describing the contact of a deformable body with a
rigid frictionless foundation. It is an example of an elliptic variational inequality of the first kind. Let
Ω ⊂ Rd (d = 2, 3) be an open bounded connected domain with a Lipschitz boundaryΓ that is divided
into threepartsΓD, ΓF andΓC with ΓD, ΓF andΓC relatively open and mutually disjoint such that
meas(ΓD) > 0. The displacementu: Ω ⊂ Rd → Rd is a vector-valued function. The linearized strain
tensor is

εεε(u) =
1

2

(
∇u + (∇u)T ).

Consider a homogeneous, isotropic, linearized elastic material. Then the stress tensor is

σσσ = λ(tr εεε)I + 2μεεε, (2.1)

whereλ > 0 andμ > 0 are the Laḿe coefficients. The linearized strain and stress tensors are second-
order symmetric tensors, which take values inSd, the space of second-order symmetric tensors onRd

with the inner productσσσ : τττ = σi j τi j . Let ννν be the unit outward normal toΓ . For a vectorvvv denote
its normal component and tangential component byvν = vvv ∙ ννν andvvvτ = vvv − vνννν on the boundary.
Similarly, for a tensor-valued functionσσσ : Ω → Sd, we define its normal componentσν = (σσσννν) ∙ ννν and
tangential componentσσσ τ = σσσννν − σνννν. We have the decomposition formula

(σσσννν) ∙ vvv = (σνννν + σσσ τ ) ∙ (vνννν + vvvτ ) = σνvν + σσσ τ ∙ vvvτ .

Given f ∈ [L2(Ω)]d, g ∈ [L2(ΓF)]d, the Signorini problem is to find a displacement fieldu: Ω →
Rd and a stress fieldσσσ : Ω → Sd such that (Kikuchi & Oden, 1988)

1

2μ
σσσ −

λ

2μ(dλ + 2μ)
tr(σσσ)I = εεε(u) in Ω, (2.2)

−div σσσ = f in Ω, (2.3)

u = 000 onΓD, (2.4)

σσσννν = g onΓF, (2.5)

uν 6 0, σν 6 0, σνuν = 0, σσσ τ = 000 onΓC. (2.6)

Here (2.2) follows from the constitutive relation of the elastic material, (2.3) is the equilibrium equation
in which volume forces of densityf act inΩ. Boundary condition (2.4) means that the body is clamped
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1756 F. WANG ET AL.

onΓD and so the displacement field vanishes there. Surface tractions of densityg act onΓF in (2.5). The
body is in frictionless contact with a rigid foundation onΓC.

For a tensor-valued functionσσσ define its divergence by

div σσσ = (∂ j σi j )16i6d.

Then, for any symmetric tensorσσσ and any vector fieldvvv, both being continuously differentiable overΩ,
we have the following integration by parts formula:

∫

Ω
div σσσ ∙ vvv dx =

∫

Γ
σσσννν ∙ vvv ds −

∫

Ω
σσσ : εεε(vvv) dx. (2.7)

To give the weak formulation of the Signorini problem we define

Q =
{
τττ = (τi j ) ∈ L2(Ω)d×d | τi j = τ j i , 16 i, j 6 d

}
, (2.8)

V =
{
vvv ∈

[
H1(Ω)

]d | vvv = 000 onΓD
}
, (2.9)

K = {vvv ∈ V | vν 6 0 a.e. onΓC} . (2.10)

The admissible setK is nonempty, closed and convex. Following a standard argument (Han & Sofonea,
2002) we proceed to derive a weak formulation of the problem(2.2)–(2.6). For an arbitrary smooth
vector-valued functionvvv ∈ K , multiplying equation (2.3) by (vvv − u) and integrating overΩ, we obtain
by (2.7)

∫

Ω
σσσ : εεε(vvv − u) dx =

∫

Ω
f ∙ (vvv − u) dx +

∫

Γ
σσσννν ∙ (vvv − u) ds.

We use the boundary conditions (2.4) and (2.5) to deduce the equality
∫

Ω
σσσ : εεε(vvv − u) dx =

∫

Ω
f ∙ (vvv − u) dx +

∫

ΓF

g ∙ (vvv − u) ds +
∫

ΓC

σσσννν ∙ (vvv − u) ds. (2.11)

OverΓC, we have

σσσννν ∙ (vvv − u) = σν(vν − uν) + σσσ τ ∙ (vvvτ − uτ ) = σνvν,

where the boundary conditions (2.6) are used. Note that overΓC, we also haveσν 6 0 andvν 6 0. Then

σσσννν ∙ (vvv − u) > 0 onΓC.

Therefore, we derive from (2.11) that
∫

Ω
σσσ : εεε(vvv − u) dx >

∫

Ω
f ∙ (vvv − u) dx +

∫

ΓF

g ∙ (vvv − u) ds.

