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Latent community discovery that combines links and contents of a text-associated network, has
drawn more attention with the advance of social medias. Most of the previous studies aim at detect-
ing densely connected communities, and are not able to identify general structures, e.g., bipartite
structure. Several variants based on stochastic block model are more flexible for exploring gen-
eral structures by introducing link probabilities between communities. However, neither can these
variants identify degree distributions of real networks due to lacking of modeling the differences
among nodes, nor can they be suitable for discovering communities in text-associated networks due
to ignoring the contents of nodes. In this paper, we propose a popularity-productivity stochastic
block (PPSB) model by introducing two random variables, popularity and productivity, to model
the differences among nodes in receiving links and producing links, respectively. The new model
has the flexibility of existing stochastic block models in discovering general community structures,
and inherits the richness of previous models that also exploit popularity and productivity in mod-
eling the real scale-free networks with power law degree distributions. To incorporate contents in
text-associated networks, we propose a PPSB-DC model which combines the PPSB model with a
discriminative model that models the community memberships of nodes by their contents. We then
develop EM algorithms for inferring the parameters in the two models. Experiments on synthetic
and real networks have demonstrated that the proposed models can yield better performances than
previous models, especially on networks with general structures.

I. INTRODUCTION

Recent years have seen emergence of a great volume of
user generated data from online social media, e.g., Twit-
ter, Facebook and other microblogs. It is an important
task to analyze these networked data for helping peo-
ple understand the structure and the function of these
networks. It has been observed that networks usually
exhibit a certain community structure. Therefore com-
munity detection is an important tool for analyzing the
networked data [1, 2]. A common type of networked data
in online social media consists of the links between nodes
and the contents for describing the nodes. We refer to
such networks as text-associated networks. A great chal-
lenge in detecting community structure in text-associated
networks is how to model the community memberships,
links and contents.

Many probabilistic models have been developed for
community discovery by combining link and content in-
formation [3–12]. All of these models share a common
framework that combines a link model and a content
model. A link model defines how to generate the link
probability between nodes. Stochastic block model is a
popular probabilistic link model, which uses parameters
to model the link probability between any two nodes that
belong to the two modules ((or called community, block,
group)), respectively. In order to generate a link be-
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tween two nodes, it first generates a module for each
node and then samples the link based on the probabil-
ity associated with the two sampled modules. There
are generally two categories of extensions based on the
stochastic block model [13, 14]. One category mod-
els the joint link probability based on the idea of link
community. They are roughly put into two kinds: and
models for general structure detection, including mixed
membership stochastic block (MMB) model [15], inter-
action dirichlet block model (IDBM) [16], and general
stochastic block (GSB) model [17]; models for traditional

community detection, including simple probabilistic algo-
rithm for community detection employing Expectation-
Maximization (SPAEM) [18], Bayesian link model [19],
generative model for link community [20], popularity and
productivity link (PPL) model [21] and etc [22–26]. The
second category aims to model the conditional link prob-
ability that given a node how likely it will link to an-
other node, and focuses on detecting traditional com-
munity in citation networks. The representative models
include probabilistic HITS (PHITS) model [27], proba-
bilistic conditional link (PCL) model [3]. The PCL model
(and its generalization, the PPL model) introduces ran-
dom variables of popularity (and productivity) to model
the differences of nodes in receiving links (and in produc-
ing links), which are motivated by the observation that
real networks usually exhibit power law degree distribu-
tions.

However, these link models suffer from certain short-
comings and are not suitable for modeling real networks.
The conditional link models (e.g., PHITS, PCL) and the
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joint link model (PPL) can not detect a wide variety
of structures (e.g., bipartite structure), because they as-
sume that nodes from the same community have a high
chance to link to each other. Variants of the stochastic
block model for general structure detection do not con-
sider the differences among nodes in generating the links
(e.g., the popularity and productivity of nodes), though
they are flexible enough to detect general structures, such
as assortative mixing (i.e., traditional community struc-
ture where nodes in each community are densely con-
nected with each other), disassortative mixing (e.g., mul-
tipartite structure), and the structure of both types [28–
30].

In this paper, we address these problems by propos-
ing a popularity-productivity stochastic block (PPSB)
model, which explicitly exploits the popularity and pro-
ductivity of nodes to model the differences of nodes in
receiving links and in producing links. The new model
has the flexibility of existing stochastic block models in
discovering general community structure and the rich-
ness of the PPL model in modeling the real scale-free
networks with power law degree distributions. However,
the proposed link model only considers links in real net-
works, and does not make full use of contents of nodes in
text-associated networks.

