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Abstract

We develop an improved bound for the ap-
proximation error of the Nyström method
under the assumption that there is a large
eigengap in the spectrum of kernel matrix.
This is based on the empirical observation
that the eigengap has a significant impact
on the approximation error of the Nyström
method. Our approach is based on the con-
centration inequality of integral operator and
the theory of matrix perturbation. Our anal-
ysis shows that when there is a large eigen-
gap, we can improve the approximation er-
ror of the Nyström method from O(N/m1/4)
to O(N/m1/2) when measured in Frobenius
norm, where N is the size of the kernel
matrix, and m is the number of sampled
columns.

1. Introduction

The Nyström method has been used in kernel learning
to approximate large kernel matrices (Fowlkes et al.,
2004a; Platt, 2004; Kumar et al., 2009; Zhang et al.,
2008; Williams & Seeger, 2001; Cortes et al., 2010; Tal-
walkar et al., 2008; Drineas & Mahoney, 2005; Silva &
Tenenbaum, 2003; Belabbas & Wolfe, 2009; Talwalkar
& Rostamizadeh, 2010). In order to evaluate the qual-
ity of Nyström method, we typically bound the norm
of the difference between the original kernel matrix and
the low rank approximation created by the Nyström
method. Both the Frobenius norm and the spectral
norm have been used to bound the difference between
matrices (Drineas & Mahoney, 2005). The key re-
sult from (Drineas & Mahoney, 2005) is that besides
the intrinsic error due to the low rank approximation,

∗The work was conducted when the author was in Michigan
State University.

the additional error caused by the Nyström method is
O(N/m1/4) when measured in Frobenius norm, pro-
vided that the diagonal elements of kernel matrix is
bounded by a constant. In this work, we consider
the case when there is a large eigengap in the spec-
trum of the kernel matrix, a scenario that has been
examined in many studies of kernel learning (Bach &
Jordan, 2003; Luxburg, 2007; Azran & Ghahramani,
2006; Shi et al., 2009). Given sufficiently large eigen-
gap, we are able to improve the bound for the ad-
ditional approximation error caused by the Nyström
method to O(N/m1/2) when measured in Frobenius
norm. The key techniques used in our analysis are the
concentration inequality of integral operator (Smale &
Zhou, 2009) and matrix perturbation theory (Stewart
& guang Sun, 1990).

Our paper is structured as follows: in section 2, we
demonstrate a discrepancy between the theoretical
and experimental approximation error of the Nyström
method that motivates our work to improve the exist-
ing bounds. Section 3 introduces the problem formally
and proves the bounds. Finally, section 4 concludes
the paper.

2. Background and Motivation

The Nyström method was first suggested in (Williams
& Seeger, 2001) to improve the computational effi-
ciency of Gaussian process. It was then adopted by
a number of studies to improve the computational effi-
ciency of kernel learning (Fowlkes et al., 2004a; Platt,
2004; Kumar et al., 2009; Zhang et al., 2008; Talwalkar
et al., 2008; Drineas & Mahoney, 2005; Silva & Tenen-
baum, 2003; Cortes et al., 2010; Belabbas & Wolfe,
2009; Talwalkar & Rostamizadeh, 2010). Several anal-
ysis have been presented to bound the approximation
error by the Nyström method (Drineas & Mahoney,
2005; Kumar et al., 2009; Belabbas & Wolfe, 2009;
Talwalkar & Rostamizadeh, 2010). Most of them are
based on the result from (Drineas & Mahoney, 2005)
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(b) a7a
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Figure 1. Additional approximation error ‖K − K̂r‖F −‖K −Kr‖F and eigengap λr − λr+1. Both the additional approx-
imation error and eigengap are scaled appropriately so that they fall into the same range.

except for (Talwalkar & Rostamizadeh, 2010) whose
analysis is limited to low rank kernel matrices and does
not apply to the general case.

