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a b s t r a c t

A general framework of constructing C0 discontinuous Galerkin (CDG) methods is developed for solving
the Kirchhoff plate bending problem, following some ideas in (Castillo et al., 2000) [10] and (Cockburn,
2003) [12]. The numerical traces are determined based on a discrete stability identity, which lead to a
class of stable CDG methods. A stable CDG method, called the LCDG method, is particularly interesting
in our study. It can be viewed as an extension to fourth-order problems of the LDG method studied in
(Castillo et al., 2000) [10] and (Cockburn, 2003) [12]. For this method, optimal order error estimates in
certain broken energy norm and H1-norm are established. Some numerical results are reported, confirm-
ing the theoretical convergence orders.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In the past two decades, discontinuous Galerkin (DG) methods
have been widely used for solving many kinds of mathematical
and physical problems, including linear and non-linear hyperbolic
problems, Navier–Stokes equations, convection-dominated diffu-
sion problems and so on, due to the flexibility of constructing
feasible local shape function spaces and the advantage to capture
non-smooth or oscillatory solutions effectively. We refer to [13]
for an excellent historical survey along this line. In particular, a
very extensive and thorough study has been developed for solving
second-order equations/systems by DG methods. A unified error
analysis of DG methods for second-order elliptic equations was
established in [2]; a new framework was proposed in [8] for
designing and analyzing DG methods, and the stabilization mech-
anism frequently used in DG methods was also investigated there.
The local discontinuous Galerkin (LDG) methods were introduced
and analyzed in [14,10] for time-dependent convection-diffusion
systems and second-order elliptic problems, respectively. In [12]
a basic procedure was proposed for constructing stable DG meth-
ods, which consists of first deriving a discrete formulation involv-
ing numerical traces by integration by parts and then determining
the traces over edges/faces by means of a discrete stability identity.
Some DG methods were presented for solving Friedrichs’ systems
in [17,18].
ll rights reserved.
To the best of our knowledge, there are few results about DG
methods for the biharmonic equation and the Kirchhoff plate
bending problems. Because of the fourth-order nature of the partial
differential equations, it is more difficult to construct stable DG
methods for such problems and the major known methods in the
literature are interior penalty (IP) methods (cf. [3,4,7,16,
24–26,28]). In [16], a C0 IP formulation was presented for Kirchhoff
plates and quasi-optimal error estimates were obtained for smooth
functions. In [7], rigorous error analysis for the previous method
was given under suitable weak regularity assumption on the solu-
tion (cf. [15,21]), and a post-processing procedure was formulated
that can generate C1 approximate solutions from the C0 approxi-
mate solutions. A drawback of the forgoing method is the presence
of a dimensionless penalty parameter which must be chosen suit-
ably large to guarantee stability, but it can not be precisely quan-
tified a priori. Based on this observation, a C0 DG (CDG) method
was introduced in [29] for which the stability condition can be pre-
cisely quantified. The fully discontinuous IP method was investi-
gated systematically in [24–26,28] for biharmonic problems,
where the subdivision mesh size and the polynomial degree on
individual elements can vary arbitrarily, very suitable for the de-
sign of hp-adaptive algorithms.

In this paper, we intend to develop some new CDG methods for
solving the Kirchhoff plate bending problem. We first write the ori-
ginal fourth-order partial differential equation as a second-order
system and follow some ideas presented in [10,12] to obtain a
framework of constructing CDG methods for solving the original
problem. Then, we establish a discrete stability identity, from

http://dx.doi.org/10.1016/j.cma.2009.12.012
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http://www.elsevier.com/locate/cma
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which we derive feasible choices of numerical traces and get a class
of stable CDG methods for Kirchhoff plates. One particular method,
called LCDG method, can be viewed as an extension of the LDG
method in [10,12] for fourth-order problems. Comparing the for-
mulations of the LCDG method and the method in [29], we find
the former is more convenient to implement in actual computation
than the latter. Moreover, the LCDG method does not contain any
parameter which can not be quantified a priori. It only requires
to choose C11 ¼ geh�1

e on each edge e 2 Eh, with fgege2Eh
having a

uniform positive bound from above and below, which leads to
optimal error estimates (see Section 3 for details). We also show
that some existing CDG methods in [7,29] can be obtained from
our framework under proper choices of numerical traces. Follow-
ing some ideas on error analysis of DG methods for second-order
elliptic problems (cf. [2]) and detailed technical argument, we de-
rive optimal order error estimates in certain broken energy norm
and H1-norm for the LCDG method. Some numerical results are in-
cluded to confirm our theoretical convergence orders.

We point out that numerous non-conforming finite elements
were developed for solving the Kirchhoff plate bending problem,
such as the continuous non-conforming elements of Adini’s rectan-
gle (cf. [1]) and Zienkiewicz triangle (cf. [5]), the discontinuous
non-conforming elements of Morley’s triangle (cf. [23]) and Fraeijs
De Veubeke triangle (cf. [20]), and discrete Kirchhoff methods
where the Kirchhoff-theory constraint of zero transverse shear
strains are required at some discrete points within the plate ele-
ments (see, e.g., [22]). However, all these elements are of low order,
and in comparison, the DG approach provides an effective way to
construct higher order elements for plate bending problems and
other fourth-order problems.

The rest of this paper is organized as follows. The basic frame-
work of our CDG methods for Kirchhoff plate bending problems,
the determination of numerical traces based on the discrete stabil-
ity identity, and some other methods are presented in Section 2.
Error analysis for the LCDG method is given in Section 3. In Section
4, some numerical results are reported to show the performance of
the LCDG method.

