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In this paper, a new theory is developed for first-order stochastic convex optimization,

showing that the global convergence rate is sufficiently quantified by a local growth rate

of the objective function in a neighborhood of the optimal solutions. In particular, if the

objective function F (w) in the ε-sublevel set grows as fast as ‖w −w∗‖1/θ2 , where w∗
represents the closest optimal solution to w and θ ∈ (0, 1] quantifies the local growth

rate, the iteration complexity of first-order stochastic optimization for achieving an ε-

optimal solution can be Õ(1/ε2(1−θ)), which is optimal at most up to a logarithmic
factor. To achieve the faster global convergence, we develop two different accelerated
stochastic subgradient methods by iteratively solving the original problem approx-

imately in a local region around a historical solution with the size of the local region
gradually decreasing as the solution approaches the optimal set. Besides the theoretical

improvements, this work also includes new contributions towards making the proposed
algorithms practical: (i) we present practical variants of accelerated stochastic subgradi-

ent methods that can run without the knowledge of multiplicative growth constant and
even the growth rate θ; (ii) we consider a broad family of problems in machine learning
to demonstrate that the proposed algorithms enjoy faster convergence than traditional
stochastic subgradient method. We also characterize the complexity of the proposed

algorithms for ensuring the gradient is small without the smoothness assumption.
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1. Introduction

In this paper, we are interested in solving the following stochastic optimization

problem:

min
w∈K

F (w) , Eξ[f(w; ξ)], (1.1)

where ξ is a random variable, f(w; ξ) is a convex function of w, Eξ[·] is the expec-

tation over ξ and K is a convex domain. We denote by ∂f(w; ξ) a subgradient of

f(w; ξ). Let K∗ denote the optimal set of (1.1) and F∗ denote the optimal value.

In recent years, it becomes very important to develop efficient and effective

optimization algorithms for solving large-scale machine learning problems [12,17,6].

Traditional stochastic subgradient (SSG) method updates the solution according to

wt+1 = ΠK[wt − ηt∂f(wt; ξt)], (1.2)

for t = 1, . . . , T , where ξt is a sampled value of ξ at t-th iteration, ηt is a step

size and ΠK[w] = arg minv∈K ‖w − v‖22 is a projection operator that projects a

point into K. Previous studies have shown that under the following assumptions

i) ‖∂f(w; ξ)‖2 ≤ G, ii) there exists w∗ ∈ K∗ such that ‖wt − w∗‖2 ≤ B for

t = 1, . . . , T a, and by setting the step size ηt = B
G
√
T

in (1.2), with a high probability

1− δ we have

F (ŵT )− F∗ ≤ O
(
GB(1 +

√
log(1/δ))/

√
T
)
, (1.3)

where ŵT =
∑T
t=1 wt/T . The above convergence implies that in order to obtain

an ε-optimal solution by SSG, i.e., finding an w such that F (w) − F∗ ≤ ε with a

high probability 1− δ, one needs at least T = O(G2B2(1 +
√

log(1/δ))2/ε2) in the

worst-case.

It is commonly known that the slow convergence of SSG is due to the variance in

the stochastic subgradient and the non-smoothness nature of the problem as well,

which therefore requires a decreasing step size or a very small step size. Recently,

there emerges a stream of studies on various variance reduction techniques to ac-

celerate stochastic gradient method [43,56,21,47,10]. However, they all hinge on

the smoothness assumption. The proposed algorithms in this work tackle the issue

of variance of stochastic subgradient without the smoothness assumption from

another pespective.

The main motivation for addressing this problem is from a key observation: a

high probability analysis of the SSG method shows that the variance term of the

stochastic subgradient is accompanied by an upper bound of distance of interme-

diate solutions to the target solution. This observation has also been leveraged in

previous analysis to design faster convergence for stochastic convex optimization

that use a strong or uniform convexity condition [19,22] or a global growth condi-

tion [40] to control the distance of intermediate solutions to the optimal solution

aThis holds if we assume the domain K is bounded such that maxw,v∈K ‖w − v‖2 ≤ B or if

assume dist(w1,K∗) ≤ B/2 and project every solution wt into K ∩ B(w1, B/2).
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by their functional residuals. However, we find these global assumptions are com-

pletely unnecessary, which may not only restrict their applications to a broad family

of problems but also worsen the convergence rate due to the larger multiplicative

growth constant that could be domain-size dependent. In contrast, we develop a

new theory only relying on the local growth condition to control the distance of

intermediate solutions to the ε-optimal solution by their functional residuals but

achieving a fast global convergence.

Besides the fundamental difference, the present work also possesses several

unique algorithmic contributions compared with previous similar work on stochastic

optimization: (i) we have two different ways to control the distance of intermedi-

ate solutions to the ε-optimal solution, one by explicitly imposing a bounded ball

constraint and another one by implicitly regularizing the intermediate solutions,

where the later one could be more efficient if the projection into the intersection of

a bounded ball and the problem domain is complicated; (ii) we develop more prac-

tical variants that can be run without knowing the multiplicative growth constant

though under a slightly stringent condition; (iii) for problems whose local growth

rate is unknown we still develop an improved convergence result of the proposed

algorithms comparing with the SSG method. In addition, the present work will

demonstrate the improved results and practicability of the proposed algorithms for

many problems in machine learning, which is lacking in similar previous work.

We summarize the main results below. The proposed algorithms and their anal-

ysis are developed under the following generic local growth condition (LGC):

‖w −w∗‖2 ≤ c(F (w)− F∗)θ, ∀w ∈ Sε, (1.4)

where θ ∈ (0, 1], c > 0 and Sε denotes the ε-sublevel set with ε being a small value.

