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Abstract

In this paper, the nonconforming virtual element method is studied to solve a hemivariational
inequality problem for the stationary Stokes equations with a nonlinear slip boundary con-
dition. The nonconforming virtual elements enriched with polynomials on slip boundary are
used to discretize the velocity, and discontinuous piecewise polynomials are used to approx-
imate the pressure. The inf-sup condition is shown for the nonconforming virtual element
method. An error estimate is derived under appropriate solution regularity assumptions, and
the error bound is of optimal order when lowest-order virtual elements for the velocity and
piecewise constants for the pressure are used. A numerical example is presented to illustrate
the theoretically predicted convergence order.
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1 Introduction

Hemivariational inequality (HVI), concerning nonsmooth and nonconvex functionals, repre-
sents a powerful tool in the study of a large number of nonlinear boundary value problems.
Mathematical theory, numerical approximations and applications of hemivariational inequal-
ities can be found in several comprehensive References [11,20,24,26,27]. Recently, optimal
order error estimates are derived for the linear finite element solutions of hemivariational
inequalities, see [18,19] for a summary account. In [30], the interior penalty discontinuous
Galerkin method is studied for solving an elliptic hemivariational inequality for semiperme-
able media, and optimal convergence order is proved for the linear element.

The conforming virtual element method (VEM) for a second-order elliptic problem was
initially introduced in [3] as a generalization of the classical finite element method to accom-
modate arbitrary element-geometry. The nonconforming VEM for the same problem was
constructed later in [2], where the corresponding virtual element can be viewed as an exten-
sion of the Crouzeix—Raviart element to general polygonal meshes. Because of its flexibility
in mesh handling and properties of avoiding an explicit construction of shape functions, the
virtual element method has been applied to solve a variety of partial differential equations,
e.g., [4,17] for linear elasticity systems, [1] for the Cahn—Hilliard equation, [5,10,23] for the
Stokes equations, [6,22] for the Navier—Stokes equations, [29] for the Darcy and Brinkman
equations, [28] for the Helmholtz equation, [34] for the plate bending problem, [12] for ellip-
tic interface problems, [15,31-33] for elliptic variational inequalities, and [16] for elliptic
hemivariational inequalities.

This paper is devoted to the nonconforming virtual element method to solve a hemivaria-
tional inequality problem for the stationary Stokes equations with a nonlinear slip boundary
condition. Let 2 € R? (d = 2, 3) be a simply connected polygonal/polyhedral domain with
a Lipschitz boundary T that is split into two non-trivial parts I'p and I's: ' = T'p UTg,
I'p N I's = @. Throughout this paper, we use boldface symbols for vector-valued variables
and their spaces. Denote by n the unit outward normal to I". For a vector u, denote its normal
component and tangential component by u#, = u -n and u; = u — u,n on the boundary. We
consider the Stokes equations

—vAu+Vp=f inQ, a1
divu =0 in , ’
with the following boundary conditions
u=0 onlp, (1.2)
u, =0, —o,r€dj(uy) only. (1.3)

Here, the unknowns are the fluid velocity # and the pressure p, v is the viscosity coefficient,
f e L? (2) is a given force density function, and o, = v du,/dn is the tangential component
of stress tensor defined on I'g. We use “:” for the canonical inner product on the space of
second order tensors on R?. j : I's x R? — R is locally Lipschitz continuous with respect
to its second argument. To simplify the notation, we write j(u.) for j(x, u,), and denote
by dj for Clarke’s generalized subdifferential of j with respect to its second argument. The
condition (1.3) is known as a slip boundary condition. The first part #,, = 0 means that
the fluid can not pass through I's outside the domain. The second part represents a friction
condition, relating the frictional force o, with the tangential velocity u.. This relation is of
nonmonotone type when the potential j is not a convex function. The problem of the Stokes
equations with a similar nonlinear slip boundary condition has been studied in [14], where
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the well-posedness of the problem is shown and an optimal order error estimate is derived
for the mini finite element solution under suitable regularity assumptions.

In this paper, we modify the nonconforming virtual element method developed in [2]
to solve a hemivariational inequality problem for the stationary Stokes equations with a
nonlinear slip boundary condition by introducing a slightly different virtual element space
on the slip boundary for the velocity, while the pressure is approximated by discontinuous
piecewise polynomials. Moreover, we prove the discrete inf-sup condition for this method to
obtain its solvability and stability. In addition, we present an error estimate for the velocity
and pressure, achieving the optimal order for the lowest-order elements.