Let K ∈ RN×N be the kernel matrix to be approxi-
mated. Let Kr be the r-rank best approximation of
kernel matrix K, and let K̂r be an approximate kernel
matrix of rank r generated by the Nyström method.
Assume Ki,i ≤ 1 for any i ∈ [N ]. Let m be the number
of columns uniformly sampled from K used to con-
struct K̂r. Both Frobenius norm and spectral norm
are used to bound the difference between K and K̂r.
We note that it is important to derive the approxima-
tion errors measured in both norms as they have dif-
ferent implications. According to (Cortes et al., 2010),
the approximation error measured in spectral norm is
closely related to the generalized performance of kernel
classifiers. On the other hand, the approximation error
measured in Frobenius norm have found applications
in kernel PCA (Schölkopf et al., 1998), low dimensional
manifold embedding (Belkin & Niyogi, 2001), spectral
clustering (Fowlkes et al., 2004b; Chitta et al., 2011).
Improving the bound in the Frobenius norm will help
us better understand the application of the Nyström
method to those domains.

Drineas & Mahoney (2005) shows that with a high
probability, we have

‖K − K̂r‖2 ≤ ‖K −Kr‖2 +O

(
N√
m

)
(1)

‖K − K̂r‖F ≤ ‖K −Kr‖F +O

(
N

m1/4

)
(2)

where ‖ · ‖2 and ‖ · ‖F stand for the spectral norm and
Frobenius norm of a matrix, respectively. Compared
to the bound in spectral norm in (1), the bound mea-
sured in Frobenius norm is significantly worse in terms
of m, with the convergence rate of O(m−1/4). The dif-
ference between the two bounds in (1) and (2) leads
to the following question:

Under what scenario it is possible to improve the con-

vergence rate of the bound in Frobenius norm to that
of the bound measured in the spectral norm.

To this end, we first examine empirically the addi-
tional approximation error ‖K − K̂r‖F − ‖K −Kr‖F .
Note that we intentionally remove ‖K − Kr‖F from
the approximation error because ‖K −Kr‖F provides
the lower bound for any approximation with matrix of
rank r. Four UCI datasets are used in this empirical
study, i.e., MNIST1, a7a, diabetes2, CPU3. The RBF
kernel κ(x,x′) = exp(−λ‖x − x′‖22/d2) is used, where
d2 is the average distance square between any two ex-
amples and λ = 10. The blue curves with legend ◦ in
Figure 1 show how the additional approximation er-
ror ‖K − K̂r‖F − ‖K −Kr‖F varies according to the
rank r. The overall trend, as indicated in Figure 1, is
that the higher the rank, the larger the additional ap-
proximation error tends to be. In order to explain the
dependence of the approximation error on rank, we ex-
amine the distribution of eigengap λr − λr+1 over the
rank. The red curves with legend � in Figure 1 show
how the eigengap λr−λr+1 varies over the rank. Over-
all, we observe that the larger the rank, the smaller the
eigengap. By combining the two observations, we con-
jecture that there is a strong dependence between the
eigengap and the approximation error of the Nyström
method. This motivates us to develop an eigengap de-
pendent approximation error bound for the Nyström
method. Our analysis show that when the eigengap
λr−λr+1 is sufficiently large, the approximation error
of the Nyström method, measured in Frobenius norm,
can be improved to O(N/

√
m), i.e.

‖K − K̂r‖F ≤ ‖K −Kr‖F +O

(
N√
m

)

We note that although the concept of eigengap
has been exploited in many studies of kernel learn-

1http://yann.lecun.com/exdb/mnist/
2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
3http://archive.ics.uci.edu/ml/datasets/

http://yann.lecun.com/exdb/mnist/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
http://archive.ics.uci.edu/ml/datasets/
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ing (Bach & Jordan, 2003; Luxburg, 2007; Azran &
Ghahramani, 2006; Shi et al., 2009), to the best of our
knowledge, this is the first time it has been incorpo-
rated in the analysis of the Nyström method.