• In Section 4, we present two variants of accelerated stochastic subgradient

(ASSG) methods and analyze their iteration complexities for finding an

ε-optimal solution with high probability. The two variants use different

ways to mitigate the effect of variance of stochastic subgradient with one

using shrinking ball constraints and the second variant using increasing

regularization. With complete knowledge of c and θ, we show that both

variants can find an ε-optimal solution with a complexity of Õ(1/ε2(1−θ))

for θ ∈ (0, 1], where Õ suppresses a logarithmic factor in terms of 1/ε.

• In Section 5, we present a practical variant of ASSG with partial or no

knowledge about the LGC. In particular, when c is unknown and θ ∈ (0, 1)

is known the practical variant of ASSG enjoys an improved complexity of

Õ(1/ε2(1−θ)). When both c and θ are unknown, we show that the practical

variant still enjoys a better complexity than that of traditional SSG. In

particular, the dependence on the distance from the initial solution to the

optimal set of SSG’s complexity is reduced to a much smaller distance

multiplied by a logarithmic factor dependent on the quality of the initial

solution.
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• In Section 6, we consider an extension to proximal algorithms that handle

non-smooth but simple regularizers by a proximal mapping. In Section 7,

we consider the complexity of the proposed ASSG algorithms for ensuing

the gradient of the objective function is small.

• In Section 8, we consider the applications in machine learning and present

many examples with the local growth rate θ explicitly exhibited. In Sec-

tion 9, we present numerical experiments for demonstrating the effective-

ness of the proposed algorithms.

2. Related Work

The most similar work to the present one is [40], which studied stochastic convex

optimization under a global growth condition, which they called Tsybakov noise

condition. One major difference from their result is that we achieve the same order of

iteration complexity up to a logarithmic factor under only a local growth condition.

As observed later on, the multiplicative growth constant in local growth condition is

domain-size independent that is smaller than that in global growth condition, which

could be domain-size dependent. Besides, the stochastic optimization algorithm in

[40] assume the optimization domain K is bounded, which is removed in this work. In

addition, they do not address the issue when the multiplicative constant is unknown

and lack study of applicability for machine learning problems. [22] presented primal-

dual subgradient and stochastic subgradient methods for solving problems under

the uniform convexity assumption (see the definition under Observation 3.1). As

exhibited shortly, the uniform convexity condition covers only a smaller family of

problems than the considered local growth condition. However, when the problem

is uniform convex, the iteration complexity obtained in this work resembles that in

[22].

Recently, there emerge a wave of studies that attempt to improve the conver-

gence of existing algorithms under no strong convexity assumption by considering

certain weaker conditions than strong convexity [34,29,55,28,16,24,53,38,45]. Sev-

eral recent works [34,24,53] have unified many of these conditions, implying that

they are a kind of global growth condition with θ = 1/2. Unlike the present work,

most of these developments require certain smoothness assumption except [38].

Luo and Tseng [31,32,33] pioneered the idea of using local error bound condition

to show faster convergence of gradient descent, proximal gradient descent, and many

other methods for a family of structured composite problems (e.g., the LASSO

problem). Many follow-up works [20,58,57] have considered different regularizers

(e.g., `1,2 regularizer, nuclear norm regularizer). However, these works only obtained

asymptotically faster (i.e., linear) convergence and they hinge on the smoothness on

some parts of the problem. [50,49] have considered the same local growth condition

(aka local error bound condition in their work) for developing faster deterministic

algorithms for non-smooth optimization. However, they did not address the problem

of stochastic convex optimization, which restricts their applicability to large-scale
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problems in machine learning.

Finally, we note that the improved iteration complexity in this paper does not

contradict to the lower bound in [35,36]. The bad examples constructed to derive

the lower bound for general non-smooth optimization do not satisfy the assumptions

made in this work (in particular Assumption 3.1(b)). Recently, [59] characterize the

local minimax complexity of stochastic convex optimization by introducing modulus

of continuity that measures the size of the “flat set” where the magnitude of the

subderivative is a small value. They established a local minimax complexity result

when the modulus of continuity has polynomial growth and proposed an adaptive

stochastic optimization algorithm for only one-dimensional problems that achieves

the local minimax complexity upto a logarithmic factor. It remains unclear which

is more generic between LGC and the polynomial growing modulus of continuity.

3. Preliminaries

Recall the notations K∗ and F∗ that denote the optimal set of (1.1) and the optimal

value, respectively. For the optimization problem in (1.1), we make the following

assumption throughout the paper.

Assumption 3.1. For a stochastic optimization problem (1.1), we assume

(1) there exist w0 ∈ K and ε0 ≥ 0 such that F (w0)− F∗ ≤ ε0;

(2) There exists a constant G such that ‖∂f(w; ξ)‖2 ≤ G.

Remark: (1) essentially assumes the availability of a lower bound of the optimal

objective value, which usually holds for machine learning problems (due to non-

negativeness of the objective function). (2) is a standard assumption also made in

many previous stochastic gradient-based methods [19,39,40]. By Jensen’s inequality,

we also have ‖∂F (w)‖2 ≤ G. It is notable that unlike previous analysis of SSG,

we do not assume the domain K is bounded. Instead, we will assume the problem

satisfies a generic local growth condition as presented shortly.

For any w ∈ K, let w∗ denote the closest optimal solution in K∗ to w, i.e., w∗ =

arg minv∈K∗ ‖v−w‖22, which is unique. We denote by Lε the ε-level set of F (w) and

by Sε the ε-sublevel set of F (w), respectively, i.e., Lε = {w ∈ K : F (w) = F∗ + ε},
Sε = {w ∈ K : F (w) ≤ F∗ + ε}. Let w†ε denote the closest point in the ε-sublevel

set to w, i.e.,

w†ε = arg min
v∈Sε

‖v −w‖22. (3.1)

It is easy to show that w†ε ∈ Lε when w /∈ Sε (using the KKT condition). Let

B(w, r) = {u ∈ Rd : ‖u−w‖2 ≤ r} denote an Euclidean ball centered at w with a

radius r. Denote by dist(w,K∗) = minv∈K∗ ‖w − v‖2 the distance between w and

the set K∗, by ∂0F (w) the projection of 0 onto the nonempty closed convex set

∂F (w), i.e., ‖∂0F (w)‖2 = minv∈∂F (w) ‖v‖2.
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3.1. Functional Local Growth Rate

We quantify the functional local growth rate by measuring how fast the functional

value increase when moving a point away from the optimal solution in the ε-sublevel

set. In particular, we state the local growth condition in the following assumption.

