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ABSTRACT
We study the problem of building the classification model
for a target class in the absence of any labeled training ex-
ample for that class. To address this difficult learning prob-
lem, we extend the idea of transfer learning by assuming
that the following side information is available: (i) a collec-
tion of labeled examples belonging to other classes in the
problem domain, called the auxiliary classes; (ii) the class
information including the prior of the target class and the
correlation between the target class and the auxiliary classes.
Our goal is to construct the classification model for the tar-
get class by leveraging the above data and information. We
refer to this learning problem as unsupervised transfer
classification. Our framework is based on the generalized
maximum entropy model that is effective in transferring the
label information of the auxiliary classes to the target class.
A theoretical analysis shows that under certain assumption,
the classification model obtained by the proposed approach
converges to the optimal model when it is learned from the
labeled examples for the target class. Empirical study on
text categorization over four different data sets verifies the
effectiveness of the proposed approach.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Design Methodology—Classi-
fier design and evaluation; H.1 [Models and Principles]:
Miscellaneous

General Terms
Algorithms, Experimentation
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Unsupervised Transfer Classification, Text Categorization,
Generalized Maximum Entropy
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1. INTRODUCTION
Semi-supervised learning is designed to reduce the num-

ber of labeled examples for building accurate classification
model by utilizing unlabeled data. Many semi-supervised
learning techniques ([31] and references therein) have been
developed and successfully applied to text categorization. In
this work, we examine the problem of learning the classifica-
tion model for a given class, called the target class, without
a single labeled training example for that class. This can be
viewed as an extreme case of semi-supervised learning. In
order to address this difficult learning problem, we extend
the idea of transfer learning by assuming that the following
side information is available

• a collection of labeled training examples for the classes
other than the target class, called the auxiliary classes,
and

• the class information, including the prior for the tar-
get class and the conditional probabilities between the
target class and the auxiliary classes.

Our goal is to construct the classification model for the tar-
get class by effectively transferring the label information of
the auxiliary classes to the target class. We refer to the
above problem as unsupervised transfer classification
in order to distinguish from most studies in transfer learning
for classification where some labeled examples are available
for the target class.

Unsupervised transfer classification is particularly useful
when the target class does not have any labeled example.
This scenario is encountered in many applications. For in-
stance, in automatic image annotation [12], given the lim-
ited size of the vocabulary that is used for training, we often
encounter the problem of how to annotate images with a
keyword outside the training vocabulary. A similar problem
arises in social tagging [14] when some of the tags are so
rare that it becomes difficult to collect any useful example
for these tags. The unsupervised transfer classification can
be applied to these problems by automatically learning an
annotation model for the new keyword (or rare tag) even if
it does not have a single labeled example.

We address the problem of unsupervised transfer classifi-
cation by effectively transferring the label information of the
auxiliary classes to the target class. We propose a framework
based on the generalized maximum entropy model that effec-
tively leverages the class information as well as the training
examples for the auxiliary classes. Our analysis shows that
under certain assumption, the classification model found by
the proposed approach will converge to the optimal model



when it is learned from the labeled examples for the target
class. An empirical study on text categorization over four
different data sets verifies the efficacy of the proposed ap-
proach. The contributions of this paper are summarized as
follows:

• We propose a generalization of the traditional maxi-
mum entropy method for classification.

• We present a framework for unsupervised transfer clas-
sification based on the generalized maximum entropy
model.

• We provide a consistency analysis of the proposed ap-
proach under certain assumption.

• We design an efficient algorithm to solve the optimiza-
tion problem.

The remainder of this paper is organized as follows. In sec-
tion 2, we review some related work. In section 3, we present
the framework for unsupervised transfer classification. We
present experimental results in section 4, and finally con-
clude in section 5.

2. RELATED WORK
Our work is related to transfer learning, multi-label learn-

ing, and maximum entropy learning.
Transfer Learning The objective of transfer learning is

to transfer the knowledge from the source domain to the
target domain. The transferred knowledge can take various
forms, such as knowledge about training examples [7, 11, 17],
knowledge of feature representation [2, 3, 8], and knowledge
of model parameters [16, 4, 27] and many others [21]. Since
the objective of our work is to transfer the label information
of the auxiliary classes to the target class, it is closely re-
lated to the study of transfer learning. Unlike most studies
in transfer learning for classification that require labeled ex-
amples for the target class, we assume no labeled example is
available for the target class, making it a more challenging
and realistic problem in many applications.

Multi-label Learning Several multi-label learning algo-
rithms [26, 29, 30, 13, 10] have been designed to exploit
the correlation between classes for constructing classifica-
tion models. [26] proposes a generative model for multi-label
learning to incorporate the pairwise class correlation infor-
mation; [29] exploits the class correlation by introducing a
common prior shared by all classes; Zhu et al. [30] propose
a maximum entropy model for multi-label learning that ex-
ploits the class correlation information. [13] explores the
class correlation in a label propagation framework. In [10],
a common subspace is assumed to be shared by all the labels.
Our work is related to these studies in exploring the class
correlation for classification, but differs from these studies in
that while they are focused on supervised learning, the ob-
jective of this work is to build a classification model without
a single labeled example for the target class.

Maximum Entropy Learning Maximum entropy prin-
ciple has been successfully applied to natural language pro-
cessing [6, 24, 23] and text categorization [20, 30, 18]. The
proposed maximum entropy model generalizes the tradi-
tional model by introducing (i) inequality constraints into
the model to replace the original equality constraints, and
(ii) different ways for estimating the sufficient statistics.

Note that the proposed generalized maximum entropy model
is closely related to [1] in which inequality constraints are
introduced into the framework of divergence minimization.
Our generalized maximum entropy model differs from [1] in
that we introduce a regularization term for the errors re-
lated to the inequality constraints. The regularization term
is particularly important for maximum entropy model since
the dual problem of maximum entropy model is in general
not strongly convex. Additionally, we want to point out
that the generalized maximum entropy model is also pre-
sented in the work of Yang et al. [28], but we emphasize
that this work differs from [28] in that we solve the problem
of unsupervised transfer classification rather than learning
from noisy side information.