In the development of the Nyström method, another
important issue is how to sample the columns in the
kernel matrix. We restrict our analysis to the uniform
sampling. Although different sampling approaches
have been suggested for the Nyström method (Drineas
& Mahoney, 2005; Kumar et al., 2009; Zhang et al.,
2008; Belabbas & Wolfe, 2009), according to (Kumar
et al., 2009), for real-world datasets, uniform sampling
seems to be the most efficient and gives comparable
performance to the other sampling approaches. We
notice that in (Belabbas & Wolfe, 2009), the authors
show a significantly better approximation bound for
the Nyström method, both theoretically and empir-
ically, when sampling the columns based on the de-
terminant of the submatrix formed by the selected
columns and rows, which is also referred to as deter-
minantal processes (Hough et al., 2006). It is however
important to point out that the determinantal pro-
cess is usually computationally expensive as it requires
computing the determinant of the submatrix for the
selected columns/rows, making it unsuitable for the
case when a large number of columns are needed to be
sampled.

3. Approximation Error Bound by the
Nyström Method

Let D = {x1, . . . ,xN} be a collection of N sam-
ples, and K = [κ(xi,xj)]N×N be the kernel matrix
for the samples in D, where κ(·, ·) is a kernel func-
tion. For simplicity, we assume κ(x,x) ≤ 1 for any
x ∈ X . Let Hκ be the Reproducing Kernel Hilbert
Space (RKHS) endowed with kernel κ(·, ·). We denote
by (vi, λi), i = 1, . . . , N the eigenvectors and eigenval-
ues of K ranked in the descending order of eigenval-
ues. Define V = (v1, · · · ,vN ) and Vi,j = [V ]i,j . In
order to build the low rank approximation of kernel
matrix K of rank r, the Nyström method first sam-
ples m < N examples randomly from D, denoted by
D̂ = {x̂1, . . . , x̂m}. It then computes a sample kernel

matrix K̂ = [κ(x̂i, x̂j)]m×m. Let (ui, λ̂i), i = 1, . . . , r
be the first r eigenvalues and eigenvectors of matrix
K̂, and let U = (u1, · · · ,ur), Ui,j = [U ]i,j . We as-

sume λ̂r > 0 is strictly positive and define matrix Ŵ
as

Ŵ =

r∑
i=1

1

λ̂i
uiu

>
i

The approximate low rank matrix K̂r, computed by
the Nyström method, is given by

K̂r = KbŴK>b ,

where Kb = [κ(xi, x̂j)]N×m measures the similarity

between the samples in D and D̂. As already men-
tioned, we focus on the scenario when the eigengap
λr−λr+1 is sufficiently large 4. Our analysis is mainly
based on the concentration inequality of integral op-
erator (Smale & Zhou, 2009) and matrix perturbation
theory (Stewart & guang Sun, 1990).

3.1. Preliminaries

We define an integral operator LN and Lm based on
the samples in D and D̂, respectively, as

LN [f ](·) =
1

N

N∑
i=1

κ(xi, ·)f(xi),

Lm[f ](·) =
1

m

m∑
i=1

κ(x̂i, ·)f(x̂i)

where f ∈ Hκ is any function in Hκ. The eigen-
values of the integral operator LN and Lm, accord-
ing to (Smale & Zhou, 2009), are λi/N, i ∈ [N ]

and λ̂i/m, i ∈ [m], respectively. Let ϕ1(·), . . . , ϕN (·)
be the corresponding eigenfunctions of LN that are
normalized by functional norm, i.e., 〈ϕi, ϕj〉Hκ

=
δ(i, j), ∀(i, j) ∈ [N ] × [N ]. According to (Smale &
Zhou, 2009), the eigenfunctions are given by

ϕj(·) =
1√
λj

N∑
i=1

Vi,jκ(xi, ·), j ∈ [N ] (3)

