
J Sci Comput (2018) 76:888–912
https://doi.org/10.1007/s10915-018-0644-7

Discontinuous Galerkin Methods for a Stationary
Navier–Stokes Problem with a Nonlinear Slip Boundary
Condition of Friction Type

Feifei Jing1 · Weimin Han2,3 · Wenjing Yan2 ·
Fei Wang2

Received: 13 December 2016 / Revised: 7 November 2017 / Accepted: 6 January 2018 /
Published online: 24 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this work, several discontinuous Galerkin (DG) methods are introduced and
analyzed to solve a variational inequality from the stationary Navier–Stokes equations with
a nonlinear slip boundary condition of friction type. Existence, uniqueness and stability of
numerical solutions are shown for theDGmethods. Error estimates are derived for the velocity
in a broken H1-norm and for the pressure in an L2-norm, with the optimal convergence
order when linear elements for the velocity and piecewise constants for the pressure are
used. Numerical results are reported to demonstrate the theoretically predicted convergence
orders, as well as the capability in capturing the discontinuity, the ability in handling the shear
layers, the capacity in dealing with the advection-dominated problem, and the application to
the general polygonal mesh of the DG methods.
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1 Introduction

The Navier–Stokes equations characterize a variety of flows and play an important role in
many engineering applications. Let Ω ⊂ R2 be an open bounded domain with a Lipschitz
boundary Γ = ∂Ω . For the two-dimensional stationary incompressible flow problem in Ω ,
the momentum and continuity equations are

−νΔu + (u · ∇)u + ∇ p = f in Ω, (1)

∇ · u = 0 in Ω, (2)

where u is the fluid velocity, p is the pressure, ν > 0 denotes the kinematic viscosity, and f
is a given external force density. Throughout this paper, the boldface symbols denote vector-
valued quantities. We assume Γ consists of two components ΓD and ΓS : Γ = Γ D ∪ Γ S ,
ΓD ∩ ΓS = ∅ with both ΓD and ΓS non-empty. Over ΓD , we specify the homogeneous
Dirichlet boundary condition:

u = 0 on ΓD . (3)

For the boundary condition on ΓS , we consider the normal direction and tangential direction
separately. Let n = (n1, n2)T be the unit outward normal on the boundaryΓS , and let τττ be the
unit tangential vector obtained by rotating n counterclockwise for an angle of π

2 radians. Then
if v is a vector defined on the boundary, we write vn = v · n for its normal component, and
vτττ = v · τττ for its tangential component. Denote by στττ (u) = ν ∂uτ

∂n the tangential component
of stress vector defined on ΓS . Over ΓS , we specify a slip and non-leak boundary condition
of friction type:

un = 0, |στττ | ≤ g, στττuτττ + g|uτττ | = 0 on ΓS . (4)

The function g : ΓS → [0,∞) is known as the threshold slip or barrier function. If g ≡ 0,
then (4) reduces to the ordinary slip boundary condition: un = 0 and στττ = 0. The second
and third relations in (4) are equivalent to the following implications:

|στττ | < g ⇒ uτττ = 0, uτττ > 0 ⇒ στττ = −g, uτττ < 0 ⇒ στττ = g. (5)

This friction type of boundary conditions was first introduced by Fujita [21] for applications
in the blood flow in a vein of an arterial sclerosis patient, and flow through a canal with its
bottom covered by sherbet of mud and pebbles.

The problem (1)–(4) is difficult to solve numerically because of the nonlinearity, the
coupling between the velocity and the pressure, and the inequality form of the slip boundary
condition. Well-posedness of the Stokes and Navier–Stokes equations with nonlinear slip
boundary conditions has been discussed in several papers, e.g. [22–25,42,43,51,52]. Uzawa
iterative algorithms were introduced in [37,44] for solving the inequality problem governed
by Stokes equations, motivated by ideas presented in [32]. In addition, one can find analyses
of finite element discretization for such variational inequalities in [2,18,35,36,38,41].

For discontinuous Galerkin (DG) methods of a second-order partial differential equa-
tion, discontinuous functions are used to approximate the unknown solution, and by adding
some penalty terms, the approximate solutions between neighboring elements are connected.
Relaxing the continuity of approximation functions across the finite element boundaries
allows the DG methods to be easily implemented on highly unstructured meshes. The local-
ity and flexibility also make the methods well suited for parallelization and applications
of domain decomposition techniques. Due to these advantages, DG methods have been an
active research area in recent years [3,5,8,10–13,19,29,45,49]. In particular, the methods
have been used to solve variational inequality problems [15–17,33,34,55–58,60]. A DG
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formulation and algorithm of gradient plasticity of the second kind were developed and ana-
lyzed in [16,17]. A unified analysis is provided on DG methods for both the first and second
kinds of elliptic variational inequality problems in [55], and DG methods for the obstacle
and Signorini problems [33,34,56,58,60] and contact problems [57]. The interior penalty
DG methods for the Stokes equations with a slip boundary condition were considered in
[15]. To our knowledge, there has been no analysis of DG methods for the Navier–Stokes
equations with such a nonlinear slip boundary condition of friction type. We note that the
reference [15] is on a variational inequality for the Stokes equation, it provides sub-optimal
order error estimates, and there is no numerical example. The reference [11,12,28] is on
ordinary equality problems for the Stokes equations and for the Navier–Stokes equations,
and it does not address the intrinsically more complicated inequality problems. In this paper,
following the unified framework developed in [4,5,8,11,15,47,55], we present the interior
penalty DG methods, local discontinuous Galerkin, discontinuous Galerkin of Brezzi and
discontinuous Galerkin of Bassi for the problem (1)–(4), explore stability of the numerical
schemes, prove existence and uniqueness of the solutions of the discrete problem, and derive
error estimates under some solution regularity assumptions.

The outline of this paper is as follows. In Sect. 2, we bring in some notation and preliminary
materials. In Sect. 3, we introduce four kinds of DG methods for the problem (1)–(4) and
present some results needed later in the error analysis. In Sect. 4, we prove the stability,
existence and uniqueness of the DG approximations. In Sect. 5, we derive error estimates for
the numerical solutions in a broken H1-norm for the velocity and the L2-norm for the pressure.
This paper endswith a sectiononnumerical results, to illustrate the sharpness of the theoretical
convergence orders and capability of the methods to capture the discontinuous velocity when
slip phenomenon occurs; a wall-driven semi-circular cavity flow is also simulated on the
ability of the methods in handling the boundary layers and on the effects by the nonlinear
advection term; and finally, the interior penalty DG method is applied on general polygonal
meshes. Throughout this paper, the letter C denotes a generic positive constant independent
of the mesh size.

2 Variational Inequality

In this section, we introduce a variational inequality formulation for the problem (1)–(4).
First, we introduce some notation. For a given integerm, we shall use the standard Sobolev

space Hm(Ω) [1]

Hm(Ω) = {v ∈ L2(Ω) : ∂kv ∈ L2(Ω) ∀ k : |k| ≤ m},
where k = (k1, k2), k1 and k2 being nonnegative integers, |k| = k1 + k2, and

∂kv = ∂ |k|v
∂xk1∂yk2

.

It is a Hilbert space with the norm and the corresponding seminorm:

‖v‖m,Ω =
⎡
⎣ ∑
0≤|k|≤m

∫
Ω

|∂kv(x)|2 dx
⎤
⎦
1/2

, |v|m,Ω =
⎡
⎣ ∑

|k|=m

∫
Ω

|∂kv(x)|2 dx
⎤
⎦
1/2

.

