
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gapa20

Applicable Analysis
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gapa20

A mixed discontinuous Galerkin method for an
unsteady incompressible Darcy equation

Yanxia Qian, Fei Wang, Yongchao Zhang & Weimin Han

To cite this article: Yanxia Qian, Fei Wang, Yongchao Zhang & Weimin Han (2022) A mixed
discontinuous Galerkin method for an unsteady incompressible Darcy equation, Applicable
Analysis, 101:4, 1176-1198, DOI: 10.1080/00036811.2020.1775818

To link to this article:  https://doi.org/10.1080/00036811.2020.1775818

Published online: 05 Jun 2020.

Submit your article to this journal 

Article views: 126

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=gapa20
https://www.tandfonline.com/loi/gapa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00036811.2020.1775818
https://doi.org/10.1080/00036811.2020.1775818
https://www.tandfonline.com/action/authorSubmission?journalCode=gapa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gapa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00036811.2020.1775818
https://www.tandfonline.com/doi/mlt/10.1080/00036811.2020.1775818
http://crossmark.crossref.org/dialog/?doi=10.1080/00036811.2020.1775818&domain=pdf&date_stamp=2020-06-05
http://crossmark.crossref.org/dialog/?doi=10.1080/00036811.2020.1775818&domain=pdf&date_stamp=2020-06-05
https://www.tandfonline.com/doi/citedby/10.1080/00036811.2020.1775818#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00036811.2020.1775818#tabModule


APPLICABLE ANALYSIS
2022, VOL. 101, NO. 4, 1176–1198
https://doi.org/10.1080/00036811.2020.1775818

Amixed discontinuous Galerkin method for an unsteady
incompressible Darcy equation

Yanxia Qiana, Fei Wangb, Yongchao Zhanga and Weimin Hanc

aSchool of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China; bSchool
of Mathematics and Statistics & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China; cDepartment of Mathematics & Program in Applied
Mathematical and Computational Sciences (AMCS), University of Iowa, Iowa City, IA, USA

ABSTRACT
We study amixed discontinuous Galerkin (MDG)method for solving a time-
dependentDarcy problem,which simulates an incompressible fluid such as
water flowing in a rigid porous medium. The discretization of the unsteady
Darcy problem relies on a backward Euler scheme for temporal variable and
MDGmethod for spatial variables. Spatially semi-discrete and fully discrete
schemes are analyzed. Existence and uniqueness of the numerical solu-
tions are proved, and optimal order error estimates are derived for both the
velocity and pressure variables. Finally, some test problems are provided
to display the performance of the MDG method, and numerical results are
reported to support the theoretical predictions.
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1. Introduction

We consider the following time-dependent Darcy problem [1], which models the unsteady flow of an
incompressible fluid in a rigid porous medium:

u̇ + αu + ∇p = f in � × [0,T],
div u = 0 in � × [0,T],
u = u0 in � × {t = 0},
p = gD on ∂ � × [0,T],

(1)

where � is an open bounded domain in R
d (d = 2 or 3) with a Lipschitz continuous boundary ∂�.

The initial valueu0 meets the divergence-free condition div u0 = 0 in�. The unknowns are the veloc-
ity u and the pressure p, which are functions of the spatial variable x in � and temporal variable t in
[0,T] (T> 0 is a finite time), and we use u̇ for the time derivative of u. Here, f is the density of
body force, u0 is the initial value of the velocity, and gD is the Dirichlet boundary value of the pres-
sure. The parameter α is a positive constant representing the drag coefficient, which depends on the
permeability of the porous medium and the fluid viscosity.

The classical Darcy model describes the flow of a compressible fluid through a porous media [2].
Many numerical methods have been developed to solve it. For a stationary flow, u̇ = 0, the Darcy
problem can be reduced to a Poisson equation for pressure and solved by the standard finite element
methods. Then velocity field can be obtained by a post-processing step. However, there may be a
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loss of accuracy for the numerical solution in velocity field and the local conservation may not be
guaranteed. To approximate the velocity and pressure simultaneously, mixed finite element method
[3] is a popular way to discretize the Darcy flow [4,5]. For the time dependent axisymmetric Darcy
problem, finite element method is studied in [6]. In [7], the mortar finite element discretization is
applied on the time dependent nonlinear Darcy’s equations. In addition, the decoupled schemes [8]
and partitioned methods [9,10] are also developed to solve the Stokes-Darcy and related problems.

Over the past several decades, discontinuousGalerkin (DG)methods have become very popular in
the scientific computing and engineering communities, due to their flexibility in constructing feasible
local shape function spaces. Compared with the standard finite element methods, DGmethods enjoy
the following good features: they (i) are locally (and globally) conservative; (ii) can be easily coupled
with other methods like conforming or mixed finite element methods; (iii) are well-suited for hp-
adaptivity. Therefore, DG methods have been applied to solve various partial differential equations,
such as hyperbolic equations [11–14], Navier-Stokes equations [15,16], convection-diffusion equa-
tions [17], transport problems [18,19], variational inequalities [20–23] and much more. For more
discussion about DG methods, we refer the reader to [24–26] and the references therein.

Mixed discontinuous Galerkin (MDG) methods have been developed for solving the Darcy flow
problem. In [27], a local DG method [28] is coupled with the RT mixed method to solve the Darcy
problemon twodisjoint subdomain�LDG and�RT, respectively, with� = �LDG ∪ �RT. In [5], a sta-
bilizedmixed finite elementmethod is studied for solving the Darcy flow problem. Then similar ideas
about stabilization are applied tomixed DGmethods in [29,30], so that there are nomesh-dependent
parameters in the scheme. In [31], a reliable and efficient residual-type a posteriori error estimator
is derived for an augmented DG formulation for the Darcy flow. To reduce the computational cost, a
mixed dual-scale Galerkinmethod for theDarcy problem is proposed in [32]. These references are for
the stationary Darcy flow. In [33], a mixed discontinuous Galerkin scheme is applied to solve a non-
stationary Darcy problem, and the scheme is stabilized by penalty terms in both the primary and the
flux unknowns. In [26], a unified framework is established on continuous and discontinuous finite
element methods, and relationship of different finite element methods is discussed; furthermore, a
new mixed DG scheme for elliptic problems is introduced with the Pl+1-Pl pairs (l ≥ 0).

In this paper, we apply the mixed DG scheme to solve the time-dependent incompressible Darcy
flow (1), which has a large number of applications, such as the simulation of water in underground
rocks [1]. First, a spatially semi-discrete mixed discontinuous Galerkin scheme is introduced and its
well-posedness is analyzed. Then, we give a prior error analysis, which shows that optimal conver-
gence orders are reached for both velocity and pressure variables. Next, we consider a fully-discrete
scheme with the backward Euler difference approximation for the temporal variable and an MDG
discretization for the spatial variables. Optimal convergence orders for both temporal and spatial
variables are proved.

The rest of the paper is organized as follows. In Section 2, we present some preliminary results.
In Section 3, a spatially semi-discrete MDG scheme is introduced, the well-posedness and a priori
error estimates are obtained. We show the stability of the fully-discrete scheme and prove optimal
order error estimates for both velocity and pressure in Section 4. In Section 5, numerical examples
are provided to confirm the theoretical findings and to illustrate the performance of the fully-discrete
mixed DG scheme.

2. Preliminaries

In this section, we introduce the notation and recall some basic results.
For a nonnegative integer m and an open Lipschitz subdomain D ⊂ �, we denote the Sobolev

space by Hm(D) = Wm,2(D) with the norm ‖ · ‖m,D and semi-norm | · |m,D. When m = 0, H0(D)

coincides with the Lebesgue space L2(D), which is equipped with the usual L2-inner product (·, ·)D
and L2-norm ‖ · ‖0,D. If D is chosen as �, we abbreviate them by the norms ‖ · ‖m, ‖ · ‖0, the semi-
norm | · |m and the inner product (·, ·), respectively. The spaceHm

0 (D) denotes the closure inHm(D)
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of the set of the infinitely often differentiable functions with compact support inD. The same notation
is used for the vector-valued counterparts such as [L2(D)]d and [Hm(D)]d.

To study the problem (1), we introduce the following function spaces

V = H(div,�) = {v ∈ [L2(�)]d : div v ∈ L2(�)}, Q = L2(�).