2. The CDG method for Kirchhoff plates

2.1. Basic framework for the CDG method

Let X � R2 be a bounded polygonal domain and f 2 L2ðXÞ. The
mathematical model of a clamped Kirchhoff plate under a vertical
load f 2 L2ðXÞ reads (cf. [19,27])

$ � ð$ �MðuÞÞ þ f ¼ 0 in X;

u ¼ @Nu ¼ 0 on @X;

�
ð2:1Þ

where N is the unit outward normal to @X;$ is the usual gradient
operator, $� stands for the divergence operator acting on tensor-val-
ued or vector-valued functions (cf. [27]), and

MðuÞ :¼ ð1� mÞKðuÞ þ mtrðKðuÞÞI;
KðuÞ :¼ ðKijðuÞÞ2�2; KijðuÞ :¼ �@iju; 1 6 i; j 6 2

with I a second-order identity tensor, tr the trace operator acting
on second-order tensors, and m 2 ð0; 0:5Þ the Poisson ratio of an
elastic thin plate occupying the region X. Here, we have normalized
the rigid flexibility D to simplify the presentation. In fact, all deriva-
tions developed in what follows may be extended to the general
case after some straightforward modifications.

Introduce an auxiliary tensor-valued function by

r :¼ ð1� mÞKðuÞ þ m trðKðuÞÞI: ð2:2Þ

Then, problem (2.1) can be reformulated as the following second-
order system:
1
1�m r� m

1�m2 ðtrrÞI ¼KðuÞ in X;

$ � ð$ � rÞ ¼ �f in X;

u ¼ @N u ¼ 0 on @X:

8><>: ð2:3Þ

We will define the CDG method for solving problem (2.1) based
on the system (2.3). For this, we first introduce some notation fre-
quently used later on. For any Banach space B for components of
second-order tensor-valued functions, the subspace of symmetric
tensor-valued functions is denoted ðBÞs2�2. Given a bounded domain
G � R2 and a non-negative integer m, let HmðGÞ be the usual Sobo-
lev space of functions on G. The corresponding norm and semi-
norm are denoted respectively by k � km;G and j � jm;G. If G is X, we
abbreviate them by k � km and j � jm, respectively. Let Hm

0 ðGÞ be the
closure of C10 ðGÞ with respect to the norm k � km;G.

Let fThgh>0 be a regular family of triangulations of X (cf.
[6,11]); h :¼maxK2Th

hK and hK :¼ diamðKÞ. Let Eh be the union of
all edges of the triangulation Th and Ei

h the union of all interior
edges of the triangulation Th. For any e 2 Eh, denote by he its
length. Based on the triangulation Th, let

R :¼ s 2 ðL2ðXÞÞs2�2 : sijjK 2 H1ðKÞ 8 K 2Th; i; j ¼ 1;2
n o

;

V :¼ v 2 H1
0ðXÞ : v jK 2 H2ðKÞ 8 K 2Th

n o
:

The corresponding finite element spaces are given by

Rh :¼ s 2 ðL2ðXÞÞs2�2 : sijjK 2S1ðKÞ 8 K 2Th; i; j ¼ 1;2
n o

;

Vh :¼ v 2 H1
0ðXÞ : v jK 2 S2ðKÞ 8 K 2Th

n o
;

where for a triangle K 2Th;S1ðKÞ and S2ðKÞ are two finite-dimen-
sional spaces of polynomials in K containing PlðKÞ and PkðKÞ, respec-
tively, with l P 0 and k P 1. Here, for a non-negative integer
m; PmðKÞ stands for the set of all polynomials in K with the total de-
gree no more than m.

To guarantee uniqueness of the solution to the CDG method to
be proposed, we always assume that

$2
hVh � Rh;

1
1� m

Rh �
m

1� m2 ðtrRhÞI � Rh; ð2:4Þ

where $2
hVhjK :¼ $2ðVhjKÞ for any K 2Th. For a function v 2 L2ðXÞ

with v jK 2 HmðKÞ for all K 2Th, let kvkm;h and jv jm;h be the usual
broken Hm-type norm and semi-norm of v:

kvkm;h ¼
X

K2Th

kvk2
m;K

 !1=2

; jv jm;h ¼
X

K2Th

jv j2m;K

 !1=2

:

If v is a vector-valued or tensor-valued function, the above symbols
are defined in the similar manners. For a vector or tensor v , its
length jv j is ðv � vÞ1=2 or ðv : vÞ1=2. Here, the symbol: denotes the
double dot product operation of tensors. Throughout this paper,
we also use ‘‘ K � � �” to mean that ‘‘6 C � � �”, where C is a generic po-
sitive constant independent of h and other parameters, which may
take different values at different appearances.

Consider two adjacent triangles Kþ and K� sharing an interior
edge e. Denote by nþ and n� the unit outward normals to the com-
mon edge e of the triangles Kþ and K�, respectively. For a scalar-
valued function v, write vþ ¼ v jKþ and v� ¼ v jK� . Similarly, for a
second-order tensor-valued function s, write sþ ¼ sjKþ and
s� ¼ sjK� . Then define averages and jumps on e as follows:

fvg ¼ 1
2
ðvþ þ v�Þ; ½v� ¼ vþnþ þ v�n�;

f$vg ¼ 1
2
ð$vþ þ $v�Þ; ½$v � ¼ $vþ � nþ þ $v� � n�;

fsg ¼ 1
2
ðsþ þ s�Þ; ½s� ¼ sþnþ þ s�n�:
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On an edge e lying on the boundary @X, the above terms are defined
by

fvg ¼ v ; ½v � ¼ vn;
f$vg ¼ $v; ½$v� ¼ $v � n;
fsg ¼ s; ½s� ¼ s � n;

where n ¼ N is the unit outward normal vector on @X. The jump s � t
of the vector $v is

s$vt ¼ 1
2
ð$vþ � nþ þ nþ � $vþ þ $v� � n� þ n� � $v�Þ;

if e 2 Ei
h;
s$vt ¼ 1
2
ð$v � nþ n� $vÞ; if e 2 Eh \ @X:

For later uses, we collect some Green’s identities in the follow-
ing lemma, which can be verified by integration by parts readily.

Lemma 2.1. Assume G is a bounded domain with a Lipschitz
boundary @G. Let s be a symmetric second-order tensor-valued
function and v a scalar function. ThenZ

G
$ � ð$ � sÞv dx ¼

Z
G
$2v : sdx�

Z
@G

$v � ðsnÞdsþ
Z
@G

vn � ð$ � sÞds;
Z
G
$2v : sdx ¼ �

Z
G
$v � ð$ � sÞdxþ

Z
@G

$v � ðsnÞds;

whenever the terms appearing on both sides of the above identities
make sense. Here n stands for the unit outward normal to @G.