For functions vanishing on the boundary ∂Ω , we use

H1
0 (Ω) = {

v ∈ H1(Ω) : v|∂Ω = 0
}
.
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We shall also need the following space of functions with zero mean value:

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q(x) dx = 0

}
.

Define H1(Ω) = [H1(Ω)]2 and
V = {v ∈ H1(Ω) : v|ΓD = 0, vn|ΓS = 0}, Q = L2

0(Ω), Y = [L2(Ω)]2,
and V is equipped with the norm ‖∇(·)‖0,Ω . For simplicity, we drop Ω in the notation for
norms in the rest of this paper. The scalar product and norm in Q are the usual L2(Ω) inner
product and the corresponding norm ‖ · ‖0. In addition, define

Vdiv = {u ∈ V : ∇ · u = 0 in Ω}.
We use the notation

(p, q) :=
∫

Ω

p(x)q(x) dx ∀ p, q ∈ L2(Ω),

(v,w) :=
∫

Ω

2∑
i=1

vi (x)wi (x) dx ∀ v,w ∈ Y,

(∇v,∇w) :=
∫

Ω

2∑
i=1

(
∂vi

∂x

∂wi

∂x
+ ∂vi

∂y

∂wi

∂y

)
dx ∀ v,w ∈ H1(Ω),

and define

a(u, v) = (∇u,∇v), d(v, p) = −(∇ · v, p), c(u; v,w) = ((u · ∇)v,w)

for u, v,w ∈ V, and p ∈ Q.
The following inequality will be used repeatedly [26,54]:

|c(u; v,w)| ≤ N‖∇u‖0‖∇v‖0‖∇w‖0 ∀u, v,w ∈ V,

where

N = sup
u,v,w∈V

c(u; v,w)

‖∇u‖0‖∇v‖0‖∇w‖0 < ∞.

Following [20,22,32], the variational inequality formulation of the problem (1)–(4) is to
find (u, p) ∈ V × Q such that

νa(u, v − u) + c(u;u, v − u) + d(v − u, p) + j (vτττ ) − j (uτττ ) ≥ (f, v − u) ∀ v ∈ V,

d(u, q) = 0 ∀ q ∈ Q, (6)

where

j (η) =
∫

ΓS

g |η| ds, η ∈ L2(ΓS).

Obviously, j is a continuous functional defined on L2(ΓS). It is known that there exists a
positive constant β > 0 such that [51]

β‖q‖0 ≤ sup
v∈V

d(v, q)

‖∇v‖0 ∀ q ∈ Q.
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Thus, the variational inequality (6) is equivalent to finding u ∈ Vdiv such that

νa(u, v − u) + c(u;u, v − u) + j (vτττ ) − j (uτττ ) ≥ (f, v − u) ∀ v ∈ Vdiv. (7)

Existence and uniqueness of a solution to the problem (7) is guaranteed if [43]

f ∈ Y, g ∈ L2(ΓS), 4κ N (‖f‖0 + ‖g‖0,ΓS ) < ν2,

where κ > 0 is a constant found in the inequality

|(f, v) − j (vτττ )| ≤ κ(‖f‖0 + ‖g‖0,ΓS )‖∇v‖0 ∀ v ∈ Vdiv.

Moreover, the solution can be bounded as follows,

‖∇u‖0 ≤ 2κ

ν
(‖f‖0 + ‖g‖0,ΓS ).

3 Discontinuous Galerkin Methods

3.1 Notation

To simplify the exposition, we assumeΩ is an open bounded polygon. Let {Th} be a family of
locally quasi-uniform partitions of the domain Ω into triangles, i.e., it is regular and satisfies
the inverse assumption [9], h being the mesh size. ForTh = {K }, let e = ∂Ki ∩∂K j (i �= j)
be the common boundary between two elements Ki and K j in Th . The diameters of K and
e are denoted by hK and he. Let Eh and E I

h be the union of all the edges of the subdivision
Th and the set of interior edges, respectively. Besides, we denote by E S

h the set of all edges
lying on Γ S and E ∗

h = E I
h ∪ E S

h .
For vectors v and n, let v⊗n denote the matrix whose (i, j)th component is vin j . For two

matrix-valued variablesA andB, we defineA : B = ∑2
i, j=1 Ai jBi j . Let e = ∂K1∩∂K2, and

n1 and n2 be the unit normal vectors on e pointing to the exterior of K1 and K2, respectively.
We define the average {·} and jump [·] on e for a scalar q , a vector v, and a matrix A,
respectively, by

{q} = 1

2
(q|∂K1 + q|∂K2), [q] = q|∂K1n1 + q|∂K2n2,

{v} = 1

2
(v|∂K1 + v|∂K2), [v] = v|∂K1 · n1 + v|∂K2 · n2,

{A} = 1

2
(A|∂K1 + A|∂K2), [A] = A|∂K1n1 + A|∂K2n2.

We also define a matrix-valued jump [[·]] for a vector v by [[v]] = v|∂K1 ⊗ n1 + v|∂K2 ⊗ n2
on e. If e is a part of the boundary ∂Ω , the above definitions are modified as follows:

{q} = q, {v} = v, {A} = A and [q] = q, [v] = v, [A] = A, [[v]] = v ⊗ n.

By a straightforward computation, we know that

∑
K∈Th

∫
∂K

qv · n ds =
∫
E I

h

[q] · {v} ds +
∫
Eh

{q}[v] ds,

∑
K∈Th

∫
∂K

v · An ds =
∫
E I

h

[A] · {v} ds +
∫
Eh

{A} : [[v]] ds.
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Let k ≥ 1 be an integer. Define the finite element space Vh for the velocity by

Vh = {v ∈ [L2(Ω)]2 : v|K ∈ [Pk(K )]2 ∀ K ∈ Th},
and the finite element space Qh for the pressure by

Qh = {q ∈ L2
0(Ω) : q|K ∈ Pk−1(K ) ∀ K ∈ Th},

where Pk(K ) denotes the space of polynomials of a degree at most k over the set K .

3.2 DG Methods for the Variational Inequality

We define the usual interior penalty forms for Navier–Stokes problem. The forms ah(·, ·),
dh(·, ·), j (·) and F(·) correspond to the DG discretization of the viscous term, divergence
term, friction term and the right term of the Eq. (1), respectively,

a∗
h(v,w) =

∑
K∈Th

∫
K

∇v : ∇w dx −
∫
E ∗

h

{∇v} : [[w]] ds,

α(v,w) =
∑

e∈E ∗
h

γ h−1
e

∫
e
[[v]] : [[w]] ds,

dh(v, q) = −
∑

K∈Th

∫
K

q ∇ · v dx +
∫
E ∗

h

{q}[v] ds,

j (vτττ ) =
∫
E S

h

g |vτττ | ds, F(v) =
∑

K∈Th

∫
K
f · v dx,

where γ > 0 is a parameter to be specified later.
Let us briefly sketch the derivation of the consistency term in ah(·, ·) and the cause of

the inequality. Since ∇u is continuous on the elements, [∇u] = 0 on the interior edges. For
an arbitrary v ∈ Vh , multiplying (1) by v − u, integrating on an element K , performing an
integration by parts, and summing over all elements, we see that

