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Abstract

We study the problem of multiple kernel
learning from noisy labels. This is in contrast
to most of the previous studies on multiple
kernel learning that mainly focus on develop-
ing efficient algorithms and assume perfectly
labeled training examples. Directly apply-
ing the existing multiple kernel learning algo-
rithms to noisily labeled examples often leads
to suboptimal performance due to the incor-
rect class assignments. We address this chal-
lenge by casting multiple kernel learning from
noisy labels into a stochastic programming
problem, and presenting a minimax formula-
tion. We develop an efficient algorithm for
solving the related convex-concave optimiza-
tion problem with a fast convergence rate of
O(1/T ) where T is the number of iterations.
Empirical studies on UCI data sets verify
both the effectiveness and the efficiency of
the proposed algorithm.

1. Introduction

Multiple Kernel Learning (MKL) (Lanckriet et al.,
2004) has attracted a significant amount of in-
terest in both machine learning and data mining
communities due to the success of kernel meth-
ods (Schölkopf & Smola, 2001). MKL aims to learn
an optimal combination of multiple kernels and a non-
linear classifier from the Reproducing Kernel Hilbert
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Space (RKHS) endowed with the combined kernel.

Most of the previous studies on MKL has focused on
designing efficient algorithms for solving the related
optimization problem. Research has also been done to
study the effect of different regularizers on the combi-
nation of multiple kernels, including sparse regularizer
ℓ1 norm, non-sparse regularizer ℓ2 norm, and in gen-
eral ℓp norm. One limitation of these studies is that
they all assume perfectly labeled training examples,
which significantly limits their application to problems
where class assignments are often noisy and inaccu-
rate. Noisy class assignments could arise either from
the biases of human subjects or because the class la-
bels are automatically derived from side information
(e.g., hyperlink information (Yang et al., 2010)).

In this work, we address this limitation by casting
MKL from noisy labels into a stochastic programming
problem (Kall & Wallace, 1994). The key idea is to
introduce a binary random variable for each train-
ing example to indicate if the class assignment of
the example is correct. Using introduced binary ran-
dom variables, we turn the deterministic constraint in
MKL into a chance constraint (Ben-Tal et al., 2009),
leading to a stochastic programming formulation1.
By assuming that the percentage of incorrectly la-
beled training examples is given, we approximate

1It is important to distinguish stochastic program-
ming (Kall & Wallace, 1994) from stochastic optimiza-
tion (Robbins & Monro, 1951). The former refers to the
set of problems where the solution is affected by the uncer-
tainty of the system to be optimized, while the later refers
to the optimization algorithm (usually iterative) that de-
pends on random variables. In particular, stochastic op-
timization can be applied to solving a deterministic opti-
mization problem.
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the stochastic programming problem into a convex-
concave optimization problem. Unlike many previous
studies (Lawrence & Schölkopf, 2001; Pal et al., 2007;
Yang et al., 2010) on learning with noisy labeled data
that make strong assumptions about the noise model
(e.g. conditional independence assumption between
noisy label and the data given the true label), our
framework depends only on a mild assumption about
the noise (see section 3.2), making it practically more
useful. Notably, we do NOT assume the label noise
of different examples are independent, a common as-
sumption shared by most existing studies on learn-
ing from noisy labels (Biggio et al., 2011; Yang et al.,
2010). Based on the mirror prox method (Nemirovski,
2005), we develop a first order method for solving
the related convex-concave optimization problem. Our
analysis shows the convergence rate of O(1/T ) for the
proposed algorithm, significantly faster than the classi-
cal O(1/

√
T ) rate. Empirical studies on five UCI data

sets confirm the effectiveness and the efficiency of the
proposed framework and the optimization algorithm.

