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We study a mixed discontinuous Galerkin (MDG) method for solving a time- Received 18 January 2020
dependent Darcy problem, which simulates an incompressible fluid such as Accepted 21 May 2020
water flowing in a.rigid porous medium. The discretization of the ynsteady COMMUNICATED BY
Darcy problem relies on a backward Euler scheme for temporal variable and 1. Zou

MDG method for spatial variables. Spatially semi-discrete and fully discrete

schemes are analyzed. Existence and uniqueness of the numerical solu-  KEYWORDS

tions are proved, and optimal order error estimates are derived for both the Mixed _d'scont'””‘ous
velocity and pressure variables. Finally, some test problems are provided galerkfu]n m,e.thOd' unSte.T;.Jl).'t .
to display the performance of the MDG method, and numerical results are arcy Tlow; ncompresstorty:

. . error estimates; fully discrete
reported to support the theoretical predictions. scheme

AMS CLASSIFICATIONS
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1. Introduction

We consider the following time-dependent Darcy problem [1], which models the unsteady flow of an
incompressible fluid in a rigid porous medium:

u+au+Vp=f inQx[0,T],

divu =0 in Q x [0, T, (1)
u=1u IHQX{tZO},
p=2¢gD ond Q2 x [0, T],

where Q is an open bounded domain in R (d = 2 or 3) with a Lipschitz continuous boundary <.
The initial value u meets the divergence-free condition divuy = 0in Q. The unknowns are the veloc-
ity u and the pressure p, which are functions of the spatial variable x in €2 and temporal variable  in
[0, T] (T >0 is a finite time), and we use # for the time derivative of u. Here, f is the density of
body force, uy is the initial value of the velocity, and gp is the Dirichlet boundary value of the pres-
sure. The parameter « is a positive constant representing the drag coefficient, which depends on the
permeability of the porous medium and the fluid viscosity.

The classical Darcy model describes the flow of a compressible fluid through a porous media [2].
Many numerical methods have been developed to solve it. For a stationary flow, # = 0, the Darcy
problem can be reduced to a Poisson equation for pressure and solved by the standard finite element
methods. Then velocity field can be obtained by a post-processing step. However, there may be a
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loss of accuracy for the numerical solution in velocity field and the local conservation may not be
guaranteed. To approximate the velocity and pressure simultaneously, mixed finite element method
[3] is a popular way to discretize the Darcy flow [4,5]. For the time dependent axisymmetric Darcy
problem, finite element method is studied in [6]. In [7], the mortar finite element discretization is
applied on the time dependent nonlinear Darcy’s equations. In addition, the decoupled schemes [8]
and partitioned methods [9,10] are also developed to solve the Stokes-Darcy and related problems.

Opver the past several decades, discontinuous Galerkin (DG) methods have become very popular in
the scientific computing and engineering communities, due to their flexibility in constructing feasible
local shape function spaces. Compared with the standard finite element methods, DG methods enjoy
the following good features: they (i) are locally (and globally) conservative; (ii) can be easily coupled
with other methods like conforming or mixed finite element methods; (iii) are well-suited for hp-
adaptivity. Therefore, DG methods have been applied to solve various partial differential equations,
such as hyperbolic equations [11-14], Navier-Stokes equations [15,16], convection-diffusion equa-
tions [17], transport problems [18,19], variational inequalities [20-23] and much more. For more
discussion about DG methods, we refer the reader to [24-26] and the references therein.

Mixed discontinuous Galerkin (MDG) methods have been developed for solving the Darcy flow
problem. In [27], a local DG method [28] is coupled with the RT mixed method to solve the Darcy
problem on two disjoint subdomain €1 pg and Qgr, respectively, with @ = Qrpg U Qgrr. In [5],a sta-
bilized mixed finite element method is studied for solving the Darcy flow problem. Then similar ideas
about stabilization are applied to mixed DG methods in [29,30], so that there are no mesh-dependent
parameters in the scheme. In [31], a reliable and efficient residual-type a posteriori error estimator
is derived for an augmented DG formulation for the Darcy flow. To reduce the computational cost, a
mixed dual-scale Galerkin method for the Darcy problem is proposed in [32]. These references are for
the stationary Darcy flow. In [33], a mixed discontinuous Galerkin scheme is applied to solve a non-
stationary Darcy problem, and the scheme is stabilized by penalty terms in both the primary and the
flux unknowns. In [26], a unified framework is established on continuous and discontinuous finite
element methods, and relationship of different finite element methods is discussed; furthermore, a
new mixed DG scheme for elliptic problems is introduced with the Py, ;-P; pairs (I > 0).

In this paper, we apply the mixed DG scheme to solve the time-dependent incompressible Darcy
flow (1), which has a large number of applications, such as the simulation of water in underground
rocks [1]. First, a spatially semi-discrete mixed discontinuous Galerkin scheme is introduced and its
well-posedness is analyzed. Then, we give a prior error analysis, which shows that optimal conver-
gence orders are reached for both velocity and pressure variables. Next, we consider a fully-discrete
scheme with the backward Euler difference approximation for the temporal variable and an MDG
discretization for the spatial variables. Optimal convergence orders for both temporal and spatial
variables are proved.

The rest of the paper is organized as follows. In Section 2, we present some preliminary results.
In Section 3, a spatially semi-discrete MDG scheme is introduced, the well-posedness and a priori
error estimates are obtained. We show the stability of the fully-discrete scheme and prove optimal
order error estimates for both velocity and pressure in Section 4. In Section 5, numerical examples
are provided to confirm the theoretical findings and to illustrate the performance of the fully-discrete
mixed DG scheme.

2. Preliminaries

In this section, we introduce the notation and recall some basic results.