Assumption 3.2. The objective function F (·) satisfies a local growth condition on

Sε if there exists a constant c > 0 and θ ∈ (0, 1] such that:

‖w −w∗‖2 ≤ c(F (w)− F∗)θ, ∀w ∈ Sε, (3.2)

where w∗ is the closest solution in the optimal set K∗ to w.

Note that the local growth rate θ is at most 1. This is due to that F (w) is

G-Lipschitz continuous and limw→w∗ ‖w − w∗‖1−α2 = 0 if α < 1. The inequality

in (3.2) is also called as local error bound condition in [50]. In this work, to avoid

confusion with earlier work by [31,32,33] who also explored a related but different

local error bound condition, we refer to the inequality in (3.2) or (1.4) as local

growth condition (LGC). It is worth noting that LGC is a general condition, com-

paring with several other error bound conditions. For example, the polyhedral error

bound condition [50] implies LGC with θ = 1; while the function has a Lipschitz-

continuous gradient, then the Polyak- Lojasiewicz condition is equivalent to the LGC

with θ = 1/2. In Section 8, we will present several applications in risk minimiza-

tion problems that satisfying LGC. For more details about the relationship between

LGC and other conditions, we refer the reader to [24,8,54,50]. If the function F (x)

is assumed to satisfy (3.2) for all w ∈ K, it is referred to as global growth condition

(GGC). Note that since we do not assume a bounded K, the GGC might be ill

posed. In the following discussions, when compared with GGC we simply assume

the domain is bounded.

Below, we present several observations mostly from existing work to clarify

the relationship between the LGC (1.4) and previous conditions, and also justify

our choice of LGC that covers a much broader family of functions than previous

conditions and induces a smaller multiplicative growth constant c than that induced

by GGC.

Observation 3.1. Strong convexity or uniform convexity condition implies LGC

with θ = 1/2, but not vice versa.

F (w) is said to satisfy a uniform convexity condition on K with convexity pa-

rameters p ≥ 2 and µ if:

F (u) ≥ F (v) + ∂F (v)>(u− v) +
µ‖u− v‖p2

2
,∀u,v ∈ K.

If we let u = w, v = w∗, then ∂F (w∗)
>(w − w∗) ≥ 0 for any w ∈ K, and we

have (3.2) with θ = 1/p ∈ (0, 1/2]. Clearly LGC covers a broader family of functions

than uniform convexity.
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Observation 3.2. The weak strong convexity [34], essential strong convexity [29],

restricted strong convexity [55], optimal strong convexity [28], semi-strong convex-

ity [16] and other error bound conditions considered in several recent work [24,53]

imply a GGC on the entire optimization domain K with θ = 1/2 for a convex

function.

Some of these conditions are also equivalent to the GGC with θ = 1/2. We refer

the reader to [34], [24] and [53] for more discussions of these conditions.

The third observation shows that LGC could imply faster convergence than that

induced by GGC.

Observation 3.3. The LGC could induce a smaller constant c in (1.4) that is

domain-size independent than that induced by the GGC on the entire optimization

domain K.

To illustrate this, we consider a function f(x) = x2 if |x| ≤ 1 and f(x) = |x| if

1 < |x| ≤ s, where s specifies the size of the domain. In the ε-sublevel set (ε < 1),

the LGC (1.4) holds with θ = 1/2 and c = 1. In order to make the inequality

|x| ≤ cf(x)1/2 hold for all x ∈ [−s, s], we can see that c = max|x|≤s
|x|

f(x)1/2
=

max|x|≤s
√
|x| =

√
s. As a result, GGC induces a larger c that depends on the

domain size.

The next observation shows that Luo-Tseng’s local error bound condition is

closely related to the LGC with θ = 1/2. To this end, we first give the definition

of Luo-Tseng’s local error bound condition. Let F (w) = h(w) +P (w), where h(w)

is a proper closed function with an open domain containing K and is continuously

differentiable with a locally Lipschitz continuous gradient on any compact set within

dom(h) and P (w) is a proper closed convex function. Such a function F (w) is said

to satisfy Luo-Tseng’s local error bound if for any ζ > 0, there exists c, ε > 0 so

that

‖w −w∗‖2 ≤ c‖proxP (w −∇h(w))−w‖2,

whenever ‖proxP (w −∇h(w))−w‖2 ≤ ε and F (w)− F∗ ≤ ζ, where proxP (w) =

arg minu∈K
1
2‖u−w‖22 + P (w).

Observation 3.4. If F (w) = h(w) +P (w) is defined above and satisfies the Luo-

Tseng’s local error bound condition, it then implies that there exists a sufficiently

small ε′ > 0 and C > 0 such that ‖w − w∗‖2 ≤ C(F (w) − F∗)1/2 for any w ∈
B(w∗, ε

′).

This observation was established in [27, Theorem 4.1]. Note that the LGC con-

dition with ε = Gε′ and θ = 1/2 also implies that ‖w −w∗‖2 ≤ C(F (w) − F∗)1/2

for any w ∈ B(w∗, ε
′). Nonetheless, Luo-Tseng’s local error bound imposes some

smoothness assumption on h(w).

The last observation is that the LGC is equivalent to a Kurdyka -  Lojasiewicz

inequality (KL), which was proved in [8, Theorem 5].
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Observation 3.5. If F (w) satisfies a KL inequality, i.e., ϕ′(F (w) −
F∗)‖∂0F (w)‖2 ≥ 1 for w ∈ {x ∈ K, F (x) − F∗ < ε} with ϕ(s) = csθ, then

LGC (1.4) holds, and vice versa.