The paper is organized as follows. In Sect. 2, we introduce a hemivariational inequality
formulation for the problem (1.1)—(1.3). In Sect. 3, we present the VEM discrete scheme. In
Sect. 4, we derive a priori error estimate, which is optimal with lowest-order nonconforming
virtual elements for the velocity and piecewise constants for the pressure. In Sect. 5, we
show a numerical example and provide numerical evidence of the theoretically predicted
convergence order.

2 The Hemivariational Inequality Formulation

In this section, we present the hemivariational inequality formulation for the problem (1.1)—
(1.3). First, we recall the following definition.

Definition 2.1 Let V be a normed space and V* be its dual. Let ¢ : V — R be a locally
Lipschitz functional. The generalized (Clarke) directional derivative of ¢ at u € V in the
direction v € V is defined by

¥O(u; v) = limsup Vw +Av) = y(w)
w—u, A0 A

The generalized gradient (subdifferential) of i at u is defined by
W =t eV Y usv) = (¢, v) Vo e V).

Knowing the generalized subdifferential, we can compute the generalized directional deriva-
tive through the formula [13]

(s v) = max{(¢,v) : ¢ € 3Y ().
Introduce function spaces

V:{veHI(Q):v:()a.e.onFD, v, = 0a.e.on I'g},
0=L}Q) = {qeLz(Q):/q(x)dx:O}
Q

for the velocity and pressure variables. We assume meas (I'p) > 0. Then the seminorm |- |1,
is a norm over V, which is equivalent to the standard H' (€2) norm. In this paper, we will use
| - |1, for the norm on V and use || - [0, for the norm on Q.

The hemivariational inequality formulation of the problem (1.1)—(1.3) is to find (u, p) €
V x Q such that

{a(u, V) +b@, p) + [r @i v)ds = (f,v) VeV,

b(u,q) =0 Vg e Q, 2D
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where

a(u,v) = v/ Vu :Vvdx,
Q

b(v,q) = —/ g divvdx,
Q

(f,v) =/ f-vdx.
Q
Obviously, the bilinear form a(-, -) is continuous and coercive:
la(u, v)| < vluliqlvli,e and a(v,v) = v|v|f’Q Yu,veV.

Itis well known that the bilinear form b(-, -) is continuous and satisfies the inf-sup condition:

b(v, q)
b(v, )| S Ivlielligllo.e and  sup
vev V1@

> Boligllo.e Y (v, q9) €V x Q.

Here and below, the abbreviation a < b stands for the inequality a < Cb, where C > 0
denotes a generic constant, which may take different values at different occurrences. For the
function j : 'y x RY — R, we assume

(a),j (-, &) is measurable on I's for all & € R? and (-, e()) € L(I's) for some e € L*(T');
(b)j(x, -)is locally Lipschitz on R4 forae.x € I'y;
(c) there exist constants cq, ¢; > 0 such that
[0/ (x, &) <co+cilé] ae.xels, VEeRY
(d) there exists a constant m, such that

JOC, &8 —ED+j0(x. 8236 — &) <mlE] — &> aex ely, V&, & eRI.
2.2)

The Sobolev trace inequality over V takes the form
—-1/2
lvllors = py vl YveV, (2.3)
where 1 > 0 is the smallest eigenvalue of the eigenvalue problem

—Au=90 in €2,
u=20 onIp,
u, =0 on Iy,
our/on = pu,; onlg.

Denote
Vo={veV:dive=0in Q}.

By restricting the test function v to the subspace V, it is easy to see that the problem (2.1)
is reduced to the following problem: Find # € V such that

a(u,v) —|—/ jo(ur; v)ds > (f,v) Vve V. 2.4
Ig

Then, we have the following existence, uniqueness and equivalence results; the proof is
similar to that of [14, Theorems 3.4 and 3.5], and is hence omitted.
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Theorem 2.2 Under the assumption (2.2) and the smallness condition mtle_l < v, for any
f € L*(Q), the problem (2.1) has a unique solution (u, p) € V x Q, andu € V is also
the unique solution of the hemivariational inequality (2.4).

3 VEM for the Hemivariational Inequality

We focus on the study of the virtual element solution of the hemivariational inequality (2.1)
for the two-dimensional case, and comment that the discussion can be extended to the three-
dimensional case.

Let Q be a bounded polygonal domain. We express I's as the union of closed flat com-
ponents with disjoint interior: T'g = Ufsz 1I's,i. Let 7, be a decomposition of Q into general
polygonal elements denoted by K. Let hx = diam(K), h = max{hg : K € 73}, and
h. = length(e). Following [2,3], for each / and every K € 7, we assume that there exists
a constant y > 0 such that
Al K is star-shaped with respect to a ball of radius > yhg;

A2 the distance between any two vertices of K is > yhg.