A content model defines how to model the relation-
ship between the community memberships and the con-
tents. There exist two alternative methods for modeling
the contents: generative models and discriminative mod-
els. A generative model is to model the contents from the
community memberships. Probabilistic latent semantic
analysis (PLSA) [31] and latent dirichlet allocation(LDA)
[32] are two popular generative models. Most generative
models often result in poor performance due to irrelevant
features. A discriminative content model is to model the
community memberships from the contents, which can al-
leviate the impact of irrelevant contents by weighting the
content attributes Thanks to their discriminative power
to the community memberships [3, 33]. The discrimina-
tive content (DC) model in a discriminative framework
can be automatically to deal with unsupervised learning
problems [3]. It has been observed by Yang et al. [3] that
the DC model can yield substantial improvements over
the generative models in terms of community detection.
To incorporate the contents in the text-associated net-
work, we also present a combined model named as PPSB-
DC, which combines the PPSB model with the DC model
that models the community memberships of nodes by
their contents. We then develop EM algorithms for infer-
ring the parameters in the two models. Our models can
not only detect general structures, but also identify au-
thority nodes and hub nodes. Experiments on synthetic
and real networks have demonstrated that the proposed
models can yield better performances than previous mod-
els, especially on networks with general structures.
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FIG. 1: The plate models for network data: (a) the GSB
model proposed in [17], (b) the PPL model proposed in [21].
Filled circles represent observed variables and unfilled ones
correspond to latent variables. Solid lines with arrow indi-
cate observed directed edges. Dashed lines indicate the rela-
tions between the two end variables, and arrows represent the
directions of relation.

II. A LINK MODEL BASED ON STOCHASTIC
BLOCK MODEL

In this section we first describe two models related to
our research. Then a popularity-productivity stochastic
block (PPSB) model is presented. Finally the parameters
of the PPSB model are estimated by the maximum likeli-
hood estimation method, which is implemented through
the EM algorithm.

A. Related link models

In this section, we first review two related link models,
i.e., the GSB model [17] and the PPL model [21], whose
graphical models are shown in FIG. 1.
The GSB model is a variant of the stochastic block

model based on the idea of link community, which can
model the likelihood of producing links in directed or
undirected networks. It assumes that each link < i, j > is
from a hidden community pair < g, h > with probability
ωgh. Community g samples node i with probability θgi,
and community h samples node j with probability ψhj .
The PPL model uses a joint link probability to gen-

erate the link structure of directed networks. The prob-
ability of producing a link < i, j > is related to three
factors: 1) the probability of community k that a link
is from; 2) the probability for node i to be selected by
community k, which is related to the membership γik of
node i in community k and the productivity ai of node i;
3) the probability for node j to be selected by community
k, which is related to the membership γjk of node j in
community k and the popularity bj of node j.
The generative process of each directed link in the PPL

model is similar to that in the GSB model. And the
parameters of the two models are learned by the EM
algorithm. But there are two differences between them.
First, the PPL model assumes nodes from the same com-
munity have the high probability to produce a link, while
the GSB model assumes the probability of producing a
link is relevant to the link probability between commu-
nities that two ends nodes of the link belong to. This
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difference enables the GSB model rather than the PPL
model to have the capability of detecting a more general
community. Second, in the PPL model the generative
process of links introduces two variables, node productiv-

ity and node popularity, to explicitly capture the outgo-
ing links and incoming links, while the GSB model does
not consider these factors. This difference enables the
PPL model rather than the GSB model to generate real
scale-free networks with power law degree distributions.
To overcome the shortcomings of the two models and
make use of their advantages, we design a popularity-
productivity stochastic block model (PPSB) in the fol-
lowing section.

B. A Popularity-productivity stochastic block
model (PPSB)

In this section, some terminologies and assumptions
used in our model are first introduced. Then we provide
the model and its parameter estimation for a directed
network.

• Let A denote the adjacency matrix of a directed net-
work with N nodes V = {1, ..., N} and |E| directed
links E = {< i, j > |Aij 6= 0}.

• The link-in space and link-out space of each node i are
termed as I(i) and O(i) respectively. I(i) = {j|Aji 6=
0}, O(i) = {j|Aij 6= 0}.

• Let K denote the number of communities. A block
matrix is denoted as ω, normalized by the constraint∑

gh ωgh = 1. Each element ωgh is defined as the link
probability of producing a directed link < i, j > be-
tween any community pair < g, h >, where node i and
node j belong to community g and community h re-
spectively. A matrix with small off-diagonal elements
and big diagonal elements can produce assortative mix-
ing. A matrix with big off-diagonal elements and small
diagonal elements can produce disassortative mixing.
By changing the matrix we can generate other complex
structures with assortative and disassortative mixing
simultaneously.

• Let γik denote the probability that node i belongs to
community k, with a constraint

∑
k γik = 1.

• Let ai denote the productivity of node i, which mea-
sures how likely node i produces links. Let bj de-
note the popularity of node j, which represents how
likely node j receives links. They satisfy constraints∑

i ai = 1 and
∑

j bj = 1.