Finally, our work is also closely related to [15, 22]. Similar
to our problem, the label information is not given explicitly
in these studies, and the goal is to build classification mod-
els from multiple sets of unlabeled data for which only the
class proportion information is available. Unlike these two
studies, in our work, the class information is utilized to as-
sist the transfer of label information of the auxiliary classes
to the target class.

3. UNSUPERVISED TRANSFER CLASSIFI-
CATION

In this section, we first present the problem of unsuper-
vised transfer classification. We then present a generalized
maximum entropy model, and a framework for unsupervised
transfer classification based on the generalized maximum
entropy model. The optimization algorithm and the con-
sistency analysis of the proposed method are also presented.
The issues of how to obtain the class information and the
specific assumption made by the proposed framework are
addressed at the end of this section.

3.1 Problem Definition
Let D = {xi ∈ X , i = 1, . . . , n} be a set of training

examples that are assigned to the auxiliary classes C =
{c1, . . . , cK}, where K is the number of the auxiliary classes.
We use yk

i ∈ {0, 1}, k = 1, . . . ,K to indicate the assignment
of class ck to example xi. Note that each example can be
assigned to multiple classes. By using a standard supervised
learning method (e.g., logistic regression model), we can
learn a binary prediction function, denoted by p(yk = 1|x),
that outputs the likelihood of assigning x to class ck. Our
objective however is to learn a binary prediction function
p(yt|x) for a target class ct /∈ C that does not have a sin-
gle labeled example. In order to learn p(yt|x) for the target
class ct, we need to transfer the label information from the
auxiliary classes in C to the target class. To this end, we
assume the following class information is available: (i) the
prior for the target class ct, i.e., p(y

t = 1), and (ii) the con-
ditional probabilities between the target class and the aux-
iliary classes in C, i.e., p(yt = 1|yk = 1), k = 1, . . . ,K. We
refer to this learning problem as unsupervised transfer
classification.

A straightforward approach for this problem is to con-
struct the prediction function p(yt|x) by a weighted combi-
nation of the prediction functions for the auxiliary classes,
i.e.,

p(yt = 1|x) =
∑K

k=1 p(y
k = 1|x)p(yt = 1|yk = 1)

∑K
k′=1 p(y

t = 1|yk′ = 1)
(1)
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Figure 1: An illustrative example showing the limi-
tation of the combination approach in (1).

We refer to the method in (1) as the combination of classi-
fication models, or cModel for short.

The major shortcoming of the combination approach is
that it imposes a strong constraint in constructing the pre-
diction function for the target class ct. In particular, if a
training example is not a support vector1 for any of the
auxiliary classes in C, it will never be a support vector for
the target class ct, leading to a serious limitation in building
classification model for ct.

To illustrate this limitation, consider the problem in Fig-
ure 1, in which we have four auxiliary classes c1, c2, c3, c4
that are highlighted by four shaded octagons. The decision
boundaries that distinguish each class from the other three
classes are highlighted by four solid lines. Assume SVM is
used to learn the individual classifiers. Note that since the
training examples in the four small solid circles are not the
closest to any of the decision boundaries, they will not be
the support vectors for the four auxiliary classes. Suppose
the target class ct is essentially a combination of c1 and
c2 whose decision boundary is highlighted by the horizonal
dashed line. In the case of supervised learning, since the ex-
amples in the small solid circles are the closest to the dashed
line, they should be support vectors for ct. Unfortunately,
in the prediction function generated by the combination ap-
proach, none of these examples will be support vectors for
ct, leading to a suboptimal model for ct.

3.2 Generalized Maximum Entropy Model
Before we present the generalized maximum entropy model,

we first motivate the proposed approach by explaining why
maximum entropy could be an attractive approach for unsu-
pervised transfer classification. The formulation of the tra-
ditional maximum entropy model for classification is given
as follows:

max −
n∑

i=1

∑

y

p(y|xi) log p(y|xi) (2)

s.t.
1

n

n∑

i=1

p(y|xi)fj(xi) =
1

n

n∑

i=1

δ(yi, y)fj(xi),∀y, j

where fj(·) is the jth ∈ {1, · · · , d} feature function defined
on X and δ(yi, y) is the Kronecker delta function that out-

1Here, we slightly abuse the terminology of support vectors.
For a non-SVM classifier, support vector is referred to any
training example that is heavily weighted by the classifier.

puts 1 if yi = y and zero, otherwise. It is important to
note that in order to train a maximum entropy model, we
only need to know the quantity

∑n
i=1 δ(yi, y)fj(xi)/n (i.e.,

the sufficient statistics), not the class assignments of in-
dividual examples. In fact, if we have means to approx-

imately compute
∑n

i=1 δ(yi, y)fj(xi)/n, denoted by f̂j(y),
without knowing the class label of each example, we can
modify the maximum entropy model in (2) by replacing∑n

i=1 δ(yi, y)fj(xi)/n with f̂j(y), i.e.,

max −
n∑

i=1

∑

y

p(y|xi) log p(y|xi) (3)

s.t.
1

n

n∑

i=1

p(y|xi)fj(xi) = f̂j(y),∀y, j

The key idea of the proposed approach is to estimate f̂j(y)
using the class information, which will be elaborated later.

Although it appears intuitively correct, the formulation
suggested in (3) could be problematic. First, for an arbi-

trarily approximate estimate f̂j(y), the problem in (3) may
not even be feasible. For instance, in the case of binary
classification, i.e., y ∈ {0, 1}, by adding the constraints for

f̂j(y = 1) and f̂j(y = 0), we will have the following implicit
constraint

f̂j(y = 0) + f̂j(y = 1) =
1

n

n∑

i=1

fj(xi). (4)

If two arbitrary estimates f̂j(y = 0) and f̂j(y = 1) do not
satisfy the constraint in (4), they will lead to an infeasible
optimization problem for (3). More importantly, using the
equality constraints in the maximum entropy model in (2)
is by itself problematic. Note that both sides of the equality
constraint in (2) can be interpreted as empirical estimates
of the expectation EX,Y [δ(Y, y)fj(X)]. As indicated by the
following theorem, the two quantities are identical only when
the number of examples n goes to infinity, and could be
significantly different when n is small.