Using the eigenfunctions expressed in (3), we can write
κ(xj , ·), j ∈ [N ] as

κ(xj , ·) =

N∑
i=1

√
λiVj,iϕi(·) =

N∑
i=1

〈κ(xj , ·), ϕi〉ϕi (4)

It is easy to verify that LN can be written in the base
of ϕi, i ∈ [N ] by

LN (f)(·) =
1

N

N∑
i=1

λiϕi〈f, ϕi〉Hκ (5)

Let ϕ̂j , j ∈ [m] be the corresponding eigenvectors of
the integral operator Lm. Similar to LN , the eigen-
function ϕ̂i is given by

ϕ̂j(·) =
1√
λ̂j

m∑
i=1

Ui,jκ(x̂i, ·) (6)

4The precise definition of large eigengap will be given
later
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We define the Hilbert Schmidt norm of operator L :
Hk → Hk by

‖L‖HS =

√√√√ N∑
i,j=1

〈ϕi, Lϕj〉2Hκ
(7)

Let ‖L‖2 denote the spectral norm of operator L de-
fined by

‖L‖2 = max
‖f‖Hκ≤1

〈f, Lf〉Hκ

where 〈·, ·〉Hκ
denotes the inner product in Hilbert

space Hκ. In the sequel, we use 〈·, ·〉 for short.

We state the concentration inequality about the two
integral operators in the following.

Lemma 1. (Proposition 1 (Smale & Zhou, 2009)) Let
ξ be a random variable on (X , PX ) with values in a
Hilbert space (H, ‖ · ‖). Assume ‖ξ‖ ≤M <∞ almost
sure. Then with a probability at least 1− δ, we have∥∥∥∥∥ 1

m

m∑
i=1

ξ(xi)− E[ξ]

∥∥∥∥∥ ≤ 4M ln(2/δ)√
m

Theorem 1. With a probability 1− δ, we have

‖LN − Lm‖HS ≤
4 ln(2/δ)√

m

where ‖L‖HS is defined in equation (7).

Proof. Define ξ(x̂i) as a rank one linear operator, i.e.,

ξ(x̂i)[f ](·) = κ(x̂i, ·)f(x̂i)

Apparently, Lm = 1
m

∑m
i=1 ξ(x̂i) and E[ξ(x̂i)] = LN .

Let ‖·‖HS be the norm used in Lemma 1. We complete
the proof by using the result from Lemma 1 and the
fact

‖ξ(x̂k)‖HS =

√√√√ N∑
i,j=1

〈ϕi, κ(x̂k, ·)ϕj(x̂k)〉2

=

√√√√ N∑
i,j=1

ϕi(x̂k)2ϕj(x̂k)2 = κ(x̂k, x̂k) ≤ 1

where the last equality follows equation (4).

3.2. Bounding the Approximation Error by
Operator Norm

Based on the first r eigenfunctions of LN and Lm, we
define two additional linear operators Hr and Ĥr as

Hr[f ](·) =

r∑
i=1

ϕi(·)〈ϕi, f〉

Ĥr[f ](·) =

r∑
i=1

ϕ̂i(·)〈ϕ̂i, f〉

The following lemma relates Hr and Ĥr to matrices
Kr and K̂r, respectively.

