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1. Introduction

In this paper we extend the ideasWanget al. (2010 in which the discontinuous Galerkin methods
(DGMs) for variational inequalities were analysed to solve the well-known Signorini problem. The ini-
tial DGM was introduced byReed & Hill (1973 for numerically solving the neutron transport equation.

In the past two decades DGMs have been widely used for a variety of partial differential equations, such
as hyperbolic equations, convection—diffusion equations, Navier—Stokes equations, Hamilton—Jacobi
equations and so on. We refer@ackburnet al. (2000 for a historical survey about DGMs.

DGMs provide discontinuous approximations by using the Galerkin method element-by-element
and transfer information between two neighbouring elements through the use of numerical traces (nu-
merical fluxes). The discontinuity property means that DGMs easily handle elements of arbitrary shapes
and irregular meshes with hanging nodes and have the flexibility to construct local shape function spaces
(hp-adaptivity). The increase of locality in discretization, which enhances the degree of paralleliz-
ability, is one of the main advantages. In addition, DGMs permit easy treatment of nonhomogeneous
boundary conditions, which greatly increases the robustness and accuracy of any boundary condition
implementation.

For elliptic problems there are two basic ways to construct DGMs. The first way is to replace the
bilinear form of a weak formulation by a new bilinear form with a penalty term penalizing the inter-
element discontinuity, see, e.Babwska & Zlamal (1973, Douglas & Dupont(1976, Riviereet al.

(1999, Brezziet al. (2000. The second one is to choose suitable numerical fluxes to make the DG
schemes consistent, conservative and stable, se®asgi. & Rebay(1997), Cockburn & Shu(1998,
Cockburn(2003. Arnold et al. (2002 2005 provide a unified error analysis of DGMs for elliptic
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1755

oQ

problems and succeed in building a bridge between these two families, establishing a framework te
understand their properties, differences and the connections between thé/andret al. (2010 a
priori error estimates were established for the DGMs for solving an obstacle problem and a simplified§
frictional problem, which reach optimal order for linear elements. We will extend the ideas therein to 3
solve the Signorini problem with DGMs.

The paper is organized as follows: in Sect®mve introduce the Signorini problem and the DG
formulations for solving it. Then we show the consistency of the DG schemes and the boundedness an:
stability of the bilinear forms in SectioB In Section4 we establista priori error estimates for these
DGMs. In the last section we present results from a numerical example, paying particular attention t
numerical convergence orders.
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2. Signorini problem and DG formulations
2.1 Signorini problem and its weak formulation

The Signorini problem is an elastostatics problem describing the contact of a deformable body with
rigid frictionless foundation. It is an example of an elliptic variational inequality of the first kind. Let
@ c RY(d = 2, 3) be an open bounded connected domain with a Lipschitz bouridémt is divided

into threeparts I'p, Ir and Ic with Ip, I+ and I¢ relatively open and mutually disjoint such that
meas$/p) > 0. The displacement: @ c RY — RY is a vector-valued function. The linearized strain
tensor is

e(u) = (Vu+ (vuyT).
Consider a homogeneous, isotropic, linearized elastic material. Then the stress tensor is
o = (re)l +2ue, (2.1)

wherel > 0 andu > O are the Laré coefficients. The linearized strain and stress tensors are second-
order symmetric tensors, which take value$§th the space of second-order symmetric tensor&6n
with the inner product: ¢ = aijj 7jj. Let v be the unit outward normal té'. For a vectom denote

its normal component and tangential componenbby= » - v ando, = v — v,v on the boundary.
Similarly, for a tensor-valued functiom: 2 — SY, we define its normal componest = (ev) - v and
tangential componemt, = v — 5,v. We have the decomposition formula

(6v) -0 = (oyw+0;)- (0 +0;) =0y0y + 06, - 0;.

