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In this paper, we give another view to understand a posteriori error analysis for finite
element solutions of elliptic variational inequalities of the second kind. This point of view
makes it simpler to derive reliable error estimators in solving variational inequalities of the
second kind from the theory for related linear variational equations. Reliable residual-based
and gradient recovery-based estimators are deduced. Efficiency of the estimators is also
proved.
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1. Introduction

Adaptive finite element methods based on a posteriori error estimates are an active research field. Many error estimators
can be classified as residual type or recovery type. Various residual quantities are used to capture lost information going
from u to uh , such as residual of the equation, residual from derivative discontinuity and so on. In a gradient recovery
error estimator, ‖Ghuh −∇uh‖ is used to approximate ‖∇u −∇uh‖, where a gradient recovery operator Gh is applied to the
numerical solution uh to reconstruct the gradient of the true solution u. The theory of a posteriori error estimation is well
established for linear equations, and we refer the reader to [1,2,16].

It is more difficult to develop a posteriori error estimators for variational inequalities (VIs) due to the inequality fea-
ture. Nevertheless, numerous papers can be found on a posteriori error estimation of finite element methods for obstacle
problems, which is a representative elliptic variational inequality (EVI) of the first kind, e.g., [3,10,13–15,17]. For VIs of the
second kind, in [4–7], the authors studied a posteriori error estimates and established a framework through the duality
theory, but the sharper estimation of one term in the lower bound is still an open problem, i.e., the efficiency was not
completely proved. In [8], Braess demonstrated that a posteriori error estimators for finite element solutions of the obstacle
problem can be easily derived by applying a posteriori error estimators for a related linear elliptic problem. In this paper,
we extend the ideas therein to give another look at a posteriori error analysis for VIs of the second kind. Moreover, we
accomplish the proof for the efficiency of the error estimators.
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We take a steady state frictional contact problem as an example to illustrate the derivation process of a posteriori error
estimators. The ideas and techniques presented here for this model problem can be extended to other VIs of the second
kind.

A frictional contact problem. Let Ω ⊂ Rd (d � 1) be a bounded domain with Lipschitz boundary Γ , Γ1 a relatively closed
subset of Γ , and Γ2 = Γ \Γ1. Assume f ∈ L2(Ω), and g > 0 is a constant. Then a frictional contact problem is to find
u ∈ V = {v ∈ H1(Ω): v = 0 a.e. on Γ1} such that

a(u, v − u) + j(v) − j(u) � ( f , v − u)Ω ∀v ∈ V , (1.1)

where (·,·)Ω denotes the L2 inner product in the domain Ω and

a(u, v) =
∫
Ω

∇u · ∇v dx +
∫
Ω

uv dx,

j(v) =
∫
Γ2

g|v|ds.

It was proved ([12, Theorem 5.3], [11]) that this problem has a unique solution u ∈ V , and there exists a unique Lagrange
multiplier λ ∈ L∞(Γ2) such that

a(u, v) +
∫
Γ2

gλv ds = ( f , v)Ω ∀v ∈ V , (1.2)

|λ| � 1, λ u = |u| a.e. on Γ2. (1.3)

It follows from (1.2) and (1.3) that the solution u of (1.1) is the weak solution of the boundary value problem

−	u + u = f in Ω,

u = 0 on Γ1,∣∣∣∣∂u

∂n

∣∣∣∣ � g,
∂u

∂n
u + g|u| = 0 on Γ2,

where n is the unit outward normal vector. For any v ∈ V , set

�(v) = ( f , v)Ω −
∫
Γ2

gλv ds.

Then (1.2) becomes

a(u, v) = �(v) ∀v ∈ V . (1.4)

For a Lipschitz subdomain ω ⊂ Ω , let

‖v‖2
1,ω := aω(v, v) =

∫
ω

(|∇v|2 + v2)dx.