Our PPSB model is a joint link probabilistic model for
general community detection, whose graphical model is
shown in (a) of FIG. 2. The PPSB model is on the idea of
link community, which independently generates each link
either within one community or between communities.
The definition of ‘community’ in our model is the same

as what the GSB model has defined, namely, nodes in a
community have the similar connection pattern to nodes
in the other community. The community here is a more
general community, which contains more broad types of
structures besides traditional community, e.g., bipartite
structure.
Different from the PPL model, a link generated by our

model can be from any two communities. The probability
of generating a directed link < i, j > from a community
pair < g, h > is quantified by element ωgh, where commu-
nity g and community h can be same or different. This
assumption guarantees that the PPSB model takes ad-
vantage of the strength of the GSB model and overcomes
the shortcoming of the PPL model in detecting general
community structure.
Different from the GSB model, the probability of pro-

ducing a directed link < i, j > in our model considers two
additional factors: the productivity of tail node i and the
popularity of head node j simultaneously and explicitly.
This guarantees our model possesses the advantage of the
PPL model and overcomes the shortcomings of the GSB
model in producing real scale-free networks with power
law degree distributions.
Besides the versatility in modeling the link generative

process, our model can discover both overlapping and
non-overlapping communities due to its idea on link com-
munity. Link community assumes that a vertex belongs
to more than one community if it has more than one type
of edges. In our model the membership γik represents
the propensity of node i to have edges from community
k, which provides a soft membership that node i belongs
to community k and implies that node i can be over-
lapping. For one node, more links from one community
corresponds to larger membership in that community. If
we want to get the non-overlapping partition of the net-
work, we can assign each node i to the community with
the largest membership.
Followed by terminologies and assumptions, the gener-

ative process of each link in a directed network A is given
as follows:

(1) Select two communities g and h for a directed link
< i, j > with probability ωgh.

(2) Draw the tail node i from community g with proba-
bility

γigai∑
i′∈I(j) γi′gai′

.

(3) Draw the head node j from community h with prob-

ability
γjhbj∑

j′∈O(i) γj′hbj′
.

According to the generative process, the marginal like-
lihood of the observed network A can be written as Eq.
(1):

P (A) =
∏

e∈E

∑

gh

(
γigai∑

i′∈I(j) γi′gai′

γjhbj∑
j′∈O(i) γj′hbj′

ωgh)
Aij

(1)

tyang
Highlight
There is  a typo. The summation over g,h should be within the parenthesis. 
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FIG. 2: The plate models for network data: (a) the PPSB
model, (b) the PPSB-DC model. The representation of the
figure is the same as FIG. 1.

The logarithm of P (A) is computed as follows:

L(A) =
∑

e∈E

Aij ln(
∑

gh

(
γigai∑

i′∈I(j) γi′gai′

γjhbj∑
j′∈O(i) γj′hbj′

ωgh))

(2)
Our aim is to get the optimal parameters by the max-

imum likelihood estimation. In Eq. (2) a community
pair < g, h > of each link are hidden variables, which
make parameters estimation intractable. An EM algo-
rithm [34] is a convenient and general iterative approach
to maximize the likelihood under hidden variables.
In E step, our algorithm needs to infer the community

pair distribution of each link given the current parame-
ters γ,a,b,ω. From Jensen’s inequality we transform Eq.
(2) into the lower bound of the log likelihood as Eq. (3),
i.e., expected log likelihood.

L =
∑

e

Aij

∑

gh

qijgh(ln(

γigai∑
i′∈I(j) γi′gai′

γjhbj∑
j′∈O(i) γj′hbj′

ωgh

qijgh
))

=
∑

e

Aij

∑

gh

qijgh((ln
γigai∑

i′∈I(j) γi′gai′
+ ln

γjhbj∑
j′∈O(i) γj′hbj′

))

+
∑

e

Aij

∑

gh

qijgh((lnωgh)− ln(qijgh))

(3)
By the inequality of−logx ≥ 1−x, Eq. (3) is transformed
to Eq. (4):

L ≥
∑

e

Aij

∑

gh

qijgh(lnγigaiγjhbj +1−

∑
i′ γi′gai′

ηg
− ln(ηg))

+
∑

e

Aij

∑

gh

qijgh((1 −

∑
j′ γj′hbj′

τh
− ln(τh)))

+
∑

e

Aij

∑

gh

qijgh((lnωgh)− ln(qijgh))

(4)
In Eq. (4), qijgh denotes the probability that one ob-

serves a link < i, j > with i and j in communities g and
h respectively, given the observed network and model pa-
rameters. ηg and τh can be computed as follows:

ηg =
∑

i′∈I(j)

γi′gai′ τh =
∑

j′∈O(i)

γj′hbj′ (5)

Maximizing the right of Eq. (4) given the parameters,
we compute the expected distribution qijgh as Eq. (6).

qijgh ∝
γigai∑

i′∈I(j) γi′gai′

γjhbj∑
j′∈O(i) γj′hbj′

ωgh (6)

In M step, the algorithm optimizes the parameters
given the current ‘filled in’ data after we get the commu-
nity pair distribution of each link. We compute γ,a,b,ω
as Eq. (7) through maximizing the right of Eq. (4) given
the fixed community pair distribution of links.