Givenf € [L2(2)]9, g € [L2(IF)]9, the Signorini problem is to find a displacement fiald? —
RY and a stress field: @ — SY such thatKikuchi & Oden, 1989

%a - mtr(a)l =¢g(u) inQ, (2.2)
—dive =f in Q, (2.3)

u=~0 on/p, (2.4)

ov =g on/r, (2.5)

» <0, 0,<0, oy,u, =0, 6, =0 on/c. (2.6)

Here @.2) follows from the constitutive relation of the elastic materidl 3 is the equilibrium equation
in which volume forces of densitiyact in Q. Boundary conditionZ.4) means that the body is clamped
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1756 F. WANGET AL.

on /p and so the displacement field vanishes there. Surface tractions of dgasttgn/ in (2.5). The
body is in frictionless contact with a rigid foundation &8.
For a tensor-valued functian define its divergence by

dive = (9jaij)1<i<d-

Then, for any symmetric tenserand any vector field, both being continuously differentiable@w?,
we have the following integration by parts formula:

/diva~odx:/av-vds—/a:s(v)dx. 2.7)

Q r Q

To give the weak formulation of the Signorini problem we define
Q={r =) e L@ | 5j = 7ji, 1<i, j <d}, (2.8)
V={oe[HY@)]" o =00nrp}, (2.9)
K={eV]v, <0aeonlg}. (2.10)

The admissible sef is nonempty, closed and convex. Following a standard argurhiam & Sofonea
2002 we proceed to derive a weak formulation of the problgh?)—(2.6). For an arbitrary smooth
vector-valued functiom € K, multiplying equation2.3) by (v — u) and integrating ovef2, we obtain

by (2.7)
/Qa:e(v—u)dx:/gf-(o—u)dX+/F0v-(o—u)ds.

We use the boundary conditiorz4) and @.5) to deduce the equality
/ c :e(u—u)dx:/ f-(u—u)dx+/ g-(u—u)ds+/ ov - (v —u)ds. (2.11)
Q Q IE Ic

Over Ic, we have
ov-(v—Uu)=o0,(vy —U,)+0;-(0; —U;) =00,
where the boundary condition®.6) are used. Note that ovék, we also have, < 0 andv, < 0. Then
ov-(b—u)>0 onlg.
Therefore, we derive fron2(11) that
/a:s(o—u)dx}/f(o—u)dx—i- g-(v—u)ds.
Q Q Ik

From the boundary condition2.4) and @.6) we knowu € K. By the above argument, the variational
formulation of the Signorini problen®(2—(2.6) is: find a displacement field € K such that

a(e(u),e(d —u) =¢t(®—u) VoekK, (2.12)
wheres = ¢ (u) is given by @.1) and the bilinear forna(-, -) and the linear fornf € V’ are
a(a',r)z/ oc.tdX Vo,7€Q, (2.13)
Q
f(o):/f-odx+ g-ods VoeV. (2.14)
Q IE

This problem has a unique solutiokikuchi & Oden 1988.
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1757

2.2 Notation and DG formulations

For definiteness, in the following, we only consider the cdse 2, although the discussion can be
adapted to the three-dimensional case. Given a bounded ddnanR? and a positive integem,
H™(D) is the usual Sobolev space with the corresponding rjoriw, o and seminorn- |m p. Letu =
(U1, u2)T € [H™(D)]? and define the corresponding norm and seminormiuit, , = 2 ui I%.5
and|ulf, p = =32 |uj |, p- Similarly, z e [L2(2)]2*? is a matrix-valued function with each compo-
nentzj LZ(Q) andri2 = 721. We assume? is a polygonal domain and consider a regular family of
triangulationsof Q denoted by 7n}h that are compatible with the boundary splittifig= T UTFUTc,
i.e., if an element edge has a nonempty intersection with one of thésefs and /¢, then the edge lies
entirely in the corresponding closedt/p, IF or Ic. Lethk = diam(K) andh = maxthk: K € Tn}.
Denote by&}, the union of the boundaries of the elemeKtf 7y, 6,2 = &n\I the set of all interior
edges, and? = En\([F U Ic).

We introduce the following finite element spaces:

Vi = {vh e [L2(2)]% vhilk € Pu(K) VK € Th, i =1, 2},
Wh = [zh e [LA@)]2?: mijlk e R(K)YK € T, i, ] = 1,2}, | =0orl
We define the finite element skt, to approximateK as follows:
Kh = {oh € Vh: ony(X) < 0V nodesx € Ic}.

Becausen, € K is a linear finite element functiomy, < 0 at all nodeon 7¢ ensuresp, < 0on
Ttc. For all vector-valued functions and matrix-valued functions thenen(v) and divyt are defined
by the relationgn(v) = ¢(v) and divyt = div 7 on any elemenK € 7.