Theorem 1. Concentration of MaxEnt’s Constraint
Assume (xi, yi) are i.i.d. samples from an unknown distri-
bution P (X,Y ). The equality constraint in (2) for any j
and y holds with probability 1 when the number of examples
n approaches infinity. However, with finite n, the following
inequality holds for any ǫ > 0

Pr

(∣∣∣∣∣
1

n

n∑

i=1

p(y|xi)fj(xi)−
1

n

n∑

i=1

δ(yi, y)fj(xi)

∣∣∣∣∣ ≥ ǫ

)

≤ 4 exp

(
− ǫ2n

8R2
j

)

where Rj = max
X∈X

|fj(X)|.

The proof for the theorem can be found in Appendix A.
Based on the above discussion, we relax the equality con-
straint in the maximum entropy model into inequality con-
straint,

max − 1

n

n∑

i=1

∑

y

p(y|xi) log p(y|xi)− 1

2γ

∑

y

‖ǫy‖2

s.t.
1

n

n∑

i=1

p(y|xi)fj(xi) ≥ f̂j(y)− ǫyj ,∀y, j
(5)



where ǫy = (ǫy1, . . . , ǫyd) and ‖ǫy‖measures the norm of vec-
tor ǫy . Note that in the above formulation, to account for the
difference between the two estimates, we introduce dummy
variables ǫyj . In addition, we introduce a regularization term
‖ǫ‖2/(2γ) into the objective for these dummy variables so
that they can be determined automatically. γ is a regular-
ization parameter that will be determined empirically. We
refer to the formulation in (5) as the Generalized Maxi-
mum Entropy Model. It includes two distinguished fea-
tures compared to the traditional maximum entropy model:
(i) it allows different ways for estimating EX,Y [δ(Y, y)fj(X)]

(i.e., f̂j(y)) that could potentially avoid the requirement of
knowing the class assignments of all training examples, and
(ii) it uses the inequality constraint to allow the mismatch
between data and the prediction function p(y|x). With the
inequality constraint, we essentially have

f̂j(y)− ǫyj ≤ 1

n

n∑

i=1

p(y|xi)fj(xi) ≤ f̂j(y) + ǫȳj

where ȳ = 1 − y and the upper bound is derived from the
following implicit constraint

1

n

∑

y

n∑

i=1

p(y|xi)fj(xi) =
∑

y

f̂j(y) =
1

n

n∑

i=1

fj(xi)

The following proposition shows the relationship between
the generalized maximum entropy model in (5) and the reg-
ularized logistic regression model.

Proposition 1. When f̂j(y) =
∑n

i=1 δ(y, yi)fj(xi)/n, and
‖ · ‖ = ‖ · ‖2, the dual problem of (5) is equivalent to the reg-
ularized logistic regression model, i.e.,

min
λ∈Rd

γ

2
‖λ‖22 +

1

n

n∑

i=1

log

(

1 + exp

(

−
d∑

j=1

ỹiλjfj(xi)

))

where ỹi = 1 if yi = 1 and ỹ = −1 if yi = 0.

Proposition 1 follows directly the result in (10) that will be
presented later.

3.3 Estimating f̂j(y) Using Class Information
In order to build a classification model for the target class

ct , we will apply the generalized maximum entropy model in

(5). The key question is how to compute f̂j(y
t), an estimate

of the expectation EX,Y t [δ(Y t, yt)fj(X)] for the target class
ct, using the class information.

First, notice that using the class prior information p(yt),
we could write the expectation of feature functions as

EX,Y t [δ(Y t, yt)fj(X)] = p(yt)EX|Y t=yt [fj(X)]

Thus, f̂j(y
t) can be computed as

f̂j(y
t) ≃ p(yt)ux|yt [fj(x)] (6)

where ux|yt [fj(x)] is the estimate of the conditional expecta-
tion EX|Y t=yt [fj(X)] based on the finite number of training
examples. Therefore, our goal is to compute ux|yt [fj(x)].

Second, note that for all the auxiliary classes ck ∈ C,
ux|yk [fj(x)] can be simply computed as

u
x|yk [fj(x)] =

∑n
i=1 δ(y

k
i , y

k)fj(xi)∑n
i=1 δ(y

k
i , y

k)
(7)

To compute ux|yt [fj(x)] for the target class, an intuitive
approach is to approximate it by a linear combination of
its counterparts for the auxiliary classes. As a result, we
need to establish the relationship between ux|yt [fj(x)] and
{ux|yk [fj(x)], k = 1, . . . , K}. To this end, we make the fol-
lowing assumption

Assumption 1 (A1). The following relationship holds
for Pr(X|Y k = yk) for any auxiliary class ck

Pr(X|Y k = yk) = Pr(X|Y t = 1)Pr(Y t = 1|Y k = yk)

+ Pr(X|Y t = 0)Pr(Y t = 0|Y k = yk)

Note that assumption A1 essentially assumes that X is con-
ditionally independent of Y k given Y t, i.e. Pr(X|Y t, Y k) =
Pr(X|Y t), which may not be true in real-world applications.
Later on we will discuss how to relax this assumption. Given
the assumption A1, we have the following relations for the
conditional expectation EX|Y =y [fj(X)]:

EX|Y k=yk [fj(X)] = EX|Y t=1[fj(X)] Pr(Y t = 1|Y k = yk)

+ EX|Y t=0[fj(X)] Pr(Y t = 0|Y k = yk)

which leads to the following regression relations for u
x|yk [fj(x)]

u
x|yk [fj(x)] ≃ ux|yt=1[fj(x)]p(y

t = 1|yk)