For a measurable subset γ ⊂ ∂ω ∩ Γ2, define

|λ|∗,γ := sup

{∫
γ

g λv ds: v ∈ H1(ω), ‖v‖1,ω = 1

}
. (1.5)

The subscript γ and ω are omitted if γ = Γ2 and ω = Ω . We have

|λ|∗,γ = ‖w‖1,ω, (1.6)

where w ∈ H1(ω) is the solution of the auxiliary equation

aω(w, v) =
∫
γ

g λv ds ∀v ∈ H1(ω). (1.7)

The relation (1.6) is proved as follows. First,∫
γ

gλv ds = aω(w, v) � ‖w‖1,ω‖v‖1,ω.
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Thus,

|λ|∗,γ = sup
0 �=v∈H1(ω)

∫
γ

g λv ds/‖v‖1,ω � ‖w‖1,ω.

Letting v = w in (1.7), we have

‖w‖1,ω =
∫
γ

g λw ds/‖w‖1,ω � |λ|∗,γ .

We introduce a family of finite element spaces Vh ⊂ V corresponding to partitions Th of Ω into triangular or tetrahedral
elements (other kinds of elements, such as quadrilateral elements, or hexahedral or pentahedral elements, can be considered
as well). The partitions Th are compatible with the decomposition of Γ into Γ1 and Γ2. Then the finite element method for
the VI (1.1) is: Find uh ∈ Vh such that

a(uh, vh − uh) + j(vh) − j(uh) � ( f , vh − uh)Ω ∀vh ∈ Vh. (1.8)

Similar to the continuous problem, the discrete problem has a unique solution uh ∈ Vh and there exists a unique Lagrange
multiplier λh ∈ L∞(Γ2) such that ([6,12])

a(uh, vh) +
∫
Γ2

g λh vh ds = ( f , vh)Ω ∀vh ∈ Vh, (1.9)

|λh| � 1, λhuh = |uh| a.e. on Γ2. (1.10)

For any vh ∈ Vh , let

�h(vh) = ( f , vh)Ω −
∫
Γ2

g λh vh ds.

From Hahn–Banach extension theorem, the bounded linear functional �h , originally defined on Vh , can be extended to a
bounded linear functional on V with the norm preserved. Then (1.9) becomes

a(uh, vh) = �h(vh) ∀vh ∈ Vh. (1.11)

Obviously, uh is also the finite element approximation of the solution z ∈ V of the linear problem:

a(z, v) = �h(v) ∀v ∈ V , (1.12)

which is the weak formulation of the boundary value problem

−	z + z = f in Ω,

z = 0 on Γ1, (1.13)
∂z

∂n
= −gλh on Γ2.

Now we present the process to derive a posteriori error estimators for the finite element method (1.8). From (1.4)
and (1.12), for all v ∈ V , we have

a(uh − u, v) = a(uh − z, v) + a(z − u, v)

= a(uh − z, v) + �h(v) − �(v)

= a(uh − z, v) +
∫
Γ2

g(λ − λh)v ds.

Take v = uh − u in the above relation. Note that by (1.3) and (1.10), we have∫
Γ2

g(λ − λh)v ds =
∫
Γ2

g λuh ds −
∫
Γ2

g λu ds −
∫
Γ2

g λhuh ds +
∫
Γ2

g λhu ds

�
∫
Γ2

g|uh|ds −
∫
Γ2

g|u|ds −
∫
Γ2

g|uh|ds +
∫
Γ2

g |u|ds

= 0.
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Then we obtain

‖uh − u‖2
1 = a(uh − u, uh − u) � a(uh − z, uh − u) � ‖uh − z‖1‖uh − u‖1. (1.14)

Therefore,

‖uh − u‖1 � ‖uh − z‖1. (1.15)

Recalling (1.6), we have

|λ − λh|∗ = ‖u − z‖1 � ‖u − uh‖1 + ‖uh − z‖1 � 2‖uh − z‖1.

We summarize the above results in the following theorem.

Theorem 1.1. Let u and z be the solutions of the problem (1.1) and (1.12), and let uh be the finite element solution of u. Then,

‖uh − u‖1 + |λ − λh|∗ � 3‖uh − z‖1.