For each polygon K € 7}, let us consider the triangulation ’Z}l’( of K obtained by connect-
ing each vertex of K with the center of the ball with respect to which K is star-shaped. Let &,
stand for the union of the boundaries of all the elements in 7, 6}’; the set of all interior edges,
E,f the set of all the edges on I'g, and 52 =&, \S;f. Let KT and K~ be two neighboring
elements with a common edge e. For a scalar function ¢, we denote by ¢* the trace of ¢| g«
on ¢ from within K* and by n* the unit normal on e in the outward direction with respect
to K*. Then, the jump of ¢ across e is defined as [¢] = ¢*nt 4 ¢~ n~. Similarly, the jump
of a vector-valued function v on the interior edge e is given by

Wl=vt-nt+v -n7, [=vF—v".
On an element edge e C I', we set
[ql=gn, [vl]=v-n, [v]=nv.

Let k > 1 be an integer. We use Py to denote the space of the polynomials of degree < k,
and use Py = (Py)? for the corresponding vector-valued polynomial space. On each element
K € T, we define the local virtual element space

Vi ={ve H'(K): Ave Pro(K), Vom, € Pii(e) Ve e dK NEY,
ve C'OK NTy), vl, € Prle) Yee dk msf}
and
Off = Peo1(K).

It is easy to check that Py (K) C V{f. Forv e V;f, we can choose the degrees of freedom
DY) = (DY (v). Dy (v), Dy (v)} with

° D‘[i‘] (v): the values of v at k + 1 Gauss—Lobatto points of edge e € dK N ES,
° Dl‘g’z(v): the moments i fe v-qu_jdsforany q;_ € Pr_1(e), e € 0K N &v.
° Dl‘f’3(v): the moments ﬁ fK v-q,_ordxforany g, _, € Pr_2(K).

Furthermore, given g € Q ,f , we consider the following degrees of freedom:
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o Dg(q): the moments [, g px—1 dx forany py_; € Pr_1(K).
Lemma 3.1 The degrees of freedom Dl‘g(v) uniquely determine v € V,lf.

Proof We only need to show that if the degrees of freedom D"§ (v) are all zero for a given
VXS V,If , then v = 0. By integration by parts,

Vv :Vvdx = /an~vds+ van~vds—/ Av-vdx.
I, 2 2 ;

ecdknes ¢ eccdkned " °

Each of the three terms on the right side of the above relation is zero since all the degrees of
freedom for v are zero. Thus, Vv = 0 and v is a constant vector in K. If 9K N S,f # ), then
v=00ndK N S;f. Otherwise, faK vds = 0. In either case, we deduce that v = 0. O

For K € 7, let HQ’K : L?>(K) — Py(K) be the L>(K) projection operator defined by
/KHQ’Kv~qkdx=/Kv-qkdx Vg € Pr(K). (3.1

For an interior edge e shared by K+, K~ € 7;,, we define the L?(e) projection operator
Hg’e : L%(e) — Pi(e) similarly. We recall the following approximation results [8].

Lemma 3.2 Under the assumptions A1 and A2 on the decomposition Ty, the following state-
ments are valid.

(a) Foranyu € H*"''(K),
lu — 100X ullo k + hile — 00 ul x <P ulis k. (3.2)
(b) Foranyu € H**' (Kt UK™),

~

0, 0, k+1/2
e — Tulloe + helu — T0%uly o < he ™ ulipy krok - (3.3)

Remark 3.3 We note that the degrees of freedom D[‘i’3(v) allow us to compute exactly the
L?(K) projection l'[g;sz.

We now define the global virtual element spaces
V= {u eL*(Q) vk e VEVK €T, /[[v]] Qi 1ds =0Yq,_, € Py_1(e)Vee &,
e

UNS CO(FS), v-n=0on 1"5}
and

On=1{g€Q:qlk € Of VK € T).

According to the discrete Poincaré-Friedrichs inequality for the piecewise H' functions
in V}, with k > 1 [7], the broken H'-seminorm

2
lonlin = | D loalf ¢

KeT,

is anorm on V,, and it will be chosen as the norm on V', in the rest of the paper.