+ ux|yt=0[fj(x)]p(y
t = 0|yk) + ε

where ε is the error term. By putting the regression relations
for all the auxiliary classes into the matrix form, we have the
following regression system:

Â ≃ WK×2Ux|yt + ε (8)

where W and Ux|yt and Â are defined as follows

W =




p(yt = 1|y1 = 1) p(yt = 0|y1 = 1)

· · · · · ·
p(yt = 1|yK = 1) p(yt = 0|yK = 1)





Ux|yt =

(
ux|yt=1[f1(x)] . . . ux|yt=1[fd(x)]
ux|yt=0[f1(x)] . . . ux|yt=0[fd(x)]

)

Â =




ux|y1=1[f1(x)] . . . ux|y1=1[fd(x)]

· · · ·
ux|yK=1[f1(x)] . . . ux|yK=1[fd(x)]





By solving the regression system in (8) under the implicit
constraint in (4), i.e. U⊤

x|ytpt = ux[f(x)], we have the fol-
lowing solution for Ux|yt

Ux|yt = (W⊤W)−1· (9)
(

ptu
⊤
x

p⊤
t (W

⊤W)−1pt
+

(
I− ptp

⊤
t (W

⊤W)−1

p⊤
t (W

⊤W)−1pt

)
W⊤Â

)

where

ux[f(x)] = (ux[f1(x)], . . . , ux[fd(x)])
⊤

ux[fj(x)] =
1

n

n∑

i=1

fj(xi), pt =

(
p(yt = 1)
p(yt = 0)

)

3.4 Optimization and Consistency Analysis
Using the method described in the previous subsection, we

will be able to compute f̂j(y
t) using the class information.

In this section, we present the optimization algorithm and
consistency analysis.



Maximum entropy model is usually solved via its dual
problem. Here we show the dual problem for (5) in (10).
The derivation is skipped due to space limitations.

max
λ1∈Rd

+

λ0∈Rd
+

−L(λ) =
(
λ⊤
1 , λ

⊤
0

)
(
f̂1
f̂0

)

− γ

2

(
‖λ1‖2∗ + ‖λ0‖2∗

)
(10)

− 1

n

∑

i

log
(
exp[λ⊤

1 f(xi)] + exp[λ⊤
0 f(xi)]

)

where
• λ1 and λ0 are the dual variables, λ⊤ = (λ⊤

1 , λ
⊤
0 ),

• ‖ · ‖∗ is the dual norm of ‖ · ‖,
• f̂1 = p(yt = 1)U⊤

x|yt=1 and f̂0 = p(yt = 0)U⊤
x|yt=0, and

• f(x) = (f1(x), . . . , fd(x))
⊤.

The dual problem can be solved efficiently by using Nesterov
method [19] with details given in Algorithm 1. One of the
key steps in running the Nesterov method in Algorithm 1 is
to solve the constrained optimization problem in (11). It is
easy to verify that the optimal solution to (11) is

T (C,ai) = Π
R2d
+

(
ai − 1

C
∇L(ai)

)

where Π
R2d
+

is the operator that projects the elements in a

vector into the positive orthant. The convergence rate of the

Nesterov method is O
(

1

N2

)
, where N is the total number

of iterations. The time complexity of the optimization al-
gorithm is O(N(n+ d)). With the computed dual variables
λ1 and λ0, the prediction function for the target class ct is
given by

p(yt = 1|x) = exp(λ⊤
1 f(x))

exp(λ⊤
1 f(x)) + exp(λ⊤

0 f(x))

Next, we present the consistency analysis and show that
under assumption A1 the solution obtained by the proposed
approach will converge to the optimal one trained by the la-
beled examples for the target class. Since our approach de-
pends on ux|yt [fj(x)], which is an estimate for EX|Y t [fj(X)],
in the first step of consistency analysis, we bound the differ-
ence between these two quantities via the following theorem.

Theorem 2. Assume bounded feature function fj(x), i.e.
|fj(x)| ≤ R, j = 1, . . . , d, and the prior for all the auxiliary
classes are significantly large, i.e., there exists some positive
constant ρ > 0 such that p(yk = 1) ≥ ρ, k = 1, . . . ,K.
Under the assumption A1, for any δ > 10Kd exp(−nρ2/4),
with probability at least 1− δ, we have
∥∥EX|Y t [f(X)] − Ux|yt

∥∥
F
≤

4
√
2R(1 + κ3/2)

ρ
√
σmin

√
Kd

n
ln

(
10Kd

δ

)
+

κR

‖pt‖2

√
2d

n
ln

(
4d

δ

)

where σmax, σmin are the maximum and minimum eigenvalue
of W⊤W, and κ = σmax/σmin.

The proof can be found in Appendix B. As revealed by
Theorem 2, the difference between the estimate Ux|yt and
EX|Y t [f(X)] will essentially diminish when the number of
examples n goes to infinity. In the next theorem, we show

how the difference in the estimates f̂j(y) will affect the so-
lution to the dual problem in (10).

Algorithm 1 Solving the dual problem in (10)

1. Input the number of iterations or convergence rate

2. Initialize the approximate solution b1 ∈ R
2d, search

point a0 ∈ R
2d, auxiliary point q0 ∈ R

2d and positive
reals t0, C0 ∈ R+:

b1 = 0,a0 = 0,q0 = 0, t0 = 1, C0

3. In the ith(i ≥ 1) step, given bi,ai−1,qi−1, ti−1, Ci−1,
act as follows:

• Set ai = bi − 1

ti−1
(bi + qi−1)

compute L(ai),∇L(ai)

• Testing sequentially the values C = 2jCi−1, j =
0, 1 · · · , find the first value of C such that

L(T (C,ai)) ≤ LC,ai
(T (C,ai))

where

T (C,ai) = arg min
b∈R

2d
+

LC,ai
(b) (11)

= L(ai) +∇L(ai)
⊤(b− ai) +

C

2
‖b− ai‖22

Set Ci to the resulting value of C.