From the boundary conditions (2.4) and (2.6) we knowu ∈ K . By the above argument, the variational
formulation of the Signorini problem (2.2)–(2.6) is: find a displacement fieldu ∈ K such that

a(σσσ(u), εεε(vvv − u)) > `(vvv − u) ∀ vvv ∈ K , (2.12)

whereσσσ = σσσ(u) is given by (2.1) and the bilinear forma(∙, ∙) and the linear form̀ ∈ V ′ are

a(σσσ , τττ) =
∫

Ω
σσσ : τττ dx ∀ σσσ , τττ ∈ Q, (2.13)

`(vvv) =
∫

Ω
f ∙ vvv dx +

∫

ΓF

g ∙ vvv ds ∀ vvv ∈ V. (2.14)

This problem has a unique solution (Kikuchi & Oden, 1988).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/31/4/1754/671192 by U
niversity of Iow

a Libraries/Serials Acquisitions user on 03 M
ay 2019



DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1757

2.2 Notation and DG formulations

For definiteness, in the following, we only consider the cased = 2, although the discussion can be
adapted to the three-dimensional case. Given a bounded domainD ⊂ R2 and a positive integerm,
Hm(D) is the usual Sobolev space with the corresponding norm‖ ∙ ‖m,D and seminorm| ∙ |m,D. Let u =
(u1, u2)

T ∈ [Hm(D)]2 and define the corresponding norm and seminorm by‖u‖2
m,D =

∑2
i =1 ‖ui ‖2

m,D

and|u|2m,D =
∑2

i =1 |ui |2m,D. Similarly, τττ ∈ [L2(Ω)]2×2
s is a matrix-valued function with each compo-

nentτi j ∈ L2(Ω) andτ12 = τ21. We assumeΩ is a polygonal domain and consider a regular family of
triangulationsof Ω denoted by{Th}h that are compatible with the boundary splittingΓ = ΓD ∪ΓF∪ΓC,
i.e., if an element edge has a nonempty intersection with one of the setsΓD, ΓF andΓC, then the edge lies
entirely in the corresponding closedsetΓD, ΓF or ΓC. Let hK = diam(K ) andh = max{hK : K ∈ Th}.
Denote byEh the union of the boundaries of the elementsK of Th, E i

h = Eh\Γ the set of all interior
edges, andE0

h = Eh\(ΓF ∪ ΓC).
We introduce the following finite element spaces:

Vh =
{
vvvh ∈

[
L2(Ω)

]2: vhi |K ∈ P1(K ) ∀ K ∈ Th, i = 1, 2
}
,

Wh =
{
τττh ∈

[
L2(Ω)

]2×2
s : τhi j |K ∈ Pl (K ) ∀ K ∈ Th, i, j = 1, 2

}
, l = 0 or 1.

We define the finite element setKh to approximateK as follows:

Kh =
{
vvvh ∈ Vh: vhν(x) 6 0 ∀ nodesx ∈ ΓC

}
.

Becausevhν ∈ Kh is a linear finite element function,vhν 6 0 at all nodeson ΓC ensuresvhν 6 0 on
ΓC. For all vector-valued functionsvvv and matrix-valued functionsτττ thenεεεh(vvv) and divhτττ are defined
by the relationsεεεh(vvv) = εεε(vvv) and divhτττ = div τττ on any elementK ∈ Th.

Let e be an edge shared by two elementsK + andK −, andn± = n|∂K ± be the unit outward normal
vector on∂K ±. For a scalar functionw, let w± = w|∂K ± and similarly, for a vector-valued functionvvv
and a matrix-valued functionτττ , letvvv± = vvv|∂K ± , τττ± = τττ |∂K ± . Then define the averages{∙} and the jumps
[∙], J∙K one ∈ E i

h by

{w} =
1

2

(
w+ + w−), [w] = w+n+ + w−n−,

{vvv} =
1

2

(
vvv+ + vvv−), JvvvK=

1

2
(vvv+ ⊗ n+ + n+ ⊗ vvv+ + vvv− ⊗ n− + n− ⊗ vvv−),

{τττ } =
1

2

(
τττ+ + τττ−), [τττ ] = τττ+n+ + τττ−n−.

If e lies on the boundaryΓ , we set

{w} = w, [w] = wννν,

{vvv} = vvv, JvvvK= 1
2(vvv ⊗ ννν + ννν ⊗ vvv),

{τττ } = τττ , [τττ ] = τττννν.

Hereu ⊗ vvv is a matrix withui v j as its(i, j )th element.
For a vector-valued functionvvv and a matrix-valued functionτττ , after direct manipulation, we have

∑

K∈Th

∫

∂K
(τττn) ∙ vvv ds =

∑

e∈E i
h

∫

e
[τττ ] ∙ {vvv} ds +

∑

e∈Eh

∫

e
{τττ } : JvvvK ds. (2.15)
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1758 F. WANG ET AL.

To give the DG formulations we need lifting operatorsr0:
(
L2(E0

h)
)2×2
s → Wh, re:

(
L2(e)

)2×2
s → Wh

defined by
∫

Ω
r0(φφφ) : τττ dx = −

∫

E0
h

φφφ : {τττ } ds ∀ τττ ∈ Wh, φφφ ∈
(
L2(E0

h

))2×2
s , (2.16)

∫

Ω
re(φφφ) : τττ dx = −

∫

e
φφφ : {τττ } ds ∀ τττ ∈ Wh, φφφ ∈

(
L2(e)

)2×2
s . (2.17)

It is easy to check that the following identity holds:

r0(φφφ) =
∑

e∈E0
h

re(φφφ|e) ∀ φφφ ∈
(
L2(E0

h

))2×2
s ,

so we have

‖r0(φφφ)‖2 =
∥
∥
∑

e∈E0
h

re(φφφ|e)
∥
∥2 6 3

∑

e∈E0
h

‖re(φφφ|e)‖
2. (2.18)

We now present some DGMs for the Signorini problem (2.2)–(2.6). We multiply equations (2.2) and
(2.3) by test functionsτττ andvvv, respectively, and integrate on a subsetD ⊂ Ω. By (2.7) We get

∫

D

(
1

2μ
σσσ : τττ −

λ

4μ(λ + μ)
tr(σσσ)tr(τττ )

)
dx = −

∫

D
u ∙ div τττ dx +

∫

∂ D
u ∙ (τττn) ds, (2.19)