This result is the starting point for derivation of a posteriori error estimators, when combined with the standard results
[1] on error estimators for the term ‖uh − z‖1. Based on this observation, we discuss residual type error estimators and
gradient recovery type error estimators in the next two sections. Reliability and efficiency are proved for both types of error
estimators.

2. Residual type error estimators

First, we introduce some notations. Given a bounded set D ⊂ Rd and a positive integer m, Hm(D) is the usual Sobolev
space with the corresponding norm ‖ · ‖m,D and semi-norm | · |m,D , which are abbreviated by ‖ · ‖m and | · |m , respectively,
when D coincides with Ω . For convenience, we rewrite ‖ · ‖0,D as ‖ · ‖D . We assume Ω is a polyhedral domain and denote
by {Th}h a family of partitions of Ω . For a partition Th , denote all the edges of Th by Eh , and E i

h = Eh\Γ , Eh,Γ2 = Eh ∩Γ2. Let
hK = diam(K ) for K ∈ Th and he = diam(e) for e ∈ Eh . For any element K ∈ Th , define the patch set ωK := ∪{T ∈ Th, T ∩ K �=
∅}, and for any edge e shared by two elements K and K̃ , define ωe := K ∪ K̃ . For a given element K ∈ Th , N (K ) and E(K )

denote the sets of the nodes of K and sides of K , respectively; nK denotes the unit outward normal vector to the boundary
of K and ne a unit vector on e. Throughout the paper, C denotes a generic positive constant independent of the element
size, which may take different values at different occurrences.

Define the interior residuals and edge-based jumps

R K := −	uh + uh − f for each K ∈ Th,

Re :=
{ [ ∂uh

∂n ] if e ∈ E i
h,

∂uh
∂n + g λh if e ∈ Eh,Γ2 .

Here [ ∂uh
∂n ] = ∇uh|K · nK + ∇uh|K̃ · nK̃ represents the discontinuity of the gradient of uh across the edge e shared by the

neighboring elements K and K̃ . They lead to the local estimators

ηR,K =
(

h2
k‖R K ‖2

K + 1

2

∑
e∈E(K )∩E i

h

he‖Re‖2
e +

∑
e∈E(K )∩Eh,Γ2

he‖Re‖2
e

)1/2

for any K ∈ Th. (2.1)

It follows from [1] that the residual-type a posteriori error estimator for the elliptic equation (1.14) satisfies

‖uh − z‖1 � C

( ∑
K∈Th

η2
R,K

)1/2

.

Hence, we have the following theorem.

Theorem 2.1. Let u ∈ V and uh ∈ Vh be the solutions of the problems (1.1) and (1.8). Then,

‖uh − u‖1 + |λ − λh|∗ � CηR , η2
R :=

∑
K∈Th

η2
R,K .

Now we turn to consider lower bounds with residual error estimators. This can be achieved by following the standard
argument for lower bounds with residual error estimators for linear elliptic problems, see [1, pp. 28–32]. Define

aK (u, v) =
∫
K

(∇u · ∇v + uv)dx,
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so that for u, v ∈ H1(Ω),

a(u, v) =
∑

K∈Th

aK (u, v).

For any v ∈ V , by integration by parts, we have∑
K∈Th

aK (uh − u, v) =
∑

K∈Th

aK (uh − z, v) + a(z − u, v)

=
∑

K∈Th

∫
K

R K v dx +
∑

e∈E i
h∪Eh,Γ2

∫
e

Re v ds +
∑

e∈Eh,Γ2

∫
e

g(λ − λh)v ds. (2.2)

We will use the bubble functions. For each K ∈ Th , let λ1, λ2 and λ3 be the barycentric coordinates on K . Then the
interior bubble function ϕK is defined by

ϕK = 27λ1λ2λ3,

and the three edge bubble functions are given by

τ1 = 4λ2λ3, τ2 = 4λ1λ3, τ3 = 4λ1λ2.

We recall some properties of the bubble functions [1, Theorems 2.2 and 2.3].