Proposition 1. Assume λ̂r > 0 and λr > 0. We have
for any (i, j) ∈ [N ]× [N ][

K̂r

]
i,j

= 〈κ(xi, ·), Ĥrκ(xj , ·)〉

[Kr]i,j = 〈κ(xi, ·), Hrκ(xj , ·)〉

Proof. By the definition of Ĥr and equation (6), we
have

〈κ(xi, ·), Ĥrκ(xj , ·)〉

=

r∑
k=1

1

λ̂k
〈κ(xi, ·), ϕ̂k〉〈κ(xj , ·), ϕ̂k〉

=

m∑
a,b=1

r∑
k=1

1

λ̂k
Ua,kUb,k〈κ(xi, ·), κ(x̂a, ·)〉〈κ(xj , ·), κ(x̂b, ·)〉

=

m∑
a,b=1

r∑
k=1

Ua,kUb,k

λ̂k
[Kb]i,a[Kb]j,b

=

m∑
a,b=1

[Kb]i,aŴa,b[Kb]j,b = [KbŴK>b ]i,j = [K̂r]i,j

Using the fact that Kr = KWK, where

W =

r∑
i=1

1

λi
viv
>
i ,

we apply the same proof to Kr.

Next, we will relate ‖Kr − K̂r‖F to ∆H = Hr − Ĥr.

Note that LN and Hr, Ĥr are self-adjoint operators,
and so is ∆H. In the proof of Theorem 2, we repeat-
edly use

〈f,∆Hg〉 = 〈∆Hf, g〉

NLN (f) =
N∑
i=1

κ(xi, ·)〈f, κ(xi, ·)〉

Theorem 2. Assume λ̂r > 0 and λr > 0. We have

‖K̂r −Kr‖F ≤
√
λ1N‖∆H‖2 ≤ N‖∆H‖2

The proof can be found in the Appendix A. As indi-
cated by Theorem 2, to bound ‖K̂r − Kr‖F , the key
is to bound the spectral norm of operator ∆H.

3.3. Bounding the Operator Norm by Matrix
Perturbation Theory

Our next goal is to bound the spectral norm of ∆H. To
this end, we assume a large eigengap between λr and
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λr+1, i.e., ∆ = (λr−λr+1)/N is sufficiently large. Note
that we normalize λr − λr+1 by N , the size of dataset
D, when defining ∆. Eigengap has the key quantity for
the application of matrix perturbation theory (Stew-
art & guang Sun, 1990). The following perturbation
result from (Stewart & guang Sun, 1990) forms the
foundation of our analysis 5.

Theorem 3. (Theorem 2.7 of Chapter 6 (Stewart &
guang Sun, 1990)) Let (λi,vi), i ∈ [n] be the eigenval-
ues and eigenvectors of a symmetric matrix A ∈ Rn×n
ranked in the descending order of eigenvalues. Set
X = (v1, . . . ,vr) and Y = (vr+1, . . . ,vn). Given a
symmetric perturbation matrix E, let

Ê = (X,Y )>E(X,Y ) =

(
Ê11 Ê12

Ê21 Ê22

)

Let ‖ ·‖ represent a consistent family of norms and set

γ = ‖Ê21‖, δ = λr − λr+1 − ‖Ê11‖ − ‖Ê22‖

If δ > 0 and 2γ < δ, then there exists a unique matrix
P ∈ R(n−r)×r satisfying ‖P‖ < 2γ

δ such that

X ′ = (X + Y P )(I + P>P )−1/2

Y ′ = (Y −XP>)(I + PP>)−1/2

are the eigenvectors of A+ E.

Define

Θ = (ϕ̂1, . . . , ϕ̂r)

Φ = (ϕ1, . . . , ϕr) ,Φ = (ϕr+1, . . . , ϕN )

The following theorem allows us to relate Θ with Φ
and Φ.

Theorem 4. Assume

∆ =
λr − λr+1

N
> 3‖LN − Lm‖HS .

Then, there exists a matrix P ∈ R(N−r)×r satisfying

‖P‖F ≤
2‖LN − Lm‖HS

∆− ‖LN − Lm‖HS
≤ 3‖LN − Lm‖HS

∆

such that

Θ = (Φ + ΦP )(I + P>P )−1/2

The proof can be found in Appendix B. As indicated
by Theorem 4, when the eigengap ∆ is sufficiently
large, we have a small ‖P‖F and therefore Θ ≈ Φ,

5We simplify the statement to make it better fit with
our objective

implying that the eigenfunctions {ϕ̂i}ri=1, computed

based on the samples in D̂, are good approximation of
{ϕi}ri=1, the eigenfunctions of LN . As a result, when
the eigengap ∆ is sufficiently large, we expect a small
difference between Hr and Ĥr because they are con-
structed based on eigenfunctions {ϕi}ri=1 and {ϕ̂i}ri=1,
respectively. This is shown in the next theorem.