The spaceV is equipped with the norm ‖v‖V = (‖v‖20 + ‖div v‖20)1/2. In addition, we need spaces of
vector-valued functions such as L2(0,T;Hm(�)) and C(0,T;Hm(�)) with the norms

‖ϕ‖L2(0,T;Hm(�)) =
[∫ t

0
‖ϕ(t)‖2m dt

]1/2
and ‖ϕ‖C(0,T;Hm(�)) = max

0≤t≤T
‖ϕ(t)‖m.

Assume f ∈ L2(0,T; [L2(�)]d), gD ∈ L2(0,T;H1/2(∂�)) and u0 ∈ V . The weak formulation of the
problem (1) is to find u ∈ L2(0,T;V) with u̇ ∈ L2(0,T;V) and p ∈ L2(0,T;Q) such that for a.e. t ∈
[0,T],

(u̇, v) + a(u, v) + b(v, p) = (f , v) − 〈v · n, gD〉∂� ∀ v ∈ V ,

b(u, q) = 0 ∀ q ∈ Q,
(2)

and

u(0) = u0 in �. (3)

Here, the bilinear forms a(·, ·) and b(·, ·) are defined by

a(u, v) = (αu, v), b(v, q) = −(div v, q),

〈·, ·〉∂� denotes the duality pairing between H−1/2(∂�) and H1/2(∂�), and n is the unit outward
normal on ∂�.

Obviously, b(·, ·) is continuous on V × Q; its kernel

Z = {v ∈ V : b(v, q) = 0 ∀ q ∈ Q}

is characterized as

Z = {v ∈ V : div v = 0 a.e. in �}.
Obviously,

a(u, v) ≤ α‖u‖V‖v‖V ∀ u, v ∈ V ,

a(v, v) ≥ α‖v‖20 = α‖v‖2V ∀ v ∈ Z.

Moreover, the inf-sup condition holds: there exists a constant β1 > 0 such that ([34])

sup
v∈V ,v �=0

b(v, q)
‖v‖V ≥ β1‖q‖0. (4)

Next, the following lemma presents a trace inequality, the continuous and discrete Gronwall’s
inequalities.

Lemma 2.1 ([35]): For any v ∈ V , v · n ∈ H−1/2(∂�) and there exists a positive constant c such that

‖v · n‖−1/2,∂� ≤ c ‖v‖V . (5)
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Lemma 2.2 (The continuous Gronwall lemma [36]): Let G be a nonnegative function and let y, f,
g be locally integrable non-negative functions on the interval [t0,∞). Assume there exists a constant
C0 ≥ 0 such that

y(t) + G(t) ≤ C0 +
∫ t

t0
f (τ ) dτ +

∫ t

t0
g(τ ) y(τ ) dτ , ∀ t ∈ [t0,∞).

Then,

y(t) + G(t) ≤
(
C0 +

∫ t

t0
f (τ ) dτ

)
exp

(∫ t

t0
g(τ ) dτ

)
, ∀ t ∈ [t0,∞).

Here, exp(ϕ) denotes the exponential function eϕ .

Lemma 2.3 (The discrete Gronwall lemma [37]): Let aj, bj, cj, dj, k and C0, for integers j ≥ 0, be
non-negative numbers such that

an + k
n∑
j=0

bj ≤ k
n∑
j=0

djaj + k
n∑
j=0

cj + C0 ∀ n ≥ 0.

Then, if k dj < 1 for all j,

an + k
n∑
j=0

bj ≤
⎛
⎝C0 + k

n∑
j=0

cj

⎞
⎠ exp

⎛
⎝k

n∑
j=0

dj
1 − k dj

⎞
⎠ ∀ n ≥ 0.

Hereafter,C denotes a generic positive constant, independent of themesh size h and time step k; its
value may vary from case to case. For the solution of problem (2)–(3), we have the following lemma.

Lemma 2.4: Assume f ∈ L2(0,T; [L2(�)]d), gD ∈ L2(0,T;H1/2(∂�)) and u0 ∈ V. Suppose that
(u, p) satisfies (2)–(3). Then, for any t ∈ [0,T],

‖u‖C(0,T;[L2(�)]d) + ‖u̇‖L2(0,T;[L2(�)]d) + ‖u‖L2(0,T;V)

≤ C
[‖u0‖0 + ‖f ‖L2(0,T;[L2(�)]d) + ‖gD‖L2(0,T;H1/2(∂�))

]
. (6)

Proof: Taking v = u and q = p in (2), we obtain

1
2
d
dt

‖u‖20 + α‖u‖2V ≤ ‖f ‖0‖u‖V + ‖gD‖1/2,∂�‖u · n‖−1/2,∂�.

Apply (5),

1
2
d
dt

‖u‖20 + α

2
‖u‖2V ≤ 1

α
‖f ‖20 + c2

α
‖gD‖21/2,∂�. (7)

Integrate (7) from 0 to t and multiply by 2 to yield

‖u(·, t)‖20 + α

∫ t

0
‖u(·, τ)‖2V dτ ≤ ‖u(·, 0)‖20 + 2

α

∫ t

0

(
‖f (·, τ)‖20 + c2‖gD(·, τ)‖21/2,∂�

)
dτ .

Similarly, taking v = u̇ and q = p in (2), we can derive that∫ t

0
‖u̇(·, t)‖20 dt + ‖u(·, t)‖20 ≤ C‖u(·, 0)‖20 + C

∫ t

0
‖f (·, τ)‖20 dτ + C

∫ t

0
‖gD(·, τ)‖21/2,∂� dτ .

With the initial value condition (3), we obtain (6) from the above two inequalities. �
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3. Spatially semi-discrete MDG scheme

3.1. Notation andmixed DG scheme

For brevity, we only consider the case d = 2; the results can be similarly extended to the case of
d = 3. Let {Th}h be a regular family of quasi-uniform triangulations of �. The notation Eh stands
for the union of the boundaries of all K ∈ Th, E i

h ⊂ Eh is the set of interior edges and E∂
h = Eh\E i

h is
the set of boundary edges. Let |K| be the area of K, hK be the diameter of the element K ∈ Th, and
h = max{hK : K ∈ Th}. Similarly, denote the length of edge e by he for any e ∈ Eh.

Let e be an edge shared by two neighboring elements K1 and K2, with their outward unit normals
n1 and n2 on e. For a scalar function q, let qi = q|∂Ki , define the jump [[q]] and average {q} by

[[q]] = q1n1 + q2n2 and {q} = 1
2
(q1 + q2) ∀ e ∈ E i

h.

For a vector function v, define v1 and v2 analogously and set

[v] = v1 · n1 + v2 · n2 and {v} = 1
2
(v1 + v2) ∀ e ∈ E i

h.

On the boundary, define

[[q]] = qn and {v} = v ∀ e ∈ E∂
h .

Let l ≥ 0 be an integer. We define the discontinuous finite element spaces Vh and Qh by

Vh = {vh ∈ [L2(�)]2 : vh ∈ [Pl+1(K)]2 ∀ K ∈ Th},
Qh = {qh ∈ L2(�) : qh ∈ Pl(K) ∀ K ∈ Th}.

where Pl(K) denotes the set of all polynomials in K with the total degree no more than l.
For V(h) = Vh + [H1(�)]2, define the norm by

‖v‖2h = ‖v‖20 + ‖divhv‖20 +
∑
e∈E i

h

h−1
e ‖[v]‖2e .

Here, divh is the differential operator div defined piecewise on each element K ∈ Th, and ‖[v]‖e
denotes the L2(e)-norm of [v].

We introduce an interpolation operator �h : [H1(�)]2 → Vh satisfying [38]∫
K
qhdiv (�hv − v) dx = 0 ∀ qh ∈ Pl(K),∫

e
qh(�hv − v) · ne ds = 0 ∀ qh ∈ Pl(e),

�hv|e · ne ∈ Pl(e). (8)

and

‖�hv − v‖0,K + hK |�hv − v|1,K ≤ Chl+2|v|l+2,K ∀ v ∈ [Hl+2(�)]2. (9)

Let Ph : Q → Qh denote the L2-orthogonal projection defined by∫
K
(Phϕ − ϕ)qh dx = 0 ∀ qh ∈ Qh, K ∈ Th. (10)

Assume ϕ ∈ Hl+1(�). Then

‖Phϕ − ϕ‖0,K + hK |Phϕ − ϕ|1,K ≤ Chl+1|ϕ|l+1,K ∀ K ∈ Th. (11)
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Moreover, together with the fact that div�hv ∈ Pl(K), the definitions of �h and Ph imply that

div�hv = Ph(div v). (12)

Following the construction of the bilinear forms for the MDG scheme in [26], we define

ah(uh, vh) =
∫
Th

αuh · vh dx +
∫
E i
h

ηeh−1
e [uh][vh] ds, (13)

bh(vh, ph) = −
∫
Th

phdivhvh dx +
∫
E i
h

{ph}[vh] ds, (14)

where ηe is the penalty parameter.
A spatially semi-discrete MDG approximation for the time-dependent Darcy problem (1) is to

find (uh(t), ph(t)) ∈ Vh × Qh for all t ∈ [0,T] such that

(u̇h, vh) + ah(uh, vh) + bh(vh, ph) = (f , vh) − 〈vh · n, gD〉E∂
h

∀ vh ∈ Vh,

bh(uh, qh) = 0 ∀ qh ∈ Qh, (15)

with the initial condition

uh(0) = �hu0. (16)

This mixed DG scheme can be regarded as a special case of the LDG method. However, the finite
element pairsPl+1-Pl for the DG spaces Vh andQh are different from that in the usual LDGmethod
[28,39].