∫

D
f ∙ vvv dx =

∫

D
σσσ : εεε(vvv) dx −

∫

∂ D
(σσσn) ∙ vvv ds. (2.20)

In the equations above we append the subscripth to σσσ , u, div andεεε, add over all the elements, and use
numerical traceŝuh andσ̂σσ h to approximateu andσσσ over element edges to obtain
∫

Ω

(
1

2μ
σσσ h : τττh −

λ

4μ(λ + μ)
tr(σσσ h)tr(τττh)

)
dx = −

∫

Ω
uh ∙ divhτττh dx +

∑

K∈Th

∫

∂K
ûh ∙ (τττhnK ) ds,

(2.21)
∫

Ω
f ∙ vvvh dx =

∫

Ω
σσσ h : εεεh(vvvh) dx −

∑

K∈Th

∫

∂K
(σ̂σσ hnK ) ∙ vvvh ds

(2.22)

for all (τττh, vvvh) ∈ Wh ×Vh and allK ∈ Th. The numerical traceŝσσσ h andûh will be selected to guarantee
consistency and stability of the above scheme.

To derive a new formulation which does not rely onσσσ h explicitly, using (2.7) and (2.15), we have
from (2.21) and (2.22) that

∫

Ω

(
1

2μ
σσσ h : τττh −

λ

4μ(λ + μ)
tr(σσσ h)tr(τττh)

)
dx =

∫

Ω
εεεh(uh) : τττh dx +

∫

E i
h

{ûh − uh} ∙ [τττh] ds

+
∫

Eh

Jûh − uhK : {τττh} ds, (2.23)

∫

Ω
f ∙ vvvh dx =

∫

Ω
σσσ h : εεεh(vvvh) dx −

∫

E i
h

[σ̂σσ h] ∙ {vvvh} ds

−
∫

Eh

JvvvhK : {σ̂σσ h} ds. (2.24)
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1759

Choosingτττh = 2μεεεh(vvvh) + λ tr(εεεh(vvvh)) I in (2.23) we get
∫

Ω
σσσ h : εεεh(vvvh) dx =

∫

Ω
(2μεεεh(uh) : εεεh(vvvh) + λ tr(εεεh(uh))tr(εεεh(vvvh))) dx

+
∫

E i
h

{ûh − uh} ∙ (2μ[εεεh(vvvh)] + λ[tr(εεεh(vvvh))]) ds

+
∫

Eh

Jûh − uhK : (2μ{εεεh(vvvh)} + λ tr({εεεh(vvvh)})I) ds.

The combination of the last equation and (2.24) yields
∫

Ω
(2μεεεh(uh) : εεεh(vvvh) + λ tr(εεεh(uh))tr(εεεh(vvvh))) dx+

∫

E i
h

{ûh − uh}∙(2μ[εεεh(vvvh)] + λ[tr(εεεh(vvvh))]) ds

+
∫

Eh

Jûh − uhK : (2μ{εεεh(vvvh)} + λ tr({εεεh(vvvh)})I) ds

−
∫

E i
h

[σ̂σσ h] ∙ {vvvh} ds −
∫

Eh

JvvvhK : {σ̂σσ h} ds =
∫

Ω
f ∙ vvvh dx. (2.25)

We can get DGMs from (2.25) by correct choices of numerical traceŝσσσ h and ûh. There are three
principles for choosing appropriate numerical traces. Conservation requires the numerical traces to be
single valued over all edges; consistency of the numerical traces requiresûh(u) = u|Eh andσ̂σσ h(σσσ) =
σσσ |Eh ; stability is not easily ensured and it is usual to add a suitable penalty term (stability term) to
guarantee it. We will introduce five consistent and stable DGMs. For example, take






ûh = {uh} onEh\ΓD, ûh = 000 onΓD,

σ̂σσ h = 2μ{εεεh(uh)} + λ tr({εεεh(uh)})I −
η

he
JuhK onE0

h,

σ̂σσ hννν = g onΓF, σ̂σσ hτ = 000, σ̂hν 6 0, σ̂hνuhν = 0 onΓC,

where the functionη equals a constantηe on eache ∈ E0
h , with {ηe}e∈E0

h
having a uniform positive

bound from above and below. We obtain from (2.25) that

B(1)
1,h(uh, vvvh) =

∫

Ω
f ∙ vvvh dx +

∫

ΓF

g ∙ vvvh ds +
∫

ΓC

σ̂σσ hννν ∙ vvvh ds, (2.26)

where

B(1)
1,h(uh, vvvh) :=

∫

Ω
(2μεεεh(uh) : εεεh(vvvh) + λ tr(εεεh(uh))tr(εεεh(vvvh))) dx

−
∫

E0
h

JuhK : (2μ{εεεh(vvvh)} + λ tr({εεεh(vvvh)})I) ds

−
∫

E0
h

JvvvhK : (2μ{εεεh(uh)} + λ tr({εεεh(uh)})I) ds +
∫

E0
h

η

he
JuhK : JvvvhK ds. (2.27)

Let vvvh = wh − uh with wh ∈ Kh. Sinceσ̂σσ hτ = 000, σ̂hν 6 0, σ̂hνuhν = 0 onΓC, equation (2.26) leads to
the inequality

B(1)
1,h(uh, wh − uh) >

∫

Ω
f ∙ (wh − uh) dx +

∫

ΓF

g ∙ (wh − uh)ds ∀ wh ∈ Kh.
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1760 F. WANG ET AL.