Theorem 5. Assume

∆ =
λr − λr+1

N
> 3‖LN − Lm‖HS .

We have

‖∆H‖2 ≤
4‖LN − Lm‖HS

∆− ‖LN − Lm‖HS
≤ 6‖LN − Lm‖HS

∆

The proof can be found in Appendix C. By putting
the results from Theorem 1, 2 and 5, we have the final
theorem for the approximation of the Nyström method
measured in Frobenious norm.

Theorem 6. Assume

∆ =
λr − λr+1

N
> 3‖LN − Lm‖HS .

We have

‖Kr−K̂r‖F ≤
4N‖LN − Lm‖HS

∆− ‖LN − Lm‖HS
≤ 6N‖LN − Lm‖HS

∆

If the eigengap satisfies

∆ = Ω(1) >
12 ln(2/δ)√

m

then, with a probability 1− δ, we have

‖Kr − K̂r‖F ≤ O
(
N√
m

)
Proof. The proof is simply the combination of the re-
sults from Theorem 1, 2 and 5.

‖Kr − K̂r‖F ≤ N‖∆H‖2 ≤
4N‖LN − Lm‖HS

∆− ‖LN − Lm‖HS

≤ 6N‖LN − Lm‖HS
∆

≤ O
(
N√
m

)
where the third inequality follows ‖LN − Lm‖HS ≤
∆/3 and the last inequality follows from Theorem 2.

Note that both conditions λr > 0 and λ̂r > 0, specified
in Theorem 2, hold with a high probability. It is obvi-
ous that λr > 0 because λr > λr+1 and λr+1 ≥ 0. To

show λ̂r > 0 holds with a high probability, we use the
Lidskii’s inequality (Koltchinskii & Gine, 2000), i.e.,

λ̂r ≥ λr −N‖LN − Lm‖HS
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Since with a probability 1− δ, λr − λr+1 ≥ 3N‖LN −
Lm‖HS holds, we have, with a probability 1− δ

λ̂r ≥ λr −
λr − λr+1

3
=

2

3
λr +

1

3
λr+1 > 0

Remark Besides the improved bound for the
Nyström method, Theorem 6 also explains the results
shown in Figure 1. Since the additional approxima-
tion error ‖K −Kr‖F −‖K − K̂r‖F is upper bounded

by ‖Kr − K̂r‖F , according to Theorem 6, we would
expect the additional approximation error bound to
be inversely related to the eigengap λr−λr+1, i.e. the
larger the eigengap, the smaller the additional approx-
imation error.

4. Conclusion

In this paper we tried to bridge the gap between effec-
tiveness of Nyström method in practice and its poor
theoretical approximation error bounds. In particu-
lar, in the case of large eigengap, we developed an
improved bound for the approximation error of the
Nyström method, based on the concentration inequal-
ity and the theory of matrix perturbation. In the fu-
ture, we plan to develop better bounds for the Nyström
method that take into account the eigenvalues of ker-
nel matrix which follow a power law.