Let e be an edge shared by two elemeKts andK —, andn* = n|,k+ be the unit outward normal
vector onoK *. For a scalar functiom, let w® = w|,x+ and similarly, for a vector-valued functian
and a matrix-valued function, leto® =o|yk=, 7T = 7|,k +. Then define the averagg$ and the jumps
[l [-] one € &, by

fwy=Z(w"+w7), [wl=w'nt+w™n",

1
p)=>(0T+07), [o]= E(v+®n++n+®v++v‘<§§>n‘+n_<§§>o‘),

= NIRR N

{r}:E(t++1:_), [t]=tTnT 4+ 77n".
If elies on the boundary’, we set
{wh=w, [w]=wv,

=0, []=30e®v+veo),
{t}=1, [r]=r1v.

Hereu ® o is a matrix withujo; as its(i, j)th element.
For a vector-valued functiom and a matrix-valued function, after direct manipulation, we have

Z/ (zn) - vdS—Z/[t] {v}ds+ Z/{T} [[v]}ds (2.15)

KeTh e, ecéh
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1758 F. WANGET AL.

To give the DG formulations we need lifting operatess (L2(£2))2*% — Wh, re: (L2(€))2*? - Wh
defined by
/ fo(@) : 7 dx = —/O¢ H{z}ds VreWh, ¢e(L3(E))P2 (2.16)
Q £9
/ re(@) : 7 dx = —/¢ {z}ds VreWh ¢e (L) (2.17)
Q e
It is easy to check that the following identity holds:
ro@) = > re(dle) Ve e (LA(E)Z,
eegﬁ
so we have
Iro@) 2= | > re(@le)|> <3 lire(dle) 1 (2.18)
eezi'l(qJ eefr?

We now present some DGMs for the Signorini probl&2f—(2.6). We multiply equations2.2) and
(2.3 by test functiong andv, respectively, and integrate on a subBet- Q. By (2.7) We get

1 A - _ -di :
/D (ZO' . T — mtr(ﬂ)tr(l’)) dx = /D u-div 7 dx +/(';D u (tn) dS, (219)

/Df~vdX:/Do' :s(v)dx—/aD(on)-vds. (2.20)

In the equations above we append the substripte, u, div ande, add over all the elements, and use
numerical tracesi;, anda, to approximates ande over element edges to obtain

1 A
—06h.Th— ————1Ir tr dx =— [ up-divazhdx + /lT~ ng) ds,
/Q(Zﬂah Th G+ (on) (Th)) /g h hTh Kg:Th " h - (ThNk)

(2.21)
/f-vth:/ahzah(vh)dx— Z/ (Ghnk) - on ds
Q Q KeTr oK

(2.22)

for all (zh, 1) € Wh x V and allK € Tn. The numerical tracesp, anddy, will be selected to guarantee
consistency and stability of the above scheme.

To derive a new formulation which does not rely @ explicitly, using .7) and .15, we have
from (2.21) and Q.22 that

1 A .
/g (Zah T Th — mtr(ah)tr(rh)) dx = /Q en(up) : Thdx +/€L{Uh — Up}-[th] ds

+ [ [dh —un] : {zn) ds, (2.23)
&n
/ f.thX:/ oh:en(op) dx_/_[a'\h]-{l)h}ds
Q 0 gh
—/ [on] : {on} ds. (2.24)
én
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1759
Choosingrh = 2u en(vp) + A tr(en(on)) | in (2.23 we get
[ ononon) dx= [ @ onun): en(om) + 4 trn(un)iron(on)) o
+ (@ = ) @ulen(on] + A en(on)) o
+ 105~ ] @slen(on) + 2 Clen (o)) ds.
The combination of the last equation ar&24) yields
[ @uontin: enton) + 4 trenumtenon)) x| (= ) @alon(on)] + AL enon)) o
+ /gh[[uAh — un] : (2u{en(on)} + A tr(fen(on)}I) ds

—/gé[é\h]-{vh}ds—/gh[[vhﬂ:{&\h} ds:/gf-vhdx. (2.25)