For a nonnegative integer m and an open Lipschitz subdomain D C £, we denote the Sobolev
space by H™(D) = W"™2(D) with the norm | - ||,»,p and semi-norm | - |,, p. When m = 0, H%(D)
coincides with the Lebesgue space L?(D), which is equipped with the usual L?-inner product (-, -)p
and L?-norm || - [|o,p. If D is chosen as €2, we abbreviate them by the norms || - ||, || - I|o, the semi-
norm | - |, and the inner product (, -), respectively. The space Hjj' (D) denotes the closure in H" (D)
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of the set of the infinitely often differentiable functions with compact support in D. The same notation
is used for the vector-valued counterparts such as [L? (D)]? and [H™(D)]“.
To study the problem (1), we introduce the following function spaces

V =Hiv,Q) = {v € [L2(Q)]¢ : divv € L}(Q)}, Q= L*Q).

The space V is equipped with the norm ||v||y = (||v||% + ||div v||(2))1/2. In addition, we need spaces of

vector-valued functions such as L2(0, T; H™(2)) and C(0, T; H™(2)) with the norms

t 1/2
lellz20,rsmm (@) = [/ ||<P(t)||fndl‘} and |l¢llco,rHm () = max (o) |lm-
0 0<t<T

Assume f € L2(0, T; [L2(©2)]9), gp € L*(0, T; HY/2(392)) and uy € V. The weak formulation of the
problem (1) is to find u € L?(0, T; V) with & € L?(0, T; V) and p € L?(0, T; Q) such that for a.e. t €
[0, T1,

(,v) + a(u,v) + b(v,p) = (f,v) — (v-n,¢p)s Vvev,

()
b(u,g9g =0 VqeqQ

and
u(0) =uy in Q. (3)
Here, the bilinear forms a(-, -) and b(-, -) are defined by

a(u,v) = (qu,v), b(v,q) = —(divv,q),

(-,-)aq denotes the duality pairing between H™12(32) and H'/2(32), and n is the unit outward
normal on 92.
Obviously, b(:, -) is continuous on V' x Q; its kernel

Z={veV:bv,q =0YqeQ}
is characterized as
Z={veV:divyv=0ae. in Q}.
Obviously,
a(u,v) < alulvivly YuveV,
av,v) > allv|d =a|vll} VYveZ
Moreover, the inf-sup condition holds: there exists a constant 8; > 0 such that ([34])

b(v,q)
22D > Biigllo. (4)
vevwzo VIl

Next, the following lemma presents a trace inequality, the continuous and discrete Gronwalls
inequalities.

Lemma 2.1 ([35]): Foranyve V,v-n¢e H™Y2(3Q) and there exists a positive constant ¢ such that

lv-nll_120 <clvlv. (5)
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Lemma 2.2 (The continuous Gronwall lemma [36]): Let G be a nonnegative function and let y, f,
g be locally integrable non-negative functions on the interval [ty, 00). Assume there exists a constant
Co > 0 such that

t t
y®) +G(@t) <Co+ | f(r)dr + / g@)y(r)ydr, Vit e [ty 00).
to to
Then,
t t
y() + G(t) < (Co + [ f(o) dl’) exp (/ g(1) dl’) , Vte [ty 00).
to to
Here, exp(¢) denotes the exponential function e¥.

Lemma 2.3 (The discrete Gronwall lemma [37]): Let aj, bj, ¢j,dj, k and Cy, for integers j > 0, be
non-negative numbers such that

n n n
an+kY bi<kY diaj+kY +Co Yn=0.
j=0 j=0 j=0

Then, ifkd; < 1 for all j,

n n n d
n kY i< |[Co+k) ¢ k : Vn>0.
an + ]g;]_ o+ Z(;Cj exp Jg):l—kdj n=

Hereafter, C denotes a generic positive constant, independent of the mesh size k and time step k; its
value may vary from case to case. For the solution of problem (2)-(3), we have the following lemma.

Lemma 2.4: Assume f € L2(0, T; [LZ(Q)]d),gD € L2(0, T; H/2(8)) and ug € V. Suppose that
(u, p) satisfies (2)-(3). Then, for any t € [0, T,

||u||c(o,T;[L2(Q)]d) + ”i‘”LZ(O,T;[LZ(Q)]d) + ||u||L2(0,T;V)
< Cllluollo + Il 2o, ryir2c) + 180120, 1012 0027 ] - (©)

Proof: Taking v = uand q = p in (2), we obtain

1d
mnuué +alluld < Ifllollulv + lgpllizeellu - nl—1/2s0-

Apply (5),
d o 1 A
lull§ + S 1uly < —IF15 + —ligolli 2.00- )

2dt
Integrate (7) from 0 to ¢ and multiply by 2 to yield
t 2 t
lut DI+« /0 luC, DI dr < uC, 013+ > /0 (6 DI + llgn 01} ) .
Similarly, taking v = é and q = p in (2), we can derive that

t t t
/0 it D1l dt + a1 < Cllu(, 0|5 + C /0 Ife.Dllgdr +C /0 Ign (D13 2,90 dt.

With the initial value condition (3), we obtain (6) from the above two inequalities. [ |
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3. Spatially semi-discrete MDG scheme
3.1. Notation and mixed DG scheme

For brevity, we only consider the case d = 2; the results can be similarly extended to the case of
d = 3. Let {7;};, be a regular family of quasi-uniform triangulations of . The notation &, stands
for the union of the boundaries of all K € 7y, 5;; C &y is the set of interior edges and £ ) — 5h\5;i, is
the set of boundary edges. Let |K| be the area of K, hk be the diameter of the element K € 7;, and
h = max{hg : K € 7j}. Similarly, denote the length of edge e by 4, for any e € &,

Let e be an edge shared by two neighboring elements K; and K3, with their outward unit normals
n; and n, on e. For a scalar function g, let g; = g|yk;, define the jump [[q]] and average {g} by

1 .
[q] = qin1 + qony and {q} = E(éh +q2) Veel,
For a vector function v, define v; and v, analogously and set
1 .
V]=vi-ni+v,-n, and [y} = E(VI +v) Veed.
On the boundary, define
[gl =qn and {v}=v Vece 82.
Let ] > 0 be an integer. We define the discontinuous finite element spaces V}, and Qy, by
Vi = (v € [P() v € [P (K VK € Ty,
Q= {gn € L*(Q) : qn € PiK) VK € Tp).