• Set bi+1 = T (Ci, ai)

qi = qi−1 + ti−1(ai − T (Ci,ai))

Set ti as the largest root of the equation t2 − t =
t2i−1

4. repeat Step 3 until the input number of iterations is
exceeded or convergence rate is satisfied.

5. Output (λ1;λ0) = b

Theorem 3. Assume ℓ2 norm is in the generalized maxi-
mum entropy model, i.e., ‖·‖ = ‖·‖2. Let λ∗⊤ = (λ∗

1
⊤, λ∗

0
⊤)

be the solution to the optimization problem in (10) with

f̂∗ =
(
f̂∗1 , f̂

∗
0

)⊤
, and λo⊤ = (λo

1
⊤, λo

0
⊤) be the solution with

f̂o =
(
f̂o1 , f̂

o
0

)⊤
. We have

‖λ∗ − λo‖2 ≤ 2

γ
‖f̂∗ − f̂o‖F

The proof can be found in Appendix C. Combining the re-
sults in Theorems 2 and 3, we have the following consistency
result for the solution obtained by the proposed approach,
which verifies the model obtained by the proposed approach
converges to the optimal model learned in the presence of
labeled examples for the target class.

Theorem 4. Assume (i) ℓ2 norm is used in the general-
ized maximum entropy model, (ii) |fj(x)| ≤ R, j = 1, . . . , d
for any x, and (iii) p(yk = 1) ≥ ρ, k = 1, . . . ,K for some
ρ > 0. As the number of training examples goes to infi-
nite, under the assumption A1, the optimal solution λ⊤ =

(λ⊤
1 , λ

⊤
0 ) to (10) with f̂j(y

t) = p(yt)ux|yt [fj(x)] will con-

verge to λ∗⊤ = (λ∗
1
⊤, λ∗

0
⊤) with probability 1, where λ∗ is the

optimal solution to (10) with f̂∗
j (y

t) = p(yt)EX|Y t=yt [fj(X)].



3.5 Implementation Issues
In this section, we discuss two issues: (i) how to obtain

the class information in real-world applications, and (ii) how
to relax the assumption A1.

Obtaining Class Information The class information
includes p(yt = 1|yk = 1) and p(yt = 1). One approach
is to derive the class information from a different domain
that shares the same set of classes as the target domain.
For example, in the case of text categorization of language
a, we could derive the class information from the labeled
documents that are in a different language b. The class in-
formation can also be obtained by querying external sources
such as a web search engine or a particular web site. For in-
stance, to classify research articles into predefined topics, we
can measure the correlation between two research topics by
simply counting the number of returned URLs after querying
a search engine with the conjunction of the two topics. Evi-
dently, these methods may not obtain an accurate estimate
of the class information. However, as will be shown in our
empirical study, even with such possibly inaccurate estimate
of the class information, the proposed approach could still
yield reasonably accurate prediction for text categorization.

Relaxing Assumption A1 As we discussed before, as-
sumption A1 is equivalent to having the independence be-
tween X and Y k given Y t, i.e. Pr(X|Y t, Y k) = Pr(X|Y t),
which may not be true for real-world applications. We can
relax this assumption by approximating Pr(X|Y t, Y k) with
a linear combination of Pr(X|Y t) and Pr(X|Y k). For in-
stance, we could have the following approximations for the
probability Pr(X|Y t, Y k):

Pr(X|Y t = 1, Y k = 0) = Pr(X|Y t = 1)

Pr(X|Y t = 0, Y k = 1) = Pr(X|Y k = 1)

Pr(X|Y t = y, Y k = y) =
1

2

[
Pr(X|Y t = y) + Pr(X|Y k = y)

]

With the above approximations, a similar result can be de-
rived using the procedure described in Section 3.3.

4. EXPERIMENTS WITH TEXT CATEGO-
RIZATION

4.1 Data Sets and Baselines
We verify the efficacy of the proposed algorithm for unsu-

pervised transfer classification on the problem of text cate-
gorization. Four text data sets are used for evaluation: (i)
“tmc2007” [5] data set is used in 2007 SIAM text mining
workshop for text mining competition, (ii) “enron” 2 data
set includes email messages from about 150 users, mostly
senior management of Enron, (iii) “bibtex” data set, pro-
cessed by Katakis et al. [14], contains the metadata for the
bibtex items such as title and authors of papers and (iv)
“delicious” [25] data set extracted from the delicious social
bookmarking site on April 7 2007; it contains textual de-
scription of each web page along with its annotated tags. In
our study, we follow the default partition of training data
and testing data specified by the authors of the data sets.
The statistics of the four data sets are summarized in Ta-
ble 1. The last column gives the percentage of the training
examples. To preprocess the documents, we normalize the
attributes of a document by first dividing them by the sum

2http://bailando.sims.berkeley.edu/enron_email

Table 1: Statistics of Data sets

name #examples #attributes #class %training

tmc2007 28596 49060 22 75%
enron 1702 1001 53 67%
bibtex 7395 1836 159 67%
delicious 16105 500 983 80%

of all attributes of the document and then taking the square
root of the ratios [9]. Each normalized attribute is used as
a different feature function fj(x).

To test the capability of the proposed algorithm in build-
ing the classification model for a target class without a single
labeled example, we follow the paradigm of “leave one class
out”cross validation by choosing one class as the target class
and using the remaining classes as the auxiliary classes. The
proposed algorithm is applied to learn a classification model
for the target class when we only have (i) the assignments
of training documents to the auxiliary classes and (ii) the
class information. We evaluated the proposed algorithm on
both training data3 and testing data. We repeat the same
procedure for every class in each data set, and the result
averaged over all the classes in the data set is reported in
this study. The Area under ROC curve (AUC) is used as
the evaluation metric in our study. Compared to the other
evaluation metrics (such as F1), AUC is advantageous in
that it does not require the classifier to make explicit binary
decisions and therefore avoids the bias in evaluation caused
by the choice of the threshold. For all the experiments, the
regularization parameter γ is set to γ = 0.01/n, where n is
size of the training set. This choice of γ usually yields good
classification performance.