∫
Ω

−νΔu · (v − u) dx =
∑

K∈Th

∫
K

ν∇u : ∇(v − u) dx −
∑

K∈Th

∫
∂K

ν
∂u
∂n

· (v − u) ds. (8)

We rewrite the edge integral term in (8):

−
∑

K∈Th

∫
∂K

ν
∂u
∂n

· (v − u) ds = −
∫
Eh

ν{∇u} : [[v − u]] ds −
∫
E I

h

ν[∇u] · {v − u} ds

= −
∫
E ∗

h

ν{∇u} : [[v − u]] ds −
∫
E S

h

ν
∂u
∂n

· (v − u) ds. (9)

For the second term in (9), by the definition of στ , and with the boundary conditions (4),
there holds

−
∫
E S

h

ν
∂u
∂n

· (v − u) ds = −
∫
E S

h

ν

(
(∂un)

∂n
n + ∂(uτ )

∂n
τ

)
· ((vn − un)n + (vτ − uτ )τ ) ds

= −
∫
E S

h

ν
∂un
∂n

· (vn − un) ds −
∫
E S

h

ν
∂uτ

∂n
· (vτ − uτ ) ds
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= −
∫
E S

h

ν
∂uτ

∂n
· (vτ − uτ ) ds =

∫
E S

h

στ (uτ − vτ ) ds

≤
∫
E S

h

(g|vτ | − g|uτ |) ds. (10)

Using (9), (10) in (8), we have
∫

Ω

−νΔu · (v − u) dx ≤
∑

K∈Th

∫
K

ν∇u : ∇(v − u) dx −
∫
E ∗

h

ν{∇u} : [[v − u]] ds

+
∫
E S

h

(g|vτ | − g|uτ |) ds.

We then use the following variant of Lesaint–Raviart upwinding scheme [40] introduced
in [29] to discretize the nonlinear convection term in (8). The superscript int (resp. ext) refers
to the trace of the function on a side of K coming from the interior of e (resp. coming from
the exterior of e on that side). When the side of K belongs to ∂Ω , we take the exterior trace
to be zero. Define

ch(zh;uh; vh,wh) =
∑

K∈Th

∫
K

(
(uh · ∇vh) · wh + 1

2
div uh vh · wh

)
dx

− 1

2

∫
E ∗

h

[uh]{vh · wh} ds

+
∑

K∈Th

∫
∂K

zh− \E S
h

|{uh} · n|
(
vinth − vexth

)
· wint

h ds ∀ zh,uh, vh,wh ∈ Vh,

and

cN L
h (zh;uh; vh,wh) =

∑
K∈Th

∫
∂K

zh− \E S
h

|{uh · n}| (vinth − vexth

) · wint
h ds,

where
∂K zh− = {x ∈ ∂K : zh(x) · n < 0},

and the superscript zh indicates the dependence of ∂K zh− on zh .
Now, we study DG methods for the Navier–Stokes equations with a nonlinear slip

boundary conditions of friction type. In [4] several DG methods are discussed for the ellip-
tic problem and are extended to the elliptic variational inequalities in [55], for the sake
of simplicity, we select the following DG methods for the considered problem here. Let
L : Vh → �h = {v ∈ [L2(Ω)]2×2 : v|K ∈ [Pk(K )]2×2 ∀K ∈ Th} and re : Vh → �h be
the two lifting operators defined by

∫
Ω

L(v) : wh dx =
∫
E ∗

h

[[v]] : {wh} ds,
∫

Ω

re(v) · wh dx =
∫

e
[[v]] : {wh} dx ∀ v ∈ Vh, wh ∈ �h .

The bilinear form, trilinear form and friction term dh(·, ·), ch(·; ·, ·) and j (·)will be the same
as the definitions above, we present the choice of ah(·, ·) for various DG methods.

1. IPG method [3,19,50,59]

aIP
h (v,w) = a∗

h(v,w) + ε

∫
E ∗

h

{∇w} : [[v]] ds + α(v,w) ∀ v,w ∈ Vh,
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Remark 1

(i) When ε = 0, ah(·, ·) is the incomplete interior penalty DG(IIPG) scheme. When
ε = −1 and 1, ah(·, ·) becomes the symmetric interior penalty DG (SIPG) scheme and
non-symmetric interior penalty DG (NIPG) scheme, respectively.

(ii) α(v,w) is the penalty term, and the selection of γ will affect the stability of the discrete
scheme.

2. LDG method [10,11,13]

aLDG
h (v,w) = a∗

h (v,w) −
∫
E ∗

h

{∇w} : [[v]] ds + (L(v),L(w))Ω + α(v,w) ∀ v,w ∈ Vh .

3. Brezzi et al. [8]

aBr
h (v,w) = a∗

h(v,w) −
∫
E ∗

h

{∇w} : [[v]] ds + (L(v),L(w))Ω + α∗(v,w) ∀ v,w ∈ Vh,

and

α∗(v,w) =
∑

e∈E ∗
h

∫
Ω

γ h−1
e re(v) · re(w) dx ∀ v,w ∈ Vh .

4. Bassi et al. [5]

aBa
h (v,w) = a∗

h(v,w) −
∫
E ∗

h

{∇w} : [[v]] ds + α∗(v,w) ∀ v,w ∈ Vh .

These four methods can all be expressed as follows: find (uh, ph) ∈ Vh × Qh such that

νah(uh, vh − uh) + dh(vh − uh, ph) + ch(uh;uh;uh, vh − uh) + j (vhτττ ) − j (uhτττ )

≥ F(vh − uh) ∀ vh ∈ Vh, (11)

dh(uh, qh) = 0 ∀ qh ∈ Qh, (12)

where ah(·, ·) stands for any one of aIP
h , aLDG

h , aBr
h and aBa

h .
It is easy to check that the solution of (6) satisfies the following consistency condition:

νah(u, v − u) + dh(v − u, p) + ch(u;u; u, v − u) + j (vτττ ) − j (uτττ ) ≥ F(v − u) ∀ v ∈ V(h),

(13)

dh(u, q) = 0 ∀ q ∈ Qh . (14)

4 Stability, Existence and Uniqueness

In this section, we consider the well-posedness of the DG methods (11)–(12).
Let e be an edge of K ∈ Th . There exists a constant C that depends only on the lower

bound of the minimum angle of K such that for any function ϕ ∈ H1(K ),

hK ‖ϕ‖20,e ≤ C
(‖ϕ‖20,K + h2

K |∇ϕ|20,K
)
, hK ‖∂ϕ

∂n
‖20,e ≤ C

(|ϕ|21,K + h2
K |∇ϕ|21,K

)
. (15)

In particular, for any v ∈ Vh , the following inequalities are valid [7,9,39]:

he‖∇v|K ‖20,e ≤ C
(‖∇v‖20,K + h2

K ‖Δv‖20,K
)
, h2

K ‖Δv‖20,K ≤ C‖∇v‖20,K . (16)
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Let V(h) = Vh + H2(Ω) ∩ V, Q(h) = Qh + Q ∩ H1(Ω), we define the broken Sobolev
norms on V(h) and norm on Q(h) as follows:

|v|2∗,e =
∑

e∈E ∗
h

1

he
‖[[v]]‖20,e, �v�2

1 = |v|21,h + |v|∗,e, �v�2 = �v �2
1 +

∑
K∈Th

h2
K |v|22,K ,

‖q‖2∗ = ‖q‖20 +
∑

K∈Th

h2
K |q|21,K ,

where | · |21,h = ∑
K | · |21,K . In fact, � · � and � · �1 are equivalent by the standard inverse

inequality for v ∈ Vh [6,7,9]. Let us recall some properties of ah(·, ·), dh(·, ·) and ch(·; ·; ·, ·)
before presenting the well-posedness result of problem (11)–(12).