@ Springer



Journal of Scientific Computing (2020) 85:56 Page70f19 56

In the following analysis, we extend the definition of the continuous bilinear forms a(, -)
and b(-, ) to Vj, by

a(,vp) =Y X, v) YueV, Vv, eV,
KeT),

bn,q)= Y bX(wi.q) Yo, €V, Vgeo,
KGIZZ

where aX (-, -) and X (-, -) are the restrictions of a(-, -) and b(-, -) on the element K , respec-
tively.
We now define the approximate bilinear forms aj, (-, -) and by, (-, -) for the VEM. Let

by (v, qn) = Z bK (v, qn) = — Z / gn div vy dx
K

KeT, KeT,
=— Z/ v, -nqpds + Z/vh-thdx Vv, e Vy, Vqn € Op.
KeT, V0K KeT, 'K

We notice that the right-hand side is computable using only the degrees of freedom of vy,
since g, is a polynomial of degree < k — 1 in each element K € 7. For any K € 7, we
define the projection ITX : VK — P, (K) by

af(q, v, —T1%v,) =0 Vg e Pr(K),
Lok @n — M%) ds =0 for k=1, (3.4)
fK(vh—Hth)dx:O for k> 2.

In fact, [TX vy, is computable in terms of the degrees of freedom Dl‘g (vp): forallg € Pr(K)
we have

aK(q,vh)=v/ Vq:Vvhdx=v/ an~vhds—v/Aq~vhdx, 3.5)
K ad

K K

and the right-hand side is directly computable from D{f(vh). Clearly, 11X g, = g, for all
q; € Pi(K). Then, we can set [2]

af up, vp) = a® (Muy, 1%0,) + S5 (1 — Ty, (1 = TY,) Yup, vp € VE,
3.6)

with

NK
S (un, va) =) _ dof; (up)dof; (vp), 3.7)
i=1

where NX is the dimension of V,f , and dof; (vy) denotes the ith-degree of freedom of vj,.
For a}f thus defined, the following properties hold true [2].

e k-consistency for all ¢ € Py(K) and vy, € V,’f,
ay (q.vn) = a* (q. vy); (3.8)
e stability there exist two positive constants «, and o* independent of 4 and K such that

axa® (p, vp) < af (op, vi) < a*a® p,vp) Yo, e VE. (3.9)
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Then we define the bilinear form ay (-, -) : Vj x V;, — R by the formula

an(up, vp) = Y ap (wp, vy) Y, vy € Vy. (3.10)
KeTy,

For a computable approximation of the right-hand side (f, v) in (2.1), we define

0,K
Ny™ f for k=1
0 ’
= 3.11
Filx {ng’_’gf for k> 2. GAD
Denote by v}, the piecewise average of vy, i.e.,
1
vl = —/ v, ds for any element K.
0K Jok
Then the discrete right-hand side is defined by
-vpdx for k=1,
(fon) = | Kemi e Lo v Tor (3.12)
> ke, Jx fr-vndx for k=2

The following error bounds hold [2]
(o on) = (F o)l S B IS k-1, @lvn - (3.13)

The virtual element method for solving the inequality problem (2.1) is to find (uy, pp) €
V5 x Qp, such that

{ah(uh, i) + ban, ) + Jrg JOnes vie) ds = (f o) Yoy € Vi,

3.14
b (up. qn) = 0 Yare op. O

It can be verified that ay (-, -) is continuous and coercive over V. By the broken trace theorem
[9,21], there exists a constant A such that

lonllo.rs < A7 loplin Yo € Vi (3.15)
For an error analysis of the virtual element scheme (3.14), we assume
mr)fl < Vo (3.16)

from now on. Therefore, the well-posedness of the discrete problem (3.14) will follow if a
suitable inf-sup condition is fulfilled, which is the topic of Sect. 4.1.

4 A Priori Error Analysis

First we quote the following result from the classical Scott—Dupont theory [8].

Lemma 4.1 Assume Al. Let K € T;,. Then for any u € H**'(K), there exists a polynomial
u, € Pr(K) such that

e — wllo,k + ol — uz ik S R lulerr k- 4.1)
For any u € H'(Q), define u; € V,’f by the degrees of freedom as follows:

uy=u. ondKNE, 4.2)

/u, gy, ds = /u qi_1ds Vqu_y € Pr_i(e), VeecdKNEY, 4.3)
e

e
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/ uj -qk,zdx :/ u -qk,zdx qu72 S Pk_z(K), (44)
K K

where u. € H'(), whose restriction on K is the standard nodal interpolant of u in the
continuous finite element space of piecewise polynomials corresponding to the local trian-
gulation ’];lK of K. Letu € V be the solution of the problem (2.1). Observe that the global
function u; € Vy,. Then, for any g5, € O, we have

by(uy, qn) = — Z Z /u1~n(IhdS+ Z/Kul-thdx

KeTy ecykne) " KeT,
=—Z/ u~nqhds+2/u~thdx
KeTy, IK KeT, K
=b(u, qp), (4.5)

which gives by, (u;, g5) = 0. Moreover, we have the following approximation result, which
can be proven as in [2,25].