We can get DGMs from2.25 by correct choices of numerical tracgg anduy. There are three

principles for choosing appropriate numerical traces. Conservation requires the numerical traces to b

single valued over all edges; consistency of the numerical traces regui®@s= ulg, andeh(c) =

a|g,; stability is not easily ensured and it is usual to add a suitable penalty term (stability term) to

guarantee it. We will introduce five consistent and stable DGMs. For example, take
Uh = {un} oné&\7p, Uh=0 onIlp,
h = 2ulen(un)} + Atr({sn(un) I — %[uh]] onéy,
onw=g onlg, oh, =0 p, <0, ohunw=0 onlg,

where the functiorny equals a constant. on eache e 5,?, with {”e}eegg having a uniform positive
bound from above and below. We obtain fron25 that

Bﬁi(uh,vh)z/ fondx+ g-ohds+/ Fhv - oh s, (2.26)
’ Q I Ic
where

B{} (Un, on) = /Q (2p &n(Un) : £n(oh) + 4 tr(gh(Un))tr(gn(oh))) dX
—/goﬂuhﬂ : (2u{en(on)} + 2tr({en(on))1) ds
h

= [ lon] s @atentunn + trtenmpds + [ L un]: fon s @:27)
& £0 he
Letop = Wy — Up With wy, € K. Sincesh, = 0, 6p, < 0, 6h,Un, = 0 on /¢, equation 2.26) leads to
the inequality

Bi,lr)](uh,wh —Up) = / f-Wh—up)dx+ [ g-(wWh—up)ds Ywy e K.
Q IF
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1760 F. WANGET AL.

The term fgﬁ nhz[un] : [on] ds is the penalty term. This is the interior penalty (IP) formulation

(Douglas & Dupont1976. With the lift operatotrg, we can rewriteB\Y as
1,h

By} (Un, oh) © = /Q (21 £n(Un) : (en(on) + ro([on])) + A tr(en(uUn))tr(en(on) + ro([on]))) dx

+ /Q ro(Jun]) : (2u en(on) + Atr(en(on))!) dx + /,Sﬁ hle[[uh]] : [on] ds. (2.28)

Note that 2.27) and .28 are equivalent oV, implying that either one can be used to define
the numerical solutiomi,. In this paper we give aa priori error estimate for the first formul2 Q7).

BecauseZ.27) and @.28 are equivalent o, we will prove stability for the second formu (lt)] on

>

Vh, which guarantees the stability of the first formulatiBﬁr)] on Vy. This comment is valid for the
other DGMs to be introduced later.

By changing the sign of the second term in the bilinear f(Bﬁf], we can give a honsymmetric
interior penalty (NIPG) formulation (seRiviereet al., 1999, ’

By p (U, on) - = /Q (21 &n(Un) : £n(oh) + 4 tr(gn(Un))tr(en(oh))) dx
+/ [un] : (ufen(on)} + Atr({en(on))1) ds
&
= [[fonl: @utentum) + 2uenuni) ds+ [ L un]  Ton] s,
&9 &y Ne
or equivalently,
By (Un, on) : = /Q (2 &n(un) : (en(on) + ro([on])) + Atr(en(un))tr(en(on) + ro(fon]))) dx

— [ rollunl): @uentom + 2uten@n o+ [ L] Tonl ds
Q e

&
Using the local lifting operatare, we can give the third example. Taking

Uh ={un} oné&\Ip, Ur=0 on/lp,
oh = 2u{en(un)} + Atr(fenun)) | + 2u{ro([un])} + A{tr(ro(fun]) 1}

+ Zﬂ{ﬂre([[uh]])} + /1{’7 tr(re(ﬂuh]]))}l on 5r?,
?hl):g OnFF) E\ht =09 6‘?\1} goa a’ll)uhv=o OnFC,

from (2.29, we get
B{ ) (Un, on) © = /Q (2 en(un) : en(oh) + 4 tr(en(un)tr(en(on))) dx
—/go[[uhﬂ : Quien(on)} + Atr({en(en)D!) ds
h

- /go[[vhﬂ : uien(un)} + Atr({en(un)D1) ds
h
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1761

+ /Q ro[on]) : (24 ro([un]) + 2 tr(ro([un]))!)
+ Z/Qn(Zu re(unl) : re([on]) + A tr(re(un]))tr(re([on]))) dx,

0
ee&y

or equivalently,

B un. on) = [ 2u(onun) + ra([un]): (en(on) + rolfon)) o
+ /Q Atr(gn(un) + ro([un]))tr(en(on) + ro(fon])) dx
+ Z /Q ’1(2/1 re(fun]) : re(fon]) + /1tr(re([[uh]]))tr(re([[”h]]))) dx,