Note that

a∗
h(v, v) = |v|21,h −

∫
E ∗

h

{∇v} : [[v]] ds, α(v, v) = γ |v|2∗,e. (17)

By inequalities (15) and (16), we find that (cf. [11,39] for more information)
∣∣∣∣∣(1 − ε)

∫
E ∗

h

{∇v} : [[v]] ds

∣∣∣∣∣ =
∣∣∣(1 − ε)

∫
Ω

L(v) : {∇v} ds
∣∣∣ ≤ ε|v|21,h + (1 − ε)

4ε
‖L(v)‖20.

(18)

For the global lifting operator L, we observe that it can be extended to operator L : V(h) →
�h , and from [4,53], there holds

‖L(v)‖20 ≤ Clift|v|2∗,e. (19)

Besides, as in [4,5,53], using the definition of the local lifting operator re, the Cauchy-
Schwarz inequality, the trace inequality and the inverse inequality, we get for all v ∈ Vh ,

C1
Br · ‖re(v)‖20 ≤ |v|2∗,e ≤ (CBr)

−1 · ‖re(v)‖20. (20)

From (17) and (18), we obtain

aIP
h (v, v) ≥ |v|21,h − ε|v|21,h − (1 − ε)

4ε
‖L(v)‖20 + γ |v|2∗,e

≥ (1 − ε)|v|21,h +
(

γ + (1 − ε)

4ε
Clift

)
|v|2∗,e ≥ γ0 � v�1,

with γ0 = min{1 − ε, γ + (1−ε)
4ε Clift}.

Combining (19) and with the definition of aLDG
h (·, ·), we obtain

aLDG
h (v, v) ≥ |v|21,h − ε|v|21,h − 1

2ε
‖L(v)‖20 + ‖L(v)‖20 + γ |v|2∗,e

≥ (1 − ε)|v|21,h +
(
1 − 1

2ε

)
‖L(v)‖20 + γ |v|2∗,e

≥ (1 − ε)|v|21,h +
(

γ +
(

1

2ε
− 1

)
Clift

)
|v|2∗,e

≥ γ0 � v�1, γ0 = min

{
1 − ε, γ +

(
1

2ε
− 1

)
Clift

}
with 1 > ε ≥ 1

2
.
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Then in view of aBr
h (·, ·) and using (20), one can see that

aBr
h (v, v) ≥ |v|21,h − ε|v|21,h − 1

2ε
‖L(v)‖20 + ‖L(v)‖20 + ‖re(v)‖20

≥ (1 − ε)|v|21,h +
(

CBr +
(

1

2ε
− 1

)
Clift

)
|v|2∗,e

≥ γ0 � v�1, γ0 = min

{
1 − ε, CBr +

(
1

2ε
− 1

)
Clift

}
with 1 > ε ≥ 1

2
.

From (20), it is easy to obtain that

aBa
h (v, v) ≥ |v|21,h − ε|v|21,h − 1

2ε
‖L(v)‖20 + ‖re(v)‖20

≥ (1 − ε)|v|21,h +
(

CBr + Clift

2ε

)
|v|2∗,e

≥ γ0 � v�1, γ0 = min

{
1 − ε, CBr + Clift

2ε

}
.

The above analysis leads to a coercivity result on the bilinear form ah(·, ·).

Lemma 1 (Stability) There exists a constant γ0 independent of h such that

a�
h(v, v) ≥ γ0 � v �2

1 ∀ v ∈ Vh,

where � = IP,LDG,Br,Ba and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i f � = IP, γ0 = min

{
1 − ε, γ + (1 − ε)

4ε
Clift

}}
ε = 0 or − 1,

= min{1, γ }, ε = 1, for any 0 < ε < 1,

i f � = LDG, γ0 = min

{
1 − ε, γ +

(
1

2ε
− 1

)
Clift

}
, for any

1

2
≤ ε < 1,

i f � = Br, γ0 = min

{
1 − ε,CBr +

(
1

2ε
− 1

)
Clift

}
, for any

1

2
≤ ε < 1,

i f � = Ba, γ0 = min

{
1 − ε,CBr + Clift

2ε

}
, for any 0 < ε < 1.

Regarding boundedness of the bilinear forms ah(·, ·) and dh(·, ·), we have the following
result.

Lemma 2 (Boundedness) [4,39,53] There exists a constant C independent of h such that
for all v,w ∈ V(h), q ∈ Q(h),

|ah(w, v)| ≤ C � w � �v�,

dh(v, q) ≤ C � v � ‖q‖∗. (21)

Moreover, for all (v, q) ∈ Vh × Qh,

dh(v, q) ≤ C � v �1 ‖q‖0. (22)
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Lemma 3 [27–29] There exist constants C0 and C1 independent of h such that

ch(vh; vh;wh,wh) ≥ 0 ∀ vh,wh ∈ Vh,

|ch(zh;uh; vh,wh)| ≤ C0 � uh �1 �vh �1 �wh �1 ∀ zh,uh, vh,wh ∈ Vh,

|cN L
h (zh;wh; zh, vh) − cN L

h (wh;wh; zh, vh)| ≤ C1‖zh − wh‖1‖zh‖1‖vh‖1 ∀ zh,wh, vh ∈ Vh .

We recall properties of the Raviart–Thomas interpolation operator � which is useful in

the following argument. Define a subspace
◦
Vh of Vh :

◦
Vh = {vh ∈ Vh : [vh]|e = 0 ∀e ∈ E ∗

h , vh |e = 0 ∀e ∈ E S
h }.

Lemma 4 [28,47,48] The Raviart–Thomas interpolation operator � ∈ L ([H1(Ω)]2; ◦
Vh)

satisfies: for all v ∈ H1(Ω),
∫

K
q ∇ · (�v − v) dx = 0 ∀ K ∈ Th, ∀ q ∈ Pk−1(K ),

∫
e

q (�v − v) · n ds = 0 ∀ e ∈ Eh, ∀ q ∈ Pk−1(e),

�v|e · n ∈ Pk−1(e) ∀ e ∈ Eh,

‖�v − v‖0,K + hK ‖∇(�v − v)‖0,K ≤ ChK ‖v‖0,K ∀ K ∈ Th,

� �v�1 ≤ C‖∇v‖0,
with a constant C independent of hK .

Lemma 5 [47,48] There exists a constant β > 0, independent of h, such that

β ≤ inf
q∈Qh

sup

v∈ ◦
Vh

dh(v, q)

�v �1 · ‖q‖0 . (23)

We now present an existence and uniqueness result for the DG methods (11)–(12).