The above KL inequality has been established for continuous semi-algebraic

and subanalytic functions [3,7,8], which cover a broad family of functions therefore

justifying the generality of the LGC.

Finally, we present a key lemma that can leverage the LGC to control the

distance of intermediate solutions to an ε-optimal solution, which is due to [50].

Lemma 3.1. For any w ∈ K and ε > 0, we have

‖w −w†ε‖2 ≤
dist(w†ε ,K∗)

ε
(F (w)− F (w†ε)),

where w†ε ∈ Sε is the closest point in the ε-sublevel set to w as defined in (3.1).

Remark: In view of LGC, we can see that ‖w −w†ε‖2 ≤ c
ε1−θ

(F (w)− F (w†ε))

for any w ∈ K. Yang and Lin [50] have leveraged this relationship to improve the

convergence of the standard subgradient method. In this work, we will build on this

relationship to further develop novel stochastic optimization algorithms with faster

convergence in high probability.

4. Accelerated Stochastic Subgradient Methods under LGC

In this section, we will present the proposed accelerated stochastic subgradient

(ASSG) methods and establish their improved iteration complexity with a high

probability. The key to our development is to control the distance of intermediate

solutions to the ε-optimal solution by their functional residuals that are decreasing

as the solutions approach the optimal set. It is this decreasing factor that help

mitigate the non-vanishing variance issue in the stochastic subgradient. To formally

illustrate this, we consider the following stochastic subgradient update:

wτ+1 = ΠK∩B(w1,D)[wτ − η∇f(wτ ; ξτ )]. (4.1)

Then we present a lemma regarding the update of (4.1).

Lemma 4.1. Given w1 ∈ K, apply t iterations of (4.1). For any fixed w ∈ K ∩
B(w1, D) and δ ∈ (0, 1), with a probability at least 1 − δ, the following inequality

holds

F (ŵt)− F (w) ≤ ηG2

2
+
‖w1 −w‖22

2ηt
+

4GD
√

3 log(1
δ )

√
t

,

where ŵt =
∑t
τ=1 wt/t.

Remark: The proof of the above lemma follows similarly as that of Lemma

10 in [19]. We note that the last term is due to the variance of the stochastic

subgradients. In fact, due to the non-smoothness nature of the problem the variance
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Algorithm 1 ASSG-c(w0,K, t,D1, ε0)

1: Input: w0 ∈ K, K, t, ε0 and D1 ≥ cε0
ε1−θ

2: Set η1 = ε0/(3G
2)

3: for k = 1, . . . ,K do

4: Let wk
1 = wk−1

5: for τ = 1, . . . , t− 1 do

6: wk
τ+1 = ΠK∩B(wk−1,Dk)[w

k
τ − ηk∂f(wk

τ ; ξkτ )]

7: end for

8: Let wk = 1
t

∑t
τ=1 wk

τ

9: Let ηk+1 = ηk/2 and Dk+1 = Dk/2.

10: end for

11: Output: wK

of the stochastic subgradients cannot be reduced, we therefore propose to address

this issue by reducing D in light of the inequality in Lemma 3.1.

The updates in (4.1) can be also understood as approximately solving the orig-

inal problem in the neighborhood of w1. In light of this, we will also develop a

regularized variant of the proposed method.

4.1. Accelerated Stochastic Subgradient Method: the Constrained

variant (ASSG-c)

In this subsection, we present the constrained variant of ASSG that iteratively

solves the original problem approximately in an explicitly constructed local neigh-

borhood of the recent historical solution. The detailed steps are presented in Al-

gorithm 1. We refer to this variant as ASSG-c. The algorithm runs in stages and

each stage runs t iterations of updates similar to (4.1). Thanks to Lemma 3.1,

we gradually decrease the radius Dk in a stage-wise manner. The step size keeps

the same during each stage and geometrically decreases between stages. We notice

that ASSG-c is similar to the Epoch-GD method by Hazan and Kale [19] and the

(multi-stage) AC-SA method with domain shrinkage by Chadimi and Lan [14] for

stochastic strongly convex optimization, and is also similar to the restarted sub-

gradient method (RSG) proposed by Yang and Lin [50]. However, the difference

between ASSG and Epoch-GD/AC-SA lies at the initial radius D1 and the num-

ber of iterations per-stage, which is due to difference between the strong convexity

assumption and Lemma 3.1. Compared to RSG, the solutions updated along gradi-

ent direction in ASSG are projected back into a local neighborhood around wk−1,

which is the key to establish the faster convergence of ASSG. The convergence of

ASSG-c is presented in the theorem below.

Theorem 4.1. Suppose Assumptions 3.1 and 3.2 hold for a target ε � 1. Given

δ ∈ (0, 1), let δ̃ = δ/K, K = dlog2( ε0ε )e, D1 ≥ cε0
ε1−θ

and t be the smallest in-

teger such that t ≥ max{9, 1728 log(1/δ̃)}G
2D2

1

ε20
. Then ASSG-c guarantees that,
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with a probability 1 − δ, F (wK) − F∗ ≤ 2ε. As a result, the iteration complex-

ity of ASSG-c for achieving an 2ε-optimal solution with a high probability 1− δ is

O(c2G2dlog2( ε0ε )e log(1/δ)/ε2(1−θ)) provided D1 = O( cε0
ε(1−θ)

).