Lemma4.2 Leru € VN HM(K). Under the assumptions Al and A2 on the decomposition
Th, it holds

e —wpllo.x +hxlu —urlx SRl k- (4.6)
For the pressure p € H¥(2), from classic polynomial approximation theory [8], it holds

lp = pillo.e < Ko lIpli.q 4.7)

where p; is the L? projection of p to the space Q,.

4.1 The inf-sup condition

The aim of this section is to prove that the following inf-sup condition holds.

Lemma 4.3 There exists a positive constant 8 independent of h such that

by (vn, gn)

p > Bllgnllo,.o Yan € Qn, (4.8)
oV, VrlLn

where ‘7;, ={v,eVy: vy =00nTlg}

Proof Tt is well known that there exists a positive constant 8 independent of % such that for
any g5, € Qp there exists a function v € H (l)(SZ) satisfying

b(v, qn)
vl

> Blignllo,@- 4.9)

From (4.5) we know that b, (vy, g5) = b(v, g). By noting v; € f/h, we have

/ VUI : VUI dx
K

/va-v]ds—/ Avy-v;dx
cedknEL " ° K

2
|vl|1,K

@ Springer



56 Page 100f 19 Journal of Scientific Computing (2020) 85:56

:/ Vv;n-vds—/ Avy -vdx
0K K

:/ Vvr 1 Vodx < v/l kvl k.-
K

The last inequality implies that |v;];,, < |v]1,@. Then

b(v,qh)<bh(vl,%)
e ~ lvrlis

Thus, we finish the proof of (4.8). ]

Bllgrllo.e < (4.10)

Denote Vo = {vy, € Vi @ bp(vy,qn) = 0VYgr € QOp}. Using the discrete inf-sup
condition (4.8), the problem (3.14) is equivalent to the following problem: Find u;, € Vo
such that

ap(up, vy) +/ 70 @ne; vhe)ds = (f.vn) Yon € Vi, 4.11)

Is

Similar to Theorem 2.2, we have the following result.

Theorem 4.4 Under the assumptions (2.2) and (3.16), there is a unique function up € Vj o
satisfying (4.11).

Let us show that the solution u, is uniformly bounded.

Lemma 4.5 The solution uj, of the problem (4.11) is uniformly bounded independent of h.

Proof We let vy, = —uy, in (4.11) to get
ap(up, up) < / FOune; —une) ds + (f o un). 4.12)
Iy
From (2.2) and (3.15), we have
.0 . 2 00
/ J (Wpe; —upg)ds < / melupe|”ds _/ J O;upg)ds
Ts s Ts

1, 2
< mcA Iuhll,h-l-/ colunc|ds

Is
< me A" upl}y, + Clunl i (4.13)
Apply (3.9) and (4.13) in (4.12),
(o — me A Dlunlt ), < C lulin. (4.14)

Since mf)Fl < vy, the above inequality implies the uniform boundedness of |uj, |1 j with
respect to h. O

4.2 Error estimation

We now bound the error for the VEM of an arbitrary order k > 1.
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Theorem 4.6 Let (u, p) € V x Q be the solution of the problem (2.1) and (uy, py) €
Vi x Qy be the solution of the problem (3.14). Assume u € H*T1(Q), ulrg, € H (g ),
1 <1<Is, and p € HX(Q). Then

1
k+1 ]S !
k+1 2
lu — i+ lp = palloa Sh 2 | luleiie + Iplee + 1 F k-1 + | D lulEy r,
=1

(4.15)
Proof First, we derive from the inequality in (2.1) that
a(u,v) + b, p) = (f,v) Yve H\Q).
Thus,
—vAu + Vp = f in the sense of distribution in €.
Under the stated solution regularity, we further have
—VvAu+Vp=f ae.in Q. (4.16)

We multiply both sides of the equation (4.16) by an arbitrary v € V and integrate over 2:

—v/Au-vdx+/Vp-vdx:ff-vdx.
Q Q Q

Then integrate by parts and make use of the homogeneous boundary conditionson v € V to
obtain

a(u, v)—i—b(v, p)+ (—0'7_—)'1)-[ dS = (fvv)~
Is

Comparing this equality with (2.1), we find
f [—07; SV — jo(ur; v,)]ds <0 VveV.
Is

It can be derived from the above inequality that
—0¢ -V < jo(uf; v;) a.e.only.
Since the vector v, is arbitrary, we see that
—0;€0j(u;) ae.onlyg. 4.17)
Denote e, = u; — uy,. Then
Va*|eh|%,h <ap(en,ep) =ap(uy, ep) —ap(up, ep)

< > (af g —ux.en) +a¥ (g —u.en) +a(u, ey)
KeT,

+ b (en, pn) + / 7O ne; enc)ds — (f,, en).