0
ee&,

which is an extension of the methodBfezziet al.(1999.
With the choice

Unh = {un} onép\Ip, Upn=0 onIp,

on = 2ufen(un)} + Atr(fen(un)) | + 2u{nre([unl)} + A{n tr(re(fun])) }I  oné&p,
onw=g onlg, 6n, =0, on, <0, &hun =0 onlg,

we obtain a DG formulation extended from the metho@asésiet al. (1997,

Bf%(uh, vh) IZ/Q(Zﬂ en(un) : en(on) + 2 tr(en(Un)tr(en(on))) dx
—/goﬂuh]] : (2ufen(on)} + A tr({en(on)Pl) ds
h
_/goﬂvhﬂ D Quien(un)} + Atr({en(un))I) ds
h

+> /Q n(2u re([un]) : re(fon]) + A tr(re(fun])tr(re([on]))) dx,

0
ee&y

or equivalently,

By} (Un, on) = /Q (2uen(un) = (en(on) + ro([on])) + 4 tr(en(un)tr(en(@n) + ro([on]))) dx
T /Q ro[un]) : (uen(on) + A tr(en(om)1) dx

+>] /Q n(2ure([un]) : re([on]) + 2 tr(re([un]))tr(re([on]))) dx.

eeEﬁ
If we choose
Uh ={un} oné&\/p, Uh=0 onIlp,

oh = 2ufen(un)} + 2 tr({en(uUn)DI + 2u{ro(fun] } + A{ro(tr(funD1)} — hi[[uh]] onép,

onw=g onlg, on, =0, on, <0, opun, =0 onlg,
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1762 F. WANGET AL.

then
B5) (U, o1) = /Q (2 n(Un) © €n(on) + 2 tr(en(Un)tr(en(on))) dx
_ /gg[[Uh]]  (2u{en(on)} + A tr({en(on))1) ds
- /g [on] - @ulen(un)) + Liren(um) ds

+/Q ro(fon]) : (2uro([un]) + 4 tr(ro(fun]))!) dx + /5,9 h—l[[uh]] : [on] ds,

or equivalently,

B3 (Un, o) :=/Q 21 (en(un) + ro([un])) : (en(on) + ro(fon])) dx

+ /Q A tr(en(un) + ro([un]))tr(en(on) + ro(fon])) dx +/€r? hie[[uh]] - [on] ds,

which is an extension of the local discontinuous Galerkin (LDG) methdCioakburn & Shu(1998.
Let Bnh(un, op) be one of the bilinear formsijg(uh, op) with j = 1,...,5. Then a DGM for the
Signorini problem2.12 is: find up, € Ky, such that

Bnh(Uh, oh — Up) = £(oh —Up) Yopn € Kp. (2.29)

3. Consistency, boundedness and stability

We note that if the solution of(12) has the regularity € [H2(2)]?, thenu is the solution of 2.2)—
(2.6), and on any interior edge [u] = 0, {u} = u, {e(U)} = &(u), [6] = 0,{s} = o. For all DGMs
introduced in the SectioR.2 we first show the consistency of the DG schemes.

LEMMA 3.1 (Consistency). Assume e [H2(Q)]? is the solution 0f(2.12). Then for the DGMs
Bn(W, 0) = B} (W, 0) with j = 1,..., 5, we have

Bh(u,on —u) > £(on —U) Vop € Kp. 3.1
Proof. Using @.1), we obtain, for anyy, € Ky,
Br(U. on — 0) = | @u(W): en(on — 0)+ 4 (et (on(on — U) O
Q

— /go[[vh —u]: ue(u) + Atr(e(u))l)ds
h

= Z/Ka:sh(vh—u)dx—/go[[vh—u]]:ads.
h

KeTh
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DISCONTINUOUS GALERKIN METHODS FOR SOLVING THE SIGNORINI PROBLEM 1763

By (2.7), (2.19 and noting §] = 0 on&},, we get

Z/Ka:sh(vh—u)dx= Z/K—diVO‘-(Dh—U)dX-FZ n (enk) - (oh —u) ds

KeTh KeTh KeTh oK
= Z/—diva-(oh—u)dx+/ [oh —u] : o ds.
KeTn K &n
Then

Bh(u,vh—u)z/f-(vh—u)dx+/ g-(oh—u)dx+/ (ov) - (bh — u) dx
Q Ie Ic

={(oh —U) +/ oyvpy ds = €(oh — U).