3.2. Well-posednesss of the semi-discrete scheme

In order to establish the well-posedness of the semi-discrete scheme, we define the subspace Zh ofVh
by

Zh = {vh ∈ Vh : bh(vh, qh) = 0 ∀ qh ∈ Qh}.
To characterize the kernel Zh, for any qh ∈ Qh, we define the lifting operator (cf. [24,40]) re : L2(e) →
Qh by ∫

�

re(ϕ)qh dx = −
∫
e
ϕ{qh} ds ∀ e ∈ Eh. (17)

Let

r(ϕ) =
∑
e∈E i

h

re(ϕ).

Then obviously

‖r(ϕ)‖20 = ‖
∑
e∈E i

h

re(ϕ)‖20 ≤ 3
∑
e∈E i

h

‖re(ϕ)‖20.

Lemma 3.1: For any vh ∈ Zh, we have divhvh + r([vh]) = 0.
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Proof: If vh ∈ Zh, then for any qh ∈ Qh,

0 = bh(vh, qh) = −
∫
Th

qhdivhvh dx +
∫
E i
h

{qh}[vh] ds

= −
∫

�

qhdivhvh dx −
∫

�

qhr([vh]) dx

= −
∫

�

qh(divhvh + r([vh])) dx.

By taking qh = divhvh + r([vh]) ∈ Qh, we conclude that divhvh + r([vh]) = 0. �

Lemma 3.2 ([40]): There exists a positive constant C1, independent of h, such that

‖re(ϕ)‖0 ≤ C1h
−1/2
e ‖ϕ‖e.

Coercivity of ah(vh, vh) on Zh is considered next.

Lemma 3.3: Assume η0 := mine∈E i
h
ηe > 3C1. Then there exists a constant C2 > 0 such that

ah(vh, vh) ≥ C2‖vh‖2h ∀ vh ∈ Zh. (18)

Proof: By using Lemmas 3.1 and 3.2, for any vh ∈ Zh, one finds

‖divhvh‖20 = ‖r([vh])‖20 ≤ 3
∑
e∈E i

h

‖re([vh])‖20 ≤ 3C1
∑
e∈E i

h

h−1
e ‖[vh]‖2e .

In addition, ∫
Th

αvh · vh dx ≥ α‖vh‖20,∫
E i
h

ηe

he
[vh][vh] ds ≥ η0

∑
e∈E i

h

h−1
e ‖[vh]‖2e .

Therefore,

ah(vh, vh) ≥ α‖vh‖20 + (η0 − 3C1)
∑
e∈E i

h

h−1
e ‖[vh]‖2e + ‖divhvh‖20.

Thus, (18) holds with C2 = min{α, 1, η0 − 3C1}. �

FromCauchy-Schwarz inequality and inverse inequality, we can derive the following continuity of
the bilinear forms ah(·, ·) and bh(·, ·).

Lemma 3.4 ([26]): For the bilinear forms ah(·, ·) and bh(·, ·), we have

ah(u, v) ≤ C‖u‖h‖v‖h ∀ u, v ∈ V(h),
bh(v, ph) ≤ C‖ph‖0‖v‖h ∀ v ∈ V(h) ∀ ph ∈ Qh,
bh(v, p) ≤ C

(‖p‖0 + h |p|1
) ‖v‖h ∀ v ∈ V(h) ∀ p ∈ H1(�).

We then turn to the discrete inf-sup condition of the bilinear form bh(·, ·).
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Lemma 3.5: There exists a constant β2 > 0 such that

sup
vh∈Vh

bh(vh, ph)
‖vh‖h

≥ β2‖ph‖0 ∀ ph ∈ Qh. (19)

Proof: Following [41,42], we construct a Fortin operator to prove (19). Let G be a convex and
bounded domain containing �. Given v ∈ V , let

fv =
{
div v in �,
0 in G\�.

(20)

Since fv ∈ L2(G) andG is convex, the uniqueweak solution z ∈ H1
0(G) of the boundary value problem


z = fv in G, z = 0 on ∂G

has the regularity z ∈ H2(G), and there exists a constant C> 0 such that

‖z‖2,G ≤ C ‖fv‖0,G = C ‖div v‖0 ≤ C ‖v‖V . (21)

Furthermore, we see that div v = div∇z in �. Recalling the operator �h defined in (8), we construct
a Fortin operator πh : V → Vh by

πhv = �h(∇z). (22)

By (12), we deduce that

div πhv = div�h(∇z) = Ph(div∇z) = Ph(divv) in � (23)

and

bh(πhv, qh) = −
∫
Th

qhdiv(πhv) dx +
∫
E i
h

{qh}[πhv] ds

= −
∫
Th

qhPh(divv) dx +
∫
E i
h

{qh}[�h∇z] ds

= −
∫
Th

qhdivv dx +
∫
E i
h

{qh}[∇z] ds

= b(v, qh) (24)

for any v ∈ V and any qh ∈ Qh.
Moreover, by (9), (21), (22) and (23), we derive

‖πhv‖h ≤

⎛
⎜⎝‖�h(∇z)‖20 + ‖div v‖20 +

∑
e∈E i

h

h−1
e ‖[�h(∇z)]‖2e

⎞
⎟⎠

1/2

≤ C ‖v‖V (25)

based on the relations∑
e∈E i

h

h−1
e ‖[�h(∇z)]‖2e =

∑
e∈E i

h

h−1
e ‖[∇z − �h(∇z)]‖2e

≤ C
∑
K∈Th

h−1
K (h−1

K ‖∇z − �h(∇z)‖20,K + hK‖∇z − �h(∇z)‖21,K)
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≤ C
∑
K∈Th

h−1
K (h−1

K h2K‖∇z‖21,K + hK‖∇z‖21,K)

≤ C
∑
K∈Th

‖∇z‖21,K ≤ C‖z‖22 ≤ C‖v‖2V ,

and

‖�h(∇z)‖20 ≤ ‖∇z‖20 + ‖∇z − �h(∇z)‖20
≤ ‖∇z‖20 + Ch2‖∇z‖21 ≤ C‖z‖22 ≤ C‖v‖2V .

The identity (24) and inequality (25) show thatπh is a Fortin operator. Then the inf-sup condition (19)
can be proved by a standard argument [41,42]. �

Lemma 3.6: Assume f ∈ L2(0,T; [L2(�)]2), gD ∈ L2(0,T;H1/2(∂�)) and u0 ∈ [L2(�)]2. Then (15)
has a unique solution.

Proof: We first prove the existence and uniqueness of uh. Observe that uh ∈ Zh is determined by

(u̇h, vh) + ah(uh, vh) = (f , vh) − 〈vh · n, gD〉E∂
h

∀ vh ∈ Zh,

uh(0) = �hu0.

This is an initial value problem for a linear system of ODEs with continuous coefficients and source
terms. Hence it has a unique solution uh ∈ Zh.

Once uh ∈ Zh is determined, the existence and uniqueness of ph can be obtained by using the
discrete inf-sup condition (19). �

Remark 3.7: In the definition (13) of the bilinear form ah(uh, vh), if we replace the penalty term∫
E i
h

ηe
he [uh][vh]ds by

∑
e∈E i

h

∫
�

ηere([uh])re([vh])dx, we can obtain another mixed DG scheme, which
is the dual form of the method of Brezzi et al. [43]. The well-posedness of the corresponding scheme
can be proved similarly.

3.3. Error estimates for the semi-discrete scheme

We begin the error estimation with a consistency result for the semi-discrete MDG scheme.