Now, we are ready to introduce a framework to derive CDG meth-
ods for problem (2.1). Following the ideas in [10,12], we first derive
the variational formulations for the problem (2.1) or equivalently
(2.3). Taking a double dot product with a second-order tensor-val-
ued function s on both sides of the first equation of (2.3) and then
integrating over K, we have by Lemma 2.1 thatZ

K

1
1� m

r : s� m
1� m2 trrtrs

� �
dx ¼

Z
K
$u � ð$ � sÞdx�

Z
@K

$u � ðsnÞds:

Multiplying the second equation of (2.3) by a function v and then
integrating over K, we have by Lemma 2.1 again that

�
Z

K
fv dx ¼

Z
K
$2v : rdx�

Z
@K

$v � ðrnÞdsþ
Z
@K

n � ð$ � rÞv ds:

ð2:5Þ

Motivated by the above two identities, we may define our CDG
method as follows. Find an approximate solution ðrh;uhÞ 2 Rh � Vh

by requiring thatZ
K

1
1� m

rh : s� m
1� m2 trrhtrs

� �
dx

¼
Z

K
$uh � ð$ � sÞdx�

Z
@K

c$uh � ðsnÞds; ð2:6Þ
�
Z

K
fv dx ¼

Z
K
$2v : rh dx�

Z
@K

$v � ðr̂hnÞds ð2:7Þ

for all ðs;vÞ 2 Rh � Vh and all K 2Th. Note that any function with
the hat superscript is only defined over all edges of the triangulation
Th, which is called a numerical trace in the context of DG methods
(cf. [2,12]). Generally, the last term in (2.5) leads to a corresponding
term

R
@K n � d$ � rhv ds for the right side of the Eq. (2.7). Here we taked$ � rh ¼ 0 for sake of simplicity. The numerical traces r̂h and c$uh

will be selected to guarantee stability of the above method. Since
rh is symmetric, it is natural to choose r̂h as a symmetric second-or-
der tensor-valued function. Moreover, we only consider the case
where the numerical traces are single-valued over all edges
(conservation).
2.2. Numerical traces through stability identity, the LCDG method

We begin by deriving a stability identity for the continuous
problem (2.1) or equivalently (2.3), which is crucial in constructing
feasible numerical traces to get a stable CDG method from (2.6)
and (2.7) (cf. [10,12]). To do so, taking a double dot product with
r on both sides of the first equation of (2.3) and then integrating
over X, we haveZ

X

1
1� m

jrj2 � m
1� m2 ðtrrÞ

2
� �

dx ¼ �
Z

X
$2u : rdx:

Multiplying the second equation of (2.3) by u and then integrating
over X, we find from Lemma 2.1 and the homogeneous boundary
conditions of u that

�
Z

X
fudx ¼

Z
X

$2u : rdx:

Adding the last two equations leads toZ
X

1
1� m

jrj2 � m
1� m2 ðtrrÞ

2
� �

dx ¼
Z

X
fudx; ð2:8Þ

i.e.,Z
X

r2
11 þ r2

22

1þ m
þ r2

12 þ r2
21

1� m
þ mðr11 � r22Þ2

1� m2

 !
dx ¼

Z
X

fudx:

This is the stability identity we sought for the solution of the origi-
nal equation.

Next, we mimic the above derivation to get a discrete analogue
of the stability identity (2.8) for the CDG method (2.6) and (2.7).
Taking s ¼ rh in (2.6), using Lemma 2.1, and then summing over
all K 2Th, we knowZ

X

1
1� m

jrhj2 �
m

1� m2 trrhð Þ2
� �

dx

¼ �
Z

X
$2

huh : rh dxþ
X

K2Th

Z
@K
ð$uh � c$uhÞ � ðrhnÞds:

Taking v ¼ uh in (2.7) and summing over all K 2Th again, we have

�
Z

X
fuh dx ¼

Z
X

$2
huh : rh dx�

X
K2Th

Z
@K

$uh � ðr̂hnÞds:

Adding the last two equations we obtain the desired discrete stabil-
ity identity, described as follows:Z

X

1
1� m

jrhj2 �
m

1� m2 ðtrrhÞ2
� �

dxþHh ¼
Z

X
fuh dx; ð2:9Þ

where

Hh :¼
X

K2Th

Z
@K
ðc$uh � $uhÞ � ðrhnÞdsþ

Z
@K

$uh � ðr̂hnÞds
� �

: ð2:10Þ

Observing that rh and r̂h are symmetric, and for a symmetric
second-order tensor A and an anti-symmetric second-order tensor
B;A : B ¼ 0, we have after a direct manipulation thatX

K2Th

Z
@Kn@X

d$uh � ðrhnÞds ¼
X
e2Ei

h

Z
e
½rh� �d$uh ds;

X
K2Th

Z
@Kn@X

$uh � ðcrh nÞds ¼
X
e2Ei

h

Z
e
crh : s$uhtds;

X
K2Th

Z
@Kn@X

$uh � ðrhnÞds ¼
X
e2Ei

h

Z
e
½rh� � f$uhg þ frhg : s$uhtð Þds:

ð2:11Þ

Therefore, we can rewrite Hh as
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Hh ¼
X
e2Ei

h

Z
e
½rh� � c$uh � f$uhg

� �
þ brh � frhgð Þ : s$uht

� �
ds

þ
Z
@X

$uh � ððr̂h � rhÞnÞdsþ
Z
@X

c$uh � ðrhnÞds:

If Hh is non-negative, we can derive from (2.9) the discrete sta-
ble estimate:

krhk2
0 K

Z
X

fuh dx;

which is essential in constructing a reliable DG method (cf. [12]).
Because of this, we will define consistent (cf. [2]) numerical tracesbrh and c$uh so that Hh is non-negative. Thus, if e 2 Ei

h, we take

brh ¼ frhg þ C11s$uht;c$uh ¼ f$uhg þ C22½rh�
ð2:12Þ

and if e 2 Eh \ @X, we take

brh ¼ rh þ C11s$uht;c$uh ¼ 0;
ð2:13Þ

where C11 and C22 are two non-negative continuous functions on e.
Note that when C22 ¼ 0, the corresponding method for second-or-
der elliptic problems is called the LDG method in [10,12]; we there-
fore call the above method in this case the LCDG method. In the
next section, we will perform systematic error analysis for this
method.