Appendix A: Proof of Theorem 2

Since Kr = KWK and K̂r = KbŴK>b , we have

‖KWK −KbŴK>b ‖2F

=

N∑
i,j=1

([KWK]i,j − [KbŴK>b ]i,j)
2

=
N∑

i,j=1

〈κ(xi, ·), (Hr − Ĥr)κ(xj , ·)〉2

=

N∑
i,j=1

〈∆Hκ(xi, ·), κ(xj , ·)〉〈∆Hκ(xi, ·), κ(xj , ·)〉

Using the fact
∑N
j=1〈f, κ(xj , ·)〉〈f, κ(xj , ·)〉 =

N〈f, LNf〉, we have

‖KWK −KbŴK>b ‖2F

= N

N∑
i=1

〈∆Hκ(xi, ·), LN∆Hκ(xi, ·)〉

= N

N∑
i=1

〈κ(xi, ·),∆HLN∆Hκ(xi, ·)〉

We further simplify the expression by using the fact
that for any linear operator Z, we have

N∑
i=1

〈κ(xi, ·), Zκ(xi, ·)〉 = N

N∑
i=1

〈ϕi, (ZLN )ϕi〉

Using the above result with Z = ∆HLN∆H, we have

‖KWK −KbŴK>b ‖2F

= N2
N∑
i=1

〈ϕi, (∆HLN∆HLN )ϕi〉

= N

N∑
i=1

λi〈ϕi, (∆HLN∆H)ϕi〉

≤ Nλ1
N∑
i=1

〈∆Hϕi, LN∆Hϕi〉

= λ1

N∑
i,j=1

λj〈ϕj ,∆Hϕi〉2Hκ
= λ1

N∑
i,j=1

λj〈ϕi,∆Hϕj〉2

where the last one equality follows equation (5).
Define a matrix A = [〈ϕi,∆Hϕj〉]N×N and D =
diag(λ1, . . . , λN ). We have

‖KWK −KbŴK>b ‖2F ≤ λ1tr(ADA)

≤ λ1‖A‖22
N∑
i=1

λi ≤ λ1N‖∆H‖22

where the last step follows from ‖A‖2 = ‖∆H‖2.

Appendix B: Proof of Theorem 4

Define matrix B as

Bi,j =
1

m

m∑
k=1

λ̂k〈ϕ̂k, ϕi〉〈ϕ̂k, ϕj〉.

Let zi be the eigenvector of B corresponding to eigen-
value λ̂i/m. It is straightforward to show that

zi = (〈ϕ1, ϕ̂i〉Hκ , . . . , 〈ϕN , ϕ̂i〉Hκ)>, i ∈ [m]

and therefore we have

ϕ̂i =

N∑
k=1

zi,kϕk, i ∈ [m], or Θ = (Φ,Φ)Z

where Z = (z1, · · · , zr). To decide the relationship be-
tween {ϕ̂i}ri=1 and {ϕi}Ni=1, we need to determine ma-
trix Z. We define matrix D = diag(λ1/N, . . . , λN/N)
and matrix E = B −D, i.e.

Ei,j = Bi,j − λiδi,j/N = 〈ϕi, (Lm − LN )ϕj〉Hκ .
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Following the notation of Theorem 3, we define X =
(e1, . . . , er) and Y = (er+1, . . . , eN ), where e1, . . . , eN
are the canonical bases of RN , which are also eigen-
vectors of D. Define δ and γ as follows

γ =

√√√√ r∑
i=1

N∑
j=r+1

〈ϕi, (LN − Lm)ϕj〉2Hκ

δ = ∆−

√√√√ r∑
i,j=1

〈ϕi, (LN − Lm)ϕj〉2Hκ

−

√√√√ N∑
i,j=r+1

〈ϕi, (LN − Lm)ϕj〉2Hκ

It is easy to verify that γ, δ are defined with respect
to the Frobenius norm of Ê in Theorem 3. In order to
apply the result in Theorem 3, we need to show δ > 0
and γ < δ/2. To this end, we need to provide the lower
and upper bounds for γ and δ, respectively. We first
bound δ as