Theorem 1 Let f ∈ Y and g ∈ L2(ΓS) be given with

2κ(2C0 + C1)

ν2γ 2
0

(‖f‖0 + ‖g‖0,ΓS ) < 1. (24)

Then, the problem (11)–(12) admits a unique solution (uh, ph) ∈ S̃, where

S̃ =
{
(vh, qh) ∈ Vh × Qh : �vh�1 ≤ 2κ

νγ0

(‖f‖0 + ‖g‖0,ΓS

)
,

‖qh‖0 ≤ 1

β

(
‖ f ‖0 +

(
κ + 2Cκ

γ0

)
(‖ f ‖0 + ‖g‖0,ΓS )

)}
.

Proof The proof of this theorem is divided into three steps.
First, we show the existence of uh . DefineVhσ = {vh ∈ Vh, dh(vh, qh) = 0, ∀ qh ∈ Qh}.

We then give the equivalent problem to (11)–(12): find uh ∈ Vhσ such that

νah(uh, vh − uh) + j (vhτττ ) − j (uhτ ) ≥ F(vh − uh) − ch(uh;uh;uh, vh − uh) ∀ vh ∈ Vhσ .

(25)
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Given uh ∈ Vhσ = {vh ∈ Vh, dh(vh, qh) = 0, ∀ qh ∈ Qh}, consider the following
variational inequality:

Find wh ∈ Vhσ such that

νah(wh, vh − wh) + j (vhτττ ) − j (whτ ) ≥ F(vh − wh) − ch(uh;uh;uh, vh − wh) ∀ vh ∈ Vhσ .

(26)

Coercivity of ah(·), continuities of j (·) andF(·), along with Lemma 3 imply that the problem
(26) admits a unique solutionwh ∈ Vhσ . Thus problem (26) defines a map Gh : Vhσ → Vhσ ,
and uh is the solution of problem (25) is equivalent to the existence of a fixed point of the
map Gh defined by

Gh(uh) = uh .

Now we show Gh is continuous. Setting vh = 0 and vh = 2wh in (26), respectively, we
obtain

νah(wh,wh) + j (whτττ ) = F(wh) − ch(uh;uh;uh,wh).

Then

νγ0 � wh�2
1 ≤ F(wh) − j (whτττ ) − ch(uh;uh;uh,wh)

≤ κ(‖f‖0 + ‖g‖0,ΓS ) � wh �1 +C0 � uh �2
1 �wh �1 .

Define a sphere S in Vhσ :

S =
{
uh ∈ Vhσ : �uh�1 ≤ 2κ

νγ0
(‖f‖0 + ‖g‖0,ΓS )

}
.

Thus we have

�wh�1 ≤ κ

νγ0
(‖f‖0 + ‖g‖0,ΓS ) + C0

νγ0
� uh�2

1

≤ κ

νγ0
(‖f‖0 + ‖g‖0,ΓS ) + C0

νγ0
· 4κ

2(‖f‖0 + ‖g‖0,ΓS )
2

ν2γ 2
0

≤ 2κ

νγ0
(‖f‖0 + ‖g‖0,ΓS ).

Then, we demonstrate that Gh is a continuous map. Given u1h,u2h ∈ Vhσ , w1h = Gh(u1h)

and w2h = Gh(u2h) satisfy

νah(w1h, vh −w1h)+ j (vhτττ )− j (w1hτττ ) ≥ F(vh −w1h)−ch(u1h;u1h;u1h, vh −w1h) (27)

and

νah(w2h, vh −w2h)+ j (vhτττ )− j (w2hτττ ) ≥ F(vh −w2h)−ch(u2h;u2h;u2h, vh −w2h). (28)

Choosing vh = w2h in (27) and vh = w1h in (28) and adding the two resulting inequalities,
we have

νah(w1h − w2h,w1h − w2h) ≤ ch(u1h;u1h; u1h,w2h − w1h) − ch(u2h;u2h;u2h,w2h − w1h).

(29)
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Since

ch(u1h;u1h;u1h,w2h − w1h) − ch(u2h;u2h;u2h,w2h − w1h)

= ch(u2h;u2h;u1h − u2h,w2h − w1h) + ch(u1h;u1h − u2h;u1h,w2h − w1h)

+ cN L
h (u1h;u2h;u1h,w2h − w1h) − cN L

h (u2h;u2h;u1h,w2h − w1h),

we apply Lemmas 1 and 3 in (29) to obtain

νγ0 � w1h − w2h�2
1 ≤ C0 � u1h − u2h �1 �w1h − w2h �1 (�u1h �1 + � u2h�1)

+ C1 � u1h �1 �u1h − u2h �1 �w1h − w2h�1

≤ 2κ(2C0 + C1)

νγ0
(‖f‖0 + ‖g‖0,ΓS ) � u1h − u2h �1 �w1h − w2h�1

by (24), which implies
�w1h − w2h�1 < �u1h − u2h �1 .

So the map Gh : Vhσ → Vhσ is a contraction. By the Brouwer fixed point theorem, Gh has
a fixed point. Hence the discrete problem (25) admits a solution uh ∈ Vhσ .

Next, we show the existence of ph by the inf-sup condition.

For all vh ∈ ◦
Vh , notice that the integral term on slip boundary is not included in this

subspace, then the similar technique can be applied as the Stokes equations with Dirichlet

boundary condition on ∂Ω . Define the polar set of
◦
Vh as

◦
V

∗
h =

{
φ ∈ (

◦
Vh)′ : φ(v) = 0 ∀ vh ∈ ◦

Vh

}
.

We define the map B ′ : Qh → ◦
V

∗
h by

B ′qh(vh) = dh(vh, qh) ∀(vh, qh) ∈ ◦
Vh × Qh,

and, using the solution uh found in the preceding step, then we can define a map φ in
◦
V

∗
h by

the following equation

φ(vh) = F(vh) − νah(uh, vh) − ch(uh;uh;uh, vh).

From Lemma 5 and B ′ is the isomorphism from Qh to
◦
V

∗
h , there exists a ph ∈ Qh such that

[26,47,54]
B ′ ph = φ,

equivalently,

dh(vh, ph) = F(vh) − νah(uh, vh) − ch(uh;uh;uh, vh) ∀ vh ∈ ◦
Vh .

Moreover,

β‖ph‖0 ≤ sup

vh∈ ◦
Vh

dh(vh, qh)

|‖vh‖|1 ≤ sup

vh∈ ◦
Vh

F(vh) − νah(uh, vh) − c(uh;uh;uh, vh)

|‖vh‖|1
≤ ‖f‖0 + Cν|‖uh‖|1 + C0|‖uh‖|21
≤ ‖f‖0 +

(
κ + 2Cκ

γ0

)
(‖f‖0 + ‖g‖0,ΓS ).
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Thus the pair (uh, ph) is the solution to (11)–(12).
Finally, we show that the solution pair (uh, ph) is unique. Suppose that (u1h, p1h) and

(u2h, p2h) are two solutions of the problem (11)–(12). We similarly derive the following
inequality

νγ0 � u1h − u2h�2
1 ≤ 2κ(2C0 + C1)

νγ0
(‖f‖0 + ‖g‖0,ΓS ) � u1h − u2h �2

1 .

Recalling the assumption (24), we see that u1h = u2h . We use uh for u1h and u2h , for all

wh ∈ ◦
Vh, qh ∈ Qh . Replacing vh by vh ± wh in (11), we have

νah(uh, vh) + dh(vh, p1h) = F(vh) − ch(uh;uh;uh, vh).

and
νah(uh, vh) + dh(vh, p2h) = F(vh) − ch(uh;uh;uh, vh).

Thus,
dh(vh, p1h − p2h) = 0.