where P;(K) denotes the set of all polynomials in K with the total degree no more than .
For V(h) = Vj, + [H!(Q)]?, define the norm by

VI = w13 + divavli3 + Y AT V]I

i
ee&y

Here, divy, is the differential operator div defined piecewise on each element K € 7y, and ||[v]||.
denotes the L%(e)-norm of [v].
We introduce an interpolation operator ITj, : [H'(Q)]?> — V, satistying [38]

/ gndiv(Ipy —v)dx =0 V g;, € Pi(K),
K

fqh(Hhv —v)-n,ds=0 Vgqy € Pie),
e

yvle - n. € Pi(e). (8

and
1Ty = vliox + hx|Tpy = vtk < CH 2ok ¥ve [HH @) 9)
Let P, : Q — Qj, denote the L?-orthogonal projection defined by

/(Pmp —@)gndx=0 Vg,eQu KeT, (10)
K

Assume ¢ € HH1(€). Then

IPrg — @llox + hx|Prp — ¢lix < CH Y gliix YK € T (11)
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Moreover, together with the fact that div I1,v € Pj(K), the definitions of I1j and Py, imply that
div [T, v = P, (div v). (12)

Following the construction of the bilinear forms for the MDG scheme in [26], we define

antunn) = [ oy vaxt [ ok iv s (13)
h

h

bp(vh, pr) = —f prdivyvy, dx + /_{Ph}[vh] ds, (14)
T, &

where 7, is the penalty parameter.
A spatially semi-discrete MDG approximation for the time-dependent Darcy problem (1) is to
find (uy (1), pp(t)) € Vi x Qp forall t € [0, T] such that
(tns vi) + an(up, vi) + br(vi, pr) = (f,vi) — (vi, - n,gD)g}g Vv, eV,

by (un,qn) =0 ¥ gy € Qp, (15)
with the initial condition
uy, (0) = Ijuo. (16)

This mixed DG scheme can be regarded as a special case of the LDG method. However, the finite
element pairs Pj41-P; for the DG spaces Vj, and Qy, are different from that in the usual LDG method
[28,39].

3.2. Well-posednesss of the semi-discrete scheme
In order to establish the well-posedness of the semi-discrete scheme, we define the subspace Z, of V},
by

Zp=A{vyn € Vi : by(vp,qn) =0 Vg € Qu}.

To characterize the kernel Zj, for any gq;, € Qy,, we define the lifting operator (cf. [24,40]) 7, : L2(e) —
Qn by

[ raix == [otgras vees. (17)
Let
r@) = > r(9).
ec}
Then obviously

@I =1 @I <33 In@I3

i i
ecg) ecg;

Lemma 3.1: For any v, € Zy, we have div,vy, + r([vy]) = 0.
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Proof: It v, € Z, then for any g;, € Qp,

0 = by (v i) = — f gidivi vy dx + / (g vl ds
7 &

= —/ qhdivhvhdx—f gnr([vy]) dx
Q Q
—_ /Q an(divyyy + r([v]) dx.
By taking gy = divivy, + r([v4]) € Qi we conclude that divy,vy, + r([v4]) = 0. n

Lemma 3.2 ([40]): There exists a positive constant Cy, independent of h, such that
Ire@llo < Cue ligle.
Coercivity of aj, (vy, vi,) on Zj, is considered next.
Lemma 3.3: Assume gy := mineeg}i Ne > 3Cy. Then there exists a constant Cy > 0 such that
aw(vvi) = Callvally, ¥ i € Z. (18)
Proof: By using Lemmas 3.1 and 3.2, for any vj, € Zj,, one finds

divivili§ = IIr(vaD IS < 3 Y Ire(lvaD g < 3C1 Y 1y il 13-

i i
e, ec&),

In addition,
/ avy - v dx > afvpll3,
Ty

fg z‘ PR ATARTERTS B VAT

eeé';;
Therefore,
an( Vi) = a[[vallg + (o — 3C0) > B I vall2 + lldivavli3.
eeg,i
Thus, (18) holds with C; = min{«, 1,79 — 3C;}. [ |

From Cauchy-Schwarz inequality and inverse inequality, we can derive the following continuity of
the bilinear forms ay (-, -) and by (-, ).

Lemma 3.4 ([26]): For the bilinear forms ay(-,-) and by(-, -), we have

ap(u,v) < Cllullpllviln VuveVh),
b (v, pr) < Clipnllolviin VveV(h) VpyeQp
ba(v,p) < C(llpllo +kIpli) IVl Vv e V(h) VpeHY(K).

We then turn to the discrete inf-sup condition of the bilinear form by, (-, -).
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Lemma 3.5: There exists a constant 8, > 0 such that

by, (vy,,
sup OB g oo Y pn € Qn (19)
vheVy lvalin

Proof: Following [41,42], we construct a Fortin operator to prove (19). Let G be a convex and
bounded domain containing 2. Given v € V, let

divv in €,
= 20
Jo {0 in G\Q. (20)

Since f, € L?(G) and G is convex, the unique weak solution z € H} (G) of the boundary value problem
Az=f, inG, z=0 ondG
has the regularity z € H*(G), and there exists a constant C > 0 such that
Izl = Clifvllog = Clidivvlo < Clivily. 1)

Furthermore, we see that divv = divVz in Q. Recalling the operator IT, defined in (8), we construct
a Fortin operator r,: V — V), by

v = IR (Vz). (22)
By (12), we deduce that

divayv = divI1,(Vz) = Py(divVz) = Py(divy) in Q (23)

and

bp(Tpv, qn) = — / qndiv(myv) dx + f Aqn}lmpv] ds
7 g
=- / gnPy(divy) dx + f (g} 11,2 ds
7 £

= —/ qhdivvdx—i—/_{qh}[Vz] ds
Th &,

=b(v,qp) (24)

forany v € V and any g5, € Qy.
Moreover, by (9), (21), (22) and (23), we derive

1/2
iy < | IT(V2IR + Idivvl + > B IMV2N2 | < Clivily (25)
eeé%
based on the relations
ORIV = ) kM I[Vz — (V)]
eec‘)}", eeé‘,’;

<C Y b g V2 = (VDG + bkl Vz = TTR(V2) [ )
KeTy,
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<C Y b (g HE V2l ¢ + el V21 )
KeTy,

2 2 2
<C Y |IVzlik < Cllzll} < ClIvll,
KeT,

and
ITL(V2)I§ < IVZIl§ + Vz — TTR(V2)II§
< IVz)3 + CH*||Vz|} < Clzll3 < ClIvII3.