Lemma 2.2. For each K ∈ Th, e ∈ E(K ), let ϕK and τe be the corresponding interior and edge bubble functions. Let P (K ) ⊂ H1(K )

and P (e) ⊂ H1(e) be finite-dimensional spaces of functions defined on K and e. Then there exists a constant C , independent of hK ,
such that for all v ∈ P (K ),

C−1‖v‖2
K �

∫
K

ϕK v2 dx � C‖v‖2
K , (2.3)

C−1‖v‖K � ‖ϕK v‖K + hK |ϕK v|1,K � C‖v‖K , (2.4)

C−1‖v‖2
e �

∫
e

τe v2 ds � C‖v‖2
e , (2.5)

h−1/2
K ‖τe v‖K + h1/2

K |τe v|1,K � C‖v‖e. (2.6)

For each K ∈ Th , ϕK and τe are respectively the interior and edge bubble functions on K or e ∈ E i
h ∪ Eh,Γ2 , and R K is

an approximation to the interior residual R K from a suitable finite element space containing uh and 	uh . In (2.2), choosing
v = R K ϕK on element K and using an argument similar to that in [1, pp. 28–32], we obtain

‖R K ‖K � C
(‖R K − R K ‖K + h−1

K ‖uh − u‖1,K
)
.

For e ∈ E i
h , let Re be an approximation to the jump Re from a suitable finite-dimensional space and let v = Reτe in (2.2).

We have

‖Re‖e � C
(
h−1/2

e ‖uh − u‖1,ωe + h1/2
e ‖R K − R K ‖ωe + ‖Re − Re‖e

)
.

For e ∈ Eh,Γ2 , we obtain

aωe (uh − u, Reτe) =
∫
ωe

R K Reτe dx +
∫
e

Re Reτe ds +
∫
e

g(λ − λh)Reτe ds.

Therefore,∫
e

R2
eτe ds =

∫
e

Re(Re − Re)τe ds + aωe (uh − u, Reτe) −
∫
ωe

R K Reτe dx −
∫
e

g(λ − λh)Reτe ds.

Applying Lemma 2.2, we bound the terms in the above relation as follows:∫
e

R2
eτe ds � C−1‖Re‖2

e ,∫
e

Re(Re − Re)τe ds � ‖Reτe‖e‖Re − Re‖e � C‖Re‖e‖Re − Re‖e,
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aωe (uh − u, Reτe) � ‖uh − u‖1,ωe ‖Reτe‖1,ωe � Ch−1/2
e ‖uh − u‖1,ωe ‖Re‖e,∫

ωe

R K Reτe dx � ‖R K ‖ωe ‖Reτe‖ωe � Ch1/2
e ‖R K ‖ωe ‖Re‖e,

∫
e

g(λ − λh)Reτe ds � |λ − λh|∗,e‖Reτe‖1,ωe � Ch−1/2
e |λ − λh|∗,e‖Re‖e.

Hence,

‖Re‖e � ‖Re‖e + ‖Re − Re‖e

� C
(
h−1/2

e ‖uh − u‖1,ωe + h−1/2
e ‖λ − λh‖∗ + h1/2

e ‖R K − R K ‖ωe + ‖Re − Re‖e
)
. (2.7)

Note that 	uh + uh in K and ∂uh/∂ne on e are polynomials. Hence, the terms ‖R K − R K ‖K and ‖Re − Re‖e can be
replaced by ‖ f − f̄ ‖K and ‖λh − λ̄h‖e , with discontinuous piecewise polynomial approximations f̄ and λ̄h . Then we obtain
the efficiency bound of the local error indicator ηR,K (see also [5,6]).

Theorem 2.3. Let u and uh be the solutions of (1.1) and (1.8), respectively, and let ηR,K be the estimator (2.1). Then

η2
R,K � C

(
‖u − uh‖2

1,ωK
+ |λ − λh|2∗,e + h2

K ‖ f − f̄ ‖2
ωK

+
∑

e∈E(K )∩Eh,Γ2

he‖λh − λ̄h‖2
e

)
. (2.8)

Due to the inequality nature of the variational inequalities, in the efficiency bound (2.8) of ηR,K , there is a term involving
λ and λh . In [5,6], because of the presence of this term, the efficiency of the estimators was not proved completely. From
Theorem 2.1, we see that the involvement of the term |λ − λh|∗,e in the bound (2.8) is very natural. This comment is also
valid for the case of gradient recovery type error estimators.