Lemma3.8: For the solution of (2)–(3), assume that (u(t), p(t)) ∈ V × H1(�) for a.e. t ∈ [0,T]. Then
for a.e. t ∈ [0,T],

(u̇(t), vh) + ah(u(t), vh) + bh(vh, p(t)) = (f (t), vh) − 〈vh · n, gD(t)〉E∂
h

∀ vh ∈ Vh,
bh(u(t), qh) = 0 ∀ qh ∈ Qh.

(26)

Proof: For a fixed t> 0 with (u, p) = (u(t), p(t)) ∈ V × H1(�), we have [u] = 0 and [[p]] = 0 on
each edge e ∈ E i

h. Thus,

(u̇, vh) + ah(u, vh) + bh(vh, p) = (u̇, vh) + α(u, vh)

+
∫
E i
h

ηe

he
[u][vh] ds − (p, divhvh) +

∫
E i
h

{p}[vh] ds

= (u̇, vh) + α(u, vh) + (∇p, vh) −
∫
Eh

{vh}[[p]] ds
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= (u̇, vh) + α(u, vh) + (∇p, vh) − 〈vh · n, gD〉E∂
h

= (f , vh) − 〈vh · n, gD〉E∂
h

and

bh(u, qh) = −(divhu, qh) +
∫
E i
h

{qh}[u] ds = (div u, qh) = 0.

This completes the proof of the lemma. �

Now we derive a priori error estimates for the numerical solution of the spatially semi-discrete
MDG scheme.

Theorem 3.9: Let (u, p) and (uh, ph) be the solutions of (2)–(3) and (15)–(16), respectively.
Assume that u ∈ C(0,T; [Hl+1(�)]2) ∩ L2(0,T; [Hl+2(�)]2), u̇ ∈ L2(0,T; [Hl+1(�)]2), and p ∈
L2(0,T;Hl+1(�)). Then,

‖u(t) − uh(t)‖20 +
∫ t

0
‖u(τ ) − uh(τ )‖2h dτ

≤ C h2(l+1)‖u‖2C(0,T;Hl+1(�)2)
+ C h2(l+1)

∫ t

0
(|u̇|2l+1 + |u|2l+2 + |p|2l+1) dτ . (27)

Proof: Subtracting (15) from (26), we have, for a.e. t ∈ [0,T],

(u̇ − u̇h, vh) + ah(u − uh, vh) + bh(vh, p − ph) = 0 ∀ vh ∈ Vh,
bh(u − uh, qh) = 0 ∀ qh ∈ Qh.

(28)

Decompose the errors as

e = u − uh = e1 + e2 with e1 = u − �hu and e2 = �hu − uh,

ζ = p − ph = ζ1 + ζ2 with ζ1 = p − Php and ζ2 = Php − ph.

Then, we rewrite (28) as

(ė2, vh) + ah(e2, vh) + bh(vh, ζ2) = −(ė1, vh) − ah(e1, vh) − bh(vh, ζ1),

bh(e2, qh) = −bh(e1, qh),
(29)

for all vh ∈ Vh, qh ∈ Qh. According to the definition of �h, one finds

bh(e1, qh) = 0 ∀ qh ∈ Qh.

Let vh = e2 and qh = ζ2 in (29). Then

(ė2, e2) + ah(e2, e2) + bh(e2, ζ2) = −(ė1, e2) − ah(e1, e2) − bh(e2, ζ1),

bh(e2, ζ2) = 0.
(30)

Therefore,
1
2
d
dt

‖e2‖20 + C2‖e2‖2h ≤ −(ė1, e2) − ah(e1, e2) − bh(e2, ζ1). (31)

By using the Cauchy-Schwarz inequality, we estimate the right terms as follows:

−(ė1, e2) ≤ ‖ė1‖0‖e2‖0 ≤ 1
2
‖e2‖20 + 1

2
‖ė1‖20,
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−ah(e1, e2) ≤ ‖e1‖h‖e2‖h ≤ C2

4
‖e2‖2h + 1

C2
‖e1‖2h,

−bh(e2, ζ1) ≤ ‖ζ1‖0‖e2‖h ≤ C2

4
‖e2‖2h + 1

C2
‖ζ1‖20.

Combining above inequalities with (31), we have for a.e. t ∈ [0,T],

1
2
d
dt

‖e2‖20 + C2

2
‖e2‖2h ≤ 1

2
‖e2‖20 + 1

2
‖ė1‖20 + 1

C2
‖e1‖2h + 1

C2
‖ζ1‖20. (32)

Integrating (32) with respect to t from 0 to t, applying the continuous Gronwall’s lemma, and noting
that e2(0) = 0, we obtain

‖e2(t)‖20 + C2

∫ t

0
‖e2‖2h dτ ≤ C

∫ t

0
(‖ė1‖20 + ‖e1‖2h + ‖ζ1‖20) dτ .

By the definitions of norm ‖ · ‖h, the operators �h and Ph, we obtain

‖ė1‖0 ≤ C hl+1|u̇|l+1,

‖ζ1‖0 ≤ C hl+1|p|l+1

and

‖e1‖2h = ‖u − �hu‖20 + ‖divh(u − �hu)‖20 +
∑
e∈E i

h

1
he

‖[u − �hu]‖2e ≤ h2(l+1)|u|2l+2,�.

From the above inequalities, we have

‖e2(t)‖20 + C2

∫ t

0
‖e2‖2h dτ ≤ C h2(l+1)

∫ t

0

(|u̇|2l+1 + |u|2l+2 + |p|2l+1
)
dτ . (33)

From (33), the triangle inequality for norms, and the bounds on e1, we obtain (27). �

Under higher regularity assumptions, we can obtain an error bound in the ‖ · ‖h-norm.

Theorem 3.10: Let (u, p) and (uh, ph) be the solutions of (2)–(3) and (15)–(16), respec-
tively. Assume u ∈ C(0,T; [Hl+2(�)]2), u̇ ∈ L2(0,T; [Hl+2(�)]2), p ∈ C(0,T;Hl+1(�)), and ṗ ∈
L2(0,T;Hl+1(�)). Then

∫ t

0
‖u̇ − u̇h‖20 dτ + ‖u(t) − uh(t)‖2h

≤ C h2(l+1)
(
‖u‖2C(0,T;Hl+2(�)2)

+ ‖p‖2C(0,T;Hl+1(�))

)
+ C h2(l+1)

∫ t

0

(|u̇|2l+2 + |ṗ|2l+1
)
dτ .

Proof: Taking vh = ė2 and qh = ζ2 in (29), we have

(ė2, ė2) + ah(e2, ė2) + bh(ė2, ζ2)

= −(ė1, ė2) − ah(e1, ė2) − bh(ė2, ζ1),

bh(e2, ζ2) = 0. (34)
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For all q ∈ Qh,

0 = d
dt
bh(e2, q) = bh(ė2, q). (35)

Hence,

(ė2, ė2) + ah(e2, ė2) = −(ė1, ė2) − ah(e1, ė2) − bh(ė2, ζ1). (36)

So,

‖ė2‖20 + C2

2
d
dt

‖e2‖2h ≤ −(ė1, ė2) − ah(e1, ė2) − bh(ė2, ζ1). (37)

The first term on the right hand side of (37) can be bounded as

−(ė1, ė2) ≤ ‖ė1‖0‖ė2‖0 ≤ 1
2
‖ė2‖20 + 1

2
‖ė1‖20.

Then,

‖ė2‖20
2

+ C2

2
d
dt

‖e2‖2h ≤ 1
2
‖ė1‖20 − ah(e1, ė2) − bh(ė2, ζ1). (38)

Integrating (38) from 0 to t, due to the fact that e2(0) = 0, we get

∫ t

0
‖ė2‖20 dτ + C2‖e2(t)‖2h ≤

∫ t

0
‖ė1‖20 dτ − 2

∫ t

0
ah(e1, ė2) dτ

− 2
∫ t

0
bh(ė2, ζ1) dτ . (39)

For the last two terms of (39), by integrating by parts and using the Cauchy-Schwarz inequality, we
have

−2
∫ t

0
ah(e1, ė2) dτ = −2ah(e1(t), e2(t)) + 2

∫ t

0
ah(ė1, e2) dτ

≤ C2

4
‖e2(t)‖2h + 4

C2
‖e1(t)‖2h +

∫ t

0
‖ė1‖2h dτ +

∫ t

0
‖e2‖2h dτ ,

−2
∫ t

0
bh(ė2, ζ1) dτ = −2bh(e2(t), ζ1(t)) + 2

∫ t

0
bh(e2, ζ̇1) dτ

≤ C2

4
‖e2(t)‖2h + 4

C2
‖ζ1(t)‖20 +

∫ t

0
‖ζ̇1‖20 dτ +

∫ t

0
‖e2‖2h dτ .