The identity (24) and inequality (25) show that 7, is a Fortin operator. Then the inf-sup condition (19)
can be proved by a standard argument [41,42]. [

Lemma 3.6: Assume f € L>(0, T; [L*(R2)]), gp € L*(0, T; H/?(3R2)) and uy € [L*()]%. Then (15)
has a unique solution.

Proof: We first prove the existence and uniqueness of uj,. Observe that u;, € Zj, is determined by

(@t vi) + an(up, vi) = (f,vn) — (v - m.gD) gy ¥ Vi € Zi,
u,(0) = IMpuy.

This is an initial value problem for a linear system of ODEs with continuous coefficients and source
terms. Hence it has a unique solution uy, € Zj,.

Once uy, € Zj, is determined, the existence and uniqueness of p;, can be obtained by using the
discrete inf-sup condition (19). [ |

Remark 3.7: In the definition (13) of the bilinear form ay,(uy, vi,), if we replace the penalty term
fg}il Z—Z [up,][vy]ds by Zeeg;i‘ Jo nere([up])re([vh])dx, we can obtain another mixed DG scheme, which

is the dual form of the method of Brezzi et al. [43]. The well-posedness of the corresponding scheme
can be proved similarly.

3.3. Error estimates for the semi-discrete scheme

We begin the error estimation with a consistency result for the semi-discrete MDG scheme.

Lemma 3.8: For the solution of (2)-(3), assume that (u(t), p(t)) € V x HI(Q)for a.e.t €[0,T]. Then
forae. t e [0,T],

(W@(t), vi) + an(u(t), vi) + bp (v, p(1) = (F(&), Vi) — (v - n:gD(t»gﬁ Vv, € Vy,

26
bp(u(t),qn) =0 YV qu € Qp. (26)

Proof: For a fixed t >0 with (u,p) = (u(1),p(t)) € V x H'(R), we have [4] =0 and [[p]] = 0 on
each edge e € &;. Thus,
(i, vi) + an(u, vi) + bp (v, p) = (i, vi) + (1, vp)

+ / %[u] [vi] ds — (p, divyvy) + /.{P}["h] ds
S;, e 5;1

— (i) + aC,v) + (Vp, i) — fg (v [p] ds
h
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= (i, vp) +a(,vi) + (VP vi) — (vh - 1,8D) g
= (f>vn) — (v -m.8D)gp
and
b0 01) = ~(ivaan 1) + [ (1)) ds = @ivin 1) = 0.
This completes the proof of the lemma. h [

Now we derive a priori error estimates for the numerical solution of the spatially semi-discrete
MDG scheme.

Theorem 3.9: Let (u,p) and (uy,pp) be the solutions of (2)-(3) and (15)-(16), respectively.
Assume that u € C(0, T; [HH1()]%) N L2(0, T; [HH2(Q)]%), & € L2(0, T; [HH1(Q)]%), and p €
L?(0, T; HH1(Q)). Then,

t
lu(t) — up(®II§ + / lu(r) — up(o)|lj, de
0
t
< CRE VNl ) 1 gy + CHETY /0 (lilfyy + ulfyy + Iplfy ) de. (27)

Proof: Subtracting (15) from (26), we have, for a.e. t € [0, T],

(@ — up, vp) + ap(u — up, vy) + bpy(visp —pr) =0 Yy, €V,

28
bp(u—up,qp) =0 Ygy e Q. 28)
Decompose the errors as
e=u—u,=e +e with e,=u—Tlpu and e, =ITu— uy
(=p—ph=0+& with f=p—Pyp and & = Ppp — pp.
Then, we rewrite (28) as
(€2, vi) + ap(ex, viy) + bp(viy, $2) = — (€1, vi) — ap(er, vi) — bp(vi, C1), (29)
bu(ez, qn) = —bp(e1, qn),
for all v, € V},, g, € Qp. According to the definition of ITj, one finds
bu(er,qn) =0 Y gy € Qp
Let v, = e; and g5, = ¢ in (29). Then
(€2, €2) + an(er, ) + bu(er, &) = —(é1,€2) — ap(er, e2) — bp(ez, 1), (30)
bu(ez, £2) = 0.
Therefore,
1d 2 2 .
~—lleallg + Callezll; < —(e1,e2) — an(er, e2) — bp(ea, £1). (31)

2dt
By using the Cauchy-Schwarz inequality, we estimate the right terms as follows:

1 1
. . 2 . 2
—(e,€2) = flerllollezllo = Zllezll + Zllerllo,
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G 2 1 2
—ap(er,e2) < llerllnllealln < —lleall2 + —lle1ll2,

4 C

C 1
—b(ez, 1) < lcillollealln < Illezlli + C—znzlné.