From Lemma 5, there holds

β‖p1h − p2h‖0 ≤ sup

vh∈ ◦
Vh

d(vh, p1h − p2h)

�vh�1
= 0,

implying that ‖p1h − p2h‖0 = 0, and so p1h = p2h . ��

5 Error Estimates

In this section, our task is to bound the errors �u − uh�1 and ‖p − ph‖0. By the triangle
inequality,

�u − uh �1 +‖p − ph‖0 ≤ �uh − vh �1 +‖ph − qh‖0 + �u − vh �1 +‖p − qh‖0,
where we choose the Crouzeix–Raviart type interpolation vh of the velocity u and classical
interpolation qh of the pressure p [7,14,26,30,47], which satisfies

dh(vh − u, ψ) = 0 ∀ u ∈ V(h), ψ ∈ Qh . (30)

Then we have the following error estimate:

Theorem 2 Assume (24) and g ∈ L∞(ΓS). If (u, p) and (uh, ph) are the solutions of the
problems (6) and (11)–(12), respectively, then

‖p − ph‖0 + �u − uh�1 ≤ C
(
(�u − vh �1 +‖uτττ − vhτττ‖1/20,ΓS

) + ‖p − qh‖0
)
, (31)

where C = C(ν, γ0, f, g,Ω).

Proof First, we bound �uh − vh�1. Applying Lemma 1, we see that

νγ0 � uh − vh�2
1 ≤ νah(uh − vh,uh − vh) = T1 + T2, (32)

where
T1 = νah(uh − u,uh − vh), T2 = νah(u − vh,uh − vh).
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We rewrite T1 as follows:

T1 = νah(uh,uh − vh) − νah(u,uh − vh).

In (13), choosing v = uh and v = 2u − vh , respectively, we have

νah(u,uh − vh) + ch(u;u;u,uh − vh) + dh(uh − vh, p) + j (2uτττ − vhτττ )

+ j (uhτττ ) − 2 j (uτττ ) ≥ F(uh − vh).

From (11),

νah(uh,uh−vh) ≤ dh(vh−uh, ph)+ch(uh;uh;uh, vh−uh)+ j (vhτττ )− j (uhτττ )+F(uh−vh).

Then T1 is bounded as follows:

T1 ≤ dh(vh − uh, ph − p) + j (2uτττ − vhτττ ) − 2 j (uτττ ) + j (vhτττ )

+ ch(uh;uh;uh, vh − uh) − ch(u;u;u, vh − uh). (33)

Considering (12), (14), (30), we have

dh(vh − uh, ph − p) = dh(vh − uh, ph − qh) + dh(vh − uh, qh − p)

= dh(vh − u, ph − qh) + dh(u − uh, ph − qh) + dh(vh − uh, qh − p)

= dh(vh − uh, qh − p).

The terms on the right side of (33) are bounded as follows:

|dh(vh − uh, qh − p)| ≤ C � uh − vh �1 ‖p − qh‖0 ≤ ε � uh − vh �2
1 +C2

4ε
‖p − qh‖20,

(34)

| j (2uτττ − vhτττ ) − 2 j (uτττ ) + j (vhτττ )| ≤ 4| j (uτττ − vhτττ )| ≤ C‖g‖∞,ΓS ‖uτττ − vhτττ‖0,ΓS . (35)

Using the fact that u ∈ V and ch(vh; vh;wh,wh) ≥ 0, we can write

|ch(uh;uh;uh, vh − uh) − ch(u;u;u, vh − uh)|
= |ch(uh;uh;uh, vh − uh) − ch(uh;u;u, vh − uh)|
= |ch(uh;uh;uh − vh, vh − uh) + ch(uh;u; vh − u, vh − uh)

+ ch(uh;uh − vh; vh, vh − uh) + ch(uh; vh − u; vh, vh − uh)|
≤ C0 � vh �1 �uh − vh �2

1 +C0(�u �1 + � vh�1) � uh − vh �1 �u − vh �1

≤ νγ0

2
� uh − vh �2

1 +1

2
(νγ0 + νγ 2

0 ) � uh − vh �1 �u − vh �1

≤ νγ0

2
� uh − vh �2

1 +ε � uh − vh �2
1 +ν2γ 2

0 (1 + γ 2
0 )

4ε
� u − vh �2

1 . (36)

Applying the bounds (34)–(36) in (33), we obtain

T1 ≤ νγ0

2
� uh − vh �2

1 +2ε � uh − vh �2
1 +ν2γ 2

0 (1 + γ 2
0 )

4ε
� u − vh �2

1 +C‖uτττ − vhτττ ‖0,ΓS

+ C2

4ε
‖p − qh‖20. (37)

As for T2, it is easy to see that

T2 ≤ C � u − vh �1 �uh − vh�1 ≤ ε � uh − vh �2
1 +C2

4ε
� u − vh �2

1 . (38)
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From (37) and (38), choosing ε = νγ0
8 we see that

νγ0�uh −vh�2
1 ≤ 8ν2γ 2

0 (1 + γ 2
0 ) + 8C2

νγ0
�u−vh �2

1+8C2

νγ0
‖p−qh‖20+C‖uτττ −vhτττ‖0,ΓS .

(39)

Next, taking u ± wh as a test function in (13), with an arbitrary wh ∈ ◦
Vh , yields

νah(u,wh) + ch(u;u;u,wh) + dh(wh, p) = F(wh).

Similarly, we can obtain from (11) that

νah(uh,wh) + ch(uh;uh;uh,wh) + dh(wh, ph) = F(wh).

By subtraction of the above two equations, there holds

νah(u−uh,wh)+ch(u;u;u,wh)−ch(uh;uh;uh,wh)−dh(wh, p− ph) = 0 ∀wh ∈ ◦
Vh .

According to Lemma 5, there holds

β‖ph − qh‖0 ≤ sup

wh∈ ◦
Vh

dh(wh, ph − qh)

�wh�1

≤ sup

wh∈ ◦
Vh

dh(wh, ph − p) + dh(wh, p − qh)

�wh�1

≤ sup

wh∈ ◦
Vh

ch(uh; uh; uh,wh) − ch(u; u; u,wh) − νah(u − uh,wh) + dh(wh, p − qh)

�wh�1

≤ C(�u − uh �1 +‖p − qh‖0). (40)

The bound (40) follows from (39). Further with the estimate (39), this theorem is completed.
��

Remark 2 By the standard finite element approximation theory [7,9,26], if

u ∈ [H2(Ω)]2, uτττ |ΓS ∈ H̃2(ΓS), p ∈ H1(Ω),

then for k = 1, there exist vh ∈ Vh and qh ∈ Qh such that

�u − vh �1 +‖p − qh‖0 ≤ Ch(‖u‖2 + ‖p‖1), ‖uτττ − vhτττ‖0,ΓS ≤ Ch2‖uτττ‖H̃2(ΓS)
.

Thus, from Theorem 2, we have the optimal order error bound

�u − uh �1 +‖p − ph‖0 ≤ Ch.

If
u ∈ [H3(Ω)]2, uτττ |ΓS ∈ H̃3(ΓS), p ∈ H2(Ω),

then for k = 2, there exist vh ∈ Vh and qh ∈ Qh such that [7,9,26]

�u − vh �1 +‖p − qh‖0 ≤ Ch2(‖u‖3 + ‖p‖2), ‖uτττ − vhτττ‖0,ΓS ≤ Ch3‖uτττ‖H̃3(ΓS)
.