γig =
n(i, g)

mη
gai +mτ

gbi

ai =
nout(i)∑
gm

η
gγig

bi =
nin(i)∑
gm

τ
gγig

ωgh =

∑
<i,j> Aijqijgh∑

<i,j,g,h>Aijqijgh

(7)

The rest variables in Eq. (7) are defined as:

nin(i, g) =
∑

j∈I(i),h

Ajiqjihg

nout(i, g) =
∑

j∈O(i),h

Aijqijgh

nin(i) =
∑

g

nin(i, g)

nout(i) =
∑

g

nout(i, g)

n(i, g) = nin(i, g) + nout(i, g)

mog =
∑

<i,j>∈E,h

Aijqijgh

mig =
∑

<i,j>∈E,h

Aijqijhg

mη
g =

mog
ηg

, mτ
g =

mig
τg

(8)

We can easily extend the above model to the case of an
undirected network by transferring each undirected edge
(i, j) to two directed edges < i, j > and < j, i >, and
letting a = b.

III. A COMBINED MODEL BASED ON A
DISCRIMINATIVE FRAMEWORK

In order to incorporate contents in text-associated net-
works, we combine the PPSBmodel with a discriminative
content (DC) model [3] and provide a combined discrimi-
native model, named as PPSB-DC, whose graphic model
is shown in (b) of FIG. 2. The DC model is given by Eq.
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(9):

P (zi = r) = yir =
exp(WT

r xi)∑
l exp(W

T
l xi)

(9)

In Eq. (9), Wr denotes the weight vector of features
for community r, whose dimension is the feature number
of node i; and yir denotes the membership of node i in
community r in terms of node contents.
By incorporating the DC model into the PPSB model,

the log likelihood of the combined model is modified ac-
cording to Eq. (2), replacing γig with yig. A similar EM
algorithm can be used to maximize the log likelihood of
the combined model over the parameters W,a, b, ω. The
algorithm is described as follows:

(1) Initialize W,a, b, ω;

(2) E-step: compute η, τ, q by Eq. (5) and (6), replacing
γig with yig ;

(3) M-step: compute γ, a, b, ω as in Eq. (7); and update
W by multi-class logistic regression; and compute y
by Eq. (9);

(4) repeat E-step and M-step until the iteration number
is over threshold or the algorithm has converged..

The parameter estimation algorithm of the PPSB-DC
model is derived from the EM algorithm. In E step the
algorithm computes the distribution of hidden variables
q, with a time complexity of O(|E|K2C1). In M step it
has a time complexity of O(NKC2+T ). C1 is a constant
in computing qijrs by Eq. (6), and C2 is a constant
in computing γik, ai, bi by Eq. (7). T is the time for
computing yir in Eq. (9). We run M iterations to get
the local optimal solution. In summary, the whole time
complexity of the algorithm is O(M(|E|K2C1+NKC2+
T )). Because |E| is often larger than N , the complexity
can be written as O(M(|E|K2C1)). The memory cost is
the space size of q, γ, a and b, i.e., O(M(|E|K2)).

IV. EXPERIMENTS

In this section, we evaluate the performance of our
models on several experimental studies. First we have
analyzed the convergence of the PPSB model and its abil-
ity for overlapping community detection. Then the PPSB
model and the PPSB-DC model are compared with sev-
eral baseline models by three metrics NMI, PWF and
ACC on non-overlapping community detection. In addi-
tion, the problems of model selection are discussed.

A. Data description

We use several real and synthetic networks in our ex-
periments. Real networks in the experiments are:

• Real undirected networks[39]: Zachary’s karate
club, noted as Karate, which has 2 communities, 34
nodes and 78 edges; Dolphin network, noted as Dol-
phin, which has 2 communities, 62 nodes and 159
edges; American football team network, noted as Foot-
ball, which has 12 communities, 112 nodes and 613
edges; Political blog network, noted as Polblogs, which
has 2 communities, 1490 nodes and 19025 edges.

• Bipartite network: Word adjacency network [28],
noted as Adjnoun, which has 112 adjectives and nouns
and whose most edges connect an adjective to a noun.
This network has two communities and 425 edges.

• Text-associated directed networks

– Cora Data Sets[40] is a subset of the larger
Cora citation data set. It includes 7 subcat-
egories: Case-based reasoning, Genetic Algo-
rithms, Neural Networks, Probabilistic Meth-
ods,Reinforcement Learning, Rule Learning and
Theory, and contains 2708 nodes and 5429 links.

– Citeseer Data Sets[41] is a subset of the larger
Citeseer citation data set. It includes 6 subcate-
gories: AI, Agents, DB, HCI, IR, ML, and con-
tains 3312 nodes and 4732 links.

– WebKB Data Sets[42] is a subset of the larger
Webkb data set, which is classified into one of
the following five classes: course, faculty, student,
project, staff. It includes webpages’ networks of
four universities: Cornell, Texa, Washington and
Wisconsin. Each school has 195, 187, 230, 265
nodes and 304, 328, 446, 530 links respectively.