The term
∫
E0

h
ηh−1

e JuhK : JvvvhK ds is the penalty term. This is the interior penalty (IP) formulation

(Douglas & Dupont, 1976). With the lift operatorr0, we can rewriteB(1)
1,h as

B(1)
2,h(uh, vvvh) : =

∫

Ω
(2μεεεh(uh) :

(
εεεh(vvvh) + r0(JvvvhK)

)
+ λ tr(εεεh(uh))tr(εεεh(vvvh) + r0(JvvvhK))) dx

+
∫

Ω
r0(JuhK) : (2μεεεh(vvvh) + λ tr(εεεh(vvvh))I) dx +

∫

E0
h

η

he
JuhK : JvvvhK ds. (2.28)

Note that (2.27) and (2.28) are equivalent onVh, implying that either one can be used to define
the numerical solutionuh. In this paper we give ana priori error estimate for the first formula (2.27).
Because (2.27) and (2.28) are equivalent onVh we will prove stability for the second formulaB(1)

2,h on

Vh, which guarantees the stability of the first formulationB(1)
1,h on Vh. This comment is valid for the

other DGMs to be introduced later.
By changing the sign of the second term in the bilinear formB(1)

1,h, we can give a nonsymmetric
interior penalty (NIPG) formulation (seeRivièreet al., 1999),

B(2)
1,h(uh, vvvh) : =

∫

Ω
(2μεεεh(uh) : εεεh(vvvh) + λ tr(εεεh(uh))tr(εεεh(vvvh))) dx

+
∫

E0
h

JuhK : (2μ{εεεh(vvvh)} + λ tr({εεεh(vvvh)})I) ds

−
∫

E0
h

JvvvhK : (2μ{εεεh(uh)} + λ tr({εεεh(uh)})I) ds +
∫

E0
h

η

he
JuhK : JvvvhK ds,

or equivalently,

B(2)
2,h(uh, vvvh) : =

∫

Ω

(
2μεεεh(uh) : (εεεh(vvvh) + r0(JvvvhK)) + λ tr(εεεh(uh))tr

(
εεεh(vvvh) + r0(JvvvhK)

))
dx

−
∫

Ω
r0(JuhK) : (2μεεεh(vvvh) + λ tr(εεεh(vvvh))I) dx +

∫

E0
h

η

he
JuhK : JvvvhK ds.

Using the local lifting operatorre, we can give the third example. Taking





ûh = {uh} onEh\ΓD, ûh = 000 onΓD,

σ̂σσ h = 2μ{εεεh(uh)} + λ tr({εεεh(uh)}) I + 2μ
{
r0(JuhK)

}
+ λ

{
tr
(
r0(JuhK)

)
I
}

+ 2μ
{
ηre(JuhK)

}
+ λ

{
η tr

(
re(JuhK)

)}
I onE0

h,

σ̂σσ hννν = g onΓF, σ̂σσ hτ = 000, σ̂hν 6 0, σ̂hνuhν = 0 onΓC,

from (2.25), we get

B(3)
1,h(uh, vvvh) : =

∫

Ω
(2μεεεh(uh) : εεεh(vvvh) + λ tr(εεεh(uh))tr(εεεh(vvvh))) dx

−
∫

E0
h

JuhK : (2μ{εεεh(vvvh)} + λ tr({εεεh(vvvh)})I) ds

−
∫

E0
h

JvvvhK : (2μ{εεεh(uh)} + λ tr({εεεh(uh)})I) ds
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+
∫

Ω
r0(JvvvhK) :

(
2μ r0(JuhK) + λ tr

(
r0(JuhK)

)
I
)

dx

+
∑

e∈E0
h

∫

Ω
η
(
2μ re(JuhK) : re(JvvvhK) + λ tr

(
re(JuhK)

)
tr
(
re(JvvvhK)

))
dx,

or equivalently,

B(3)
2,h(uh, vvvh) :=

∫

Ω
2μ
(
εεεh(uh) + r0(JuhK)

)
:
(
εεεh(vvvh) + r0(JvvvhK)

)
dx

+
∫

Ω
λ tr
(
εεεh(uh) + r0(JuhK)

)
tr
(
εεεh(vvvh) + r0(JvvvhK)

)
dx

+
∑

e∈E0
h

∫

Ω
η
(
2μ re(JuhK) : re(JvvvhK) + λ tr

(
re(JuhK)

)
tr
(
re(JvvvhK)

))
dx,

which is an extension of the method ofBrezziet al. (1999).
With the choice





ûh = {uh} onEh\ΓD, ûh = 000 onΓD,

σ̂σσ h = 2μ{εεεh(uh)} + λ tr({εεεh(uh)}) I + 2μ
{
ηre(JuhK)

}
+ λ

{
η tr

(
re(JuhK)

) }
I onE0

h,

σ̂σσ hννν = g onΓF, σ̂σσ hτ = 000, σ̂hν 6 0, σ̂hνuhν = 0 onΓC,

we obtain a DG formulation extended from the method ofBassiet al. (1997),

B(4)
1,h(uh, vvvh) :=

∫

Ω
(2μεεεh(uh) : εεεh(vvvh) + λ tr(εεεh(uh))tr(εεεh(vvvh))) dx

−
∫

E0
h

JuhK : (2μ{εεεh(vvvh)} + λ tr({εεεh(vvvh)})I) ds

−
∫

E0
h

JvvvhK : (2μ{εεεh(uh)} + λ tr({εεεh(uh)})I) ds

+
∑

e∈E0
h

∫

Ω
η
(
2μ re(JuhK) : re(JvvvhK) + λ tr

(
re(JuhK)

)
tr
(
re(JvvvhK)

))
dx,

or equivalently,

B(4)
2,h(uh, vvvh) :=

∫

Ω

(
2μεεεh(uh) :

(
εεεh(vvvh) + r0(JvvvhK)

)
+ λ tr(εεεh(uh))tr

(
εεεh(vvvh) + r0(JvvvhK)

))
dx

+
∫

Ω
r0(JuhK) : (2μεεεh(vvvh) + λ tr(εεεh(vvvh))I) dx

+
∑

e∈E0
h

∫

Ω
η
(
2μre(JuhK) : re(JvvvhK) + λ tr

(
re(JuhK)

)
tr
(
re(JvvvhK)

))
dx.