Ic

The last inequality is obtained bg.€) andop, < O for allvy € Kp. Hence, 8.1) holds. O
To consider the boundedness and stability of the bilinear fBynas inWanget al. (2010, let
V(h) = Vi, + V N [H?(2)]?, and foro e V (h) define seminorms as follows:

|2 = /K e):e@)dx, o= Z |2, |o?:= Z hg1|| [[v]]”g,e,

KeTh eez‘:r?

where
2
Iio115e = [1o): o] s
e
Then define norms by

2. 2 2 2. 2 2 2
llollZ == Ioli + 1012, [lloll*:==lo 12+ D hilol5 - (3.2)
KeTh

The norm||| - || defined in 8.2) is equivalent to the usual DG north |2, + 1 - |2)/2, thanks to Korn's
inequality (sedBrenner 2004 see also Proposition 4.6 afnold et al,, 2005.

Before presenting the boundedness and stability of the bilinear forms, we give a useful estimate fo

the lifting operatome. The following lemma is a trivial extension to vectarsof Lemma 2 ofBrezzi
et al. (2000, also restated iArnold et al. (2002.

LEMMA 3.2 For anw € V(h) ande € &2,

Cahg | Iol]3 ¢ < [reloD 5, < C2s|[o] 2, (3.3)

From 3.3) and .18 we have

IroeDgn = > rel@D5, < 3C2 > hg*|[o] |5, = 3Calvl2.

0 0
et ec&y
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1764 F. WANGET AL.

To consider the boundedness of the primal forBas noting ||tr(z)|| < |/z|| for a matrix-valued
functionz, we use the Cauchy—-Schwarz inequality to bound them term-by-term,

[ entw - n(@) o < pwinjoln (3.4)
Q
| roltwh :ro(foD) éx < .ol (3.5)
/ nhg'[w] : [0] ds < supzelwls[ol., (3.6)
gr? eegr?
Z/ nre([w]) : re([o]) dx < supzelwl«|ol.. (3.7)
ec&?
eeé'h h
Here ‘< ..." stands for < C...', where C is a positive generic constant independenthoand

other parameters, which may take different values in different appearances. Using the trace inequal-

ity len(®)11§ ¢ < hgtlolf ¢ + helol3 . we have

1/2 1/2
. -1 2 2
/g Wl {en(®)} ds < > oht g > hell{en®)} e
h eaé}? eaé}?
1/2
St [ D (o +MaloB) | <milloll. @)

KeTh

The inequalities3.4) and @.8) are needed by all bilinear forms. For the DGMs with the bilinear form
Bi’r)] j =1, 2, 5, inequality 8.6) is needed. Inequality3(5) is needed by the formuIaB(” with

j =3, 5. For the methods with the bilinear forrﬁiéf), j =3, 4, the inequality3.7) is needed. Sowe
have the following results about the boundednesByof

LEMMA 3.3 (Boundedness). Ford j < 5,By = Bi’ﬁl satisfies
Ba(w, o) S (Wl [llo [l vw, 0 eV(h). (3.9)
For stability, note thafl|v||| = ||o|||. for anyo € Vi. SinceBi’h and Bé‘h coincide onVy, once we

have proved the stability deéjr)] on 'V, the stability ofBijg on 'V, follows. We use the Cauchy—Schwarz
inequality and Lemma&.2to get

B (0, ) = 2u / £n(0) ! en(0) dX + 7 / (tr(en(©)))? dx + 4 / £n(®) : ro([o]) d
+ 2/1/9 tr(en(0))tr(ro([o])) dx +/g|9 nhgl[o] : [o] ds
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. 1
> 2ufolf + Alldivio 1§, = 2u (€lolf + = ro(lo] )

— A(Idivno |13, + [tr(ro([oD) J5.) + 70 > ha* | Iol ]G e

eeé’ﬁ
6uCo
> 2u(l—o)lolf + (no -2 6C2/1) jol2.

Here ||1)||Oh = ZKE% ||1)||0 k. 0 < € < lis a constant an€; is the positive constant ir3(3).
Therefore, stability is valid for the IP method when gygb ne = no > 6Ca(u + 1).