Combining above inequalities with (31), we have for a.e. t € [0, T],

1d , G 3 1 1o 1 3 1 2
——e —|le < —|le —|le — e — . 32
2dtll 210 + > llezlly, < 2|| 200 + 2|| 1llg + Cz|| 1l + C2||§1||o (32)

Integrating (32) with respect to ¢ from 0 to ¢, applying the continuous Gronwall’s lemma, and noting
that e;(0) = 0, we obtain

t t
le2(®)1G + Cz/ lleall; dz < C/ (llells + llexlly + llz1113) dr.
0 0
By the definitions of norm || - ||, the operators ITj, and P}, we obtain

. 11, -
lerllo < Ch iy,

Icillo < CHH Y pliy

and

. 1
lexlly = llw — Tlpull§ + ldiv (u — Tl + D - o=l = Tl I7 < B2l o
e

eegli
From the above inequalities, we have
t l t
le2 (D1l + Ca /0 lezlj; dr < CH**HY /0 (lalf ) + ulf, + Ipl7 ) dr. (33)
From (33), the triangle inequality for norms, and the bounds on e;, we obtain (27). [ |

Under higher regularity assumptions, we can obtain an error bound in the || - ||,-norm.
Theorem 3.10: Let (u,p) and (up,py) be the solutions of (2)-(3) and (15)-(16), respec-

tively. Assume u € C(0, T; [H2(Q)]%), & € L*(0, T; [H2(Q)]%), p € C(0, T; HFY(Q)), and p €
L2(0, T; HY(Q)). Then

t
/ it — iy ]12 d + u(®) — w, (D)2
0

t
2(14+1 2 2 2(1+1 -2 212
< Ch* >(||u||C(O,T;Hz+2(Q)2) + ||p||C(O,T;HI+I(Q))) +CptD /O (lalf, + 1917y, de.

Proof: Taking v, = €; and q;, = {3 in (29), we have

(€2,€2) + an(er, &) + by(er,42)
= —(e1,&) —ap(er, &) — bp(e, 81),
bp(ez,82) = 0. (34)



APPLICABLE ANALYSIS (&) 1187

Forallq € Qy,

d
0= abh(e2> Q) = bh(e27 Q)
Hence,
(€2,€2) + ap(es, &2) = —(é1,€2) — ap(er, &) — bp(éz, &1).
So,

C, d

lexllg + 75||62||i < —(er, &) — ap(er, &) — bu(éz, ¢1).

The first term on the right hand side of (37) can be bounded as
. . . . 1 . 2 l . 2
—(e1,€2) < [lerllollezllo < Ellezllo + E”eln(y
Then,
leallf  Cpd

1
2 ) . .
— 4+ ——||e < —|le —ayp(e;,e) —b € L1).
2 2 ]” 2||h_2|| 1”0 h(l 2) h(2 1)

Integrating (38) from 0 to ¢, due to the fact that e;(0) = 0, we get

t t t
/||éz||%dr+cz||ez(t>||is/ ||é1||édr—2/ an(ey, e) dr
0 0 0

t
2 f bi(és, £1) dr.
0

(35)

(36)

(37)

(38)

(39)

For the last two terms of (39), by integrating by parts and using the Cauchy-Schwarz inequality, we

have

t

t
—2/ ap(ey, €) dt = —2ap(e1(t), ex(t)) +2[ ap(er, er) dr
0 0

IA

C2 4 t ] t
—||e2(t)||i+—||e1<t)||i+/ ||e1||idr+/ le2)l? dz,
4 0)) 0 0

t t
—Zf bp(ez,¢1) dt = —2by(ex(t), ¢1 (1)) +2/0 bi(ez, &1) dt
0

A

C2 4 [ t
< —llex®ll; + = Ia I + / 121115 dr + / lle2 17, de.
4 G 0 0
Combining the above inequalities with (39), we obtain
i 2 G 2 g 2 ' 2 4 2
/ llezllp dr + —-lle2(Dlj; = / lle1llp dr +2/ llezll;, dz + —ller (DI},
0 2 0 0 )

t ) 4 t .
+/ lél; dr + C—Ilcl(t)llé +/ 1Z111G dr.
0 2 0

(40)



1188 (&) Y.QANETAL

Then apply the continuous Gronwall’s lemma to obtain

L C Lo . :
/ ezl dr + Tzllez(t)llf, < Cllex® i + Ic10Ig) + C/ (leg + lleully + léalig) de.
0 0

By the error estimates (9) and (11), we get
L 2 G 2 2(1+1) 2 2(141) 2
o ”eZ”O dT + 7 ”eZ(t)”h =< Ch “u”C(O,T;HHZ(Q)Z) + Ch ||P||C(0,T;Hl+1(g2))

t
+ Chz(lH)/ (I}, + P17, dr. (41)
0

Then the proof of Theorem 3.10 is completed from (41), the triangle inequality for norms and the
bounds on e;. [ |

Finally, we bound the error p — py.

Theorem 3.11: Under the assumptions of Theorem 3.10, we have

t
fo lp — prlid de

t t
2(1+1 2 2 ) :12
S Ch ( ) (”u”C(O,T;HHZ(Q)Z) + ”p”C(O’T;HHI(Q)) +\/0 |u|l+2 df +/(; |p|l+1 df) .
Proof: From (29), we have
br(vi, £2) = —(&,vp) — ap(e,vp) — bp(vp, £1) Y vy € Vi (42)
The inf-sup condition (19) guarantees that

bh (Vh, gZ)
vp,eVy ”vh”h

> Ballg2llo- (43)

Applying the Cauchy-Schwarz inequality and Lemma 3.4, we obtain
—(&vp) = lellollvallo =< llellollvalln,
—an(e,vp) < llellnllvalln
—bn(vi, ¢1) < ISillollvalln,
then,
1521l0 = C(llello + llelln + N5 llo) -

Integrating above formulas with respect to t from 0 to ¢, we arrive at

t t
/ 521l dr < C/ (lellg + llelli + g1 l5) de
0 0
2(1+1 2 2
E Ch D (”u”C(O,T;H’“(Q)Z) + ||P||C(0)T;Hl+1(9)))

t
0t [, + 1) d,

where we applied error bounds from Theorem 3.10 and (11). By this error bound, the triangle
inequality for norms, and error bounds on ¢;, we get the stated error bound for the pressure variable
approximation. |
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4. Fully-discrete MDG scheme

In this section, we study a fully-discrete scheme which is constructed with the MDG discretization for
the spatial variable and backward Euler difference approximation for the temporal variable. Introduce
a partition of the time interval [0, T] into subintervals [t,_;,#,], 1 < n < N (N an integer), such that
0=ty <t] <--- <ty = T.Inorder to simplify the notation, we consider only evenly spaced nodes
ty = nk(n=0,1,...,N) with the time step k = T/N. For a function ¢ (-, t) continuous in £, we write
¢"(-) = ¢(-, tn) and set

(pn _ gDn—l
S = ————
k® X
For convenience, in this section we assume
feCO,T;L2(@)%, gp e CO,T; H/2(3). (44)

Then
1O =fCotn) € LX(Q)%, gh() = gp(- 1) € H/?(0Q).