Remark: It is notable that the faster local growth rate θ implies the faster global

convergence, i.e., lower iteration complexity. In light of the lower bound presented

in [40] under a GGC, our iteration complexity under the LGC is optimal up to

at most a logarithmic factor. It is worth mentioning that unlike traditional high-

probability analysis of SSG that usually requires the domain to be bounded, the

convergence analysis of ASSG does not rely on such a condition. Furthermore, the

iteration complexity of ASSG has a better dependence on the quality of the initial

solution or the size of domain if it is bounded. In particular, if we let ε0 = GB

assuming dist(w0,K∗) ≤ B, though this is not necessary in practice, then the

iteration complexity of ASSG has only a logarithmic dependence on the distance of

the initial solution to the optimal set, while that of SSG has a quadratic dependence

on this distance. The above theorem requires a target precision ε in order to set D1.

In Section 5, we alleviate this requirement to make the algorithm more practical.

Next, we prove Theorem 4.1 regarding the convergence of ASSG-c.

Proof. Let w†k,ε denote the closest point to wk in Sε. Define εk = ε0
2k

. Note that

Dk = D1

2k−1 ≥ cεk−1

ε1−θ
and ηk = εk−1

3G2 . We will show by induction that F (wk)− F∗ ≤
εk + ε for k = 0, 1, . . . with a high probability, which leads to our conclusion when

k = K. The inequality holds obviously for k = 0. Conditioned on F (wk−1)− F∗ ≤
εk−1 + ε, we will show that F (wk) − F∗ ≤ εk + ε with a high probability. By

Lemma 3.1, we have

‖w†k−1,ε −wk−1‖2 ≤
c

ε1−θ
(F (wk−1)− F (w†k−1,ε)) ≤

cεk−1

ε1−θ
≤ Dk. (4.2)

We apply Lemma 4.1 to the k-th stage of Algorithm 1 conditioned on randomness

in previous stages. With a probability 1− δ̃ we have

F (wk)− F (w†k−1,ε) ≤
ηkG

2

2
+
‖wk−1 −w†k−1,ε‖22

2ηkt
+

4GDk

√
3 log(1/δ̃)
√
t

. (4.3)

Combining (4.2) and (4.3), we get

F (wk)− F (w†k−1,ε) ≤
ηkG

2

2
+

D2
k

2ηkt
+

4GDk

√
3 log(1/δ̃)
√
t

.

Since ηk = 2εk
3G2 and t ≥ max{9, 1728 log(1/δ̃)}G

2D2
1

ε20
, we have each term in the

R.H.S of above inequality bounded by εk/3. As a result,

F (wk)− F (w†k−1,ε) ≤ εk,

which together with the fact that F (w†k−1,ε)−F∗ ≤ ε by definition of w†k−1,ε implies

F (wk)− F∗ ≤ ε+ εk.
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Therefore by induction, with a probability at least (1− δ̃)K we have

F (wK)− F∗ ≤ εK + ε ≤ 2ε.

Since δ̃ = δ/K, then (1− δ̃)K ≥ 1− δ and we complete the proof.

Theorem 4.1 shows the high probability convergence bound for ASSG-c. We

also prove the following expectational convergence bound, which is an immediate

consequence of Theorem 4.1. Its proof is provided in Appendix A.

Corollary 4.1. Suppose Assumptions 3.1 and 3.2 hold for a target ε � 1. Given

δ ∈ (0, 1), let δ ≤ ε
2GD1+ε0

, K = dlog2( ε0ε )e, D1 ≥ cε0
ε1−θ

and t be the small-

est integer such that t ≥ max{9, 1728 log(K/δ)}G
2D2

1

ε20
. Then ASSG-c achieves that

E [F (wK)− F∗] ≤ 2ε using at most O
(
dlog2( ε0ε )e log

(
2GD1+ε0

ε

)
c2G2/ε2(1−θ)) iter-

ations provided D1 = O( cε0
ε(1−θ)

).

4.2. Accelerated Stochastic Subgradient Method: the Regularized

variant (ASSG-r)

One potential issue of ASSG-c is that the projection into the intersection of the

problem domain and an Euclidean ball might increase the computational cost per-

iteration depending on the problem domain K. To address this issue, we present

a regularized variant of ASSG. Before delving into the details of ASSG-r (Algo-

rithm 2), we first present a common strategy that solves the non-strongly convex

problem (1.1) by stochastic strongly convex optimization. The basic idea is from

the classical deterministic proximal point algorithm [41] which adds a strongly con-

vex regularizer to the original problem and solve the resulting proximal problem.

In particular, we construct a new problem

min
w∈K

F̂ (w) = F (w) +
1

2β
‖w −w1‖22,

where w1 ∈ K is called the regularization reference point. Let ŵ∗ denote the opti-

mal solution to the above problem given w1. It is easy to know F̂ (w) is a 1
β -strongly

convex function on K. There are many stochastic methods can be used to solve the

above strongly convex optimization problem with an Õ(β/T ) convergence, includ-

ing stochastic subgradient, proximal stochastic subgradient [11], Epoch-GD [19],

stochastic dual averaging [46], etc. We employ the stochastic subgradient method

suited for strongly convex problems to solve the above problem. The update is given

by

wt+1 = ΠK[w′t+1] = arg min
w∈K

∥∥w −w′t+1

∥∥2

2
, (4.4)

where w′t+1 = wt − ηt(∂f(wt; ξt) + 1
β (wt − w1)), and ηt = 2β

t
b. We present a

lemma below to bound ‖ŵ∗ − wt‖2 and ‖wt − w1‖2 by the above update, which

will be used in the proof of convergence of ASSG-r for solving (1.1).

bThe factor 2 in the step size is used for proving the high probability convergence.
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Algorithm 2 the ASSG-r algorithm for solving (1.1)

1: Input: w0 ∈ K, K, t, ε0 and β1 ≥ 2c2ε0
ε2(1−θ)

2: for k = 1, . . . ,K do

3: Let wk
1 = wk−1

4: for τ = 1, . . . , t− 1 do

5: Let w′τ+1 =
(
1− 2

τ

)
wk
τ + 2

τwk
1 −

2βk
τ ∂f(wk

τ ; ξkτ )

6: Let wk
τ+1 = ΠK(w′τ+1)

7: end for

8: Let wk = 1
t

∑t
τ=1 wk

τ , and βk+1 = βk/2

9: end for

10: Output: wK

Lemma 4.2. For any t ≥ 1, we have ‖ŵ∗ −wt‖2 ≤ 3βG and ‖wt −w1‖2 ≤ 2βG.