2. Related Work

Our work is closely related to MKL. Various cri-
teria have been developed to find the optimal ker-
nel combination, such as maximum classification
margin (Lanckriet et al., 2004) and kernel align-
ment (Cristianini et al., 2002; Cortes et al., 2010a).
Among them, maximum margin MKL receives most
attention due to its empirical success and its close
relationship with Support Vector Machines (SVMs).
Many algorithms have been developed for max-
margin MKL by formulating the problem into Semi-
Definite Programming (Lanckriet et al., 2004), Sec-
ond Order Cone Programming (Bach et al., 2004), and
Semi-Infinite Linear Programming (Sonnenburg et al.,
2006). Due to their high computational cost, these
approaches are unable to handle large data sets
and a large number of kernels. A number of effi-
cient algorithms, based on alternating optimization,
have been proposed for MKL (Rakotomamonjy et al.,
2008; Xu et al., 2010). Besides efficient learning
algorithms, various regularizers have been studied
for MKL, including ℓ1 norm (Rakotomamonjy et al.,
2008; Xu et al., 2010), ℓ2 norm (Cortes et al., 2009),
and ℓp norm (Kloft et al., 2009).

Our work is also related to learning with noisy labels.
Lawrence & Schölkopf (2001) propose a probabilistic
model for learning a kernel Fisher Discriminant from
noisy labels. Pal et al. (2007) present a probabilistic
model for extracting location information for events
with noisy training labels. Ramakrishnan et al. (2005)

propose a Bayeisan model for learning with approxi-
mate, noisy or incomplete labels. Yang et al. (2010)
propose a generalized maximum entropy model for
learning from noisy side information. These proba-
bilistic approaches have to make strong assumptions
about label noise, which significantly limit their ap-
plications to real-world problems. In addition, it is
difficult to adapt them to MKL. Several recent stud-
ies (Huang et al., 2010) address the limitation of prob-
abilistic approaches by exploring the robust optimiza-
tion (Ben-Tal et al., 2009). Our study is particularly
related to the recent work on robust SVM (Xu et al.,
2006; Yu et al., 2011) in which a SVM classifier is
learned in the presence of outliers. Our work differs
from these studies in two aspects. First, we address
a different learning problem (i.e., MKL from noisy la-
bels). Second, our work is based on stochastic pro-
gramming that makes least possible assumption about
the noise model compared to the other approaches.

3. Multiple Kernel Learning From

Noisy Labels

We first review a formulation of MKL based on the
equivalence between MKL and group Lasso (Xu et al.,
2010; Bach, 2008). We then describe the problem
of MKL from noisy labels and present a stochastic
programming framework to formulate it. Finally, we
present an efficient algorithm for solving the related
convex-concave optimization problem.

3.1. Multiple Kernel Learning (MKL)

Let D = {(xi, yi), i = 1, · · · , n} be the training
data, where xi ∈ R

d denotes the ith instance and
yi ∈ {−1, 1} denotes its binary label. We use y =
(y1, · · · , yn)⊤ to represent the class assignment of all
training examples. We denote by {κj(·, ·) : Rd×R

d 7→
R, j ∈ [m]} the set of m kernels to be combined,
and by Hκj

the corresponding Reproducing Kernel
Hilbert Space (RKHS) endowed by κj . We use u =
(u1, · · · , um)⊤ for the combination weights of multiple
kernels, κu =

∑
j ujκj for the combined kernel, and

Hκu
for the RKHS endowed by κu. In this work, we

consider u ∈ ∆, where ∆ = {u ∈ R
m
+ :

∑
j uj = 1} is

a simplex. MKL can be cast as the following problem:

min
f∈Hκu

,u∈∆

λ

2
‖f‖2Hκu

+
1

n

n∑

i=1

ℓ(yif(xi)), (1)

where ℓ(z) = max(0, 1 − z) is the hinge loss function.
It has been shown that the problem in (1) is equivalent
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to the following problem (Micchelli & Pontil, 2005),

min
{fj}m

j=1

λ

2




m∑

j=1

‖fj‖Hκj




2

+
1

n

n∑

i=1

ℓ


yi

m∑

j=1

fj(xi)


 ,

(2)

or equivalently

min
t,{fj}m

j=1

λ

2




m∑

j=1

‖fj‖Hκj




2

+ t (3)

s.t.
1

n

n∑

i=1

ℓ


yi

m∑

j=1

fj(xi)


 ≤ t, (4)

where fj belongs to Hκj
and t is a slack variable to

be optimized. Given the solutions fj , j ∈ [m] to (3),
the final classifier is defined as f(x) =

∑m

j=1 fj(x). In

the sequel, we use the notation f(x) =
∑m

j=1 fj(x) to
simplify our presentation. Our formulation for MKL
from noisy labels is based on the formulation in (3). In
the next subsection, we present a stochastic program-
ming framework for MKL from noisy labels. Due to
the limit of space, we put the proofs of most analysis
in the supplementary material.