Is

By integration by parts,

a(u,ep) = Z/ vVun - e, ds — Z / vAu -epdx.
oK K

KeTy, KeTy,

@ Springer



56 Page120f19 Journal of Scientific Computing (2020) 85:56

Making use of the pointwise relation (4.16), we have

a(u,ep) = Z / vVun - e, ds — Z / pn-eyds —b(ey, p)+ (f, en).
KeT, V0K KeT, V0K
Using the definition of the jump operators, we can write
a(u,ey) =v Z /Vun - [en] ds — Z /p[eh]ds+/ o;-eprds
ove ove FS
ee&y ee&y
—blen, p) + (f. en). (4.18)
Then apply (4.17),
a(u,ep) vy /Vun fenlds =) /p[eh]ds+/ JOes upe —upe)ds
ecE) ¢ ecE) ¢ Ts

- b(eh7 P) + (f7 Eh).

Hence,
voulenli, < h + L+ I+ Ia+ s, (4.19)
where
K K
L= Y (af (w—uz.en) +a" @z —u.ep)). (4.20)
KeT),
L= (f.en)—(fp. en), (4.21)
I3 = by(en, pn) — blen, p), (4.22)
Iy=v ) /Vun enlds — ) /p[eh]ds, (4.23)
665,? ¢ 8682 ¢
Is = / jo(ur; Upr —Ug)ds +/ jo(uhr; Ujr — Upg)ds. (4.24)
I's Is

Let us bound each of the terms Iy, I, I3, 14 and I5. By the boundedness of the bilinear
forms and the modified Young’s inequality with an arbitrarily small ¢ > 0, we have

Iy <v(a™ur —uzlip+ lu—uxlip)lenlin

IA

Slenl ,+ Cllu—usl? )+ lu—ug2,) (4.25)
glenlin 111, xlin),

b < If = fullvileslin < Zlealdy+CILE = full}:. (4.26)
By using the fact that by, (u;, g,) = 0 for any g, € Oy, and (3.14), we obtain

Iy = bu(en. p1) = blen. p) < lIp = prlbo.alenlin < Slenlt + Cllp = pilf o 427)

Using the definition of Vj,, we have

/e[[eh]] “qi1ds =0 Vq_j € Pri(e), Vee&).
Thus, it holds that

/[eh]‘Ik—ldS =0 Vgr-1 € Pr_1(e), Vee 5;9-
e

@ Springer



Journal of Scientific Computing (2020) 85:56 Page130f19 56

Then we obtain

v Z /Vun [en] ds = v Z /(Vun — 1'12 “ (Vun)) - ([en] — ng[[eh]])ds

ceg? '’ eeg? "’

for the velocity and

Z / len]ds = (p — 117, p) (len] — T10[e]) ds

506

for the pressure. Using the Cauchy—Schwartz inequality and then applying the approximation
estimates of Lemma 3.2, we get

k
I SHEY  (lulleer ko + 1Pl k ok -lenlt k+uk -
eeé}?

k
S A (el + Iplko)lenlin

&
< Jlenli + Ch iRy o + IPIE - (4.28)

By the subadditivity of the generalized directional derivative, we have

Is < / jo(ur§ Upy —Ug)ds +/ jo(uhr§ Uy —upe)ds
s s

+/ jo(ur;ur_ulr)ds+/ jo(uhr;ulr_ur)ds-
I's Is

By (2.2) (d) and (3.15),

/ jo(ur§ Upr —ug)ds +/ jo(uhr§ Uy —upg)ds < / meluy — uht|2ds
s I's Is

—1 2 —1 2 2
<mgA |u—uh|1,/,§(mr)L +5)|eh|1,h+C|U—ul|1,h-

From (2.2) (¢),
/ jo(uIQMr_ulr)dSS/ (co+ciluc)us —uyclds,
I's I's
/ jo(uhr;ulr_ur)dsff (co+cilupc)ur —uyclds.
I's Is