If we choose





ûh = {uh} onEh\ΓD, ûh = 000 onΓD,

σ̂σσ h = 2μ{εεεh(uh)} + λ tr({εεεh(uh)})I + 2μ
{
r0(JuhK)

}
+ λ

{
r0
(
tr(JuhK)I

)}
−

η

he
JuhK onE0

h,

σ̂σσ hννν = g onΓF, σ̂σσ hτ = 000, σ̂hν 6 0, σ̂hνuhν = 0 onΓC,
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1762 F. WANG ET AL.

then

B(5)
1,h(uh, vvvh) :=

∫

Ω
(2μεεεh(uh) : εεεh(vvvh) + λ tr(εεεh(uh))tr(εεεh(vvvh))) dx

−
∫

E0
h

JuhK : (2μ{εεεh(vvvh)} + λ tr({εεεh(vvvh)})I) ds

−
∫

E0
h

JvvvhK : (2μ{εεεh(uh)} + λ tr({εεεh(uh)})I) ds

+
∫

Ω
r0(JvvvhK) :

(
2μr0(JuhK) + λ tr

(
r0(JuhK)

)
I
)

dx +
∫

E0
h

η

he
JuhK : JvvvhK ds,

or equivalently,

B(5)
2,h(uh, vvvh) :=

∫

Ω
2μ
(
εεεh(uh) + r0(JuhK)

)
:
(
εεεh(vvvh) + r0(JvvvhK)

)
dx

+
∫

Ω
λ tr

(
εεεh(uh) + r0(JuhK)

)
tr
(
εεεh(vvvh) + r0(JvvvhK)

)
dx +

∫

E0
h

η

he
JuhK : JvvvhK ds,

which is an extension of the local discontinuous Galerkin (LDG) method ofCockburn & Shu(1998).
Let Bh(uh, vvvh) be one of the bilinear formsB( j )

1,h(uh, vvvh) with j = 1, . . . , 5. Then a DGM for the
Signorini problem (2.12) is: find uh ∈ Kh such that

Bh(uh, vvvh − uh) > `(vvvh − uh) ∀ vvvh ∈ Kh. (2.29)

3. Consistency, boundedness and stability

We note that if the solution of (2.12) has the regularityu ∈ [H2(Ω)]2, thenu is the solution of (2.2)–
(2.6), and on any interior edgee, JuK = 000, {u} = u, {εεε(u)} = εεε(u), [σσσ ] = 000, {σσσ } = σσσ . For all DGMs
introduced in the Section2.2we first show the consistency of the DG schemes.

LEMMA 3.1 (Consistency). Assumeu ∈ [H2(Ω)]2 is the solution of(2.12). Then for the DGMs
Bh(w, vvv) = B( j )

1,h(w, vvv) with j = 1, . . . , 5, we have

Bh(u, vvvh − u) > `(vvvh − u) ∀ vvvh ∈ Kh. (3.1)

Proof. Using (2.1), we obtain, for anyvvvh ∈ Kh,

Bh(u, vvvh − u) =
∫

Ω
(2μεεε(u) : εεεh(vvvh − u) + λ tr(εεε(u))tr(εεεh(vvvh − u))) dx

−
∫

E0
h

Jvvvh − uK : (2μεεε(u) + λ tr(εεε(u))I) ds

=
∑

K∈Th

∫

K
σσσ : εεεh(vvvh − u)dx −

∫

E0
h

Jvvvh − uK : σσσ ds.
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1763

By (2.7), (2.15) and noting [σσσ ] = 000 onE i
h, we get

∑

K∈Th

∫

K
σσσ : εεεh(vvvh − u) dx =

∑

K∈Th

∫

K
−div σσσ ∙ (vvvh − u) dx +

∑

K∈Th

∫

∂K
(σσσnK ) ∙ (vvvh − u) ds

=
∑

K∈Th

∫

K
−div σσσ ∙ (vvvh − u) dx +

∫

Eh

Jvvvh − uK : σσσ ds.

Then

Bh(u, vvvh − u) =
∫

Ω
f ∙ (vvvh − u) dx +

∫

ΓF

g ∙ (vvvh − u) dx +
∫

ΓC

(σσσννν) ∙ (vvvh − u) dx

= `(vvvh − u) +
∫

ΓC

σνvhν ds> `(vvvh − u).

The last inequality is obtained by (2.6) andvhν 6 0 for all vvvh ∈ Kh. Hence, (3.1) holds. �
To consider the boundedness and stability of the bilinear formBh, as inWang et al. (2010), let

V(h) = Vh + V ∩ [H2(Ω)]2, and forvvv ∈ V(h) define seminorms as follows:

|vvv|2K :=
∫

K
εεε(vvv) : εεε(vvv) dx, |vvv|2h :=

∑

K∈Th

|vvv|2K , |vvv|2∗ :=
∑

e∈E0
h

h−1
e

∥
∥JvvvK

∥
∥2

0,e,

where

∥
∥JvvvK

∥
∥2

0,e =
∫

e
JvvvK : JvvvK ds.