3.2. A Stochastic Programming Framework for
MKL from Noisy Labels

In the case of noisy labels, we have some incorrect class
assignments for the training examples in D. The key
challenge is that we do not know which examples are
incorrectly labeled. To facilitate learning from noisy
labels, we assume the noise level of class assignments
q ∈ [0, 1/2), i.e., the expected probability for any ran-
domly chosen example to be incorrectly labeled, is
given.

For a given pair (x, y), let ξ(x, y) ∈ {0, 1} be a binary
random variable indicating if y is a correct label of x
(1) or not (0), and p(x, y) = Eξ|(x,y)[ξ(x, y)] be the
probability for y to be a correct label of x.

Assumption 1. The noise level q is given, i.e.,

q = 1− E(x,y)[p(x, y)].

With Assumption 1, we present the following propo-
sition to bound the empirical mean of p(x, y) on the
training examples.

Proposition 1. Let ξi, i ∈ [n] denote the binary indi-
cator variable of noise on the training examples, and
pi = E[ξi]. Given the noise level q, with probability at
least 1− ǫ, we have

1

n

n∑

i=1

pi ≤ 1− q +
τ√
n
,

where τ =
√
(1/2) ln(1/ǫ).

The proposition follows directly from the Hoeffding’s
inequality (Boucheron et al., 2004).

To handle the noisy labels, we consider a stochas-
tic programming (Kall & Wallace, 1994) framework.
More specifically, given the unknown random vari-
ables ξ = (ξ1, . . . , ξn), where ξi = ξ(xi, yi), we relax
the deterministic constraint in (4) into a chance con-
straint (Ben-Tal et al., 2009)

Pr

(
1

n

n∑

i=1

ξiℓ (yif(xi)) > t

)
≤ ǫ, (5)

where Pr(·) takes over the unknown joint distribution
of binary random variables ξ, and ǫ ∈ (0, 1) bounds
the probability for the constraint in (3) to be vio-
lated. The chance constraint in (5) requires that there
is only a small chance for the constraint to be vio-
lated by the unknown correctly labeled examples. It
has also been used for handling the uncertainty be-
fore. In (Bhadra et al., 2010), the authors introduce
the chance constraints to handle the uncertainty in
the elements of a kernel matrix, while the chance con-
straint in (5) is introduced to handle the uncertainty
in the class labels.

Using the chance constraint in (5), we have the follow-
ing stochastic programming problem for MKL from
noisy labels:

min
t,{fj}m

j=1

λ

2




m∑

j=1

‖fj‖Hκj




2

+ t (6)

s.t. Pr

(
1

n

n∑

i=1

ξiℓ (yif(xi)) > t

)
≤ ǫ.

A major challenge of solving the stochastic program-
ming problem in (6) is that the joint distribution for
ξ is unknown. The following lemma allows us to alle-
viate this challenge.

Lemma 1. If the following inequality holds,

1

n

n∑

i=1

E[ξi]ℓ (yif(xi)) ≤ t− τ

√√√√ 1

n2

n∑

i=1

ℓ2 (yif(xi)),

where τ =
√
(1/2) ln(1/ǫ), then the chance constraint

in (5) is satisfied.

The proof follows immediately from the McDiarmid
inequality (Boucheron et al., 2004). It is important
to note that Lemma 1 holds WITHOUT having to
assume that the binary random variables {ξi}mi=1 are
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independent, a common assumption that appears in
almost all the studies on learning from noisy labels.