Besides the combination approach in (1) (i.e., cModel),
we introduce the following two baseline approaches in our
study. These two baselines use the same generalized maxi-
mum entropy model as the proposed approach. They differ

from the proposed approach in how to compute f̂j(y). In the
first baseline, we estimate ux|yt [f(x)] by a weighted combi-
nation of u

x|yk [f(x)], i.e.,

ux|yt=1[f(x)] =
1

K

∑

yk∈{0,1}

p(yk|yt = 1)ux|yk [f(x)],

and compute f̂j(y) using (6) and (4). In the second ap-
proach, we first predict the assignments of the target class
ct for the training examples by a weighted combination of
the auxiliary classes in C, i.e.,

ŷt
i = I

(∑K
k=1 y

k
i p(y

t = 1|yk = 1)∑
k′=1 p(y

t = 1|yk = 1)
> p(yt = 1)

)
, i = 1, . . . , n

where I(z) is an indicator function that outputs 1 if z is true

and zero, otherwise. We then compute f̂j(y) based on the
predictions ŷt

i , i = 1, . . . , n, i.e.,

f̂j(y) =
1

n

n∑

i=1

f(xi)δ(ŷ
t
i , y)

We refer to the first approach as the generalized maximum
entropy model that estimates the expectation by average, or

3Note that we do not have the assignments of the training
documents to the target class



Table 2: Comparison with baselines (AUC)

tmc2007 enron bibtex delicious

GME-Reg 0.8270 0.7376 0.8832 0.7552

GME-avg 0.4379 0.4379 0.4740 0.4779
Training cModel 0.7506 0.6512 0.8500 0.6307

cLabel 0.6311 0.6280 0.8771 0.7086

GME-Reg 0.8092 0.6741 0.8625 0.7244

GME-avg 0.4501 0.4326 0.4831 0.4776
Testing cModel 0.7273 0.6096 0.8266 0.6171

cLabel 0.6307 0.5783 0.8583 0.6923

GME-Reg 0.8224 0.6985 0.8760 0.7492

GME-avg 0.4421 0.4660 0.4775 0.4778
All cModel 0.7437 0.5779 0.8417 0.6280

cLabel 0.6312 0.6072 0.8705 0.7052

GME-avg for short, and the second one as the combination
of class labels, or cLabel for short. Since these two baselines

differ from the proposed approach only in computing f̂j(y),
a comparison to these two baselines will show if the proposed

approach for computing f̂j(y) is effective for unsupervised
transfer classification. Finally, we refer to our method as
the generalized maximum entropy model that estimates the
expectation by regression, or GME-Reg for short.

4.2 Comparison with Baselines
We compare our method with the three baseline meth-

ods. The class information, i.e. the conditional probabili-
ties p(yt = 1|yk = 1) and the class prior p(yt = 1), are esti-
mated from the training data. Table 2 summarizes the result
of AUC for training data, testing data, and for all the data
that includes both training data and testing data. Note that
since we only have the assignments of the auxiliary classes
for the training data, it is therefore valuable to evaluate the
classification accuracy of the target class for the training
data. It is not surprising to observe that for all methods in
comparison, their performance for training data is in gen-
eral better than that for testing data. We also observe that
for all the cases, the proposed method GME-Reg outper-
forms the baseline methods significantly (student-t test at
95% significance level) except for cLabel on “bibtex”. Our
result also reveals that the proposed algorithm is computa-
tionally efficient: on a 2.0GHz CPU, 2.0GB memory linux
server, the averaged running time of the optimization algo-
rithm is 23 seconds for “tmc”, 0.97 seconds for “enron”, 11
seconds for “bibtex”, and 15 seconds for “delicious”when the
convergence accuracy is set as 10−4.

4.3 Comparison with Supervised Classification
In this experiment, we compare the unsupervised trans-

fer classification to the supervised classification using the
generalized maximum entropy model. The objective of this
comparison is to measure the amount of label information
transferred from the auxiliary classes to the target class.
In particular, to find the number of labeled examples that
are needed to achieve the same performance as the unsu-
pervised transfer classification, we increase the number of
labeled examples for the target class in supervised classifi-
cation. Figure 2 shows the result of AUC for all data (i.e.,
training data + testing data) for both the supervised and
the unsupervised classification approaches. To ensure the
robustness of our result, for supervised classification, we re-

peat each experiment five times and report AUC averaged
over five runs. We observe that the label information trans-
ferred from the auxiliary classes is indeed significant: for
data sets “tmc2007” and “enron”, the amount of information
transferred from the auxiliary classes is equivalent to a few
hundred labeled examples; for “bibtex” and “delicious”, it is
more valuable and is equivalent to a few thousand labeled
examples.
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Figure 2: Comparison of unsupervised transfer clas-
sification to supervised classification with increasing
number of labeled training examples

4.4 Estimating Class Information Using Ex-
ternal Sources

In this experiment, we evaluate the proposed approach
with the class information estimated from external sources.
We choose “bibtex” and “delicious” data sets for evaluation
since the class names are given in these two data sets. By re-
moving the classes in these data sets that are not meaningful,
such as “2005”, “2006”, “and”, “of” , “?”, “??” etc, we finally
obtain a total of 123 classes in “bibtex” and 920 classes in
“delicious”. Two external sources are used for obtaining the
class information for data set “bibtex”: (i) the social book-
mark and publication sharing web site bibsonomy 4, referred
to as bib.org for short, and (ii) ACM digital library 5, re-
ferred to as acm.org for short. The external source for ob-
taining class information for “delicious” data set is the deli-
cious social bookmarking 6 web site, referred to as deli.com
for short. We obtain the class information by sending queries
to the external sources that consist of the class name(s),
and computing the class information based on the number
of returned entities. The conditional probability is com-
puted as p(yt = 1|yk = 1) = #ENT (ct, ck)/#ENT (ck),
where #ENT (ct, ck) is the number of entities tagged by