Thus, we have the error bound

�u − uh �1 +‖p − ph‖0 ≤ Ch3/2.

And here, the space H̃ s(ΓS)(s = 2, 3) is defined as follows: let ΓS be represented
as ΓS = ∪1≤ j≤J ΓS, j with each ΓS, j a closed subset of an affine hyperplane in R

2.
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Then H̃ s(ΓS) consists of functions v such that v ∈ Hs(ΓS, j )(1 ≤ j ≤ J ) with norm

|v|H̃ s (ΓS)
=

(∑J
j=1 |v|2Hs (ΓS, j )

) 1
2
.

6 Numerical Simulations

Weapply theSIPGmethod to the following three test problems.TheUzawa iterative algorithm
[32,37,44] is employed to solve the variational inequality problem numerically:

Choose an arbitrary λ1h ∈ Λ,Λ = {μ ∈ L2(ΓS) : |μ(x)| ≤ 1 a.e. on ΓS}. Then for n ≥ 1,
with the known λn

h , we seek (un
h, pn

h ) and λn+1
h by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νah
(
un

h, vh
) + ch

(
un−1

h ;un−1
h ;un

h, vh

)
+ dh

(
vh, pn

h

)

= F(vh) −
∫

ΓS

λn
h g vhτττ ds ∀ vh ∈ Vh,

dh(un
h, qh) = 0 ∀ qh ∈ Qh,

and

λn+1
h = PΛ

(
λn

h + ρgun
hτττ

)
,

where PΛ(μ) = sup{−1, inf{1, μ}}. If a prescribed error tolerance is reached, stop. Note
that the nonlinear term has been linearized by Picard’s iteration method and the zero vector
has been taken as the iterative initial value of the velocity. In addition, the results served to
verify the error bound are exhibited for k = 1, 2 (k represents the degree of the polynomial
for the velocity function space in Sect. 3), while the others shown in figures are for k = 1
since there is no obvious difference between different k.

Example 6.1 Let Ω = (0, 1)2, and consider a boundary split into the slip boundary ΓS =
(0, 1)×{1} and the Dirichlet boundary ΓD = ∂Ω \ΓS . Motivated by the numerical example
in [37], let us consider⎧⎨

⎩
u1(x, y) = 20x2(x − 1)2y(y − 1)(2y − 1),
u2(x, y) = −20x(x − 1)(2x − 1)y2(y − 1)2,
p(x, y) = 20(2x − 1)(2y − 1),

(41)

which turns out to be the solution of the Navier–Stokes equations (1) under the adhesive
boundary condition u|∂Ω = 0. Here, the external force f is defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(x, y) = −40ν(6x2 − 6x + 1)y(y − 1)(2y − 1) − 120νx2(x − 1)2(2y − 1)

+ 40(2y − 1) + 400x3(x − 1)3(2x − 1)y2(y − 1)2(2y2 − 2y + 1),

f2(x, y) = 120ν(2x − 1)y2(y − 1)2 + 40νx(x − 1)(2x − 1)(6y2 − 6y + 1)

+ 40(2x − 1) + 400x2(x − 1)2(2x2 − 2x + 1)y3(y − 1)3(2x − 1).

By a direct computation, we find

max
ΓS

|στττ | = max
0≤x≤1

|20νx2(x − 1)2| = 1.25ν.

Now, instead of the adhesive boundary condition, we impose the slip boundary condition on
ΓS , for a fixed function g. Then it can be seen that

{
g(x) > στττ (x) for all x ∈ ΓS ⇒ (41) remains the solution ⇒ No-slip occurs.

g(x0) = στττ (x0) for some x0 ∈ ΓS ⇒ (41) is no longer a solution ⇒ Slip occurs.
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Fig. 1 SIPG method (ε = −1): velocity field in Ω with different constant and function g under k = 1.
a g = 2.0. b g = 0.8. c g = 0.2. d g = x . e g = sin x+1

2 . f g = 20x2(x − 1)2

In particularly, for a constant g, it can be intuitively observed:

{
g > 1.25ν ⇒ (41) remains the solution ⇒ No-slip occurs.

g ≤ 1.25ν ⇒ (41) is no longer a solution ⇒ Slip occurs.

The slip and non-slip phenomena are clearly observed in Fig. 1 for different values of g on
a uniform 16× 16 grid. In fact, slip phenomena (uhτττ �= 0) take place on ΓS for g = 0.2, 0.8,
whereas no slip is observed for g = 2.0 (ν = 1.0). When g is a fixed function, if the values
of g(x0) is bigger than στττ (x0), no slip occurs along the top boundary of the computational
domain, while slip phenomena appear at the positions where the values of g(x0) are less than
στττ (x0), and the degree of slip is closely related to the value of the friction function g (see
Fig. 1).

Figures 2 and 3 display the tangential velocities uhτ along the slip boundary for the
SIPG method and finite element method, corresponding to Fig. 1, respectively. We see that
the locations, where slip and non-slip switch, are captured by the DG methods through
discontinuous velocities, while these discontinuous points are connected in the finite element
method since continuous function spaces are used (lowest order finite element pair [36,42]).
These comparisons suggest that the DG methods are superior than continuous finite element
method on capturing the discontinuity phenomena. In addition, we fix γ = 10 for better
accuracy for Figs. 1, 2, and 3 and ν = 1.0, which is omitted in g for simplicity.

In Table 1, we report the numerical errors of the velocity and pressure with different
friction constant g, respectively. Since the explicit solution is unknown when g = 0.2, we
regard the approximate solution on grid of 128× 128 as a reference solution (ure f , pre f ) for
k = 1, and on a 64 × 64 grid as a reference solution (ure f , pre f ) for k = 2 in this example.

123



906 J Sci Comput (2018) 76:888–912

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
u

hτ
 along the slip boundary

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
u

hτ
 along the slip boundary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
u

hτ along the slip boundary

(c)

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
u

hτ along the slip boundary

(d)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
u

hτ along the slip boundary

(e)

Fig. 2 SIPG method (ε = −1): values of uhτ along the slip boundary under different constant and function
g (k = 1). a g = 0.2. b g = 0.8. c g = x . d g = sin x+1

2 . e g = 20x2(x − 1)2
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Fig. 3 Finite element method: values of uhτ along the slip boundary under different constant g (stabilized
lowest order finite element pair). a g = 0.2. b g = 0.8.
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Table 1 SIPG method (ε = −1): numerical errors for g = 0.2 and g = 2.0

1
h g = 0.2 g = 2.0

�u − uh�1 Order ‖p − ph‖0 Order �u − uh�1 Order ‖p − ph‖0 Order

k = 1 γ = 4 γ = 3

8 1.5384e+00 – 9.5763e−01 – 5.4842e−01 – 9.9278e−01 –

16 7.2479e−01 1.09 4.8711e−01 0.98 2.3638e−01 1.21 4.9287e−01 1.01

32 3.2932e−01 1.14 2.4211e−01 1.00 1.0693e−02 1.14 2.4483e−01 1.00

64 1.3553e−01 1.13 1.0968e−01 1.14 5.0372e−02 1.09 1.2189e−01 1.00

k = 2 γ = 10 γ = 8

8 2.8419e−01 – 1.3589e−01 – 5.9491e−02 – 5.7145e−02 –

16 1.0907e−01 1.38 5.2631e−01 1.37 1.2786e−03 2.10 11.4165e−03 2.01

32 3.7839e−02 1.53 1.9626e−02 1.42 2.8938e−03 2.06 3.5287e−03 2.01

However, we know the exact solution (41) when g = 2.0 and thus we take ure f = u,
pre f = p. The specific penalty parameters γ given in Table 1 are the smallest integer values
which guarantee the provided methods are stable, besides, the viscosity coefficient remain
to be 1.0, which is also left out here in g as Figs. 1, 2 and 3.