Using Lemma 1, we relax the problem in (6) into the
following optimization problem

min
t,{fj}m

j=1

λ

2




m∑

j=1

‖fj‖Hκj




2

+ t (7)

s.t.
1

n

n∑

i=1

piℓ (yif(xi)) +
τ

n

√√√√
n∑

i=1

ℓ2 (yif(xi)) ≤ t, (8)

where pi denotes E[ξi]. We can turn the constrained
problem into non-constrained problem by replacing t
in (7) with the lower bound in (8). There are two
problems with directly optimizing (7). First, the sec-
ond term in the lower bound of t in (8) is square-root
of a quadratic form on the training loss, making the
optimization problem difficult to solve. Second, the
variables {pi}ni=1 are unknown. Without knowing the
value of {pi}ni=1, it is impossible to solve the optimiza-
tion problem in (7).

To address the first problem, we use the inequality√∑n
i=1 ℓ

2
i ≤ ∑n

i=1 |ℓi| to relax the constraint in (8)
into

1

n

n∑

i=1

piℓ (yif(xi)) +
τ

n

n∑

i=1

ℓ (yif(xi)) ≤ t. (9)

Note that inequality (9) indicates inequality (8), and
therefore guarantees that the chance constraint in (5)
holds. Then we turn problem (7) into

min
t,{fj}m

j=1

λ

2




m∑

j=1

‖fj‖Hκj




2

+ t

s.t.
1

n

n∑

i=1

(pi + τ)ℓ (yif(xi)) ≤ t,

or equivalently

min
{fj}m

j=1

λ

2




m∑

j=1

‖fj‖Hκj



2

+
1

n

n∑

i=1

(pi + τ) ℓ (yif(xi)) .

To address the second problem, we propose the follow-
ing minimax formulation

min
{fj}m

j=1

max
p∈Q

λ

2




m∑

j=1

‖fj‖Hκj



2

+
1

n

n∑

i=1

(pi + τ)ℓ (yif(xi)) ,

(10)

where Q = {p ∈ [0, 1]n,
∑

i pi ≤ (1 − q)n + τ
√
n} is a

domain for p justified by Proposition 1.

Remark: We choose to maximize over p ∈ Q be-
cause it guarantees that the loss of any choice of cor-
rectly labeled examples is minimized. The idea of us-
ing the worst case analysis is closely related to robust
optimization (Ben-Tal et al., 2009), which has been
adopted by several recent studies, including budget
SVM (Dekel & Singer, 2006), and robust metric learn-
ing (Huang et al., 2010). Note that an alternative ap-
proach is to consider the best case analysis (a strategy
taken in robust SVM (Xu et al., 2006; Yu et al., 2011))
by minimizing the robust hinge loss, which can be de-
fined as minp∈Q

∑
i(piℓi+1−pi), where ℓi denotes the

loss on ith example, to address the uncertainty arising
from noisy labels.

There are several problems with the alternative ap-
proach. First, minimization over p will lead to a non-
convex optimization problem, as shown in (Xu et al.,
2006), making it difficult, if not impossible, to develop
an efficient learning algorithm to find the global op-
timum. Second, unless a strong assumption is made
about the examples with incorrect labels, minimiza-
tion over p will not provide any guarantee about
the generalized performance of the resulting classifier.
Third, the formulation with minimization over p does
not reduce to the normal case in (2) when there is no
noise.

In contrast, our problem is a convex-concave problem,
which allows us to derive an efficient optimization al-
gorithm to solve it. Also, we do NOT make any as-
sumption on the noisy labels except assuming that the
noise level is given. More ever, the generalization er-
ror of the kernel classifier learned from (10) is given in
Theorem 1, which also justifies the maximization over
p. Finally, it is straightforward to show that our for-
mulation in (10) reduces to (2) when there is no noise.
This point is also demonstrated by our empirical stud-
ies.

Theorem 1. Assume that the number of incorrectly
labeled instances in D is no more than nq. Let
fj , j ∈ [m] be the final solutions to (10) and set
f(x) =

∑m

j=1 fj(x). With probability at least 1 − δ,
we have

E(x,y) [ℓ (yf(x))] ≤ max
p∈Q

1

n(1− q)

n∑

i=1

piℓ (yif(xi))

+

√
2(1 + τ)

n(1 − q)λ

[
4 +

√(
1 +

λ

2(1 + τ)

)
ln

1

δ

]
.