For the above choice of numerical traces, we have by some di-
rect manipulation that

Hh ¼
X
e2Ei

h

Z
e

C22j½rh�j2 þ C11js$uhtj2
� �

dsþ
Z
@X

C11js$uhtj2ds P 0;

ð2:14Þ

so the required condition given before is satisfied. Let us further
show the unique solvability of problem (2.6) and (2.7) with the
numerical traces given by (2.12) and (2.13), whenever C11 > 0 and
the finite element spaces Rh and Vh satisfy conditions (2.4). In fact,
it suffices to verify that this CDG method only has zero solution
when f ¼ 0. We have by (2.9), (2.10) and (2.14) thatZ

X

1
1� m

jrhj2 �
m

1� m2 ðtrrhÞ2
� �

dxþ
Z
Ei

h

C22j½rh�j2ds

þ
Z
Eh

C11js$uhtj2ds ¼ 0;

which implies that rh ¼ 0 in X, s$uht ¼ 0 on Ei
h and $uh ¼ 0 on @X,

owing to C11 > 0. Moreover, from the condition that s$uht ¼ 0 on Ei
h

and a direct manipulation, we have $uþh ¼ $u�h on each interior
edge e 2 Ei

h. Therefore, it follows from (2.6), the definition of c$uh

(see (2.12) and (2.13)), and Lemma 2.1 thatZ
K

s : $2uh dx ¼ 0 8 s 2 Rh;

which together with the condition (2.4) yields $2uh ¼ 0. Combining
this with $uh ¼ 0 on @X and uh 2 H1

0ðXÞ, we conclude that uh ¼ 0 in
X, as required.

As in [10,12], the CDG method (2.6) and (2.7) with the numer-
ical traces (2.12) and (2.13) can also be written in a mixed formu-
lation (cf. [9]). After some direct manipulation, the approximate
solution ðrh; uhÞ can be characterized as the unique solution of
the following variational problem: find ðrh;uhÞ 2 Rh � Vh such that

aðrh; sÞ þ bðuh; sÞ ¼ 0; ð2:15Þ
� bðv ;rhÞ þ cðuh;vÞ ¼ FðvÞ; ð2:16Þ

for all ðs;vÞ 2 Rh � Vh, where
aðr; sÞ :¼
Z

X

1
1� m

r : s� m
1� m2 trrtrs

� �
dxþ

Z
Ei

h

C22½r� � ½s�ds;

bðv ; sÞ :¼
X

K2Th

Z
K

s : $2v dx�
Z
Eh

fsg : s$vtds;

cðu;vÞ :¼
Z
Eh

C11s$ut : s$vtds;

FðvÞ :¼
Z

X
f v dx:
2.3. Some other choices of numerical traces

In this subsection, we derive some existing CDG methods with-
in our basic framework of CDG methods (2.6) and (2.7) with certain
choices of numerical traces r̂h and c$uh. Analogous to [2], we can
eliminate the dual variable rh to recast the original method (2.6)
and (2.7) in the following primal formulation:Z

X
ð1� mÞ$2

huh : $2
hv dxþ

Z
X
m tr $2

huh

� �
tr $2

hv
� �

dx

þ
Z
Ei

h

fc$uh � $uhg � ð1� mÞ½$2
hv� þ m½tr $2

hv
� �

�
� �

ds

þ
Z
Eh

sc$uh � $uht : ð1� mÞf$2
hvg þ m tr f$2

hvg
� �

I
� �

ds

þ
Z
Ei

h

f$vg � ½r̂h�dsþ
Z
Eh

s$vt : fr̂hgds ¼
Z

X
f v dx: ð2:17Þ

Some CDG methods found in the literature can be obtained from
(2.17) by proper choices of numerical traces r̂h and c$uh. For exam-
ple, takingc$uh ¼ $uh þ 1

2 ½$uh�n;

r̂h ¼ @2uh
@n2

n o
þ g

he
½$uh�

� �
I;

8<:
we obtain from (2.17) thatZ

X
ð1� mÞ$2

huh : $2
hv dxþ

Z
X
m tr $2

huh

� �
tr $2

hv
� �

dx

þ
Z
Eh

½$uh� ð1� mÞ @2v
@n2

( )
þ m tr f$2

hvg
� � !

ds

þ
Z
Eh

@2uh

@n2

( )
½$v�dsþ

Z
Eh

g
he
½$uh�½$v �ds ¼

Z
X

fv dx:

This is the formulation studied in [7]. For the second example, we
introduce a global lifting operator r : ðL2ðEhÞÞs2�2 ! Rh defined byZ

X
rð/Þ : sdx ¼ �

Z
Eh

/ : fsgds 8 s 2 Rh; / 2 L2ðEhÞ
� �s

2�2
: ð2:18Þ

Moreover, for each e 2 Eh, introduce a local lifting operator
re : ðL2ðeÞÞs2�2 ! Rh byZ

X
reð/Þ : sdx ¼ �

Z
e

/ : fsgds 8 s 2 Rh; / 2 L2ðeÞ
� �s

2�2
: ð2:19Þ

Then, it is easy to check that reð/Þ may only be non-zero in the tri-
angles with e as one edge, and there holds the identity

rð/Þ ¼
X
e2Eh

reð/jeÞ 8 / 2 L2ðEhÞ
� �s

2�2
:

For e 2 Ei
h we take

r̂h ¼ �ð1� mÞf$2
huhg � m trðf$2

huhgÞI� ð1� mÞfrðs$uhtÞg
� mfrðtrðs$uhtÞIÞg � ð1� mÞfgreðs$uhtÞg
� mfg trðreðs$uhtÞÞgI;
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c$uh ¼ f$uhg;

and for e 2 Eh \ @X we take

r̂h ¼ �ð1� mÞ$2
huh � m trð$2

huhÞI� ð1� mÞrðs$uhtÞ
� mrðtrðs$uhtÞIÞ � ð1� mÞgreðs$uhtÞ � mg trðreðs$uhtÞÞI;

c$uh ¼ 0:

With these choices of numerical traces, (2.17) becomesZ
X
ð1� mÞ $2

huh þ rðs$uhtÞ
� �

: $2
hv þ rðs$vtÞ

� �
dx

þ
Z

X
m tr $2

huh þ rðs$uhtÞ
� �

tr $2
hv þ rðs$vtÞ

� �
dx

þ
X
e2Eh

Z
X
g ð1� mÞreðs$uhtÞreðs$vtÞð

þm trðreðs$uhtÞÞtrðreðs$vtÞÞÞdx ¼
Z

X
fv dx; ð2:20Þ

which is the CDG method proposed in [29].

3. Error analysis for the LCDG method

In this section, we provide error analysis for the CDG method
(2.15) and (2.16) in the case C22 ¼ 0, which is referred to as the
LCDG method in the previous section. For this purpose, we first de-
rive a primal formulation for the approximate method. Since
C22 ¼ 0, with the help of the global lifting operator r (see (2.18)),
(2.15) can be expressed asZ

X

1
1� m

rh �
m

1� m2 ðtrrhÞI
� �

: sdx

¼ �
Z

X
$2

huh : sdx�
Z

X
rðs$uhtÞ : sdx;

for all s 2 Rh. On the other hand, it follows from (2.4) that

1
1� m

rh �
m

1� m2 trrhð ÞI 2 Rh; $2
huh 2 Rh;

and hence the above equation implies that

1
1� m

rh �
m

1� m2 trrhð ÞI ¼ �$2
huh � rðs$uhtÞ;

i.e.,

rh ¼ �ð1� mÞð$2
huh þ rðs$uhtÞÞ � m trð$2

huh þ rðs$uhtÞÞI:

Substituting rh from the last equation into (2.16), we get a primal
formulation for the LCDG method as follows:

Find uh 2 Vh such that

ahðuh;vÞ ¼
Z

X
f v dx 8 v 2 Vh; ð3:1Þ

where

ahðw;vÞ :¼
Z

X
ð1� mÞ $2

hwþ rðs$wtÞ
� �

: $2
hv þ rðs$vtÞ

� �
dx

þ
Z

X
m tr $2

hwþ rðs$wtÞ
� �

tr $2
hv þ rðs$vtÞ

� �
dx

þ
Z
Eh

C11s$wt : s$vtds:

Let us compare it with the method (2.20) (cf. [29]). For the two
methods, the first two terms on the left and the term on the right
are the same, but the third term on the left for the LCDG method is
much simpler than that of the method (2.20). Therefore, the LCDG
method is more convenient to implement in actual computation
than the method in [29]. Moreover, the LCDG method does not
contain any parameter which can not be quantified a priori. It only
requires to choose C11 ¼ geh�1

e on each e 2 Eh, with fgege2Eh
having

a uniform positive bound from above and below, which leads to
optimal error estimates shown later on. In what follows, we always
assume that C11 is chosen as above.

Now, we are in a position to give error analysis for the LCDG
method (3.1). The main idea of our derivation is based on the
framework on error analysis of DG methods for second-order ellip-
tic problems (cf. [2]). Introduce a finite element space Wh � Vh by

Wh :¼ v 2 H1
0ðXÞ : v jK 2 PkðKÞ 8 K 2Th

n o
:

Let Qh be the usual Lagrange interpolation operator from V onto Wh

(cf. [6,11]). For sake of clarity, we simply write Qh for the restriction
of Qh to any K 2Th. Let Ph be the usual L2-orthogonal projection
operator onto Rh. Using the scaling argument and the trace theo-
rem, we can easily obtain the following result.

Lemma 3.1. For all v 2 Hmþ3ðKÞ, r 2 ðHmþ1ðXÞÞs2�2 with m a non-
negative integer and all K 2Th with e as one edge, we have the
estimates

jv � Q hvj1;K þ hK jv � Q hv j2;K K hminfmþ1;k�1gþ1
K kvkmþ3;K ;

k$ v � Q hvð Þk0;@K K hminfmþ1;k�1gþ1=2
K kvkmþ3;K ;

kr� Phrk0;K K hminfmþ1;lþ1g
K krkmþ1;K ;

h1=2
e kr� Phrk0;e K hminfmþ1;lþ1g

K krkmþ1;K :

Next, we consider the consistency of the method (3.1). Assume that
the exact solution u of problem (2.1) lies in Hmþ3ðXÞ for some non-
negative integer m. From the definition (2.2) and the second equa-
tion of (2.3), we know that r 2 ðHmþ1ðXÞÞs2�2 � ðH

1ðXÞÞs2�2 and
$ � ð$ � rÞ 2 L2ðXÞ. Since u 2 Hmþ3ðXÞ; s$ut ¼ 0 on Eh. Therefore, for
all v 2 Vh � H1

0ðXÞ, we have by (2.2) that

ahðu;vÞ ¼
Z

X
ð1� mÞ$2u : $2

hv þ rðs$vtÞ
� ��

þ m tr $2u
� �

tr $2
hv þ rðs$vtÞ

� ��
dx

¼ �
X

K2Th

Z
K

r : $2v þ rðs$vtÞ
� �

dx;

from which, the definition of lifting operator r (see (2.18)), and the
fact that frg ¼ r, we further have

ahðu; vÞ ¼ ~ahðu; vÞ �
Z
Eh

s$vt : fr� Phrgds�
X

K2Th

Z
K
ðr� PhrÞ : rðs$vtÞdx;

where

~ahðu;vÞ :¼ �
X

K2Th

Z
K

r : $2vdxþ
Z
Eh

s$vt : rds:

In addition, it follows from Lemma 2.1 that

~ahðu;vÞ ¼
X

K2Th

Z
K
$v � ð$ �rÞdxþ

Z
Eh

s$vt : rds�
X

K2Th

Z
@K

$v � ðrnÞds:

Observing that ½r� ¼ 0 and using the same technique for deriving
identities (2.11), we find

~ahðu;vÞ ¼
Z

X
$v � ð$ � rÞdx:

Finally, since v ¼ 0 on @X, we deduce from Lemma 2.1 and (2.3)
that
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~ahðu; vÞ ¼ �
Z

X
v$ � ð$ � rÞdxþ

Z
@X

vn � ð$ � rÞds

¼ �
X

K2Th

Z
K

v$ � ð$ � rÞdx ¼
Z

X
f v dx:

Hence, we know the LCDG method (3.1) is not consistent with re-
spect to the bilinear form ahð�; �Þ, but it admits the following
identity:

ahðu� uh;vÞ ¼ �
Z
Eh

s$vt : fr� Phrgds�
X

K2Th

Z
K
ðr� PhrÞ

: rðs$vtÞdx 8v 2 Vh: ð3:2Þ

We next present a useful result on the lifting operators. For this, let
VðhÞ :¼ Vh þ H2

0ðXÞ and define a mesh-dependent energy norm
(broken energy norm) for v 2 VðhÞ by

jjjv jjj2 ¼ jvj22;h þ
X
e2Eh

h�1
e ks$vtk2

0;e:
Table 1
Errors ju� uhj1 and jjju� uhjjj for Example 4.1.

k; l h 2�1 2�2 2�3 2�4 2�5

k ¼ 2; l ¼ 1 ju� uh j1 0.51744 0.19173 0.05847 0.01617 0.00449
jjju� uhjjj 4.89493 2.62657 1.29978 0.63654 0.31434

k ¼ 2; l ¼ 0 ju� uh j1 0.41739 0.15846 0.04943 0.01384 0.00391
jjju� uhjjj 5.75214 2.90550 1.37018 0.65405 0.31871

k ¼ 1; l ¼ 0 ju� uh j1 1.20110 1.16104 1.12206 1.09690 1.08326
jjju� uhjjj 8.44959 8.20780 8.15277 8.14459 8.14539
Lemma 3.2. For any v 2 VðhÞ and e 2 Eh,

kreðs$vtÞk2
0;h K h�1

e ks$vtk2
0;e: ð3:3Þ

Consequently,

krðs$vtÞk2
0;h K

X
e2Eh

h�1
e ks$vtk2

0;e 8 v 2 VðhÞ: ð3:4Þ

Proof. Since v 2 H2
0ðXÞ implies that s$vt ¼ 0, it suffices to verify

the result for v 2 Vh. Taking / ¼ s$vt and s ¼ reðs$vtÞ in (2.19),
we see that

kreðs$vtÞk2
0;h ¼�

Z
e
s$vt : freðs$vtÞgds6 ks$vtk0;ekfreðs$vtÞgk0;e:

ð3:5Þ

By the scaling argument, the trace theorem, and the local inverse
inequality for finite elements, it follows that

kfreðs$vtÞgk2
0;e K h�1

e kreðs$vtÞk2
0;h þ hejreðs$vtÞj21;h

K h�1
e kreðs$vtÞk2

0;h: ð3:6Þ

Therefore, (3.3) is a direct consequence of (3.5) and (3.6). Note that

krðs$vtÞk2
0;h K

X
e2Eh

kreðs$vtÞk2
0;h:

The inequality (3.4) follows from (3.3). h

Lemma 3.3 (boundedness).

ahðw;vÞK jjjwjjj jjjv jjj 8 ðw;vÞ 2 VðhÞ � VðhÞ: ð3:7Þ

Proof. Applying the Cauchy–Schwarz inequality, we have

ahðw;vÞK
X

K2Th

Z
K

$2wþ rðs$wtÞ
��� ���2dx �

Z
K

$2v þ rðs$vtÞ
��� ���2dx

� �1=2

þ
X
e2Eh

Z
e

h�1
e js$wtj2ds �

Z
e

h�1
e js$vtj2ds

� �1=2

K jwj22;h þkrðs$wtÞk2
0;h þ

X
e2Eh

h�1
e ks$wtk2

0;e

 !1=2

� jv j22;h þkrðs$vtÞk2
0;h þ

X
e2Eh

h�1
e ks$vtk2

0;e

 !1=2

:

The result (3.7) then follows from the above inequality and
(3.4). h

Denote g0 :¼mine2Eh
ge. By our assumption, g0 > 0.
Lemma 3.4 (stability).

ahðv ;vÞJ jjjvjjj2 8 v 2 Vh: ð3:8Þ

Proof. Using the Cauchy–Schwarz inequality and (3.3) we find

ahðv ;vÞP ð1� mÞ $2v þ rðs$vtÞ
��� ���2

0;h
þ
X
e2Eh

Z
e
geh�1

e js$vtj2ds

P ð1� mÞ jv j22;hþ rðs$vtÞk k2
0;hþ2

X
K2Th

Z
K
$2v : rðs$vtÞ dx

 !
þg0

X
e2Eh

h�1
e ks$vtk2

0;e

P ð1� mÞ ð1� �Þjv j22;hþ 1�1
�

� �
rðs$vtÞk k2

0;h

� �
þg0

X
e2Eh

h�1
e ks$vtk2

0;e P ð1�mÞð1� �Þjv j22;h

þ g0�ð1�mÞ 1
�
�1

� �
C1

� �X
e2Eh

h�1
e ks$vtk2

0;e;

where � 2 ð0;1Þ is arbitrary and C1 is the generic positive constant
in (3.4). Since g0 > 0, we can choose � 2 ð0;1Þ such that

g0 � ð1� mÞ 1
�
� 1

� �
C1 > 0:

Therefore, (3.8) holds. h

Now we are ready to prove an optimal order error estimate in
the mesh-dependent energy norm jjj � jjj.