Combining the above inequalities with (39), we obtain

∫ t

0
‖ė2‖20 dτ + C2

2
‖e2(t)‖2h ≤

∫ t

0
‖ė1‖20 dτ + 2

∫ t

0
‖e2‖2h dτ + 4

C2
‖e1(t)‖2h

+
∫ t

0
‖ė1‖2h dτ + 4

C2
‖ζ1(t)‖20 +

∫ t

0
‖ζ̇1‖20 dτ . (40)
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Then apply the continuous Gronwall’s lemma to obtain∫ t

0
‖ė2‖20 dτ + C2

2
‖e2(t)‖2h ≤ C

(‖e1(t)‖2h + ‖ζ1(t)‖20
) + C

∫ t

0

(‖ė1‖20 + ‖ė1‖2h + ‖ζ̇1‖20
)
dτ .

By the error estimates (9) and (11), we get∫ t

0
‖ė2‖20 dτ + C2

2
‖e2(t)‖2h ≤ C h2(l+1)‖u‖2C(0,T;Hl+2(�)2)

+ C h2(l+1)‖p‖2C(0,T;Hl+1(�))

+ C h2(l+1)
∫ t

0

(|u̇|2l+2 + |ṗ|2l+1
)
dτ . (41)

Then the proof of Theorem 3.10 is completed from (41), the triangle inequality for norms and the
bounds on e1. �

Finally, we bound the error p − ph.

Theorem 3.11: Under the assumptions of Theorem 3.10, we have∫ t

0
‖p − ph‖20 dτ

≤ C h2(l+1)
(

‖u‖2C(0,T;Hl+2(�)2)
+ ‖p‖2C(0,T;Hl+1(�))

+
∫ t

0
|u̇|2l+2 dτ +

∫ t

0
|ṗ|2l+1 dτ

)
.

Proof: From (29), we have

bh(vh, ζ2) = −(ė, vh) − ah(e, vh) − bh(vh, ζ1) ∀ vh ∈ Vh. (42)

The inf-sup condition (19) guarantees that

sup
vh∈Vh

bh(vh, ζ2)
‖vh‖h

≥ β2‖ζ2‖0. (43)

Applying the Cauchy-Schwarz inequality and Lemma 3.4, we obtain

−(ė, vh) ≤ ‖ė‖0‖vh‖0 ≤ ‖ė‖0‖vh‖h,
−ah(e, vh) ≤ ‖e‖h‖vh‖h,

−bh(vh, ζ1) ≤ ‖ζ1‖0‖vh‖h,
then,

‖ζ2‖0 ≤ C (‖ė‖0 + ‖e‖h + ‖ζ1‖0) .
Integrating above formulas with respect to t from 0 to t, we arrive at∫ t

0
‖ζ2‖20 dτ ≤ C

∫ t

0

(‖ė‖20 + ‖e‖2h + ‖ζ1‖20
)
dτ

≤ C h2(l+1)
(
‖u‖2C(0,T;Hl+2(�)2)

+ ‖p‖2C(0,T;Hl+1(�))

)

+ C h2(l+1)
∫ t

0

(|u̇|2l+2 + |ṗ|2l+1
)
dτ ,

where we applied error bounds from Theorem 3.10 and (11). By this error bound, the triangle
inequality for norms, and error bounds on ζ1, we get the stated error bound for the pressure variable
approximation. �
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4. Fully-discrete MDG scheme

In this section, we study a fully-discrete schemewhich is constructedwith theMDGdiscretization for
the spatial variable and backward Euler difference approximation for the temporal variable. Introduce
a partition of the time interval [0,T] into subintervals [tn−1, tn], 1 ≤ n ≤ N (N an integer), such that
0 = t0 < t1 < · · · < tN = T. In order to simplify the notation, we consider only evenly spaced nodes
tn = nk (n = 0, 1, . . . ,N)with the time step k = T/N. For a function ϕ(·, t) continuous in t, we write
ϕn(·) = ϕ(·, tn) and set

δkϕ
n = ϕn − ϕn−1

k
.

For convenience, in this section we assume

f ∈ C(0,T; L2(�)2), gD ∈ C(0,T;H1/2(∂�)). (44)

Then

f n(·) = f (·, tn) ∈ L2(�)2, gnD(·) = gD(·, tn) ∈ H1/2(∂�).

We comment that without the condition (44), we can take f n and gnD to be averages of f and gD over
the time interval [tn−1, tn].

A fully discrete approximation of (2)–(3) is to find (unh, p
n
h) ∈ Vh × Qh such that for 1 ≤ n ≤ N,

(δkunh, vh) + ah(unh, vh) + bh(vh, pnh) = (f n, vh) − 〈vh · n, gnD〉E∂
h

∀ vh ∈ Vh,

bh(unh, qh) = 0 ∀ qh ∈ Qh,
(45)

and

u0h = �hu0. (46)

Thanks to the properties of ah(·, ·) and bh(·, ·) listed in Lemmas 3.4 and 3.5, we can show that the
fully discrete solution exists and is unique.

4.1. Stability of the fully-discrete scheme

We show that the numerical solution {(unh, pnh)}Nn=1 of the fully discrete scheme (45)–(46) is bounded.

Theorem 4.1: There exists positive constants k0 and C such that for k ≤ k0 and 1 ≤ n ≤ N,

‖unh‖20 +
n∑
j=1

‖ujh − uj−1
h ‖20 + k

n∑
j=1

‖ujh‖2h ≤ C ‖u0h‖20 + C k
n∑
j=1

(
‖f j‖20 + ‖gjD‖21/2,∂�

)
. (47)

Proof: Taking vh = 2kunh ∈ Vh and qh = pnh in (45) and applying the following relation

(a − b, 2a) = a2 − b2 + |a − b|2, (48)

we obtain

‖unh‖20 − ‖un−1
h ‖20 + ‖unh − un−1

h ‖20 + 2C2k‖unh‖2h
≤ 2k(f n, unh) + 2k〈unh · n, gnD〉E∂

h

≤ k‖f n‖20 + k‖unh‖20 + kc2

C2
‖gnD‖21/2,∂� + C2k‖unh‖2h. (49)
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Change n to j in (49) and make a summation for j = 1, · · ·, n,

‖unh‖20 +
n∑
j=1

‖ujh − uj−1
h ‖20 + C2k

n∑
j=1

‖ujh‖2h ≤ ‖u0h‖20 + k
n∑
j=1

(
‖ujh‖20 + ‖f j‖20 + c2

C2
‖gjD‖21/2,∂�

)
.

Then, we finish the proof of (47) by applying the discrete Gronwall lemma. �

4.2. Error estimates of the fully-discrete scheme

In the following, we will assume the condition k ≤ k0 from Theorem 4.1 is true. We provide error
estimates for the fully-discrete MDG scheme in this subsection.

Theorem 4.2: Let {(unh, pnh)}Nn=1 be the numerical solutions of (45)–(46). Under the assumptions of
Theorem 3.9, ü ∈ L2(0,T; [L2(�)]2) and p ∈ C(0,T; L2(�)), we have a constant C> 0 such that for
1 ≤ n ≤ N,

‖un − unh‖20 +
n∑
j=1

‖(uj − ujh) − (uj−1 − uj−1
h )‖20 + k

n∑
j=1

‖uj − ujh‖2h

≤ C h2(l+1)‖u‖2C(0,T;Hl+1(�)2)
+ C k2

∫ tn

0
‖ü‖20 dt + C h2(l+1)

∫ tn

0
(|u̇|2l+1 + |u|2l+2 + |p|2l+1) dt.

Proof: Under the stated regularity assumptions, (26) holds for all t ∈ [0,T]. Subtracting (45)
from (26) at the time t = tn, we have

(δkun − δkunh, vh) + ah(un − unh, vh) + bh(vh, pn − pnh) = (Rn, vh) ∀ vh ∈ Vh,

bh(un − unh, qh) = 0 ∀ qh ∈ Qh,
(50)

where

Rn = δkun − u̇(·, tn).
To bound Rn, we use the Taylor’s expansion

u(·, tn) − u(·, tn−1) = ku̇(·, tn) −
∫ tn

tn−1

(t − tn−1)ü(·, t) dt.