B? (0,0) =2u | en®):en®)dx+ 1 [ (tr(en(v)))?dx + nhe_l[[u]] : [o] ds
zh /Q /Q /gg

> 2ulv | + nolo|?.
So stability holds for the NIPG method for any > 0.

BSh(0.0) > 2u|en(0) + ro([o]) g + 10 X, (2u|re(loD 5, + 2] tr(re[2]) [ 5 )

eESO

> 2u Ivlh+||fo([[0]])||0h+22/sh(v) ro([o]) dx | + 2uCanolv|2
KeTh

1
> 2 (@=emoli + (1 2) fro(@D3,) +2uCanoiol
1
> 2= ool +2u (362 (1= £) + Curo) ok

Stability holds foryg > 0.

By ) (v, 0) > 2,u|0|h+i||dlvhv||0h+4,u/ en(®) : ro([o]) dx+2/1/ divho tr(ro([o])) dx

+ 70 Z 2u Hre([[”ﬂ)”o,h + Aftr(re([o])) ||o,h)

eegr?
. 1 2 )
> 2ulolf + Alldivho |5, — 2u (e|v|ﬁ + EHFO([[DH)”Qh) — Alidivho 1§,

~ altr(ro(loD) o +m0Cs2u 37 he*[[olllge +no2 3 tr(reloD) oy,

ee€0 eeEO
3C,
> 20— eull+2u (n0C1 = =2 ) w2+ 2 (0= 3) D, |tr(re[o]) |-
eESO

SinceCy > C1, 5o > 3 is guaranteed fromg > 3Cy/C;. So stability is valid for this DG formulation
whenzg > 3C,/Cy.
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B0, 0) > 2ullen®) +rooD g + [ (o Io] : [o]ds
|"I e

>2u 02 + Hro([[v]])||Oh +2 Z / en() : ro([o]) dx | + nolo|?

KeTh

1
> 2u ((1— lolf + (1— ;) I ro([[u]])||§,h) + nolol?

6uC>
> 2u(l—e)lolf + (770 +6uCo — "E ) Io|2.
It is clear that stability holds for the LDG method whe# > 0. Summarizing the above argument we
have the next result.
LEMMA 3.4 (Stability). For 1< j < 5, Bp = B(J and B(Jh satisfy

Bn(®,0) Z [lo |2 Vo e Vh (3.10)

if 5o = mineegr? ne > 0 for the methods withj = 2, 3, 5, andyj is large enough for the methods with
j =14

4. Approximation and error estimates

Considering the error estimation for the DG methods, we first write the error as
e=u—up=(Uu-—u)+ (U —un),

whereu; € Vj is the usual continuous piecewise linear interpolant of the exact solutidhen[u —
u;] = 0 on the interelement boundaries. By the definition of noBa®)(we have the approximation
property, assuming € [H2(2)]2,

u—uwll>=lu—-uwli+ D hglu—ul5 Sh?ulb . (4.2)
KeTh

In the next result we need some additional solution regularity assumption. Assume that both tangen-
tial and normal derivatives af on /¢ are piecewise inl[*]?, i.e., on each line segment piece I,
both tangential and normal derivativesiobelong to the spacé_P°]? (a similar assumption is made in
Brezziet al, 1977in the proof of Lemma 6.1 there). As Brezziet al. (1977 we also assume that the
number of changes from, < 0tou, = 0 on /¢ is finite.

THEOREM4.1 Letu andup, be the solutions of2.12) and .29, respectively. Assume € [H?(2)]?,
both tangential and normal derivativeswbn I'c are piecewise inl[*]2, and the number of changes
fromu, < 0tou, = 0 on /¢ is finite. Then for the DGMs witlj =1, ..., 5, we have the error bound

[lu—unl < h (4.2)
Proof. By the stability of the bilinear fornB,, we have

lur — unll|? < Bh(Up — Un, up — up) = Ty + To, (4.3)
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where

T1 = Bn(U; — U, U; —Un),
T2 = Bnr(U — up, Uy — Up).

We boundT; as follows, using the boundednessByf,
2, 1 2
To S lur =il flluy = unlll S € [l ur = un [l 45 [l ur = ul, (4.4)

wheree > 0 is an arbitrarily small number.