Then define norms by

9vvv92
∗ := |vvv|2h + |vvv|2∗, 9vvv92 := 9vvv 92

∗ +
∑

K∈Th

h2
K |vvv|22,K . (3.2)

The norm9 ∙9∗ defined in (3.2) is equivalent to the usual DG norm(| ∙ |21,h + | ∙ |2∗)
1/2, thanks to Korn’s

inequality (seeBrenner, 2004; see also Proposition 4.6 ofArnold et al., 2005).
Before presenting the boundedness and stability of the bilinear forms, we give a useful estimate for

the lifting operatorre. The following lemma is a trivial extension to vectorsvvv of Lemma 2 ofBrezzi
et al. (2000), also restated inArnold et al. (2002).

LEMMA 3.2 For anyvvv ∈ V(h) ande ∈ E0
h ,

C1h−1
e

∥
∥JvvvK

∥
∥2

0,e 6
∥
∥re(JvvvK)

∥
∥2

0,h 6 C2h−1
e

∥
∥JvvvK

∥
∥2

0,e. (3.3)

From (3.3) and (2.18) we have

∥
∥r0(JvvvK)

∥
∥2

0,h =
∥
∥
∑

e∈E0
h

re(JvvvK)
∥
∥2

0,h 6 3C2

∑

e∈E0
h

h−1
e

∥
∥JvvvK

∥
∥2

0,e = 3C2|vvv|2∗.
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1764 F. WANG ET AL.

To consider the boundedness of the primal formsBh, noting ‖tr(τττ)‖ 6 ‖τττ‖ for a matrix-valued
functionτττ , we use the Cauchy–Schwarz inequality to bound them term-by-term,

∫

Ω
εεεh(w) : εεεh(vvv) dx 6 |w|h|vvv|h, (3.4)

∫

Ω
r0(JwK) : r0(JvvvK) dx . |w|∗|vvv|∗, (3.5)
∫

E0
h

ηh−1
e JwK : JvvvK ds6 sup

e∈E0
h

ηe|w|∗|vvv|∗, (3.6)

∑

e∈E0
h

∫

Ω
η re(JwK) : re(JvvvK) dx . sup

e∈E0
h

ηe|w|∗|vvv|∗. (3.7)

Here ‘. . . .’ stands for ‘6 C . . .’, where C is a positive generic constant independent ofh and
other parameters, which may take different values in different appearances. Using the trace inequal-
ity ‖εεεh(vvv)‖2

0,e . h−1
e |v|21,K + he|v|22,K , we have

∫

E0
h

JwK : {εεεh(vvv)} ds6





∑

e∈E0
h

h−1
e

∥
∥JwK

∥
∥2

0,e






1/2



∑

e∈E0
h

he‖{εεεh(vvv)}‖2
0,e






1/2

. |w|∗




∑

K∈Th

(
|vvv|21,K + h2

e|vvv|22,K

)




1/2

6 |w|∗ 9 vvv 9 . (3.8)

The inequalities (3.4) and (3.8) are needed by all bilinear forms. For the DGMs with the bilinear form
B( j )

1,h, j = 1, 2, 5, inequality (3.6) is needed. Inequality (3.5) is needed by the formulasB( j )
1,h with

j = 3, 5. For the methods with the bilinear formsB( j )
1,h, j = 3, 4, the inequality (3.7) is needed. So we

have the following results about the boundedness ofBh.

LEMMA 3.3 (Boundedness). For 16 j 6 5, Bh = B( j )
1,h satisfies

Bh(w, vvv) . 9w9 9vvv 9 ∀ w, vvv ∈ V(h). (3.9)

For stability, note that9vvv9 = 9vvv9∗ for anyvvv ∈ Vh. SinceB( j )
1,h andB( j )

2,h coincide onVh, once we

have proved the stability forB( j )
2,h onVh, the stability ofB( j )

1,h onVh follows. We use the Cauchy–Schwarz
inequality and Lemma3.2to get

B(1)
2,h(vvv, vvv) = 2μ

∫

Ω
εεεh(vvv) : εεεh(vvv) dx + λ

∫

Ω
(tr(εεεh(vvv)))2 dx + 4μ

∫

Ω
εεεh(vvv) : r0(JvvvK) dx

+ 2λ

∫

Ω
tr(εεεh(vvv))tr

(
r0(JvvvK)

)
dx +

∫

E0
h

ηh−1
e JvvvK : JvvvK ds
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1765

> 2μ|vvv|2h + λ‖divhvvv‖2
0,h − 2μ

(
ε|vvv|2h +

1

ε

∥
∥r0(JvvvK)

∥
∥2

0,h

)

− λ
(
‖divhvvv‖2

0,h +
∥
∥tr
(
r0(JvvvK)

)∥∥2
0,h

)
+ η0

∑

e∈E0
h

h−1
e

∥
∥JvvvK

∥
∥2

0,e

> 2μ(1 − ε)|vvv|2h +
(

η0 −
6μC2

ε
− 6C2λ

)
|vvv|2∗.

Here ‖v‖2
0,h =

∑
K∈Th

‖v‖2
0,K , 0 < ε < 1 is a constant andC2 is the positive constant in (3.3).

Therefore, stability is valid for the IP method when mine∈E0
h
ηe = η0 > 6C2(μ + λ).

B(2)
2,h(vvv, vvv) = 2μ

∫

Ω
εεεh(vvv) : εεεh(vvv) dx + λ

∫

Ω
(tr(εεεh(vvv)))2 dx +

∫

E0
h

ηh−1
e JvvvK : JvvvK ds

> 2μ|vvv|2h + η0|vvv|2∗.

So stability holds for the NIPG method for anyη0 > 0.