Note that [luy, ||o,rg is bounded by a constant independent of /. Thus,
Is < (me A" +e)lenlt,, + Cllu —usl, + llu —ugllo,ry). (4.29)
With the solution regularity assumption u|rg, € H"+1(F5,1), 1 <[ <lg, we obtain

1
2

k+1 2
e —urllors = llu—uclors SHF D lulirg, | - (4.30)
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Then, combining (4.25)—(4.30) in (4.19), we get

ot —me A" = 2e)lenl] ), S B (ullisy o + 1PI7 g+ I1F17_1.0)
1

Is 2

+ R i g, | (4.31)
=1

Since mo A~ < va,, we can choose ¢ = (va, — mf)u’l)/4 > 0 to get

Is

k+1
lenlin ShT [ lulirie + Iplee + 1 l-ra+ [ D leliorg, | |- 432
=1

By the triangle inequality, we finish the estimate for |u — up|1 5.
We next estimate the error for the pressure. From the discrete inf-sup condition (4.8), we
have

by (vy, —
Bllon = pillog < sup 2 Ph = PD 4.33)
eV lvnl1n

Take vy, € 1% 1 (defined in Lemma 4.3) as a test function in the first relation of (3.14) to obtain
an(@n, vn) + by (v, p) = (f4, v) You € V. (4.34)
Then,

br(p, pr — p1) = bu(vn, pn) — bp(vp, pr)
= —ap(up, vp) + (fp, va) — bp(vp, pr)
=a(u, vy) —ap(up, vp) + (fp, vn) — (f, vn)
+ (f,vn) —au, vy) — bp(vp, pr).

By integration by parts and using the pointwise relation (4.16), we obtain

(f,vp) —a(u,vy) = Z/ vVun - v, ds + Z/ pn-vyds + b(vy, p).

KeTy, KeTy,

Using the definition of the jump operators for vj, € ‘N/h, we can write

(f.on) —a(u,vp) = —v Z/Vu" [vn] ds + Z/P[Uh]d5+b(vh p).
eet)

Then we obtain

ba(n, pr— p) = Y (@@ —uz, v1) + af @x —wp, 01)) + (f1, 00) = (f vn)

KeTy
—v Z/Vun [vi] ds + Z/ [vplds + b(vy, p) — bp(vp, pr).
eEh ecE)

(4.35)
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L
ge00eee

Fig. 1 Sample meshes: ’Th], ’Thz, ’Th3, 'Th4, ’Th5, and ’Th6

Then, combining (3.13), (4.1), (4.7) and (4.28) in (4.35), we get

by, pr — p1) S lw—upliplonlin + 5 Qellien.g + 1plke + 1 F lk—1.2) 10810

1
Is 4
< k+1 2
<h e | ulesre + Iplee + 1 f e+ | D2 g, || oalia.
=1

which gives

Is 4
ktl 2
lpn = pilloe S h 2 | llulkrie + Iplee + 1f k-1, + (E ||"||k+1,r5,,)
=1

By the triangle inequality, ||p — prllo,2 < lp — prllo,e + llpn — pillo,@; thus,

ls 4
k+l 2
Ip—pulloe Sh T | lullitr.e+ Iplce + 1L fllk—1.2 + ( E ||u||k+171~s‘1)
=1

we finish the proof of (4.15), which is optimal when k = 1. ]

5 Numerical Example

In this section, we report some numerical results of an example to show the performance of
the nonconforming virtual element method.
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Table 1 Numerical errors of the lowest-order VEM on Thl
h llexllo,e Order leult,n Order llepllo, e Order
22 3.2624e—01 - 4.7435 - 2.6099 -
23 9.2558e—02 1.8175 2.4808 0.9351 1.2485 1.0638
24 2.4607e—02 1.9113 1.2625 0.9746 6.0706e—01 1.0403
275 6.2594¢—03 1.9749 6.3464e—01 0.9922 2.9921e—01 1.0207
276 1.5439e—03 2.0194 3.2109e—01 0.9829 1.4737e—01 1.0217
Table 2 Numerical errors of the lowest-order VEM on 7;12
h llexllo, e Order leult,n Order llepllo,e Order
22 5.5854e—01 - 5.7929 - 3.7521 -
23 1.9279e—01 1.5347 2.8255 1.0358 1.9142 0.9709
24 5.7292¢—02 1.7506 1.3308 1.0862 8.9025¢—01 1.1044
25 1.5328e—02 1.9022 6.3676e—01 1.0635 4.1127e—01 1.1141
26 3.7637¢—03 2.0259 3.0604e—01 1.0569 1.9365¢—01 1.0866
Table 3 Numerical errors of the lowest-order VEM on ’1713
h llexllo,e Order leult,n Order llepllo, e Order
22 5.4736e—01 - 5.8751 - 3.8700 -
23 1.8643e—01 1.5538 2.9281 1.0047 1.8914 1.0329
24 5.5458e—02 1.7492 1.4191 1.0449 9.1009e—01 1.0554
25 1.4536e—02 1.9317 6.9011e—01 1.0401 4.2671e—01 1.0927
26 3.5693e—03 2.0259 3.4286e—01 1.0092 2.0741e—01 1.0408
Table 4 Numerical errors of the lowest-order VEM on 7;14
h llexllo, e Order lewlt.n Order llepllo,e Order