Then we bound?. Note that on an interior edgfuy] = 0, {u} = u, {¢} = ¢, and on/p, Ju] = 0.
Then

Bn(u,u; —up) = / Que(u) : en(u; —up) + A tr(e(U)tr(en(u; — up))) dx
0

- fgoﬂm —un] : Que) + A tr(e(w)l) ds
h

= Z/Ka:sh(m —uh)dx—/go[[m —up] ;o ds.
h

KeTh

Since p] = 0 on an interior edge and rememberi2g3 we have

Z/Ka:sh(m—uh)dx: Z/}(—div:r-(u.—u@dx+ Z/GK(anK)-(m—uh)ds

KeTh KeTh KeTh
= Z/f~(u| —uh)dx+/ [uy —up] : o ds.
KeTh K &h
Then

Bh(u,u; —up) =/ f-(u —up) dx+/ g- (U —up) ds+/ (o6v) - (U] —up) ds. (4.5)
Q IE Ic
Choosingop, = u; in (2.29 we have
Bn(Un, Ui — un) > £(uj — up). (4.6)

Let It and I'y denote the sets of edges/¢c whereu, = 0 andu, < 0, respectively. Combining}(6)
and @.5) we obtain

T2 = Bh(U — uh, U; — Uup) </ (ov) - (U —up) ds
Ic

:/ O'U(Uh)—Uhv)ng/ oyUjy ds=Tz+ Ta + Ts, (4-7)
Ic Ic

where

T3=/ 0',)U|,,dS, T4=/ 0',,U|,,dS, T5=/ O'VU|,,dS.
eclTt ecln eclc\(ITUIN)
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Fromo,u, = 0 on I¢ it is easy to know thafls = 0 andT4 = 0. Consider the ternTs. If e C
Ic\(ITU IN), then there exists a poift € e satisfyingu, (P) = 0. By the regularity assumption over
Ic,we haveu;, = O(h)onec Ic\(/T U In) ando, € L*®(I¢). Hence,

T5=/ avuwdsghz.
eclc\(ITUIN)

Thus, under the stated regularity assumptidas< h? and the proof is completed. O

REMARK 4.2 For the scalar unilateral variational inequality
ueKk, /[Vu~V(v—u)—|—u(u—u)]dx>/ fo—uydx VoeKkK,
Q Q

whereQ c R? is a bounded, convex polygonal domain, and
K ={veH Q) v >0aeonos},

the optimal linear convergence for the linear element solution is provBdlimowolski & Staib(1992

without the additional assumption that the number of switches betweef andu = 0 on /¢ is finite.

For the Signorini problem that we are studying in this paper, it does not appear possible to adapt the
arguments irbobrowolski & Staib(1992 to show the optimal error bound.Q) without the additional
assumption that the number of changes figm< 0 tou, = 0 on /¢ is finite.

5. Numerical example

We report some numerical results on a two-dimensional test problem solved by the LDG method. The
physical setting is given in Fid.. The domainQ = (0, 4) x (0, 4) can be viewed as the cross section
of a linearized elastic body. On the bounddiy = {4} x (0, 4), the body is clamped and hence the
displacement field vanishes there. The traction acts on the bouf@axy (0, 4) and the boundary of
(0, 4) x {4} is traction free. Therefordr = {0} x (0, 4)U(0, 4) x {4}. On the boundary¢ = (0, 4) x {0},
the body contacts with a frictionless rigid foundation. No volume force is assumed to act on the body
Q. Let E be Young's modulus and be the Poisson ratio of the material. Then the Earpefficients
are

Ex E

Y — =—.
I+o@-20" "7 20+
In this example we use the following data:

E =200 daNmn?, x=0.3, f=0daNmn?,
g(X1, X2) = (0.02(5 — x2), —0.01) daN/mn?,

where the unit daN/mfdenotes decanewtons per square milimeter. We solve the discretized problem
on uniform triangular meshes, see Fig.

To consider the convergence order we solve the problem on a family of uniform meshes. We start
with h = 24/2, which decreases by half, and adopt the numerical solution on the Imesk/2/16
as the ‘exact’ solution computing errors of the numerical solution on other meshes. Bwirggshow
the deformed mesh (amplified by 200) for= +/2/16. We observe from Figi that the numerical
convergence orders in both norifis ||| and| - |, are~1, matching the theoretical prediction well.
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FiG. 1. An elastic body on a frictionless rigid foundation.
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FIG. 2. A uniform triangular mesh of the domain.
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