As a result,

Rn = −1
k

∫ tn

tn−1

(t − tn−1)ü(·, t) dt.

By using Cauchy-Schwarz inequality, we have

‖Rn‖20 ≤ k
3

∫ tn

tn−1

‖ü‖20 dt. (51)

Write the errors en = un − unh and ζ n = pn − pnh as

en = en1 + en2 with en1 = un − �hun and en2 = �hun − unh,

ζ n = ζ n
1 + ζ n

2 with ζ n
1 = pn − Phpn and ζ n

2 = Phpn − pnh.
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Then, from (50), for any vh ∈ Vh and any qh ∈ Qh,

(δken2, vh) + ah(en2 , vh) + bh(vh, ζ n
2 ) = (Rn, vh) − (δken1, vh) − ah(en1 , vh) − bh(vh, ζ n

1 ),

bh(en2 , qh) = −bh(en1, qh).
(52)

According to the definition of �h, it is easily to get

bh(en1 , qh) = 0 ∀ qh ∈ Qh.

Therefore,

bh(en2, qh) = 0 ∀ qh ∈ Qh. (53)

Taking vh = en2 in the first relation of (52), we have

(δken2, e
n
2) + ah(en2, e

n
2) = (Rn, en2) − (δken1, e

n
2) − ah(en1 , e

n
2) − bh(en2 , ζ

n
1 ). (54)

Apply (48) and Lemma 3.3 to yield

1
2k

(‖en2‖20 − ‖en−1
2 ‖20 + ‖en2 − en−1

2 ‖20) + C2‖en2‖2h
≤ (Rn, en2) − (δken1 , e

n
2) − ah(en1 , e

n
2) − bh(en2 , ζ

n
1 ). (55)

By the Cauchy-Schwarz inequality,

(Rn, en2) ≤ ‖Rn‖0‖en2‖0 ≤ 1
2
‖en2‖20 + 1

2
‖Rn‖20,

−(δken1, e
n
2) ≤ ‖δken1‖0‖en2‖0 ≤ 1

2
‖en2‖20 + 1

2
‖δken1‖20,

−ah(en1 , e
n
2) ≤ ‖en1‖h‖en2‖h ≤ C2

4
‖en2‖2h + 1

C2
‖en1‖2h,

−bh(en2, ζ
n
1 ) ≤ ‖ζ n

1 ‖0‖en2‖h ≤ C2

4
‖en2‖2h + 1

C2
‖ζ n

1 ‖20.

Apply these inequalities in (55),

1
2k

(‖en2‖20 − ‖en−1
2 ‖20 + ‖en2 − en−1

2 ‖20) + C2

2
‖en2‖2h

≤ 1
2
‖Rn‖20 + ‖en2‖20 + 1

2
‖δken1‖20 + 1

C2
‖en1‖2h + 1

C2
‖ζ n

1 ‖20. (56)

Changing n to j, multiplying 2k on both sides of the inequality (56), making a summation for j =
1, · · ·, n, and using the fact that e02 = 0, we obtain

‖en2‖20 +
n∑
j=1

‖ej2 − ej−1
2 ‖20 + C2k

n∑
j=1

‖ej2‖2h

≤ k
n∑
j=1

(
‖Rj‖20 + 2‖ej2‖20 + ‖δkej1‖20 + 2

C2
‖ej1‖2h + 2

C2
‖ζ j

1‖20
)
. (57)
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By (9) and (11),

‖δkej1‖20 = 1
k2

‖
∫ tj

tj−1

(I − �h)u̇ dt‖20 ≤ 1
k

∫ tj

tj−1

Ch2(l+1)|u̇|2l+1 dt, (58)

and

‖ej1‖2h = ‖(I − �h)uj‖2h ≤ C h2(l+1)|uj|2l+2,

‖ζ j
1‖20 = ‖(I − Ph)pj‖20 ≤ C h2(l+1)|pj|2l+1.

By applying the discrete Gronwall lemma to (57), we get

‖en2‖20 +
n∑
j=1

‖ej2 − ej−1
2 ‖20 + C2k

n∑
j=1

‖ej2‖2h

≤ C k2
∫ tn

0
‖ü‖20 dt + C h2(l+1)

∫ tn

0
(|u̇|2l+1 + |u|2l+2 + |p|2l+1) dt. (59)

Combining this inequality with the error bounds on en1, we complete the proof. �

Theorem 4.3: Under the conditions of Theorem 3.10 and ü ∈ L2(0,T; [L2(�)]2), we have a constant
C> 0 such that for 1 ≤ n ≤ N,

1
k

n∑
j=1

‖(uj − ujh) − (uj−1 − uj−1
h )‖20 + ‖un − unh‖2h +

n∑
j=1

‖(uj − ujh) − (uj−1 − uj−1
h )‖2h

≤ C h2(l+1)‖u‖2C(0,T;Hl+2(�)2)
+ C h2(l+1)‖p‖2C(0,T;Hl+1(�))

+ C k2
∫ tn

0
‖ü‖20 dt + C h2(l+1)

∫ tn

0
(|u̇|2l+2 + |u̇|2l+1 + |ṗ|2l+1) dt.

Proof: Taking vh = 2(en2 − en−1
2 ) and qh = ζ n

2 in (52), by (53), we get bh(en−1
2 , ζ n

2 ) = 0, bh(en2 , ζ
n
2 ) =

0 and

2
k
‖en2 − en−1

2 ‖20 + ah(en2 , e
n
2) − ah(en−1

2 , en−1
2 ) + ah(en2 − en−1

2 , en2 − en−1
2 )

= 2(Rn, en2 − en−1
2 ) − 2(δken1, e

n
2 − en−1

2 )

− 2ah(en1, e
n
2 − en−1

2 ) − 2bh(en2 − en−1
2 , ζ n

1 ). (60)

Applying the Cauchy-Schwarz inequality,

2(Rn, en2 − en−1
2 ) ≤ 2‖Rn‖0‖en2 − en−1

2 ‖0 ≤ 2k‖Rn‖20 + 1
2k

‖en2 − en−1
2 ‖20,

−2(δken1, e
n
2 − en−1

2 ) ≤ 2‖δken1‖0‖en2 − en−1
2 ‖0 ≤ 2k‖δken1‖20 + 1

2k
‖en2 − en−1

2 ‖20.

Combining above inequalities with (60), we get

1
k
‖en2 − en−1

2 ‖20 + ah(en2 , e
n
2) − ah(en−1

2 , en−1
2 ) + ah(en2 − en−1

2 , en2 − en−1
2 )

≤ 2k‖Rn‖20 + 2k‖δken1‖20 − 2ah(en1 , e
n
2 − en−1

2 ) − 2bh(en2 − en−1
2 , ζ n

1 ). (61)
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Changing n to j in (61) and making a summation for j = 1, · · ·, n, by Lemma 3.4, we obtain

1
k

n∑
j=1

‖ej2 − ej−1
2 ‖20 + C2‖en2‖2h + C2

n∑
j=1

‖ej2 − ej−1
2 ‖2h

≤ 2k
n∑
j=1

‖Rj‖20 + 2k
n∑
j=1

‖δkej1‖20

− 2
n∑
j=1

ah(e
j
1, e

j
2 − ej−1

2 ) − 2
n∑
j=1

bh(e
j
2 − ej−1

2 , ζ j
1).

For the last two terms, we have

−2
n∑
j=1

ah(e
j
1, e

j
2 − ej−1

2 ) = −2
n∑
j=1

ah(e
j
1, e

j
2) + 2

n−1∑
j=0

ah(e
j+1
1 , ej2)

= −2ah(en1, e
n
2) + 2ah(e11, e

0
2) + 2

n−1∑
j=1

ah(e
j+1
1 − ej1, e

j
2)

≤ C2

4
‖en2‖2h + 4

C2
‖en1‖2h + k

n−1∑
j=1

‖ej2‖2h + 1
k

n−1∑
j=1

‖ej+1
1 − ej1‖2h,

and

−2
n∑
j=1

bh(e
j
2 − ej−1

2 , ζ j
1) = −2

n∑
j=1

bh(e
j
2, ζ

j
1) + 2

n−1∑
j=0

bh(e
j
2, ζ

j+1
1 )

= −2bh(en2 , ζ
n
1 ) + 2bh(e02, ζ

1
1 ) + 2

n−1∑
j=1

bh(e
j
2, ζ

j+1
1 − ζ

j
1)

≤ C2

4
‖en2‖2h + 4

C2
‖ζ n

1 ‖20 + k
n−1∑
j=1

‖ej2‖2h + 1
k

n−1∑
j=1

‖ζ j+1
1 − ζ

j
1‖20.