Moreover, convergence behaviors for different ν (1.0, 0.025, 0.01) and different constant
g are exhibited in Fig. 4, at this time γ = 10, 200, 2000, respectively. From Table 1 and
Fig. 4, we see that when k = 1, the expected first order convergence is observed in both the
broken H1-norm for velocity and L2-norm for pressure; when k = 2, an error of sizeO(h2)

is obtained when no slip occurs, while the convergence order reaches 3
2 as slip occurs, these

results are consistent with the theoretical analysis.

Example 6.2 Awall-driven semi-circular cavity flow is simulated. We investigate properties
of the numerical method: its stability, and its ability in handling the boundary layers and the
effects associated with the nonlinear advection. The geometric region is

Ω = {
x = (x, y) ∈ R2 | y < 0, x2 + y2 < 1/4

}
.

On the straight part of the boundary ΓD , we specify a velocity condition: u = (1, 0). The
curvilinear part ΓS is chosen as the slip boundary, cf. Fig. 5a.

Non-uniform grid is obtained by the Delaunay mesh generation with 5258 triangles (Fig.
5b). Different values of the viscosity coefficient ν are used combinedwith constant or variable
g. When ν = 0.001 the penalty parameter γ = 200, and otherwise, γ = 10. From Fig. 6 we
see that when slip occurs, the DG method has the ability to handle the slip layers, while the
slip phenomenon disappears as the viscosity coefficient becomes small. The capability of the
DG method in dealing with the advection-dominated cases is illustrated in Fig. 6c, f, which
is consistent with the known results in [31]. When g are the set functions, whether the slip
phenomenon occurs depends on the values of g on ΓS (see Fig. 6a, d), which is reasonable
according to the analysis in Example 6.1.

Example 6.3 This example provides an application of the interior penaltyDGmethod on gen-
eral polygonal meshes [46] for solving the variational inequality problem.
LetΩ = (0, 1)× (0, 1), the two slip boundaries are ΓS = {x = 1, 0 < y ≤ 1}∪{y = 1, 0 <

x ≤ 1}, and the remain boundaries naturally become the Dirichlet boundaries ΓD (see Fig.
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Fig. 4 Convergence behavior for different viscosity coefficient ν and different constant g for the SIPGmethod
(top: k = 1, bottom: k = 2). a ν = 1.0. b ν = 0.025. c ν = 0.01. d ν = 1.0. e ν = 0.025. f ν = 0.01

(a) (b)

Fig. 5 Wall-driven flow in a semi-circular cavity and the triangulation of this domain. a A semi-circular
cavity. b Triangulation of Th

7a). The general polygonal mesh generation of Ω is shown in Fig. 7b. The exact solution
(u, p) of the Navier–Stokes equations (1)–(2) is [42,44]:

u(x, y) =
(−x2y(x − 1)(3y − 2)

xy2(y − 1)(3x − 2)

)
, p(x, y) = (2x − 1)(2y − 1).

Then the body force f can be calculated by (1), and it is easy to verify that the u satisfies the
boundary conditions (3)–(4) on ΓD and ΓS , respectively. We can specify στττ as follows:

{
στττ = 4νy2(y − 1) on S1,

στττ = 4νx2(x − 1) on S2.
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Fig. 6 Streamlines of SIPG method (ε = −1) for different viscosity coefficient ν and different function g
under k = 1. a g = 1.0, ν = 1.0. b g = 1.0, ν = 0.1. c g = 1.0, ν = 0.001. d g = 4x2 + y2, ν = 1.0.
e g = 4x2 + y2, ν = 0.1. f g = 10(cos(πx) + 1), ν = 1.0
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Fig. 7 The computational domain and general polygonalmeshes. aΩ withΓD andΓS = S1∪S2.bPolygonal
meshes

Moreover, the position friction function g can be chosen as−στττ on each slip boundary ΓS by
(4). In Tables 2 and 3, errors and convergence orders of velocity and pressure are displayed
for the SIPG and NIPGmethods, where h represents the average value of the radius of all the
polygons, N is the total number of the polygons, and ν = 1.We see that the numerical results
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Table 2 SIPG method (ε = −1): numerical errors and convergence behaviors

h N k = 1 k = 2

‖u − uh‖|1 Order ‖p − ph‖0 Order ‖u − uh‖1 Order ‖p − ph‖0 Order

2.88e−01 10 1.6628e−01 – 4.4608e−01 – 6.3820e−02 – 9.6259e−01 –

9.61e−02 64 7.1598e−02 0.77 1.2553e−01 1.16 1.33012e−02 1.43 1.0487e−01 2.02

4.61e−02 256 3.7001e−02 0.90 4.4286e−02 1.42 3.1469e−03 1.96 2.0947e−02 2.19

2.26e−02 1024 1.8140e−02 1.00 1.7784e−02 1.28 8.1071e−04 1.90 5.0710e−03 1.99

Table 3 NIPG method (ε = 1): numerical errors and convergence behaviors

h N k = 1 k = 2

‖u − uh‖|1 Order ‖p − ph‖0 Order ‖u − uh‖1 Order ‖p − ph‖0 Order

2.88e−01 10 1.6644e−01 – 2.2243e−01 – 6.4343e−02 – 1.2722e+00 –

9.61e−02 64 7.2582e−02 0.77 8.0056e−02 0.93 1.4053e−02 1.37 1.3743e−01 2.03

4.61e−02 256 3.8826e−02 0.85 3.6553e−02 1.07 3.6459e−03 1.84 2.7910e−02 2.17

2.26e−02 1024 2.0037e−02 0.93 1.7207e−02 1.05 8.5856e−04 2.02 6.7345e−03 1.99

match our theoretical analysis and show some superconvergence. This example shows the
potential of extending DG methods to arbitrary polygonal meshes.

7 Conclusion and Future Work

Several discontinuous Galerkin methods are employed to solve the steady Navier–Stokes
equations with a nonlinear slip boundary condition of friction type. We establish the sta-
bility of the DG scheme, existence and uniqueness of the numerical solution. We prove the
optimal order error bound O(h) when piecewise linear functions are used for the velocity
and piecewise constant functions for the pressure. We provide numerical simulation results
to illustrate the slip and non-slip phenomena, convergence behaviors, the capability of the
DGmethods to capture the discontinuity of the velocity, the ability of handling the boundary
layers when slip phenomenon appears, the capacity of the proposed methods in dealing with
the advection-dominated cases, and extension of the methods to general polygonal meshes.

In future studies, a p-adaptive technique would be introduced to improve the error bound
when the quadratic or higher order polynomial velocity subspaces are used, extension to a
3D domain, the theoretical analysis for the polymesh and other high-precision numerical
method, e.g. hybrid discontinuous Galerkin method, will be also considered.
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