4http://www.bibsonomy.org/tags/
5http://portal.acm.org/
6http://delicious.com/tag/



Table 3: Classification Accuracy(AUC) using exter-
nal class information for “bibtex” and “delicious”

bibtex delicious

source data bib.org acm.org data deli.com

GME-Reg 0.8662 0.8369 0.6677 0.7525 0.6633

GME-avg 0.3995 0.4727 0.4700 0.4755 0.4770
cModel 0.8148 0.7949 0.6044 0.6245 0.5936
cLabel 0.8290 0.7884 0.5427 0.7033 0.5449

both class ct and ck and #ENT (ck) is the number of en-
tities tagged by ck. The class prior p(yt = 1) is estimated
as #ENT (ct)/#ENT , where #ENT is the total number
of entities in the external source. However, since the total
number of entities is unavailable for bib.org and deli.com,
we replace #ENT with the sum of entities in all the classes,
i.e., #ENT (ct)+

∑K
k=1 #ENT (ck). The AUC for all (train-

ing+testing) examples is shown in Table 3. For the conve-
nience of comparison, we also include in Table 3 the AUC
results using the class information estimated from the data
set itself. We observe that the proposed approach still yields
reasonably accurate prediction even using class information
estimated from the external sources. It is not surprising
that using the class information estimated from bib.org, the
proposed approach yields better performance on “bibtex”
than using the class information estimated from acm.org
because “bibtex” is actually collected from bib.org. By com-
paring to the result of supervised classification in Figure 3,
we find that for “bibtex”, the amount of information trans-
ferred from the auxiliary classes is equivalent to 600 labeled
examples when using the class information estimated from
bib.org, and 100 labeled examples when using the class infor-
mation estimated from acm.org. For “delicious”, the equiv-
alent number of labeled examples is over 1, 000 when using
deli.com as the external source to estimate the class informa-
tion. These results further confirm the value of unsupervised
transfer classification even with rough estimates of the class
information from external sources.
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Figure 3: Comparison of unsupervised transfer clas-
sification to supervised classification with increasing
number of labeled training examples

5. CONCLUSIONS
We have considered the challenging problem of unsuper-

vised transfer classification whose goal is to build the classi-
fication model for a target class not by its labeled examples
but by leveraging the label information of auxiliary classes.
We propose a framework based on the generalized maximum

entropy model that effectively transfers the label informa-
tion of the auxiliary classes to the target class. We present
efficient algorithm for solving the related optimization prob-
lem and consistency analysis for the solution obtained by the
proposed approach. Extensive empirical studies show the
promising performance of the framework for unsupervised
transfer classification. In the future, we plan to investigate
the performance of the proposed approach on different tasks
such as image annotation and with different means of esti-
mating the class information such as using the WordNet.
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APPENDIX

A. PROOF OF THEOREM 1

Proof. The theorem can be proved by using McDiarmid’s
inequality. Considering the quantity of δ(Y, y)fj(X), the ex-
pectation of the quantity is equal to

EY,X∼P (Y,X) [δ(y, Y )fj(X)] = EXEY |X [δ(y, Y )fj(X)]

= EX [Pr(y|X)fj(X
1, X2)]

So we can see that
1

n

n∑

i=1

δ(y, yi)fj(xi),
1

n

n∑

i=1

p(y|xi)fj(xi)

are the empirical estimates of above expectations, and under

i.i.d. assumption we have

E

[
1

n

n∑

i=1

δ(yi, y)fj(xi)

]

= E [δ(Y, y)fj(X)]

E

[
1

n

∑

i=1

p(y|xi)fj(xi)

]

= E [Pr(Y = y|X)fj(X)]

= E[δ(Y, y)fj(X)]

Following McDiarmid’s inequality, we have

Pr

(∣∣∣∣∣
1

n

n∑

i=1

δ(yi, y)fj(xi)− E [δ(Y, y)fj(X)]

∣∣∣∣∣ ≥ ǫ

)

≤ 2 exp

(
− ǫ2n

2R2
j

)

Pr

(∣∣∣∣∣
1

n

n∑

i=1

p(y|xi)fj(xi)− E [δ(Y, y)fj(X)]

∣∣∣∣∣ ≥ ǫ

)

≤ 2 exp

(
− ǫ2n

2R2
j

)

which imply

Pr

(∣∣∣∣∣
1

n

n∑

i=1

δ(yi, y)fj(xi)−
1

n

n∑

i=1

p(y|xi)fj(xi)

∣∣∣∣∣ ≥ 2ǫ

)

≤ 4 exp

(
− ǫ2n

2R2
j

)

Replacing ǫ with
1

2
ǫ we complete the proof.

B. PROOF OF THEOREM 2
Due to limited space, we sketch the proof for theorem 2.

First, we bound Ux|yt from EX|Y t in terms of ‖EX [f(X)]−
ux[f(x)]‖2 and ‖Ā− Â‖F , where Ā is the true expectations

of estimates in Â, as stated in the following lemma.

Lemma 1. Under assumption A1, we have

‖EX|Y t [f(X)]− Ux|yt ]‖F ≤
√
2(1 + κ3/2)√

σmin
‖Ā− Â‖F +

κ

‖pt‖2
‖EX [f(X)]− ux[f(x)]‖2

Proof. First under assumption A1, we have similar so-
lution for EX|Y t [f(X)]

EX|Y t [f(X)] = (W⊤W)−1·
(

ptE
⊤
X [f(X)]

p⊤
t (W

⊤W)−1pt
+ (I− ptp

⊤
t (W

⊤W)−1

p⊤
t (W

⊤W)−1pt
)W⊤Ā

)



Then we have

‖EX|Y t [f(X)] − Ux|yt‖F ≤
∥∥∥∥(W

⊤W)−1pt(EX [f(X)]− ux[f(x)])
⊤

p⊤
t (W⊤W)−1pt

∥∥∥∥
F

+

∥∥∥∥(W
⊤W)−1(I− ptp

⊤
t (W⊤W)−1

p⊤
t (W⊤W)−1pt

)W⊤(Ā− Â)

∥∥∥∥
F

≤ κ

‖pt‖2
‖EX [f(X)]− ux[f(x)]‖2

+

(√
2σ−1

min +
σ−2
min

σ−1
max

√
2σmax

)
‖Ā− Â‖F

=

√
2(1 + κ3/2)√

σmin
‖Ā− Â‖F +

κ

‖pt‖2
‖EX [f(X)]− ux[f(x)]‖2

where we use the fact ‖pt‖22σ−1
max ≤ ‖pt(W

⊤W)−1pt‖ ≤
‖pt‖22σ−1

min, ‖W‖F ≤
√
2σmax, and ‖W−1‖F ≤

√
2σ−1

min.