Then

1
k

n∑
j=1

‖ej2 − ej−1
2 ‖20 + C2

2
‖en2‖2h + C2

n∑
j=1

‖ej2 − ej−1
2 ‖2h

≤ 2k
n∑
j=1

‖ej2‖2h + 2k
n∑
j=1

(‖Rj‖20 + ‖δkej1‖20) + 4
C2

‖en1‖2h

+ 1
k

n−1∑
j=1

‖ej+1
1 − ej1‖2h + 4

C2
‖ζ n

1 ‖20 + 1
k

n−1∑
j=1

‖ζ j+1
1 − ζ

j
1‖20. (62)

Similar to (58), we obtain

‖ej+1
1 − ej1‖2h = ‖

∫ tj+1

tj
(I − �h)u̇ dt‖2h ≤ k

∫ tj+1

tj
Ch2(l+1)|u̇|2l+2 dt,
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‖ζ j+1
1 − ζ

j
1‖20 = ‖

∫ tj+1

tj
(I − Ph)ṗ dt‖20 ≤ k

∫ tj+1

tj
Ch2(l+1)|ṗ|2l+1 dt.

Combine above inequalities, (51) and (62), then apply the discrete Gronwall lemma to get

1
k

n∑
j=1

‖ej2 − ej−1
2 ‖20 + C2

2
‖en2‖2h + C2

n∑
j=1

‖ej2 − ej−1
2 ‖2h

≤ C h2(l+1)(‖u‖2C(0,T;Hl+2(�)2)
+ ‖p‖2C(0,T;Hl+1(�))

) + C k2
∫ tn

0
‖ü‖20 dt

+ C h2(l+1)
∫ tn

0
(|u̇|2l+2 + |u̇|2l+1 + |ṗ|2l+1) dt. (63)

Then, we finish the proof of Theorem 4.3 by triangle inequalities and (9). �

Finally, we derive an error estimate for the pressure variable p.

Theorem 4.4: Under the conditions of Theorem 4.3, we have

k
n∑
j=1

‖pj − pjh‖20 ≤ C k2
∫ tn

0
‖ü‖20dt + Ch2(l+1)(‖u‖2C(0,T;Hl+2(�)2)

+ ‖p‖2C(0,T;Hl+1(�))
)

+ C h2(l+1)
∫ tn

0

(|u̇|2l+2 + |u̇|2l+1 + |ṗ|2l+1
)
dt.

Proof: Rewrite (52) as

bh(vh, ζ n
2 ) = (Rn, vh) − (δken, vh) − ah(en, vh) − bh(vh, ζ n

1 ).

The inf-sup condition (19) guarantees that

sup
vh∈Vh

bh(vh, ζ n
2 )

‖vh‖h
≥ β2‖ζ n

2 ‖0, (64)

which leads to

‖pn − pnh‖20 ≤ C
(‖Rn‖20 + ‖δken‖20 + ‖en‖2h + ‖ζ n

1 ‖20
)
. (65)

We change the index n to j in (65), and sum the inequalities for 1 ≤ j ≤ n,

k
n∑
j=1

‖pj − pjh‖20 ≤ C k
n∑
j=1

(‖Rj‖20 + ‖δkej‖20 + ‖ej‖2h + ‖ζ j
1‖20).

By making use of Theorem 4.3, we have

k
n∑
j=1

‖pj − pjh‖20 ≤ C k2
∫ tn

0
‖ü‖20 dt + C h2(l+1)(‖u‖2C(0,T;Hl+2(�)2)

+ ‖p‖2C(0,T;Hl+1(�))
)

+ C h2(l+1)
∫ tn

0

(|u̇|2l+2 + |u̇|2l+1 + |ṗ|2l+1
)
dt.

Thus, the proof is completed. �
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5. Numerical tests

In this section, we present computer simulation results on several two-dimensional examples to
illustrate numerical evidence of the theoretical error estimates. In all the examples, we solve the
time-dependent Darcy problem (1) with α = 1 over the spatial domain � = (0, 1) × (0, 1). In the
numerical simulations, the penalty parameter ηe is taken to be 0.1.

Example 5.1: The problem data are so chosen that the true solution is

u1(x, y, t) = (x2(y − 1)2 + y) cos(t),

u2(x, y, t) =
(

−2
3
x(y − 1)3 + 2 − π sin(πx)

)
cos(t),

p(x, y, t) = (2 − π sin(πx)) sin
(π

2
y
)
cos(t).

In this example, we compute the numerical solutions for the element pairs P1-P0, P2-P1 and
P3-P2 on the uniform triangular meshes. Fix a small time-step k = 2−10. We present the numerical
results of ‖u − uh‖h, ‖div(u − uh)‖0 and ‖p − ph‖0 at the final timeT = 0.1 in Figure 1. The numer-
ical results confirm the optimal convergence orders in ‖ · ‖h for u norm and L2-norm for p, which
are proved in Section 4.

Figure 1. Numerical convergence orders for Example 5.1 at time T = 0.1.
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Example 5.2: For this example, the problem data are so chosen that the true solution is

u1(x, y, t) = x2ye−t ,

u2(x, y, t) = −xy2e−t ,

p(x, y, t) = (xy − 1/4)e−t .

The DG finite element pair P2-P1 is employed in the numerical scheme.
In Table 1, we list the numerical errors at time T = 1 and convergence rates with respect to h, as k

is fixed to be 2−10. In Table 2, with h = 2−6 fixed, we provide numerical errors and numerical conver-
gence orders with respect to k. The theoretically predicted optimal convergence orders in Section 4
are observed with respect to both h and k.

Example 5.3: In this last example, the problem data are chosen so that the true solution is

u1(x, y, t) = sin(xt) sin(yt),

u2(x, y, t) = cos(xt) cos(yt),

p(x, y, t) = sin((x − y)t).

We consider numerical solutions at the timeT = 1. In Table 3, we list numerical results with the use of
the mixed DG finite element pairP1-P0 and a fixed small step-size k = 2−10. The linear convergence
order in h is evident. To explore the numerical convergence orders with respect to the time step-size k,

Table 1. Numerical convergence orders for h in Example 5.2 with the time step k = 2−10.

1/h ‖u − uh‖h Order ‖div(u − uh)‖0 Order ‖p − ph‖0 Order

4 4.91089e−02 – 3.99189e−02 – 1.01481e−03 –
8 1.28926e−02 1.9294 1.06358e−02 1.9081 2.53548e−04 2.0009
16 3.28341e−03 1.9733 2.71952e−03 1.9675 6.33814e−05 2.0001
32 8.37682e−04 1.9707 6.95844e−04 1.9665 1.58452e−05 2.0000

Table 2. Numerical convergence orders for k in Example 5.2 with the mesh h = 2−6.

1/k ‖u − uh‖h Order ‖div(u − uh)‖0 Order ‖p − ph‖0 Order

4 8.26619e−02 – 3.93362e−02 – 2.30372e−02 –
8 4.26435e−02 0.9549 2.06164e−02 0.9321 1.07996e−02 1.0930
16 2.16882e−02 0.9754 1.05676e−02 0.9641 5.23113e−03 1.0458
32 1.09424e−02 0.9870 5.35382e−03 0.9810 2.57470e−03 1.0227

Table 3. Numerical convergence orders for h in Example 5.3 with the finite element pairP1-P0 and the time-step k = 2−10.

1/h ‖u − uh‖h Order ‖div(u − uh)‖0 Order ‖p − ph‖0 Order

4 1.98248e+00 – 1.63041e+00 – 9.49870e−02 –
8 1.00114e+00 0.9857 8.43981e−01 0.9500 4.74494e−02 1.0013
16 4.89519e−01 1.0322 4.18319e−01 1.0126 2.36720e−02 1.0032
32 2.40941e−01 1.0227 2.07382e−01 1.0123 1.18207e−02 1.0019

Table 4. Numerical convergence orders for k in Example 5.3 with the finite element pairP2-P1 and the mesh-size h = 1/64.