Remark: The bound scales with 1/(1 − q), so when
the noise level q is large, the generalization bound is
also large. Additionally, we can see that with a proba-
bility (1−m−k), where k is an integer, the generaliza-
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tion error bound has an additional term of
√
lnm/n,

which is a tight bound for ℓ1-regularized MKL in terms
of the number of kernels (Ying & Campbell, 2009;
Cortes et al., 2010b).

3.3. An Efficient Optimization Algorithm

In this section, we present an efficient algorithm for
solving the minimax problem in (10). We first present
an alternative formulation for (10), i.e.,

min
{fj}m

j=1

max
α∈Qα

λ

2




m∑

j=1

‖fj‖Hκj




2

+
1

n

n∑

i=1

αi (1− yif(xi)) ,

(11)

where Qα = {α : α ∈ [0, 1 + τ ]n, ‖α‖1 ≤ ρ}, and
ρ = (1− q + τ + τ/

√
n)n. This is obtained by writing

ℓ(yif(xi)) = max(0, 1 − yif(xi)) = maxβi∈[0,1] βi(1 −
yif(xi)), and introducing {αi = βi(pi + τ)}ni=1.

Before presenting the optimization algorithm, we in-
troduce a few notations that will be used throughout
this section. We denote by f = (f1, · · · , fm)⊤ ∈ H
where H = (Hκ1

, · · · ,Hκm
), and by R(f) and L(f, α)

the first term and the second term in the objective
function in (11), respectively. We write the problem
in (11) as

min
f∈H

max
α∈Qα

F (f, α) = R(f) + L(f, α).

In the following, we refer to f as the primal vari-
able and α as the dual variable. We denote
by ∇fL(f, α) = (∇f1L(f, α), · · · ,∇fmL(f, α))⊤ and
∇αL(f, α) the partial gradients of L(f, α) in terms of
f and α, respectively. We use the notations ‖fj‖ =
‖fj‖Hκj

, and ‖f‖2 =
∑

j ‖fj‖2Hκj
for short. We de-

note by
∏

Q[v̂] the projection v̂ into domain Q, i.e.∏
Q[v̂] = argminv∈Q

1
2‖v− v̂‖2, where ‖ · ‖ is ℓ2 norm

when it is applied to a vector, and a RKHS norm when
applied to a function.

Next, we present an accelerated mirror prox method
that extends the mirror prox method (Nemirovski,
2005) to efficiently solve the convex-concave optimiza-
tion problem in (11). The main limitation of the orig-
inal mirror prox method is that it is only applicable to
smooth objective functions whose gradients are Lips-
chitz continuous, which unfortunately is not the case
for the problem in (11) because R(f) is not a smooth
function in f . Algorithm 1 outlines the key steps of
this method. In Algorithm 1, we maintain two copies
for the dual variables (i.e., α and β), but only one
copy for the primal variable f . This is in contrast to
the mirror prox method that introduces two copies for
both primal and dual variables. Another key difference

Algorithm 1 An Accelerated Mirror Prox Method

1: Input: step size γ =
√
n/(2m)

2: Initialization: β0 = 0, f0 = 0
3: for t = 1, 2, . . . , T do

4: αt =
∏

Qα

[βt−1 + γ∇αL(f
t−1, βt−1)]

5: f t = argminf∈H
1
2

∥∥∥f − f̂ t−1
∥∥∥
2

+ γR(f)

where f̂ t−1 = f t−1 − γ∇fL(f
t−1, αt)

6: βt =
∏

Qα

[βt−1 + γ∇αL(f
t, αt)]

7: end for
8: Output: f̂T =

∑
t f

t/T, α̂T =
∑

t αt/T

between Algorithm 1 and the mirror prox method is
that in step 5, we update the primal variable f by a
composite gradient mapping (Nesterov, 2007), instead
of a gradient mapping. It is this step that allows us
to solve the convex-concave optimization problems ef-
ficiently with a convergence rate of O(1/T ), without
having to assume that the gradients of the objective
function are Lipschitz continuous. It is important to
point out that accelerated proximal gradient method
by Tseng (Tseng, 2008) is not applicable to (11), since
it requires the Lipschitz continuous gradients.

In order to efficiently implement Algorithm 1, we need
to efficiently solve the optimization problems in steps
4, 5, and 6. The gradient mapping problems in steps 4
and 6 can be solved by utilizing the following lemma.