Lemma 2. Assume bounded feature function fj(x), i.e.,
|fj(x)| ≤ R, j = 1, . . . , d, with at least probability 1 − δ, we
have

‖EX [f(X)]− ux[f(x)]‖2 ≤
√

2dR2

n
ln

(
2d

δ

)

This lemma can be proved by McDiarmid’s inequality and
union bound.

Lemma 3. Assume bounded feature function fj(x), i.e.,
|fj(x)| ≤ R, j = 1, . . . , d, and the prior for all auxiliary
classes are significantly large, i.e. there exists some positive
constant ρ > 0 such that p(yk = 1) ≥ ρ, k = 1, . . . ,K, for
any δ > 5Kd exp(−nρ2/4), with probability at least 1 − δ,
we have

∥∥∥Ā− Â
∥∥∥
F
≤ 4R

ρ

√
Kd

n
ln

(
5Kd

δ

)

Proof. To prove this lemma, we first show the bound for

each element in Â, i.e. u
x|yk=1[fj(x)] as defined in (7) from

the true conditional expectation EX|Y k=1[fj(X)]. Note that

|ux|yk=1[fj(x)]− EX|Y k=1[fj(X)]|

=

∣∣∣∣∣

∑
i δ(y

k
i , 1)fj(xi)−

∑
i δ(y

k
i , 1)EX|Y k=1[fj(X)]

∑
i δ(y

k
i , 1)

∣∣∣∣∣

We can bound both the numerator denoted by dkuE and the
denominator in the above equation with McDiarmid’s in-
equality,

Pr

(∣∣∣∣
1

n
dkuE

∣∣∣∣ ≥ 2Rǫ

)
≤ 4 exp

(
−2ǫ2n

)

Pr

(
1

n

∑

i

δ(yk
i , 1) ≤ p(yk = 1) − ǫ

)

≤ exp(−2ǫ2n)

Then with union bound, we have

Pr

(
|u

x|yk=1[fj(x)]− EX|Y k=1[fj(X)]| ≤ 2Rǫ

p(yk = 1) − ǫ

)

≥ 1− 5 exp(−ǫ2n)

Since p(yk = 1) ≥ ρ, with ǫ ≤ ρ/2, we have

Pr

(
|ux|yk=1[fj(x)]− EX|Y k=1[fj(X)]| ≤ 4Rǫ

ρ

)

≥ 1− 5 exp(−ǫ2n)

Again applying the union bound, we have

Pr

(

‖Ā− Â‖2F ≤ Kd

(
4Rǫ

ρ

)2
)

≥ 1− 5Kd exp(−ǫ2n)

Let δ = 5Kd exp(−ǫ2n), then with probability 1−δ, we have
the lemma 3.

Combining the above lemmas together, we complete the
proof for theorem 2.

C. PROOF OF THEOREM 3
Let

L(λ) =
1

n

∑

i

log(exp(λ⊤
1 f(xi)) + exp(λ⊤

0 f(xi)))

−
(
λ⊤
1 , λ

⊤
0

)
(
f̂∗1
f̂∗0

)
+

γ

2
λ⊤
1 λ1 +

γ

2
λ⊤
0 λ0

= g(λ)− λ⊤

(
f̂∗1
f̂∗0

)

+
γ

2
‖λ‖22

where λ =

(
λ1

λ0

)
, g(λ) is the sum of log-exponential function

of λ, which is convex in λ. Assume λ∗ is the optimal solution
to minimizing L(λ), λo is the optimal solution to minimizing

L(λ) with

(
f̂∗1
f̂∗0

)

replaced by

(
f̂o1
f̂o0

)

, then we have

L(λo) ≥ L(λ∗) +∇L(λ∗)⊤(λo − λ∗) +
γ

2
‖λo − λ∗‖22

≥ L(λ∗) +
γ

2
‖λo − λ∗‖22

where we use the fact that L(·) is a cr-strongly convex func-
tion, and the optimality criterion that ∇L(λ∗)⊤(λo − λ∗) ≥
0. Then

L(λo) = g(λo)− λo⊤

(
f̂∗1
f̂∗0

)

+
γ

2
‖λo‖22

= g(λo)− λo⊤

(
f̂o1
f̂o0

)
+

γ

2
‖λo‖22 + λo⊤

(
f̂o1 − f̂∗1
f̂o0 − f̂∗0

)

≤ g(λ∗)− λ∗⊤

(
f̂o1
f̂o0

)

+
γ

2
‖λ∗‖22 + λo⊤

(
f̂o1 − f̂∗1
f̂o0 − f̂∗0

)

≤ g(λ∗)− λ∗⊤

(
f̂∗1
f̂∗0

)
+

γ

2
‖λ∗‖22 + (λo − λ∗)⊤

(
f̂o1 − f̂∗1
f̂o0 − f̂∗0

)

≤ L(λ∗) + ‖λo − λ∗‖2‖f̂∗ − f̂o‖F
Coming the above two bounds together, we have

γ

2
‖λo − λ∗‖22 ≤ ‖λo − λ∗‖2‖f̂∗ − f̂o‖F

i.e.,

‖λ∗ − λo‖2 ≤ 2

γ
‖f̂∗ − f̂o‖F