B(3)
2,h(vvv, vvv) > 2μ

∥
∥εεεh(vvv) + r0(JvvvK)

∥
∥2

0,h + η0

∑

e∈E0
h

(
2μ
∥
∥re(JvvvK)

∥
∥2

0,h + λ
∥
∥tr
(
re(JvvvK)

)∥∥2
0,h

)

> 2μ



|vvv|2h +
∥
∥r0(JvvvK)

∥
∥2

0,h + 2
∑

K∈Th

∫

K
εεεh(vvv) : r0(JvvvK) dx



+ 2μC1η0|vvv|2∗

> 2μ

(
(1 − ε)|vvv|2h +

(
1 −

1

ε

)∥
∥r0(JvvvK)

∥
∥2

0,h

)
+ 2μC1η0|vvv|2∗

> 2μ(1 − ε)|vvv|2h + 2μ

(
3C2

(
1 −

1

ε

)
+ C1η0

)
|vvv|2∗.

Stability holds forη0 > 0.

B(4)
2,h(vvv, vvv) > 2μ|vvv|2h + λ‖divhvvv‖2

0,h + 4μ

∫

Ω
εεεh(vvv) : r0(JvvvK) dx + 2λ

∫

Ω
divhvvv tr

(
r0(JvvvK)

)
dx

+ η0

∑

e∈E0
h

(
2μ
∥
∥re(JvvvK)

∥
∥2

0,h + λ
∥
∥tr
(
re(JvvvK)

)∥∥2
0,h

)

> 2μ|vvv|2h + λ‖divhvvv‖2
0,h − 2μ

(
ε|vvv|2h +

1

ε

∥
∥r0(JvvvK)

∥
∥2

0,h

)
− λ‖divhvvv‖2

0,h

− λ
∥
∥tr
(
r0(JvvvK)

)∥∥2
0,h + η0C12μ

∑

e∈E0
h

h−1
e

∥
∥JvvvK

∥
∥2

0,e + η0λ
∑

e∈E0
h

∥
∥tr
(
re(JvvvK)

)∥∥2
0,h

> 2(1 − ε)μ|vvv|2h + 2μ

(
η0C1 −

3C2

ε

)
|vvv|2∗ + λ (η0 − 3)

∑

e∈E0
h

∥
∥tr
(
re(JvvvK)

)∥∥2
0,h.

SinceC2 > C1, η0 > 3 is guaranteed fromη0 > 3C2/C1. So stability is valid for this DG formulation
whenη0 > 3C2/C1.
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B(5)
2,h(v, v) > 2μ

∥
∥εεεh(vvv) + r0(JvvvK)

∥
∥2

0,h +
∫

E0
h

ηe

he
JvvvK : JvvvK ds

> 2μ



|vvv|2h +
∥
∥r0(JvvvK)

∥
∥2

0,h + 2
∑

K∈Th

∫

K
εεεh(vvv) : r0(JvvvK) dx



+ η0|vvv|2∗

> 2μ

(
(1 − ε)|vvv|2h +

(
1 −

1

ε

)∥
∥r0(JvvvK)

∥
∥2

0,h

)
+ η0|vvv|2∗

> 2μ(1 − ε)|vvv|2h +
(

η0 + 6μC2 −
6μC2

ε

)
|vvv|2∗.

It is clear that stability holds for the LDG method whenη0 > 0. Summarizing the above argument we
have the next result.

LEMMA 3.4 (Stability). For 16 j 6 5, Bh = B( j )
1,h andB( j )

2,h satisfy

Bh(vvv, vvv) & 9vvv 92
∗ ∀ vvv ∈ Vh (3.10)

if η0 = mine∈E0
h
ηe > 0 for the methods withj = 2, 3, 5, andη0 is large enough for the methods with

j = 1, 4.

4. Approximation and error estimates

Considering the error estimation for the DG methods, we first write the error as

e = u − uh = (u − uI ) + (uI − uh),

whereuI ∈ Vh is the usual continuous piecewise linear interpolant of the exact solutionu. ThenJu −
uI K = 000 on the interelement boundaries. By the definition of norm (3.2) we have the approximation
property, assumingu ∈ [H2(Ω)]2,

9u − uI9
2 = |u − uI |

2
h +

∑

K∈Th

h2
K |u − uI |

2
2,K . h2|u|22,Ω . (4.1)

In the next result we need some additional solution regularity assumption. Assume that both tangen-
tial and normal derivatives ofu on ΓC are piecewise in [L∞]2, i.e., on each line segment piece ofΓC,
both tangential and normal derivatives ofu belong to the space [L∞]2 (a similar assumption is made in
Brezziet al., 1977in the proof of Lemma 6.1 there). As inBrezziet al. (1977) we also assume that the
number of changes fromuν < 0 touν = 0 onΓC is finite.

THEOREM 4.1 Letu anduh be the solutions of (2.12) and (2.29), respectively. Assumeu ∈ [H2(Ω)]2,
both tangential and normal derivatives ofu on ΓC are piecewise in [L∞]2, and the number of changes
from uν < 0 touν = 0 onΓC is finite. Then for the DGMs withj = 1, . . . , 5, we have the error bound

9u − uh9 . h. (4.2)

Proof. By the stability of the bilinear formBh we have

9uI − uh9
2 . Bh(uI − uh, uI − uh) ≡ T1 + T2, (4.3)
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where

T1 = Bh(uI − u, uI − uh),

T2 = Bh(u − uh, uI − uh).

We boundT1 as follows, using the boundedness ofBh,

T1 . 9uI − u 9 9uI − uh9 . ε 9 uI − uh 9
2 +

1

4ε
9 uI − u92, (4.4)

whereε > 0 is an arbitrarily small number.
Then we boundT2. Note that on an interior edge,JuK = 000, {u} = u, {σσσ } = σσσ , and onΓD, JuK = 000.