According to the networks and their ground truths,
we can derive the block matrix of each network, shown
in FIG. 3, and Fig4. From the figures we can find that
the structures of networks Football, Cora, Citeseer

are assortative mixing, while the structure of network
Adjnoun is disassortative mixing. The structure in each
network of WebKB Data Sets is neither assortative
mixing nor disassortative mixing singly, and we call it a
mixture structure.
Our synthetic networks are generated by the growing

model described by Arend Hintze and Christoph Adami
[35]. It can produce a broad range of degree distribu-
tion using only a small set of parameters. Since there is
only one disassortative network among real networks, we
use the growing model to generate three disassortative
networks to test our model better. The block matrices of

the three synthetic networks are E1=

(
0.4 0.6
0.7 0.3

)
, E2=

(
0.2 0.8
0.8 0.2

)
, E3=

(
0.1 0.9
1 0

)
respectively. In the gen-

erative process of the networks, the related parameters
are all set as PN = 0.1, p = 1, PE = 1, q = 0.9, PD = 0.
The network with block matrix E1 is named as E1Net,
and the other two networks are E2Net and E3Net.
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FIG. 3: Block matrixes of the networks: (a) Football, (b)
Adjnoun , (c) Cora and (d) Citeseer. Each block represents
the link probabilities between the corresponding community
pair, and darker colors of the blocks correspond to larger link
probability between the community pair.
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FIG. 4: Block matrixes of the networks in WebKB Data Sets:
(a) Cornell, (b) Texa, (c) Washington and (d) Wisconsin. The
representation of the figure is the same as Fig.3.

B. Metrics for non-overlapping community
detection

In order to compare the PPSB model and the PPSB-
DC model with other baseline models for community de-
tection, the following metrics are given to measure the
performance.

A community structure is C = (C1, C2, ..., CK), where
Ck contains a set of nodes that are in the kth community.
C′ = (C′

1, C
′

2, ..., C
′

K) represents a community structure
given by an algorithm. Normalized mutual information

is defined by:

NMI(C,C′) =
2MI(C,C′)

H(C) +H(C′)
(10)

whereH(C) andH(C′) are the entropies of the partitions
C and C′, and MI(C,C′) is the mutual information be-
tween the two partitions.
Let T denote a set of node pairs that have the same

label, S denote a set of node pairs assigned to the same
community by an algorithm, |T | denote the cardinality
of T . Pairwise F-measure is computed as follows:

PWF =
2× precision× recall

precision+ recall
(11)

where precision = |S ∩ T |/|S|, and recall = |S ∩ T |/|T |.
Given a node i, its true label si and the assigned label

ri obtained from an algorithm, accuracy is defined as
follows:

ACC =

∑
i∈Nodeset δ(si,map(ri))

|Nodeset|
(12)

where |Nodeset| is the number of all the nodes, and
δ(x, y) is a delta function that is one if x = y and is
zero otherwise, and map(ri) is a permutation mapping
function that maps the label ri of node i to the corre-
sponding label in the ground truth.
For all the three metrics, i.e., NMI, PWF , and ACC,

the larger the values, the better the performances.
In order to analyze how initial parameters in an EM

algorithm affect final results, we use a functional modu-
larity measure QH provided in [35].

QH =
1

2m

∑

ij

AijS̃ij (13)

where m denotes the number of edges; S̃ij = 1 if i has

the same community as j, otherwise S̃ij = − 1
K−1 . The

value of QH changes from -1 to 1. A larger QH of a net-
work existing a certain structure implies that the network
underly assortative structure.

C. Convergence analysis and overlapping
community detection

With a group of initial parameters, our algorithm for
the PPSB model can converge to a kind of results de-
scribed by a group of posterior parameters including the
block link matrix ω, the memberships γ, the popularity
b and the productivity a. Our algorithm is derived from
an EM algorithm, and always converges to different local
maxima of the log likelihood with different initial pa-
rameters. In order to approximately get a global optimal
point, it is well known that the algorithm has been often
run for many times with different random initial values
[3, 17, 21] and the result with the largest likelihood is
selected as the final solution.
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Initial parameters actually have an impact on the local
optimum of the algorithms. But when initial parameters
are considerably complex, it is hard and even impossible
to get a distribution between initial parameters and final
results. But we can analyze the qualitative relations be-
tween each initial parameter and final results, and then
test whether the result with the largest likelihood corre-
sponds to the best choice. Here, we run the algorithm
on our link model 20 times in four networks with assor-
tative and disassortative mixing, including Karate, Dol-
phin, E21, Adjnoun. We find out that for each network
the results have two kinds of outputs: one kind corre-
sponds to assortative mixing, the other corresponds to
disassortative mixing.

In order to analyze the relation between the final re-
sults and each corresponding set of initial parameters,
QH value of the network with the set of initial member-
ships γ is computed, which is used as the agency of γ.
It is shown that there is no rule between the QH value
of γ and the accuracy of final results, which implies the
initial parameters γ have little effect on the final results.