δ −∆ ≥ −

√√√√ N∑
i,j=1

〈ϕi, (LN − Lm)ϕj〉2Hκ

= −‖LN − Lm‖HS

We then bound γ as

γ =

√√√√ r∑
i=1

N∑
j=r+1

〈ϕi, (LN − Lm)ϕj〉2Hκ

≤

√√√√ N∑
i=1

N∑
j=1

〈ϕi, (LN − Lm)ϕj〉2Hκ

= ‖LN − Lm‖HS

Hence, when ∆ > 3‖LN−Lm‖HS , we have δ > 2γ > 0,
which satisfies the condition specified in Theorem 3.
Thus, according to Theorem 3, there exists a P ∈
R(N−r)×r satisfying ‖P‖ < 2γ/δ, such that

Z = (z1, . . . , zr) = (X + Y P )(I + P>P )−1/2

implying

Θ = (Φ,Φ)Z = (Φ + ΦP )(I + P>P )−1/2

Appendix C: Proof of Theorem 5

To bound ‖∆H‖2, it is sufficient to bound
max‖f‖Hκ≤1〈f,∆Hf〉. Consider any function f(·) =∑N
i=1 fiϕi(·), with ‖f‖Hκ ≤ 1. Let f = (f1, . . . , fN )>.

Evidently, we have ‖f‖2 ≤ 1. We have

〈f, Ĥrf〉 =

r∑
i=1

N∑
a,b=1

fafb〈ϕa, ϕ̂i〉〈ϕb, ϕ̂i〉 = ‖A>f‖22

〈f,Hrf〉 =

r∑
i=1

N∑
a,b=1

fafb〈ϕa, ϕi〉〈ϕb, ϕi〉

= f>
(
Ir×r 0

0 0

)
f

where A = [〈ϕi, ϕ̂j〉Hκ ]N×m = (Φ,Φ)>Θ. Since ∆ >
3‖LN − Lm‖HS , according to Theorem 4, there exists
an matrix P ∈ R(N−r)×r satisfying

‖P‖F ≤
2‖LN − Lm‖HS

∆− ‖LN − Lm‖HS
such that

Θ =
(
Φ + ΦP

)
(I + P>P )−1/2

Using the expression of Θ, we compute A as

A = (Φ,Φ)>Θ = (Φ,Φ)>
(
Φ + ΦP

)
(I + P>P )−1/2

=

(
I
P

)
(I + P>P )−1/2

Thus, we have

〈f,∆Hf〉 = f>
((

I 0
0 0

)
−AA>

)
f = f>Cf

where C is given by

C =

(
I − (I + P>P )−1 (I + P>P )−1P>

P (I + P>P )−1 −P (I + P>P )−1P−1

)
=

(
(I + P>P )−1P>P (I + P>P )−1P>

P (I + P>P )−1 −P (I + P>P )−1P>

)
Rewrite f = (fa, fb) where fa ∈ Rr includes the first r
entries in f and fb includes the rest of the entries in f .
We have

f>Cf ≤
(
‖fa‖22 + ‖fb‖22

)
‖P (I + P>P )−1P>‖2

+ 2‖fa‖‖fb‖
∥∥(I + P>P )−1P

∥∥
2

≤ (‖fa‖2 + ‖fb‖2)2·
max

(∥∥P (I + P>P )−1P>
∥∥
2
,
∥∥(I + P>P )−1P>

∥∥
2

)
≤ 2 max

(∥∥P (I + P>P )−1P>
∥∥
2
,
∥∥(I + P>P )−1P>

∥∥
2

)
Since ‖P‖2 ≤ ‖P‖F ≤ 1 because ∆ > 3‖LN − Lm‖HS
and ∥∥P (I + P>P )−1P>

∥∥
2
≤ ‖P‖22∥∥(I + P>P )−1P>

∥∥
2
≤ ‖P‖2
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we have

max
‖f‖Hκ≤1

〈f,∆Hf〉 = f>Cf

≤ 2‖P‖2 ≤ 2‖P‖F ≤
4‖LN − Lm‖HS

∆− ‖LN − Lm‖HS
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