Then

Bh(u, uI − uh) =
∫

Ω
(2μεεε(u) : εεεh(uI − uh) + λ tr(εεε(u))tr(εεεh(uI − uh))) dx

−
∫

E0
h

JuI − uhK : (2μεεε(u) + λ tr(εεε(u))I) ds

=
∑

K∈Th

∫

K
σσσ : εεεh(uI − uh) dx −

∫

E0
h

JuI − uhK : σσσ ds.

Since [σσσ ] = 000 on an interior edge and remembering (2.3) we have

∑

K∈Th

∫

K
σσσ : εεεh(uI − uh) dx =

∑

K∈Th

∫

K
−div σσσ ∙ (uI − uh) dx +

∑

K∈Th

∫

∂K
(σσσnK ) ∙ (uI − uh) ds

=
∑

K∈Th

∫

K
f ∙ (uI − uh) dx +

∫

Eh

JuI − uhK : σσσ ds.

Then

Bh(u, uI − uh) =
∫

Ω
f ∙ (uI − uh) dx +

∫

ΓF

g ∙ (uI − uh) ds +
∫

ΓC

(σσσννν) ∙ (uI − uh) ds. (4.5)

Choosingvvvh = uI in (2.29) we have

Bh(uh, uI − uh) > `(uI − uh). (4.6)

Let ΓT andΓN denote the sets of edges⊂ ΓC whereuν = 0 anduν < 0, respectively. Combining (4.6)
and (4.5) we obtain

T2 = Bh(u − uh, uI − uh) 6
∫

ΓC

(σσσννν) ∙ (uI − uh) ds

=
∫

ΓC

σν(uI ν − uhν) ds6
∫

ΓC

σνuI ν ds = T3 + T4 + T5, (4.7)

where

T3 =
∫

e⊂ΓT

σνuI ν ds, T4 =
∫

e⊂ΓN

σνuI ν ds, T5 =
∫

e⊂ΓC\(ΓT∪ΓN)
σνuI ν ds.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/31/4/1754/671192 by U
niversity of Iow

a Libraries/Serials Acquisitions user on 03 M
ay 2019



1768 F. WANG ET AL.

From σνuν = 0 on ΓC it is easy to know thatT3 = 0 andT4 = 0. Consider the termT5. If e ⊂
ΓC\(ΓT ∪ ΓN), then there exists a pointP ∈ e satisfyinguν(P) = 0. By the regularity assumption over
ΓC, we haveuI ν = O(h) one ⊂ ΓC\(ΓT ∪ ΓN) andσν ∈ L∞(ΓC). Hence,

T5 =
∫

e⊂ΓC\(ΓT∪ΓN)
σνuI ν ds. h2.

Thus, under the stated regularity assumptions,T2 . h2 and the proof is completed. �

REMARK 4.2 For the scalar unilateral variational inequality

u ∈ K ,

∫

Ω
[∇u∙∇(v − u) + u(v − u)] dx >

∫

Ω
f (v − u) dx ∀ v ∈ K ,

whereΩ ⊂ R2 is a bounded, convex polygonal domain, and

K =
{
v ∈ H1(Ω): v > 0 a.e. on ∂Ω

}
,

the optimal linear convergence for the linear element solution is proved inDobrowolski & Staib(1992)
without the additional assumption that the number of switches betweenu > 0 andu = 0 onΓC is finite.
For the Signorini problem that we are studying in this paper, it does not appear possible to adapt the
arguments inDobrowolski & Staib(1992) to show the optimal error bound (4.2) without the additional
assumption that the number of changes fromuν < 0 touν = 0 onΓC is finite.

5. Numerical example

We report some numerical results on a two-dimensional test problem solved by the LDG method. The
physical setting is given in Fig.1. The domainΩ = (0, 4) × (0, 4) can be viewed as the cross section
of a linearized elastic body. On the boundaryΓD = {4} × (0, 4), the body is clamped and hence the
displacement field vanishes there. The traction acts on the boundary{0} × (0, 4) and the boundary of
(0, 4)×{4} is traction free. Therefore,ΓF = {0}×(0, 4)∪(0, 4)×{4}. On the boundaryΓC = (0, 4)×{0},
the body contacts with a frictionless rigid foundation. No volume force is assumed to act on the body
Ω. Let E be Young’s modulus andκ be the Poisson ratio of the material. Then the Lamé coefficients
are

λ =
Eκ

(1 + κ)(1 − 2κ)
, μ =

E

2(1 + κ)
.

In this example we use the following data:

E = 200 daN/mm2, κ = 0.3, f = 000 daN/mm2,

g(x1, x2) = (0.02(5 − x2), −0.01) daN/mm2,

where the unit daN/mm2 denotes decanewtons per square milimeter. We solve the discretized problem
on uniform triangular meshes, see Fig.2.

To consider the convergence order we solve the problem on a family of uniform meshes. We start
with h = 2

√
2, which decreases by half, and adopt the numerical solution on the meshh =

√
2/16

as the ‘exact’ solution computing errors of the numerical solution on other meshes. In Fig.3 we show
the deformed mesh (amplified by 200) forh =

√
2/16. We observe from Fig.4 that the numerical

convergence orders in both norms||| ∙ ||| and| ∙ |h are∼1, matching the theoretical prediction well.
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FIG. 1. An elastic body on a frictionless rigid foundation.

FIG. 2. A uniform triangular mesh of the domain.
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FIG. 3. Deformed mesh (amplified by 200) forh =
√

2/16.

FIG. 4. Numerical errors.
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