The relation between each initial block matrix ω and
the corresponding results are also analyzed. Let π de-
note the sum of the diagonal values in ω, and 1 − π
denote the sum of the non-diagonal values. The anal-
ysis demonstrates the algorithm can converge to good
results in assortative networks so long as π is larger than
1− π; and in disassortative networks, the algorithm can
also converge to good results so long as π is smaller than
1 − π. Whether the structure of the network is assor-
tative or disassortative, the algorithm of our model can
converge to good results because the block matrix can
characterize broad types of structures. We also find that
the results with largest or almost largest likelihoods are
most approximate to the ground truth. So we can run
our algorithm many times and select the results with the
largest likelihood as final solution.

The model can capture the memberships γ, the pop-
ularity b and the productivity a for nodes in directed
networks (a = b for undirected networks). We can find
which node is overlapping in terms of γ, and identify the
hub nodes and authority nodes in terms of a, b. The re-
sults from the PPSB model on three networks are shown
in FIG. 5,6,7. All the nodes can be identified accurately
by our algorithm. Nodes in the same group are denoted
by the same color (white or black). Several gray nodes
are overlapping, such as 3, 9, 14, 20, 31, 32 in Karate
network. The darker the gray color of the node, the
larger the membership of the node in the black group,
vice versa. The sizes of each node indicates its popu-
larity or productivity, and the two values are equal for
undirected networks. There is no proper measure for
overlapping community detection. Thus, we analyze the
performance of our models in non-overlapping case as
previous studies [3, 21] in the following section.
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FIG. 5: (Color online)The results of PPSB model for overlap-
ping community detection in the Karate network.
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FIG. 6: (Color online)The results of PPSB model for overlap-
ping community detection in the Dolphin network.

D. Performance of our models for non-overlapping
community detection

The task of the experiments in this subsection is to de-
tect communities based on only links and on both links
and contents. To test the performance of the PPSB
model, we compare it with four baseline models based on
links: the GSB model [17], IDBM [16], the PCL model
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FIG. 7: (Color online)The results of PPSB model for overlap-
ping community detection in the Adjnoun network.
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[3], the PPL model [21]. Among these models, the GSB
model, IDBM and our PPSB model are able to detect
general community structure. The PCL model and the
PPL model are both provided for traditional commu-
nity detection. To test the performance of the PPSB-
DC model based on both links and contents, we compare
it with four combined baselines: GSB+DC, IDBM+DC,
PCL-DC, PPL-DC. Since the GSB model (and IDBM)
can not be unified into an EM algorithm like PCL-DC,
we combine the GSB model ( and IDBM) with the DC
model in order, and use the partition results of the GSB
model ( and IDBM) as supervised assignments of the
DC model. PPL-DC combines the PPL model with the
DC model like PCL-DC. All the algorithms are run on
both real networks and synthetic networks for commu-
nity detection, and are measured by the three metrics
(NMI,PWF ,ACC). In order to demonstrate the com-
bined models are better than the corresponding link mod-
els, we compare each link model and the corresponding
combined model.

Since some algorithms depend on their parameters (
such as α and β in IDBM, the combination coefficient
in each combined models), we run on a wide range of
values and choose the best one in terms of the metrics.
All the algorithms on these models are run until the rel-
ative difference of the objective is within 10−10. In order
to test the robustness of the algorithms, we run all the
algorithms for 30 times. From the convergence analy-
sis mentioned above, we know that the results always
converge to two kinds of results for the PPSB model,
the GSB model, PPSB-DC and GSB+DC for assorta-
tive and disassortative networks. We can get the best
results with the largest likelihood on the two kinds of
networks. For networks with a mixture structure, we can
also get the best results by selecting the one with the
largest likelihood. Thus, we select ten results with top
10 largest objective likelihoods, which are nicely near-
est to the ground truth. We then compute the average
metrics for these results.

We test the non-overlapping community detection per-
formances for all the link models on six networks. We
also report the average metrics for all the models, shown
in Tables I,II,III. For some assortative networks ( such
as Football and Polblogs), the PCL model and the PPL
model outperform the models for detecting general struc-
tures. The main reason is that the PCL model and the
PPL model are specifically modeled for assortative net-
works, while our PPSBmodel, the GSB model and IDBM
are modeled for networks with more broad structure. Our
model can get better performance than the GSB model.
For disassortative networks, including Adjnoun, E1Net,
E2Net, E3Net, our model achieves better results than all
the other baselines based on links. This implies that it
is beneficial to model the link probability by productiv-
ity and popularity explicitly in a directed network or an
undirected network. Sometimes IDBM shows better re-
sults than our model, but it is unstable for all the cases.
In addition, it is not easy to tune to proper parameters