Lemma 2. The optimal solution α∗ to
∏

Qα
[α̂] is

given by α∗
i = [α̂i−η][0,1+τ ], i = 1, · · · , n, where [s][a,b]

is projection of the number s into the range [a, b], and
η = 0 if

∑
i[α̂i][0,1+τ ] < ρ, otherwise η is the solution

to the following equation

∑

i

[α̂i − η][0,1+τ ] − ρ = 0. (12)

Since
∑

i[α̂i− η][0,1+τ ]−ρ is monotonically decreasing
function in η, we can efficiently compute η in (12) by
bisection search.

The composite gradient mapping in step 5 is

min
{fj}m

j=1

1

2

∑

j

‖fj − f̂ t−1
j ‖2 + γλ

2




m∑

j=1

‖fj‖




2

, (13)

where f̂ t−1
j = f t−1

j − γ∇fjL(f
t−1, αt), and it can be

solved by the following lemma.

Lemma 3. The optimal solution to (13) denoted by
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f∗
j , j ∈ [m] is given by

f∗
j =

[
1− γλµt

2‖f̂ t−1
j ‖

]

+

f̂ t−1
j ,

where [z]+ = z if z > 0 and 0 otherwise, and µt is the
solution to the following equation,

∑

j

[
1− γλµt

2‖f̂ t−1
j ‖

]

+

‖f̂ t−1
j ‖ − µt = 0,

where µt can be computed by efficient bisection search.

Remark: Note that since the partial gradient
∇fjL(f, α) = −(1/n)

∑n

i=1 αiyiκj(xi, ·), hence, when
updating the kernel classifier fj , we can write it in a
parameterized form fj =

∑n
i=1 ziyiκj(xi, ·) and up-

date the coefficients z = (z1, · · · , zn) at each iteration.

We conclude this subsection by presenting the conver-
gence rate for Algorithm 1.

Theorem 2. By running Algorithm 1 with T itera-
tions, we have

max
α∈Qα

F (f̂T , α)−min
f

F (f, α̂T ) ≤
(
∥∥f∗‖2 + ‖α∗‖22

)√
m√

2nT
,

where f∗ = (f∗
1 , · · · , f∗

m)⊤ = argminf F (f, α̂T ) and

α∗ = argmaxα∈Qα
F (f̂T , α).

Theorem 2 indicates a O(1/T ) convergence rate for
the accelerated mirror prox method presented in Al-
gorithm 1 that is significantly faster than traditional
O(1/

√
T ) convergence rate for non-smooth optimiza-

tion problems. This is also demonstrated by our em-
pirical studies.

4. Experiments

In this section, we simulate our experiments on UCI
data sets to verify the effectiveness and efficiency of
the proposed algorithm for MKL from noisy labels.
In a simulated environment, we can control the noise
level to better understand the behavior of the pro-
posed algorithm under different noise levels compared
to baseline algorithms. We choose five data sets
from UCI repository that have been used in MKL
studies (Rakotomamonjy et al., 2008; Xu et al., 2010).
The statistics of the data sets are summarized in Table
1. We normalize the data by scaling each attribute to
[0, 1]. This is done by first subtracting each attribute
from its minimal value and then dividing it by the dif-
ference between the maximal and the minimal value
of the attribute. To generate label noise, we randomly
flip the class label of each example with a probability

of q. To create multiple kernels, we follow the setup
in (Xu et al., 2010) to generate Gaussian kernels with
10 different width {2−3, 2−2, · · · , 26} for all features
as well as for individual features, leading to a total of
m = 10(d + 1) kernels for each data set, where d is
the number of features. We split the data into 80% for
training and 20% for testing.