We comment that without the condition (44), we can take f" and g}} to be averages of f and gp over
the time interval [t,_1, t;].
A fully discrete approximation of (2)-(3) is to find (u, p;)) € Vi x Qp such thatfor 1 <n <N,

(k> vi) + an(uay, vi) + bV py) = (F",vi) — (v -mgpgs Vv € Vi, )

45
br(uy,qn) =0 Y qn € Qp,

and

”2 = IMyug. (46)

Thanks to the properties of ay (-, -) and by (-, -) listed in Lemmas 3.4 and 3.5, we can show that the
fully discrete solution exists and is unique.

4.1. Stability of the fully-discrete scheme
We show that the numerical solution {(u}, PZ)}£,V=1 of the fully discrete scheme (45)-(46) is bounded.
Theorem 4.1: There exists positive constants ko and C such that for k < ko and 1 < n <N,
I + D N, — g, 5+ kY NI < Clupllg +CkY (|Lff||é + ||§D||%/2,m) SNCY))
Proof: Taking v, = 2ku; € V), and g, = pj; in (45) and applying the following relation
(a—b2a)=a*—b*+|a— b (48)
we obtain

2 —1,2 —1,2 2
g — lley " I1g + Ny — ™ llg + 2Cokllu I,

< 2k(f", uy) + 2k(uj; - m,gp) e

kc?
< KIUF" I3 + Kllup 11§ + C—zuggn%/z,m + Coklluj 7. (49)
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Change 7 to j in (49) and make a summation forj =1, - -, n,
n n n 62
. . 4 ) 4
g ll§ + > Ny — w115+ Cak Y Nl 17 < gl + k> (ndhn% + P15+ C—zngJDu%/z,m) :
j=1 j=1 j=1

Then, we finish the proof of (47) by applying the discrete Gronwall lemma. [

4.2. Error estimates of the fully-discrete scheme

In the following, we will assume the condition k < ko from Theorem 4.1 is true. We provide error
estimates for the fully-discrete MDG scheme in this subsection.

Theorem 4.2: Let {(uZ,pZ)};\]=1 be the numerical solutions of (45)-(46). Under the assumptions of
Theorem 3.9, it € L*(0, T; [L*(R2)]?) and p € C(0, T; L*(R2)), we have a constant C > 0 such that for
1<n<N,

" — a3+ S0 — ) — ™ — a1 — 1

j=1 j=1

tn ty
< CRPU VNl s gy + CF / Jillg dt + C D / (il + luli, + Ipli, ) dr.
gy ; A

Proof: Under the stated regularity assumptions, (26) holds for all t € [0, T]. Subtracting (45)
from (26) at the time t = t,,, we have

(Sxu” — Sxuy, vi) + ap(u” — wy, vi) + bp(vi, p" — pp) = (R, vp) Vv, €V,

o (50
bp(u" —up,qn) =0 Vgu € Qp
where
R" = 8" — a(-, ty).
To bound R", we use the Taylor’s expansion
tn
u(ty) — u(, ty—1) = ku(-, ty) — (t — ty—pu(-,t) dt.
th—1
As aresult,
1 [
R" = ——/ (t — ty—pu(-, 1) dt.
k th—1
By using Cauchy-Schwarz inequality, we have
k [t
R <3 [ v ar G1)
3 th—1

Write the errors €” = 4" — uy and {" = p" — p} as

n n n : n n n n n n
e =e +e with e =u" —Iu" and e, =Iu" —u,

"=y g with '=p" —Ppp" and & = Ppp" — pj,.
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Then, from (50), for any v, € V}, and any g, € Qy,

(8k€5, vn) + an(es, vi) + br(vy, &) = (R", vi) — (8kel, vi) — an(el, vi) — bp(v, ¢,

b (€3, qn) = —bp(el, qn).
According to the definition of Iy, it is easily to get
bp(elsqn) =0 VYqu € Q.
Therefore,
bn(ey, qn) =0 ¥ qu € Qn.
Taking v, = €} in the first relation of (52), we have
(8kel, €5) + ap(el, e5) = (R",€5) — (Skel, €}) — ap(ef, €5) — by(ey, ¢]).

Apply (48) and Lemma 3.3 to yield

1 _ _
ﬁ(neﬂ% — 1157 MIE + lles — eI + Called
< (R",€}) — (8kel, €}) — ap(e], ) — by(ey, ¢]").