-2 4.1482e—01 - 4.7781 - 3.5181 -

3 1.5843e—01 1.3887 2.5472 0.9075 1.8706 09113
24 4.8624e—02 1.7041 1.2702 1.0038 8.7314e—01 1.0992
25 1.3141e—02 1.8875 6.3708e—01 0.9955 4.1569¢—01 1.0707
26 3.3091e—03 1.9896 3.3172e—01 0.9415 2.1213e—01 0.9705

Let2=(0,1) x (0,1),'s =(0,1) x {0} and I'p =T"\ I's. We choose v = 1, and let

f(x,y)z[
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Table 5 Numerical errors of the lowest-order VEM on ’1;[5

h llexllo,e Order leult,n Order llepllo, e Order
22 4.3661e—01 - 4.9079 - 3.6378 -

23 2.2891e—01 0.9316 29144 0.7519 2.3561 0.6266
24 9.6538e—02 1.2456 1.5395 0.9207 1.1978 0.9760
273 3.1138e—02 1.6324 7.4261e—01 1.0518 5.2324e—01 1.1948
276 8.3124e—03 1.9053 3.5959¢—01 1.0462 2.2562e—01 1.2136

Table 6 Numerical errors of the lowest-order VEM on ’1;[6

h llexllo,e Order leult,n Order llepllo, e Order
22 4.7488e—01 - 5.3179 - 3.9472 -

23 1.7041e—01 1.4785 2.7234 0.9655 1.9847 0.9919
24 5.1707e—02 1.7206 1.3095 1.0564 9.0027e—01 1.1405
273 1.3778e—02 1.9079 6.3585e—01 1.0422 4.1084e—01 1.1318
276 3.4239¢—03 2.0087 3.2048e—01 0.9884 2.0617e—01 0.9947

for positive parameters a > b and «, we let

23}
wt)y =(a—bye ™™ +b, ju,)= / w(t)dt.
0

Then the slip boundary condition —o; € 9 j(u;) from (1.3) is equivalent to

ocl < w(0) if e =0, oc=—pluch 5 ifur £0, ol G
T

It can be verified that for this choice of j, (2.2)(d) is satisfied with m,; = a(a — b). We take

a =9.01,b =9.0, and @ = 10 for the function j in the numerical tests.
Because the true solution is unknown, the numerical solution on a sufficiently fine mesh
(h = 278) is used as the reference solution (u*, p*). Then we compare the numerical
solutions (uy, py) on the coarser meshes (h = 27", n = 2,3,...,6) with (u*, p*). We
compute the numerical solution errors element-wise on the fine mesh (h = 2-8). For each
element of the fine mesh, we calculate its centroid and identify the element in the coarse
mesh that contains the centroid. The general polygonal meshes are not nested when the mesh
is refined, which gives rise to an additional error in computing the numerical solution errors.
However, the additional error is expected to be of higher-order compared to the numerical
solution errors because the mesh-size of the fine mesh (4 = 2~%) is much smaller than that
of the coarse meshes (7 = 27" for n < 6). Denote e, = IMu* — IMu;, and e, = p* — py.
We compute the errors ||ey 0,0, |exl1,n, and |leplo,q for the lowest order method (k = 1)
on six types of meshes: uniform triangulation 7;!, uniform rectangle mesh ’];,2, quadrilateral
mesh Th3 by perturbing the interior nodes of ’Z;Lzh with a parameter 0.25, polygonal mesh 7;14
generated by the dual of the triangle mesh 7;', distorted polygonal mesh ’Z;f , hon-convex
mesh 72, respectively (see Fig. 1). In Tables 1, 2, 3, 4, 5 and 6, we report the numerical
solution errors of the velocity and pressure, respectively. We observe that the broken H'!
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error for the velocity and L2 error for the pressure are of the order O (k) for all types of the
meshes, which matches the theoretical result in Theorem 4.6 with k = 1.

Data availability The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.
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