Remark: The lemma implies that the regularization term implicitly imposes a

constraint on the intermediate solutions to center around the regularization refer-

ence point, which achieves a similar effect as the ball constraint in Algorithm 1. We

include its proof in Appendix B.

Next, we present a high probability convergence bound, whose proof can be

found in Appendix C.

Lemma 4.3. Given w1 ∈ K, apply T -iterations of (4.4). For any fixed w ∈ K,

δ ∈ (0, 1), and T ≥ 3, with a probability at least 1− δ, following inequality holds

F (ŵT )− F (w) ≤ ‖w −w1‖22
2β

+
34βG2 (1 + log T + log(4 log T/δ))

T
,

where ŵt =
∑t
τ=1 wt/t.

Remark: From the above result, we can see that one can set β to be a large

value to ensure convergence. In particular, by assuming that dist(w1,K∗) ≤ B, we

can set β = B2

ε and T ≥ 68G2B2(1+log(4 log T/δ)+log T )
ε2 so as to obtain F (ŵT )−F∗ ≤ ε

with a high probability 1 − δ, which yields the same order of iteration complexity

to SSG for directly solving (1.1).

Recall that the main iteration of the proximal point algorithm [41] is

wk ≈ arg min
w∈K

F (w) +
1

2βk
‖w −wk−1‖22, (4.5)

where wk approximately solves the minimization problem above with βk changing

with k. With the same idea, our regularized variant of ASSG generates wk from

stage k by solving the minimization problem (4.5) approximately using (4.4). The

detailed steps are presented in Algorithm 2, which starts from a relatively large

value of the parameter β = β1 and gradually decreases β by a constant factor after

running a number of t iterations (4.4) using the solution from the previous stage as

the new regularization reference point. Despite of its similarity to the proximal point
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Algorithm 3 ASSG-s(w0,K, t, ε0)

1: Input: w0 ∈ K, K, t, ε0
2: Set η1 = ε0/(3G

2)

3: for k = 1, . . . ,K do

4: Let wk
1 = wk−1

5: for τ = 1, . . . , t− 1 do

6: wk
τ+1 = ΠK[wk

τ − ηk∂f(wk
τ ; ξkτ )]

7: end for

8: Let wk = 1
t

∑t
τ=1 wk

τ and ηk+1 = ηk/2.

9: end for

10: Output: wK

algorithm, ASSG-r incorporates the LGC into the choices of βk and the number of

iterations per-stage and obtains new iteration complexity described below.

Theorem 4.2. Suppose Assumptions 3.1 and 3.2 hold for a target ε � 1. Given

δ ∈ (0, 1/e), let δ̃ = δ/K, K = dlog2( ε0ε )e, β1 ≥ 2c2ε0
ε2(1−θ)

and t be the smallest integer

such that t ≥ max{3, 136β1G
2(1+log(4 log t/δ̃)+log t)

ε0
}. Then ASSG-r guarantees that,

with a probability 1 − δ, F (wK) − F∗ ≤ 2ε. As a result, the iteration complexity

of ASSG-r for achieving an 2ε-optimal solution with a high probability 1 − δ is

O(c2G2dlog2( ε0ε )e log(1/δ)/ε2(1−θ)) provided β1 = O( 2c2ε0
ε2(1−θ)

).

With Lemma 4.3, the proof of Theorem 4.2 is similar to the proof of Theorem 4.1.

For completeness, we include it in Appendix D.

4.3. A Simple Variant of ASSG under GGC

As a byproduct of similar analysis, we can show that a simpler variant of ASSG

without using shrinking domain constraint or increasing regularization can have

an improved complexity in expectation under GGC for θ ∈ (0, 1/2]. When the

problems satisfy GGC with θ ∈ (1/2, 1] and F (w)−F∗ is bounded over K, one can

always show that the problem satisfies a GGC with θ = 1/2 [48]. The details of

updates are presented in Algorithm 3, which is referred to ASSG-s. The algorithm

is almost the same to Algorithm 1 except that the projection is simply done onto

the original domain K without intersecting with a bounded ball at each epoch. At

each epoch, the update is exactly the same to the stochastic subgradient update

wτ+1 = ΠK[wτ − η∂f(wτ ; ξτ )]. (4.6)

To establish the convergence result, we first need the following lemma, whose proof

is included in Appendix E.

Lemma 4.4. Given w1 ∈ K, apply t iterations of (4.6). For any fixed w ∈ K, the



July 15, 2019 11:9 aa-assg

14 Yi Xu, Qihang Lin, Tianbao Yang

following inequality holds

E[F (ŵt)− F (w)] ≤ ηG2

2
+
‖w1 −w‖22

2ηt
,

where ŵt =
∑t
τ=1 wt/t.

We then give the convergence result of ASSG-s in the following theorem.

Theorem 4.3. Suppose Assumption 3.1 holds and F (w) obeys GGC (1.4) with

θ ∈ (0, 1/2]. Given ε > 0, K = dlog2( ε0ε )e and t be the smallest integer such

that t ≥ 18c2G2

ε2(1−θ)
. Then ASSG-s guarantees that E[F (wK) − F∗] ≤ ε. As a re-

sult, the iteration complexity of ASSG-s for achieving an ε-optimal solution is

O(c2G2dlog2( ε0ε )e/ε2(1−θ)) in expectation.

Proof. Let define εk = ε0
2k

. Note that ηk = εk−1

3G2 . We will show by induction that

E[F (wk) − F∗] ≤ εk for k = 0, 1, . . . , which leads to our conclusion when k = K.