3. Gradient recovery type error estimators

In this section, we study a gradient recovery type error estimator for the linear finite element solution of the frictional
contact problem (1.1). Some additional notations are needed in this section. We denote by Nh the set of nodes of Th , and
Nh,0 is the set of free nodes, i.e., those nodes that do not lie on Γ1. Let Nv ⊂ Nh be the set of the element vertices of
the partition Th , Nv,Γ1 ⊂Nv the subset of the element vertices lying on Γ1, Nv,i ⊂Nv the set of the interior vertices, and
Nv,0 = Nv ∩ Nh,0. Let {ϕa : a ∈ Nv } denote the nodal basis functions of the linear elements for all the vertices. Define an
equivalence relation

ξ(a) :=
{

a, if a ∈Nv,0;
b, b ∈ Nv,i and ∃K ∈ Th, s.t. a,b ∈ K if a ∈Nv,Γ1 .

Then we can classify the set of vertices Nv into card(Nv,0) classes of equivalence, that is, I(a) = {ã ∈Nv : ξ(ã) = a} for each
node a ∈Nv,0. We set

ψa =
∑

ã∈I(a)

ϕã for every node a ∈Nv,0.

Note that {ψa: a ∈Nv,0} is a partition of unity. Let K̃a = supp(ψa) and ha = diam(K̃a). For a given v ∈ L1(Ω), let

va =
∫

K̃ vψa dx∫
K̃ ϕa dx

, a ∈Nv,0.

Then a Clément type interpolation operator Πh : V → Vh is defined as follows:

Πh v =
∑

a∈Nv,0

vaϕa.

The next theorem summarizes some basic estimates for Πh . Its proof can be found in [9].

Theorem 3.1. There exists an h-independent positive constant C such that for all v ∈ V and f ∈ L2(Ω),
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|v − Πh v|21,Ω � C |v|21,Ω,∫
Ω

f (v − Πh v)dx � C |v|1,Ω

( ∑
a∈Nv,0

h2
a min

fa∈R
‖ f − fa‖2

0,K̃a

)1/2

,

∑
K∈Th

∥∥h−1
K (v − Πh v)

∥∥2
K � C |v|21,Ω,

∑
e∈Eh

∥∥h−1/2
e (v − Πh v)

∥∥2
e � C |v|21,Ω .

There are many types of gradient recovery operators Gh . For Ghuh to be a good approximation of the true gradient ∇u,
a set of sufficient conditions can be found in [1, Lemma 4.5]. Consider a gradient recovery operator Gh : Vh → (Vh)d defined
as follows:

Gh vh(x) =
∑

a∈Nv

Gh vh(a)ϕa(x), Gh vh(a) = 1

|K̃a|
∫
K̃a

∇vh dx.

From (1.11) and (1.12), we get the Galerkin orthogonality

a(uh − z, vh) = 0 ∀vh ∈ Vh.

Using the above equation, for any v ∈ V , we get

a(uh − z, v) = a(uh − z, v − Πh v)

= I0 +
∫
Ω

Ghuh · ∇(v − Πh v)dx +
∫
Ω

uh(v − Πh v)dx − a(z, v − Πh v)

where

I0 =
∫
Ω

(∇uh − Ghuh) · ∇(v − Πh v)dx � C‖∇uh − Ghuh‖Ω |v|1,Ω .

Perform element-wise integration by parts,∫
Ω

Ghuh · ∇(v − Πh v)dx =
∑

K∈Th

∫
K

Ghuh · ∇(v − Πh v)dx

=
∑

K∈Th

∫
K

−div(Ghuh)(v − Πh v)dx +
∑

K∈Th

∫
E(K )

(Ghuh · nK ) (v − Πh v)ds.