Theorem 3.5. Assume the solution of (2.1) satisfies u 2 Hmþ3ðXÞ for
some non-negative integer m, and let uh 2 Vh be the solution of (3.1).
Then

jku� uhkjK hminfmþ1;k�1:lþ1gkukmþ3;X:

Proof. By the stability (3.8), the identity (3.2), the boundedness
(3.7) and Lemmas 3.1, 3.2,

kjQ hu�uhkj2 KahðQ hu�uh;Qhu�uhÞ
¼ahðQhu�u;Q hu�uhÞþahðu�uh;Q hu�uhÞ

¼ahðQhu�u;Q hu�uhÞ�
Z
Eh

s$ðQhu�uhÞt :fr�Phrgds

�
X

K2Th

Z
K
ðr�PhrÞ : rðs$ðQ hu�uhÞtÞdx

KkjQ hu�ukj kjQhu�uhkjþhminfmþ1;lþ1gkukmþ3kjQ hu�uhkj:

Thus,

kjQ hu� uhkjK kjQ hu� ukj þ hminfmþ1;lþ1gkukmþ3:

Together with the triangle inequality and Lemma 3.1, we get

kju� uhkj 6 kju� Q hukj þ kjQ hu� uhkj
K kju� Qhukj þ hminfmþ1;lþ1gkukmþ3

K hminfmþ1;k�1:lþ1gkukmþ3;X;

as required. h



Fig. 1. Errors ju� uhj1 and jjju� uhjjj vs 1=h in ln — ln scale for Example 4.1.
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Using the usual duality argument, we can additionally derive an
optimal order error estimate in the H1ðXÞ-norm.

Theorem 3.6. Let X be a convex bounded polygonal domain. Assume
the solution of (2.1) satisfies u 2 Hmþ3ðXÞ for some non-negative
integer m, and let uh 2 Vh be the solution of (3.1). Then

ju� uhj1 K hminf1;k�1gþminfmþ1;k�1;lþ1gkukmþ3;X:

Proof. Let ð~r; ~uÞ be the solution of the auxiliary problem:

1
1�m ~r� m

1�m2 ðtr~rÞI ¼Kð~uÞ in X;

$ � ð$ � ~rÞ ¼ Dðu� uhÞ in X;
~u ¼ @N ~u ¼ 0 on @X:

8><>: ð3:9Þ

Formally, (3.9) is problem (2.3) with f replaced by �Dðu� uhÞ,
where ~r is obtained from (2.2) with u replaced by ~u. Since
Mðu� uhÞ R L2ðXÞ, the second equation of (3.9) is interpreted by
the following relationZ

X
ð$ � ~rÞ � $v dx ¼

Z
X

$ðu� uhÞ � $v dx 8 v 2 H1
0ðXÞ: ð3:10Þ

Since X is a convex bounded polygonal domain, we know
~u 2 H3ðXÞ \ H1

0ðXÞ with the bound (cf. [15,21])

k~uk3;X K kDðu� uhÞk�1;X: ð3:11Þ
Table 2
Error ku� uhk0 for Example 4.2.

h l

0 1 2 3

2�1 2.1197E�03 2.7407E�04 2.0288E�04 3.5907E�04

2�2 4.9406E�04 1.4006E�05 2.0260E�05 4.1786E�05

2�3 8.5966E�05 6.0178E�07 1.5281E�06 3.3586E�06

2�4 1.3122E�05 3.3942E�08 1.0675E�07 2.2988E�07

2�5 2.0047E�06 2.2153E�09 7.0898E�09 1.4516E�08

2�6 3.3140E�07 1.5255E�10 4.6244E�10 1.0042E�09
Note that $2~u 2 ðH1ðXÞÞs2�2 and u� uh 2 H1
0ðXÞ. Hence, using the

definitions of r and ahð�; �Þ, (3.9), (3.10) with v ¼ u� uh, Lemma 2.1,
the identity (3.2), and the technique for deriving identities (2.11),
we have
Fig. 2. Error ku� uhk0 vs 1=h in ln — ln scale for Example 4.2.

Table 3
Error ju� uhj1 for Example 4.2.

h l

0 1 2 3

2�1 1.0247E�02 2.4728E�03 1.7610E�03 2.2239E�03

2�2 2.6650E�03 3.1270E�04 2.4622E�04 3.1858E�04

2�3 5.5946E�04 3.8016E�05 3.0225E�05 3.7722E�05

2�4 1.0482E�04 4.6806E�06 3.6865E�06 4.4299E�06

2�5 1.9090E�05 5.7719E�07 4.5507E�07 5.3818E�07

2�6 3.5221E�06 7.1548E�08 5.6585E�08 6.6626E�08
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ju� uhj21 ¼
Z

X
$ðu� uhÞ � ð$ � ~rÞdx ¼

X
K2Th

Z
K
$ðu� uhÞ � ð$ � ~rÞdx

¼ �
X

K2Th

Z
K

~r : $2ðu� uhÞdxþ
Z
Eh

~r : s$ðu� uhÞtds

¼
X

K2Th

Z
K
ð1� mÞ$2~u : $2ðu� uhÞdx

þ
X

K2Th

Z
K
m trð$2~uÞtrð$2ðu� uhÞÞdx

�
Z
Eh

ð1� mÞ$2~u : s$ðu� uhÞtds

�
Z
Eh

m trð$2~uÞtrðs$ðu� uhÞtÞds ¼ ahðu� uh; eu � Q heuÞ
þ ahðu� uh;Q heuÞ ¼ ahðu� uh; eu � Q heuÞ
þ
Z
Eh

s$ðeu � Q heuÞt : fr� Phrgds

þ
X

K2Th

Z
K
ðr� PhrÞ : rðs$ðeu � Q heuÞtÞdx:

Therefore, it follows from (3.7), (3.11), and Lemmas 3.1, 3.2 that

ju�uhj21 Kkju�uhkj kjeu�Q heukjþhminfmþ1;lþ1gkukmþ3

�
X
e2Eh

h�1
e ks$ðeu�Q heuÞtk2

0;e

 !1=2

Khminf1;k�1gðkju�uhkjþhminfmþ1;lþ1gkukmþ3Þkeuk3

Khminf1;k�1gðkju�uhkjþhminfmþ1;lþ1gkukmþ3ÞkMðu�uhÞk�1

Khminf1;k�1gðkju�uhkjþhminfmþ1;lþ1gkukmþ3Þju�uhj1:
Fig. 3. Error ju� uhj1 vs 1=h in ln — ln for Example 4.2.