The inequality holds obviously for k = 0. Conditioned on E[F (wk−1)−F∗] ≤ εk−1,

we will show that E[F (wk)− F∗] ≤ εk. By GGC, we have for any wk−1 ∈ K,

‖wk−1 −w∗k−1‖2 ≤ c(F (wk−1)− F∗)θ.

Then by the condition E[F (wk−1)− F∗] ≤ εk−1, we have

E[‖wk−1 −w∗k−1‖2] ≤ cεθk−1. (4.7)

We apply Lemma 4.4 to the k-th stage of Algorithm 3 conditioned on random-

ness in previous stages. For any w∗ ∈ K∗ we have

E[F (wk)− F (w∗)] ≤
ηkG

2

2
+

E[‖wk−1 −w∗‖22]

2ηkt
. (4.8)

By using GGC (1.4) with θ ∈ (0, 1/2] we have

E[F (wk)− F (w∗)] ≤
ηkG

2

2
+
c2E[F (wk−1)− F (w∗)]

2θ

2ηkt

≤ηkG
2

2
+
c2{E[F (wk−1)− F (w∗)]}2θ

2ηkt

≤ηkG
2

2
+
c2ε2θ

2ηkt
≤ εk

3
+
εk
3
≤ εk,

where the second inequality uses the concavity of E[Xα] ≤ {E[X]}α whith 0 < α ≤
1; the fourth inequality using the fact that ηk = εk

3G2 and t ≥ 18c2G2

ε2(1−θ)
with ε ≤ εk.

Therefore by induction, we have

E[F (wK)− F∗] ≤ εK ≤ ε.
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Algorithm 4 ASSG with Restarting: RASSG

1: Input: w(0), K, D
(1)
1 , t1, ε0 and ω ∈ (0, 1]

2: Set ε
(1)
0 = ε0, η1 = ε0/(3G

2)

3: for s = 1, 2, . . . , S do

4: Let w(s) =ASSG-c(w(s−1),K, ts, D
(s)
1 , ε

(s)
0 )

5: Let ts+1 = ts2
2(1−θ), D

(s+1)
1 = D

(s)
1 21−θ, and ε

(s+1)
0 = ωε

(s)
0

6: end for

7: Output: w(S)

5. Practical Variants of ASSG

Readers may have noticed that the presented algorithms require appropriately set-

ting up the initial values of D1 or β1 or t that depend on potentially unknown c

and unknown θ. As we show later, the value of θ is exhibited for many problems.

However, the parameter c is usually difficult to estimate, which leads to a challenge

to set the value of t. Overestimate of t leads to waste of iterations while underesti-

mate of t leads to a less accurate solution so that it may not reach the target level

of accuracy. This section is devoted to more practical variants of ASSG that can

be implemented without knowing parameter c or θ. For ease of presentation, we

focus on the constrained variant of ASSG. Similar extensions can be made for the

regularized variant ASSG-r and the simple variant ASSG-s, which are omitted here.

In the following subsections, we divide the problem into two cases: (1) unknown c;

(2) unknown θ.

5.1. ASSG with unknown c

When c is unknown, we present the details of a restarting variant of ASSG in

Algorithm 4, to which we refer as RASSG. When discussing the restarting variants

of ASSG-c, ASSG-r and ASSG-s, we refer to them as RSSG-c, RSSG-r, and RSSG-

s, respectively, for clarity. The key idea is to use an increasing sequence of t and

another level of restarting for ASSG. The convergence analysis for RASSG without

knowing c is presented in the following theorem.

Theorem 5.1 (RASSG with unknown c). Let ε ≤ ε0/4, ω = 1, and

K = dlog2( ε0ε )e in Algorithm 4. Suppose D
(1)
1 is sufficiently large so that

there exists ε̂1 ∈ [ε, ε0/2], with which F (·) satisfies a LGC (3.2) on Sε̂1 with

θ ∈ (0, 1) and the constant c, and D
(1)
1 = cε0

ε̂1−θ1

. Let δ̂ = δ
K(K+1) , and t1 =

max{9, 1728 log(1/δ̂)}
(
GD

(1)
1 /ε0

)2

. Then with at most S = dlog2(ε̂1/ε)e + 1 calls

of ASSG-c, Algorithm 4 finds a solution w(S) such that F (w(S)) − F∗ ≤ 2ε with

probability 1− δ. The total number of iterations of RASSG for obtaining 2ε-optimal

solution is upper bounded by TS = O(dlog2( ε0ε )e log(1/δ)c2/ε2(1−θ)).
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Remark: The above theorem requires a slightly stringent LGC condition on

Sε̂1 that is induced by the initial value of D1. If the problem satisfies the LGC

with θ = 1, we can give a slightly smaller value for θ in order to run Algo-

rithm 4. If the target precision ε is not specified, we can give it a sufficiently

small value ε′ (e.g., the machine precision) that only affects K marginally. The

corresponding iteration complexity for achieving an ε-optimal solution is given by

O(dlog2( ε0ε′ )e log(1/δ)/ε2(1−θ)). The parameter ω ∈ (0, 1] is introduced to increase

the practical performance of RASSG, which accounts for decrease of the objective

gap of the initial solutions for each call of ASSG-c.