The first summation is rewritten as∑
K∈Th

∫
K

div(∇uh − Ghuh)(v − Πh v)dx +
∑

K∈Th

∫
K

−	uh (v − Πh v)dx.

Since Ghuh is continuous across the element boundaries,∑
K∈Th

∫
E(K )

(Ghuh · nK )(v − Πh v)ds =
∑

e∈Eh,Γ2

∫
e

(Ghuh · ne)(v − Πh v)ds.

Applying the above relations and using Eq. (1.12), we obtain that

a(uh − z, v) = I0 + I1 + I2 + I3, (3.1)

where

I1 =
∑

K∈Th

∫
K

div(∇uh − Ghuh)(v − Πh v)dx,

I2 =
∑

K∈Th

∫
K

(−	uh + uh − f )(v − Πh v)dx =
∑

K∈Th

∫
K

R K (v − Πh v)dx,

I3 =
∑

e∈Eh,Γ2

∫
e

(Ghuh · ne + gλh)(v − Πh v)ds.
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It is shown in [6] (see also [4]) that

I1 � C |v|1,Ω

( ∑
K∈Th

‖∇uh − Ghuh‖2
K

)1/2

,

I2 � C |v|1,Ω

∑
a∈Nv,0

(
h4

a‖∇uh‖2
K̃a

+ h2
a min

fa∈R
‖ f − fa‖2

K̃a

)
,

I3 � C |v|1,Ω

( ∑
e∈Eh,Γ2

he‖Ghuh · ne + gλh‖2
e

)1/2

.

Taking v = uh − z in (3.1) and recalling Theorem 1.1, we obtain the next result.

Theorem 3.2. Let u and uh be the solutions of (1.1) and (1.8), respectively. Then

‖u − uh‖2
1 + |λ − λh|2∗ � Cη2

G + C
∑

a∈Nh,0

(
h4

a‖∇uh‖2
K̃a

+ h2
a min

fa∈R
‖ f − fa‖2

K̃a

)
, (3.2)

where

η2
G =

∑
K∈Th

η2
G,K , η2

G,K = ‖∇uh − Ghuh‖2
K +

∑
e∈E(K )∩Eh,Γ2

he‖Ghuh · ne + gλh‖2
e . (3.3)

The term (
∑

a∈Nh,0
h4

a‖∇uh‖2
K̃a

)1/2 is bounded by O (h2), and (
∑

a∈Nh,0
h2

a min fa∈R ‖ f − fa‖2
K̃a

)1/2 is bounded by o(h) if

f ∈ L2(Ω) or bounded by O (h2) if f ∈ H1(Ω) (see [6]), which guarantees the reliability of estimator ηG .
For the efficiency of the estimator, it is shown in Lemma 3.1 in [6] that

η2
G,K � C

( ∑
e∈E(K )∩Eh,Γ2

he‖Re‖2
e +

∑
e′∈EωK

he′ ‖Re′ ‖2
e′

)
,

where EωK denotes the set of inner sides of the patch ωK corresponding to the element K . Using the relation (2.7), we
obtain the following results.

Theorem 3.3. Let u and uh be the solutions of (1.1) and (1.8), respectively, and let ηG,K be the estimator (3.3). Then

η2
G,K � C

(
‖u − uh‖2

1,ωK
+ |λ − λh|2∗,e + h2

K ‖ f − f̄ ‖2
ωK

+
∑

e∈E(K )∩Eh,Γ2

he‖λh − λ̄h‖2
e

)
. (3.4)

This theorem shows the efficiency of gradient recovery type estimators ηG,K . The inequality (3.4) is comparable to (2.8).

4. Summary

In this paper, we study a posteriori error estimation of finite element methods for a frictional contact problem, and
establish a compact framework to derive reliable residual type and gradient recovery type error estimators by applying a
posteriori error analysis for a related linear elliptic problem. Furthermore, we prove the efficiency of the error estimators,
which was an open problem stated in [6]. This framework can also be used to derive reliable and efficient a posteriori error
estimators for other variational inequalities of the second kind.
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