Table 4
Error ju� uhj2;h for Example 4.2.

h l

0 1) 2 3

2�1 5.3236E�02 3.9586E�02 2.9261E�02 2.8676E�02

2�2 2.8347E�02 1.1407E�02 9.1097E�03 8.8621E�03

2�3 1.2726E�02 2.9990E�03 2.4285E�03 2.3507E�03

2�4 4.9306E�03 7.5159E�04 6.1440E�04 5.9585E�04

2�5 1.8685E�03 1.8631E�04 1.5388E�04 1.4940E�04

2�6 7.3637E�04 4.6273E�05 3.8473E�05 3.7365E�05
This with Theorem 3.5 immediately leads to

ju� uhj1 K hminf1;k�1gðkju� uhkj þ hminfmþ1;lþ1gkukmþ3Þ
K hminf1;k�1gþminfmþ1;k�1;lþ1gkukmþ3:

Finally, note that u� uh 2 H1
0ðXÞ and over H1

0ðXÞ, the semi-norm j � j1
is equivalent to the H1ðXÞ-norm. h

It is better to include some results to show the optimality of our
estimates derived. For example, if we take S1(K) = Pl(K) and S2(K)
= Pk(K), a choice mostly suitable for practical applications, it is easy
Fig. 4. Error ku� uhk2;h vs 1=h in ln — ln scale for Example 4.2.

Table 5
Error jjju� uhjjj for Example 4.2.

h l

0 1 2 3

2�1 1.3639E�01 6.2654E�02 3.2563E�02 3.0111E�02

2�2 6.9217E�02 1.8041E�02 1.1177E�02 9.6508E�03

2�3 2.9829E�02 4.7445E�03 3.1305E�03 2.6043E�03

2�4 1.1344E�02 1.2027E�03 8.0420E�04 6.6835E�04

2�5 4.1340E�03 3.0108E�04 2.0253E�04 1.6845E�04

2�6 1.5114E�03 7.5241E�05 5.0753E�05 4.2215E�05

Fig. 5. Error jjju� uhjjj vs 1=h in ln — ln scale for Example 4.2.
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to check that the first condition of (2.8) implies k� 2 � l. Therefore,
we have the following result from the previous theorems directly.

Corollary 3.7. Assume the solution of (2.1) satisfies u 2 Hmþ3ðXÞ, for
some nonnegative integer m, and let uh 2 Vh be the solution of (3.1)
with S1(K) = Pl(K) and S2(K) = Pk(K) for all K 2 Th. Then we have the
following optimal error estimates

minfmþ1;k�1g
jku� uhkjK h kukmþ3;X;

ku� uhk1 K hminf1;k�1gþminfmþ1;k�1gkukmþ3;X:
4. Numerical results

In this section, we present numerical results to show the com-
putational performance of our LCDG method. Let X ¼ ð�1;1Þ�
ð�1;1Þ, m ¼ 0:3, and

f ðx1; x2Þ ¼ 24ð1� x2
1Þ

2 þ 24ð1� x2
2Þ

2 þ 32ð3x2
1 � 1Þð3x2

2 � 1Þ:

It can be verified that the exact solution of (2.1) is
uðx1; x2Þ ¼ ð1� x2

1Þ
2ð1� x2

2Þ
2
:We use the uniform triangulation Th

of X. For any K 2Th, we take S1ðKÞ ¼ PlðKÞ and S2ðKÞ ¼ PkðKÞ, with
k P 1; l P 0.

Example 4.1. In this example, we consider the numerical results of
our LCDG method in the lower order case, that is, k ¼ 1;2 and
l ¼ 0;1. From Table 1 and Fig. 1, we observe that the numerical
convergence rates of ju� uhj1 and jjju� uhjjj are Oðh2Þ and OðhÞ,
respectively, when k ¼ 2, but there is no convergence for k ¼ 1.
These phenomena agree with the theoretical predictions given in
Theorems 3.5 and 3.6. When k ¼ 2, accuracies of the numerical
results are nearly the same for l ¼ 0 and l ¼ 1. Certainly, it is more
convenient to simulate for l ¼ 0 than for l ¼ 1.

Example 4.2. Now we consider the higher order case for our LCDG
method, where k ¼ 3 and l ¼ 0;1;2;3. Note that the condition (2.4)
requires l P 1. The numerical results of L2 norm of error ku� uhk0

for l ¼ 0;1;2;3 are given in Table 2 and Fig. 2, from which we can
see that ku� uhk0 ¼ Oðh4Þ for l ¼ 1;2;3. But the convergence rate
for l ¼ 0 does not reach Oðh4Þ, only between Oðh2Þ and Oðh3Þ. Then
we examine the numerical values of ju� uhj1 with respect to h. It is
shown in Table 3 and Fig. 3 that ju� uhj1 ¼ Oðh3Þ for l ¼ 1;2;3, and
the convergence rate for l ¼ 0 is less than Oðh2:5Þ. We also investi-
gate the convergence rates for ju� uhj2;h and jjju� uhjjj. The corre-
sponding results are given in Table 4 and Fig. 4 for ju� uhj2;h and in
Table 5 and Fig. 5 for jjju� uhjjj, respectively. We may find from
these numerical results that both ju� uhj2;h and jjju� uhjjj are of
the size Oðh2Þ for l ¼ 1;2;3. Again, we can see that the convergence
rates of ju� uhj2;h and jjju� uhjjj are no more than Oðh1:5Þ for l ¼ 0.
From the above data analysis we may conclude that condition (2.4)
is crucial for achieving the optimal convergence rates. In our exam-
ple discussed here, l P 1 implies this condition.
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