By the Cauchy-Schwarz inequality,
n n n n 1 ny2 1 npj2
(R%€3) = [R%lollezllo = Slle3 g + S IR o,

1 1
2 2
—(Sxeq> €3) =< [I5ketllolle3 llo < 5||e§||0 + Ellfske'fllo,

0)) 5
llel

1
2
—an(ey, €y) < [lefllnlleslln < nt C—zlle’fllh,

—||€
_42

C 1
—bp(ey, ) < gt llolleslln < THCZH%, + C—2||§1"||3-

Apply these inequalities in (55),
1 _ _ G
S (€315 = lle3 ™15 + lles — e515) + == le3

1 1 1 1
<_Rn2 enz _3en2 _enz _n2.
= SIRTHG + llezllo + Sliokerllo + C2|I 1|Ih+C2||§1 1o

(52)

(53)

(54)

(55)

(56)

Changing 7 to j, multiplying 2k on both sides of the inequality (56), making a summation for j =

1,- - -, n, and using the fact that eg = 0, we obtain

n n
— .
le3l5 + D lley — &, 5+ Cok Y Il

j=1 j=1

n
i . . 2 . 2 .
<k)_ <||RJ||3 +2[1€}115 + 18k€; 15 + C—Zne’lni + C—ZIIC{H%) :
j=1

(57)
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By (9) and (11),

; 1 tj ) 1[4 )
I8ke) 113 = il f (I — Mpadt|ly < Z / CR D2 dt, (58)
tj,1 tj71
and
€12 = 1 — T |17 < CR* D12,
I3 = 1A — Ppp/lly < CHAD I .

By applying the discrete Gronwall lemma to (57), we get

n n
leg13+ > lley — €5 13+ Cak Y eyl

j=1 j=1
th tn
< CkZ/ ||il||§dt+Ch2(l+1)/ (lielyy + lulf, + Ipl7, ) dt. (59)
0 0
Combining this inequality with the error bounds on ef, we complete the proof. [

Theorem 4.3: Under the conditions of Theorem 3.10 and i € L2(0, T; [L>(2)]%), we have a constant
C> 0 such that for1 <n <N,

1< ) . ) - n . . ) -
£ 2N =) — @ = DI+ " =l DI~ ) — = D
j=1 j=1

2(14+1) 2 2(14+1) 2
= Ch ||u||C(0,T;Hl+2(Q)2) + Ch ||P||C(0,T;Hl+1(g))

ty tn
+CR fo i3 dt + C 12D fo ity + il + 11, d.

Proof: Taking vy, = 2(e} — eg_l) and g5 = ¢J' in (52), by (53), we get bh(eg’_l, g =0,bu(e},5)) =
0 and

—12 —1 -1 -1 -1
%Heg—eg I+ an(es, e5) —an(ey e ) +an(e) —e) e —ef )
-1 -1
=2(R" €5 —e) ) —2(5kel,e) —e) )
— 2ap(el, 5 — €5 — 2by(e — e e, (60)

Applying the Cauchy-Schwarz inequality,
n _n n—1 n n n—1 ny2 1 n n—1,2
2(R",e5 —e; ) < 2[IR%|lolle; — €5, "[lo < 2k[IR"[Iy + 2_k”e2 —e o
_ _ 1 _
—2(0ke € — &) < 2l5kefllolles — €3 llo < 2KlSkef g + Slle — &G

Combining above inequalities with (60), we get

- -1 n— - -1
lef — e 12+ an(el,ed) —an(e) el +an(e) —e) el —ei

A
< 2K||R"||5 + 2k||ke} 1§ — 2an (e}, &) — €5 ") — 2bu(el — e, o). (61)
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Changing n to j in (61) and making a summation for j = 1, - -, n, by Lemma 3.4, we obtain

1< . - n . -
L2 lle — &G+ Gl + G Y lleh — &5l
j=1

j=1

n n
<2k IIRIIG+ 2k > 15kel I

j=1 j=1

2w — =2 e — e g

J=1 J=1
For the last two terms, we have

n . . . n . . nil . .
2 ane) ey —ey ) =23 ap(el &) +2> ane e

j=1 j=1 j=0

n—1
= —2ay(e},€}) + 2ap(e}, ) +2 ap(e]” — €}, €h)
=1

C 4 n—1 1 n—1

2 j j+1 j

— el + C—2||e'f||ﬁ +kD el + Dl — el
j=1 j=1

IA

and
—2) bueh— €y e =2 b€, e +2 ) bu(eh )
j=1 j=1 j=0
= —2bp (e}, ¢ + 2bu(ed ) +2 ) bu(eh, gl — )
j=1
G 4 ol Rt ) .
< I+ e+ k3 eI+ D el ™ = eI
=1 j=1
Then

1o~ i1 0)) = i—1
22 lle =& G+ el + Co Y e, — e
j=1

=1

n n
. . . 4
= 2k ) lleyll + 2k Y _(IRIG + ey 1) + et
=1 =1

1 n—1 . . 4 1 n—1 . )
o 2 e = el eI+ Do e =l
j=1 j=1

Similar to (58), we obtain

i1 oo Eas 2 AL TTRIS
lef” —elllr = (I — Mp)adt|; <k Ch il dt,

tj tj

(62)
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L 2 it L2 AP T
g —allg =1 (I—Pppdtlly <k Ch Ipliy, dt.
4 tj

Combine above inequalities, (51) and (62), then apply the discrete Gronwall lemma to get

1< . - G, n . i1
22 lle — &G+ el + Co ) lley — €
j=1 j=1

tn
S Ch2(l+1)(”u”é(o’T;HH—Z(Q)Z) + ”p”é(o’T;HHI(Q))) + Ckz/O ”u”é dt

tn
+c#“ﬂ/qmﬂ+wh+mmpa (63)
0
Then, we finish the proof of Theorem 4.3 by triangle inequalities and (9). [
Finally, we derive an error estimate for the pressure variable p.

Theorem 4.4: Under the conditions of Theorem 4.3, we have

n . tn

k}ﬂﬂ—ﬁ%scﬁf lilgds + CH D Ul o ey + 10150 1 )
_ ; g g

J=1

tn
n Ch2(1+1)/0 (|,'4|12+2 + |i1|12+1 + |P|12+1) dr.