In the experiments, we focus on verifying the proposed
stochastic programming framework for handling the
noise in labels. We choose two baselines for compar-
ison where one directly optimizes the objective in (2)
assuming the labels are all correct, and the other one
adopts a different strategy (i.e. minimization instead
of maximization over p) to handle the noise. By com-
paring with the first baseline, we are able to verify
that existence of noise in labels significantly deterio-
rates the performance and therefore handling the noise
is important. By comparing with the second base-
line, we are able to verify the proposed stochastic pro-
gramming framework with maximization over p is a
good choice for handling the noise. For the first base-
line, we choose Simple MKL (SiPMKL) algorithm,
a state-of-the-art algorithm for ℓ1 regularized MKL2.
For the second baseline, we extend the idea of robust
SVM (Xu et al., 2006) to MKL from noisy labels by
using the robust hinge loss and minimizing over p ∈ Q.
We refer to this baseline as MiPMKL. Finally, we re-
fer to proposed algorithm as StPMKL.

In implementing the proposed algorithm, we project
αi into [0, 1] by absorbing the upper bound 1 + τ
into the regularization parameter λ and the bound
parameter ρ(τ). The regularization parameter λ in
the proposed algorithm (and baselines as well) is cho-
sen by cross validation on a validation data of 10%
examples randomly selected from the training data.
The parameter ρ(τ) is also tuned among several val-
ues [1, 0.9, 0.8, 0.7, 0.6, 0.5]n on the validation data. To
make fair comparison, we use the same stopping cri-
terion for all algorithms, i.e., algorithms stop if the
duality gap is less than threshold ε = 10−2 or the
maximum number of iterations T = 1000 is reached.
We repeat each experiment five times, and report the
results by averaging over the 5 trials.

The left panels of Figure 1 show the classification ac-
curacy of algorithms with noise level q varied from 0 to
0.4 on the five data sets. We observe that for almost

2We do not compare many other MKL algorithms be-
cause (i) some algorithms (Xu et al., 2010) optimize the
same objective as in (2), (ii) some algorithms (Cortes et al.,
2009; Kloft et al., 2009) focus on different regularizations
(e.g. ℓ2 or ℓp), and (iii) some algorithms (Cristianini et al.,
2002; Cortes et al., 2010a) use different criteria (e.g. kernel
alignment).
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Table 1. Statistics of Data Sets

Data Set #Examples #Features

ionosphere 351 34
heart 270 13
sonar 208 60
breast-cancer 683 10
australia 690 14
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all cases, (i) the proposed algorithm is significantly
more resilient than SiPMKL algorithm to the label
noise; (ii) the worst case analysis (StPMKL) is better
than the best case analysis (MiPMKL) for noisy la-
bels, particularly when the noise level is high; and (iii)
when no noise is added (q=0), StPMKL achieves sim-
ilar performance, if not the same, to SiPMKL, while
MiPMKL could give different results (e.g. on iono-
sphere, heart, sonar). The reason is that the objective
in StPMKL reduces to the objective in SiPMKL
when q = 0, however, it is not the case for MiPMKL.
This observation is consistent with our discussion in
section 3.2 above Theorem 1.

Finally, we verify the efficiency of the accelerated mir-
ror prox method. We compare the proposed accel-
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Figure 1. Comparison of accuracy (ACC) with varied noise
levels (left panel) and comparison of convergence speed
(right panel).

erated mirror prox (AMP) method to the variational
inequality method (VI) (Nemirovski, 1994) (i.e. gradi-
ent descent method for convex-concave problem). For
fair comparison, we fix λ = 0.01 and ρ = 100. The step
size in variational inequality method is set to γ0/

√
T

where we tune γ0 in the range of [0.01, 0.1, 1, 10, 100]
and the best convergence with the best γ0 is finally
reported. We run both algorithms with 1000 itera-
tions, and plot the duality gap versus the number of
iterations. The results are shown in the right panels
of Figure 1, which verify that the accelerated mirror
prox method is significantly more efficient than the
variational inequality method.

5. Conclusions

In this paper, we present a stochastic programming
framework for multiple kernel learning from noisy la-
bels. We formulate the problem into a convex-concave
optimization problem. We also present an efficient ac-
celerated mirror prox method for solving the related
convex-convex problem. Empirical studies in a simu-
lated environment verify the effectiveness of the pro-
posed framework and the efficiency of the developed
optimization algorithm. For future work, we plan
to apply the proposed approach to real-world prob-
lems with inherent noise in labels where the noise may
not be synthetically generated by independent random
flipping. An open problem associated with it would be
how to obtain the knowledge of the noise level.
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