1/k ‖u − uh‖h Order ‖div(u − uh)‖0 Order ‖p − ph‖0 Order

4 2.46117e−01 – 8.85582e−02 – 8.19958e−02 –
8 1.27881e−01 0.9445 4.71559e−02 0.9092 3.96573e−02 1.0480
16 6.52589e−02 0.9706 2.43650e−02 0.9526 1.94753e−02 1.0259
32 3.29857e−02 0.9843 1.24162e−02 0.9726 9.64719e−03 1.0135
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we need numerical solutions with sufficient accuracy in h. For this purpose, we employ the DG pair
P2-P1 with the finite element mesh-size h = 1/64. The numerical results are reported in Table 4,
which clearly displays the first order convergence with respect to the time step-size k.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
Thisworkwas partially supported by theNationalNatural Science Foundation ofChina (GrantNo. 11771350,11971377)
and the Natural Science Foundation of Shaanxi Province (No. 2019JM-367).

References
[1] Bernardi C,Girault V, Rajagopal K.Discretization of an unsteady flow through a porous solid byDarcy’s equations.

Math Models Methods Appl Sci. 2008;18:2087–2123.
[2] Rajagopal K.On a hierarchy of approximatemodels for flows of incompressible fluids through porous solids.Math

Models Methods Appl Sci. 2007;17:215–252.
[3] Brezzi F, Douglas J, Marini L. Two families of mixed finite elements for second order elliptic problems. Numer

Math. 1985;47:217–235.
[4] Gatica G, Ruizbaier R, Tierra G. A mixed finite element method for Darcy’s equations with pressure dependent

porosity. Math Comput. 2015;85:1–33.
[5] Masud A, Hughes T. A stabilized mixed finite element method for Darcy flow. Comput Methods Appl Mech Eng.

2002;191:4341–4370.
[6] Bernardi C, Orfi A. Finite element discretization of the time dependent axisymmetric Darcy problem. SeMA J.

2015;68:53–80.
[7] Amoura K, Bernardi C, Saadi S. Mortar finite element discretization of the time dependent nonlinear Darcy’s

equations. Calcolo. 2016;56:597–619.
[8] Mu M, Zhu X. Decoupled schemes for a non-stationary mixed Stokes-Darcy problem. Math Comp.

2010;79:707–731.
[9] Ervin V, Kubacki M, Layton W, et al. Partitioned penalty methods for the transport equation in the evolutionary

Stokes–Darcy-transport problem. Numer Methods PDEs. 2019;35:349–374.
[10] Zhang J, Rui H, Cao Y. A partitioned method with different time steps for coupled Stokes and Darcy flows with

transport. Int J Numer Anal Model. 2019;15:463–498.
[11] Bey K, Oden J. hp-Version discontinuous Galerkin methods for hyperbolic conservation laws. Comput Methods

Appl Mech Eng. 1996;133:259–286.
[12] Grote M, Schötzau D. Optimal error estimates for the fully discrete interior penalty DG method for the wave

equation. J Sci Comput. 2009;40:257–272.
[13] HanW, He L, Wang F. Optimal order error estimates for discontinuous Galerkin methods for the wave equation.

J Sci Comput. 2019;78:121–144.
[14] Houston P, Schwab C, Süli E. Stabilized hp-finite element methods for hyperbolic problems. SIAM J Numer Anal.

2000;37:1618–1643.
[15] Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the

compressible Navier-Stokes equations. J Comput Phys. 1997;131:267–279.
[16] Cockburn B, Kanschat G, Schötzau D. A locally conservative LDG method for the incompressible Navier-Stokes

equations. Math Comput. 2005;74:1067–1096.
[17] Castillo P, Cockburn B, Schözau D, et al. Optimal a priori error estimates for the hp-version of the local

discontinuous Galerkin method for convection-diffusion problems. Math Comput. 2002;71:455–479.
[18] Sun S, Wheeler M. Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in

porous media. SIAM J Numer Anal. 2005;43:195–219.
[19] Sun S,WheelerM. Analysis of discontinuous Galerkinmethods formulticomponent reactive transport problems.

Comput Math Appl. 2006;52:637–650.
[20] Brenner SC, Sung L, ZhangH, et al. A quadraticC0 interior penaltymethod for the displacement obstacle problem

of clamped Kirchhoff plates. SIAM J Numer Anal. 2012;50:3329–3350.
[21] Wang F, Han W, Cheng X. Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J

Numer Anal. 2010;48:708–733.
[22] Wang F, Han W, Cheng X. Discontinuous Galerkin methods for solving Signorini problem. IMA J Numer Anal.

2011;31:1754–1772.



1198 Y. QIAN ET AL.

[23] Wang F, Han W, Cheng X. Discontinuous Galerkin methods for solving the quasistatic contact problem. Numer
Math. 2014;126:771–800.

[24] Arnold D, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems.
SIAM J Numer Anal. 2002;39:1749–1779.

[25] Cockburn B, Karniadakis G, Shu C-W, Discontinuous Galerkin methods. Theory, computation and applications.
New York: Springer-Verlag; 2000, (Lecture Notes in Comput. Sci. Engrg; 11).

[26] HongQ,Wang F,Wu S, et al. A unified study of continuous and discontinuous Galerkinmethods. Sci ChinaMath.
2019;62:1–32.

[27] Cockburn B, Dawson C. Approximation of the velocity by coupling discontinuous Galerkin and mixed finite
element methods for flow problems. Comput Geosci. 2002;6:505–522.

[28] Cockburn B, Shu C. The local discontinuous Galerkin method for time-dependent convection-diffusion systems.
SIAM J Numer Anal. 1998;35:2440–2463.

[29] Brezzi F, Hughes T, Marini L, et al. Mixed discontinuous Galerkin methods for Darcy flow. J Sci Comput.
2005;22–23:119–145.

[30] Hughes T, Masud A,Wan J. A stabilized mixed discontinuous Galerkin method for Darcy flow. Comput Methods
Appl Mech Eng. 2006;195:3347–3381.

[31] Barrios T, Bustinza R. An a posteriori error analysis of an augmented discontinuous Galerkin formulation for
Darcy flow. Numer Math. 2012;120:231–269.

[32] Wang G, Scovazzi G, Nouveau L, et al. Dual-scale Galerkin methods for Darcy flow. J Comput Phys.
2018;354:111–134.

[33] Aizinger V, Rupp A, Schütz J, et al. Analysis of a mixed discontinuous Galerkin method for instationary Darcy
flow. Comput Geosci. 2018;22:179–194.

[34] Gatica G, Sayas F. Characterizing the inf-sup condition on product spaces. Numer Math. 2008;109:209–231.
[35] Girault V, Raviart P. Finite element method for Navier-Stokes equations: theory and algorithms. Springer-Verlag;

1986.
[36] Cannon J, Ewing R, He Y, et al. Amodified nonlinear Galerkinmethod for the viscoelastic fluidmotion equations.

Int J Eng Sci. 1999;37:1643–1662.
[37] Heywood J, Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem IV. Error

analysis for second-order time discretization. SIAM J Numer Anal. 1990;27:353–384.
[38] Rivière B. Discontinuous Galerkin methods for solving elliptic and parabolic equations. Theory and implemen-

tation. SIAM; 2008.
[39] Castillo P, Cockburn B, Perugia I, et al. An a priori error analysis of the local discontinuous Galerkin method for

elliptic problems. SIAM J Numer Anal. 2000;38:1676–1706.
[40] Brezzi F, Manzini G, Marini L, et al. Discontinuous Galerkin approximations for elliptic problems. Numer

Methods Partial Diff Equ. 2000;16:365–378.
[41] Gatica G. A simple introduction to the mixed finite element method. Springer Briefs in Mathematics; 2014.
[42] GaticaG,AntonioM,ManuelA.Analysis of a velocity-pressure-pseudostress formulation for the stationary stokes

equations. Comput Methods Appl Mech Eng. 2010;199:1064–1079.
[43] Brezzi F,Manzini G,Marini D, et al. Discontinuous finite elements for diffusion problems. Atti Convegno in onore

di F. Brioschi (Milan, 1997); Milan, Italy: Istituto Lombardo, Accademia di Scienze e Lettere; 1999. p. 197–217.


	1. Introduction
	2. Preliminaries
	3. Spatially semi-discrete MDG scheme
	3.1. Notation and mixed DG scheme
	3.2. Well-posednesss of the semi-discrete scheme
	3.3. Error estimates for the semi-discrete scheme

	4. Fully-discrete MDG scheme
	4.1. Stability of the fully-discrete scheme
	4.2. Error estimates of the fully-discrete scheme

	5. Numerical tests
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