Proof: Rewrite (52) as
bn(vi, 63) = (R", vi) — (8ke”, i) — an(e”, vi) — bu(vi, §1').
The inf-sup condition (19) guarantees that

bp(vh, £3)

> B21185' llos (64)
vheVy lvilin

which leads to
Ip™ — prI3 < C(IIR™M3 + lI8ke™ 13 + lle™ I + ¢ 112) - (65)

We change the index 7 to j in (65), and sum the inequalities for 1 <j < n,

K> P = p,I3 < Ch > ARIZ + 18ce/ 13 + €113 + 1] 12).
j=1 j=1

By making use of Theorem 4.3, we have

n i tn
k}ﬂﬁ—m%scﬁf liall§ dt + C RV AuIE o gy + 10150 e )
j=1 0

tn
n Ch2(1+1)/0 (|i1|12+2 + |i4|12+1 + |P|12+1) dr.

Thus, the proof is completed. u
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5. Numerical tests

In this section, we present computer simulation results on several two-dimensional examples to
illustrate numerical evidence of the theoretical error estimates. In all the examples, we solve the
time-dependent Darcy problem (1) with & = 1 over the spatial domain 2 = (0,1) x (0, 1). In the
numerical simulations, the penalty parameter 7, is taken to be 0.1.

Example 5.1: The problem data are so chosen that the true solution is

ur (. t) = (*(y — 1)* + y) cos(),

uy(x, 3, t) = <—§x(y — 1)3 +2—-m sin(nx)) cos(t),

T
p(x,y,t) = (2 — 7 sin(;rx)) sin (Ey> cos(t).

In this example, we compute the numerical solutions for the element pairs P;-Py, P,-P; and
P3-P, on the uniform triangular meshes. Fix a small time-step k = 271%. We present the numerical
results of ||u — uy ||y, |div(u — up)|lo and ||p — ppllo at the final time T' = 0.1 in Figure 1. The numer-
ical results confirm the optimal convergence orders in || - || for # norm and L?-norm for p, which
are proved in Section 4.

—-o-P1-PO ~-P1-P0
ol P2-P1 | | . Po-p1
10 ——P3-P2 100F, —4—P3-P2 | 3

error
error

1072 102
3 3
1 1
104 ‘ ‘ ‘ ] 1074, ‘ ‘ ‘
0.0313  0.0625 0.125 0.25 0.0313  0.0625 0.125 0.25
h h
(a) [lu— unlln (b) [Idiv(w —un)llo
g
P2-P1
—P3-P2
1072
S
o
1074
3
21
1
00313 0.0625 0125 025
h
(c) llp — pnllo

Figure 1. Numerical convergence orders for Example 5.1 at time T = 0.1.
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Example 5.2: For this example, the problem data are so chosen that the true solution is

ur(x,y,1) = x’ye”,
ur(x,y,1) = —xy’e”",
peyt) = (xy — 1/4)e™".

The DG finite element pair 7,-P; is employed in the numerical scheme.

In Table 1, we list the numerical errors at time T = 1 and convergence rates with respect to 4, as k
is fixed to be 2710, In Table 2, with h = 27 fixed, we provide numerical errors and numerical conver-
gence orders with respect to k. The theoretically predicted optimal convergence orders in Section 4
are observed with respect to both % and k.

Example 5.3: In this last example, the problem data are chosen so that the true solution is

u1(x, y,t) = sin(xt) sin(yt),
uy(x, y,t) = cos(xt) cos(yt),
p(x,y,t) = sin((x — »)i).

We consider numerical solutions at the time T' = 1. In Table 3, we list numerical results with the use of
the mixed DG finite element pair P;-P, and a fixed small step-size k = 27'°, The linear convergence
order in h is evident. To explore the numerical convergence orders with respect to the time step-size k,

Table 1. Numerical convergence orders for h in Example 5.2 with the time step k = 2710,

1/h [l — upllp Order [Idiv(z — up)|lo Order llp — prllo Order
4 4.91089e—02 - 3.99189e—02 - 1.01481e—03 -

8 1.28926e—02 1.9294 1.06358e—02 1.9081 2.53548e—04 2.0009
16 3.28341e—03 1.9733 2.71952e—03 1.9675 6.33814e—05 2.0001
32 8.37682e—04 1.9707 6.95844e—04 1.9665 1.58452e—05 2.0000

Table 2. Numerical convergence orders for k in Example 5.2 with the mesh h = 275,

1/k [lu — upllp Order [Idiv(z — up)|lo Order llp — prllo Order
4 8.26619e—02 - 3.93362e—02 - 2.30372e—02 -

8 4.26435e—02 0.9549 2.06164e—02 0.9321 1.07996e—02 1.0930
16 2.16882e—02 0.9754 1.05676e—02 0.9641 5.23113e—-03 1.0458
32 1.09424e—02 0.9870 5.35382e—03 0.9810 2.57470e—03 1.0227

Table 3. Numerical convergence orders for h in Example 5.3 with the finite element pair 7;-P and the time-step k = 21,

1/h |l — upllp Order [Idiv(z — up)|lo Order llp — pnllo Order
4 1.98248e+00 - 1.63041e+00 - 9.49870e—02 -

8 1.00114e+00 0.9857 8.43981e—01 0.9500 4.74494e—02 1.0013
16 4.89519e—01 1.0322 4.18319e—01 1.0126 2.36720e—02 1.0032
32 2.40941e—01 1.0227 2.07382e—01 1.0123 1.18207e—02 1.0019

Table 4. Numerical convergence orders for k in Example 5.3 with the finite element pair P,-P; and the mesh-size h = 1/64.

1/k |l — upllp Order ||div(s — up)llo Order llp — phllo Order
4 2.46117e—-01 - 8.85582e—02 - 8.19958e—02 -

8 1.27881e—01 0.9445 4.71559e—02 0.9092 3.96573e—02 1.0480
16 6.52589e—02 0.9706 2.43650e—02 0.9526 1.94753e—02 1.0259

32 3.29857e—02 0.9843 1.24162e—02 0.9726 9.64719e—03 1.0135
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we need numerical solutions with sufficient accuracy in h. For this purpose, we employ the DG pair
‘P,-P1 with the finite element mesh-size h = 1/64. The numerical results are reported in Table 4,
which clearly displays the first order convergence with respect to the time step-size k.
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