TABLE I: The average NMI for link models

NMI Football Polblogs Adjnoun E1Net E2Net E3Net

GSB 0.8002 0.4485 0.4901 0.1834 0.3713 0.7009

PCL 0.8803 0.4517 0.0075 0.0071 0.0007 0.0006

PPL 0.8882 0.5441 0.0225 0.0402 0.0106 0.0024

IDBM 0.8743 0.0011 0.4423 0.1544 0.4121 0.6978

PPSB 0.8167 0.4538 0.5832 0.1942 0.5019 0.7141

TABLE II: The average PWF for link models

PWF Football Polblogs Adjnoun E1Net E2Net E3Net

GSB 0.6625 0.7388 0.7822 0.6701 0.7236 0.8724

PCL 0.8541 0.7877 0.4834 0.5152 0.5499 0.5054

PPL 0.8652 0.8071 0.5232 0.5537 0.5463 0.5443

IDBM 0.8266 0.5267 0.7670 0.5987 0.7121 0.7577

PPSB 0.7722 0.7699 0.8498 0.6781 0.8047 0.8858

for its sampling algorithm. All in all, the PPSB model is
a better model based on links.
We get average metrics of all combined models and

link models on several text-associated networks, shown in
Tables IV,V,VI. The PPSB model performs better than
the other link models on networks with a mixture struc-
ture, including Cornell, Texas, Washington, Wisconsin in
WebKB data sets. For Cora and Citeseer networks, the
PPL model gets better results than the PPSB model.
The reason is that the structures in the two data sets
are assortative, which matches what the PPL model as-
sumes. IDBM also can get better results on Cora and
Citeseer networks, but it can not get the best results
on the rest networks. PPSB-DC outperforms the PPSB
model in all the cases, and we have equal conclusions
for the other combined models and their corresponding
link models. This implies the combined models consid-
ering links and contents achieve more accurate results
than the models based on links. For WebKB data sets
the PPSB-DC model gets better results than the other
combined models. Specially, for Wisconsin network the
metric value PWF and ACC of GSB+DC are better
than those of PPSB-DC, but GSB+DC can not get the
best result on the other data sets. So PPSB-DC is a
more efficient model, especially on networks with bipar-
tite structure and mixture structure.

E. Selecting the number of communities

When using the PPSB model and PPSB-DC, we must
specify the number of communities, which is a peren-
nial problem for all the clustering methods and controls
the model complexity. Our models are probabilistic pa-
rameter models, and there are some Bayesian approaches
to choose the proper number, such as Bayesian informa-
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TABLE III: The average ACC(mean ± std-err) for link models

ACC Football Polblogs Adjnoun E1Net E2Net E3Net

GSB 0.7422 ± 0.007 0.8266 ± 0.004 0.8728 ± 0.037 0.6964 ± 0.027 0.8340 ± 0.021 0.9271 ± 0.0097

PCL 0.8881 ± 0.013 0.8377 ± 0.006 0.5478 ± 0.025 0.6189 ± 0.087 0.5202 ± 0.006 0.5117 ± 0.007

PPL 0.8967 ± 0.006 0.8847 ± 0.031 0.5784 ± 0.007 0.6206 ± 0.032 0.5465 ± 0.025 0.55257 ± 0.007

IDBM 0.8673 ± 0.035 0.4682 ± 0.008 0.8561 ± 0.009 0.7112 ± 0.006 0.8197 ± 0.021 0.8919 ± 0.005

PPSB 0.7887 ± 0.015 0.8588 ± 0.013 0.9187 ± 0.022 0.7500± 0.087 0.8887 ± 0.016 0.9390 ± 0.007

TABLE IV: The average NMI on text-associated networks

NMI Cora Citeseer Cornell Texas Washington Wisconsin

GSB 0.0511 0.0091 0.07173 0.0998 0.0547 0.0634

PCL 0.0893 0.0287 0.0266 0.0658 0.0519 0.0601

PPL 0.0917 0.0349 0.0317 0.0569 0.0524 0.0669

IDBM 0.2610 0.0201 0.1685 0.0711 0.0269 0.0727

PPSB 0.0679 0.0328 0.0825 0.1107 0.1122 0.0788

GSB+DC 0.2073 0.0855 0.1224 0.2658 0.0689 0.1575

PCL-DC 0.4672 0.2608 0.0834 0.0428 0.1166 0.0701

PPL-DC 0.5164 0.4263 0.0877 0.0724 0.1201 0.0871

IDBM+DC 0.2712 0.2221 0.2301 0.0369 0.0501 0.1604

PPSB-DC 0.4659 0.3870 0.1211 0.3056 0.2391 0.2319

TABLE V: The average PWF on text-associated networks

PWF Cora Citeseer Cornell Texas Washington Wisconsin

GSB 0.1966 0.1787 0.2601 0.3199 0.3187 0.2981

PCL 0.2087 0.1877 0.2701 0.3588 0.3062 0.2555

PPL 0.2127 0.2088 0.2601 0.3532 0.3089 0.2677

IDBM 0.2987 0.1878 0.2879 0.3301 0.2497 0.2877

PPSB 0.1904 0.1942 0.3087 0.4667 0.3587 0.3287

GSB+DC 0.2588 0.2322 0.4022 0.5701 0.2968 0.5077

PCL-DC 0.4898 0.3769 0.2800 0.3289 0.3299 0.2610

PPL-DC 0.5397 0.5089 0.2755 0.3488 0.3465 0.2877

IDBM+DC 0.3577 0.3335 0.3987 0.2645 0.2789 0.3432

PPSB-DC 0.5122 0.4782 0.4768 0.6055 0.4978 0.4212

TABLE VI: The average ACC(mean ± std-err) on text-associated networks

ACC Cora Citeseer Cornell Texas Washington Wisconsin

GSB 0.2422 ± 0.003 0.2219 ± 0.006 0.3144 ± 0.015 0.3788 ± 0.041 0.3728 ± 0.024 0.3588 ± 0.060

PCL 0.2855 ± 0.006 0.2428 ± 0.031 0.2553 ± 0.021 0.4001 ± 0.033 0.3417 ± 0.012 0.32593 ± 0.040

PPL 0.3011 ± 0.015 0.2719 ± 0.021 0.2861 ± 0.035 0.4101 ± 0.036 0.3418 ± 0.023 0.3014 ± 0.017

IDBM 0.3979 ± 0.022 0.2082 ± 0.013 0.3066 ± 0.016 0.3588 ± 0.014 0.2099 ± 0.044 0.3233 ± 0.044

PPSB 0.2631 ± 0.006 0.2437 ± 0.015 0.3622 ± 0.026 0.5063 ± 0.012 0.4022 ± 0.021 0.3851 ± 0.032

GSB+DC 0.3355 ± 0.035 0.2844 ± 0.014 0.4565 ± 0.021 0.5977 ± 0.030 0.3661 ± 0.021 0.5366 ± 0.012

PCL-DC 0.6475 ± 0.011 0.4965 ± 0.015 0.3278 ± 0.014 0.3755 ± 0.022 0.4112 ± 0.023 0.2998 ± 0.015

PPL-DC 0.6623 ± 0.021 0.6188 ± 0.013 0.3299 ± 0.008 0.4001 ± 0.017 0.4241 ± 0.003 0.3464 ± 0.036

IDBM+DC 0.4376 ± 0.023 0.4454 ± 0.015 0.4965 ± 0.020 0.3078 ± 0.044 0.3199 ± 0.028 0.4100 ± 0.018

PPSB-DC 0.6196 ± 0.030 0.5878 ± 0.025 0.5365 ± 0.010 0.6295 ± 0.015 0.5710 ± 0.012 0.4953 ± 0.016
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FIG. 8: (Color online)The results of model selection for the
networks: (a) Football and (b) Cornell.

tion criterion and Akaike information criterion, which are
unsuitable because of too many zero parameters in our
models. Minimum description length principle(MDL) is
based on the simple idea that the best way to capture
regular features in data is to construct a model in a cer-
tain class which permits the shortest description of the
data and the model itself [17, 18, 36]. MDL is a powerful
and easy method for model selection, and is used here.
We just provide the results of the PPSB model on the
two networks: Football and Cornell. For the PPSB-DC
and the other networks the method is similar.
The log likelihood of L in Eq. (2) increases as K in-

creases, but at the same time the number of the parame-
ters also increases. Based on the idea of MDL principle,
the code length to describe the network data includes
two parts: the coding length of the network in the PPSB
model and the coding length of the model parameters.
The former is −L for directed networks and −L/2 for
undirected networks. The latter is −

∑
gh ωghlnωgh −∑

ig γiglnγig−
∑

i (ailnai + bilnbi) for directed networks,

and −
∑

gh ωghlnωgh −
∑

ig rig lnrig −
∑

i (ailnai) for
undirected networks. We select one popular fast method
for community detection that need not offer the K value,
and run it so that we can get the prior knowledge of the
number [37]. According to the prior of the number, we
select the optimal K∗ that minimizes the total descrip-
tion length over a potentially large number of models.
Two real networks are detected over a set of values

of K. One is the American football team network, an
undirected network, which is identified 11 communities
by many methods. The other one is the Cornell network
in WebKB Data Set, a directed network with 5 communi-
ties. We aim at selecting K∗ which minimizes the MDL
value. As shown in FIG. 8, this criterion is valid for
selecting a proper number of communities from a wide
range of K.

V. CONCLUSIONS

In this paper, a variant of stochastic block model
(named as PPSB) is designed to detect more general

structures in real and synthetic networks. Compared
with the existing variants based on stochastic block
model, the PPSB model considers more sufficient fac-
tors in the generative process of the network making it
generate more practical networks with power law degree
distributions. Compared with the existing probabilistic
models that also model popularity and productivity, our
PPSB model can detect more general structures. The
memberships of nodes captured from the PPSB model
makes it easily be combined with a discriminative con-
tent model which generates the community memberships
from contents in text-associated networks. Tests for over-
lapping and non-overlapping structure detection on syn-
thetic and real networks have demonstrated our models
can get better results, especially on networks with other
types of structures such as bipartite structure and mix-
ture structure.

We also give a solution for selecting a plausible number
of groups based on minimum description length principle.
But it also requests a prior knowledge of the group num-
ber by running existing fast community detection meth-
ods. In the future we plan to use some Bayesian nonpara-
metric models to provide a better way for the problem
of model selection [38], and utilize our model on more
real-world scenarios, e.g., automatic recommendation for
online users.
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