Proof. Since K = dlog2( ε0ε )e ≥ dlog2( ε0ε̂1 )e, D
(1)
1 = cε0

ε̂1−θ1

, and t1 =

max{9, 1728 log(1/δ̂)}
(
GD

(1)
1

ε0

)2

, following the proof of Theorem 4.1, we can show

that with a probability 1− δ
K+1 ,

F (w(1))− F∗ ≤ 2ε̂1. (5.1)

By running ASSG-c starting from w(1) which satisfies (5.1) with K =

dlog2( ε0ε )e ≥ dlog2( 2ε̂1
ε̂1/2

)e, D
(2)
1 = cε0

(ε̂1/2)1−θ
≥ c2ε̂1

(ε̂1/2)1−θ
, and t2 =

max{9, 1728 log(1/δ̂)}
(
GD

(2)
1 /ε0

)2

, Theorem 4.1 ensures that

F (w(2))− F∗ ≤ ε̂1

with a probability at least (1 − δ/(K + 1))2. By continuing the process, with S =

dlog2(ε̂1/ε)e + 1 we can prove that with a probability at least (1 − δ/(K + 1))S ≥
1− δ S

K+1 ≥ 1− δ,

F (w(S))− F∗ ≤ 2ε̂1/2
S−1 ≤ 2ε.

The total number of iterations for the S calls of ASSG-c is bounded by

TS = K

S∑
s=1

Ts = K

S∑
s=1

t122(s−1)(1−θ) = Kt122(S−1)(1−θ)
S∑
s=1

(
1/22(1−θ)

)S−s

≤ Kt122(S−1)(1−θ)

1− 1/22(1−θ) ≤ O

(
Kt1

(
ε̂1
ε

)2(1−θ)
)
≤ Õ(log(1/δ)/ε2(1−θ)).

As a corollary of the above theorem, we present a result of RASSG for problems

satisfying GGC with θ = 1/2 but without knowing the value of c (or satisfying

strong convexity but without knowing the strong convexity parameter), which is

of interest to a broad audience who are familiar with stochastic strongly convex

optimization. It has been shown many machine learning problems satisfy GGC with

θ = 1/2 (see examples presented in Section 8). Almost all existing algorithms and

analysis for stochastic strongly convex optimization or problems satisfying GGC
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with θ = 1/2 require knowing the value of strong convexity parameter in order to

run the algorithms [19,39]. The result is presented below.

Corollary 5.1. Suppose F (·) satisfies a GGC on K with θ = 1/2 and some

unknown constant c > 0. Let ε ≤ ε0/4, ω = 1, and K = dlog2( ε0ε )e in Algo-

rithm 4. Suppose D
(1)
1 is sufficiently large so that there exists ε̂1 ∈ [ε, ε0/2] such

that D
(1)
1 = cε0√

ε̂1
. Let δ̂ = δ

K(K+1) , and t1 = max{9, 1728 log(1/δ̂)}
(
GD

(1)
1 /ε0

)2

.

Then with at most S = dlog2(ε̂1/ε)e + 1 calls of ASSG-c, Algorithm 4 finds a

solution w(S) such that F (w(S)) − F∗ ≤ 2ε with probability 1 − δ. The total num-

ber of iterations of RASSG for obtaining 2ε-optimal solution is upper bounded by

TS = Õ(log(1/δ)c2/ε).

Remark: It is notable that when the objective function is λ-strongly convex,

then c2 = 1/λ and the above complexity Õ(log(1/δ)/λε) is optimal up to a log-

arithmic factor. The advantage of RASSG over previous stochastic algorithms for

strongly convex optimization is that RASSG does not need to know the value of

strong convexity parameter.

5.2. ASSG with unknown θ

When θ is unknown, we can set θ = 0. Then the problem will satisfy the LGC (3.2)

with θ = 0 and c = Bε with any ε ≥ ε, where Bε = maxw∈Lε minv∈K∗ ‖w − v‖2 is

the maximum distance between the points in the ε-level set Lε and the optimal set

K∗. The following theorem states the convergence result.

Theorem 5.2 (RASSG with unknown θ). Let θ = 0, ε ≤ ε0/4 , ω = 1,

and K = dlog2( ε0ε )e in Algorithm 4. Assume D
(1)
1 is sufficiently large so that

there exists ε̂1 ∈ [ε, ε0/2] rendering that D
(1)
1 =

Bε̂1 ε0
ε̂1

. Let δ̂ = δ
K(K+1) , and

t1 = max{9, 1728 log(1/δ̂)}
(
GD

(1)
1 /ε0

)2

. Then with at most S = dlog2(ε̂1/ε)e + 1

calls of ASSG-c, Algorithm 4 finds a solution w(S) such that F (w(S)) − F∗ ≤ 2ε.

The total number of iterations of RASSG for obtaining 2ε-optimal solution is upper

bounded by TS = O(dlog2( ε0ε )e log(1/δ)
G2B2

ε̂1

ε2 ).

Remark: The Lemma Appendix F.1 shows that Bε
ε is a monotonically decreas-

ing function in terms of ε, which guarantees the existence of ε̂1 given a sufficiently

large D
(1)
1 . The iteration complexity of RASSG could be still better with a smaller

factor Bε̂1 than the B in the iteration complexity of SSG (see (1.3)), where B is

the domain size or the distance of initial solution to the optimal set.

Proof. The proof is similar to the proof of Theorem 5.1, and we reprove it for

completeness. It is easy to show that t1 ≥ 136β
(1)
1 G2(1+log(4 log t1/δ̂)+log t1)

ε0
. Following

the proof of Theorem 4.2, we then can show that with a probability 1− δ
S ,

F (w(1))− F∗ ≤ 2ε̂1 (5.2)
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with K = dlog2( ε0ε )e ≥ dlog2( ε0ε̂1 )e and β
(1)
1 = 2c2ε0

ε̂
2(1−θ)
1

. By running ASSG-r starting

from w(1) which satisfies (5.2) with K = dlog2( ε0ε )e ≥ dlog2( 2ε̂1
ε̂1/2

)e, t2 = t122(1−θ) ≥
136β

(2)
1 G2(1+log(4 log t2/δ̂)+log t2)

ε0
and β

(2)
1 = 2c2ε0

(ε̂1/2)2(1−θ)
≥ 2c2 ε̂1/2

(ε̂1/2)2(1−θ)
, Theorem 4.2

ensures that

F (w(2))− F∗ ≤ ε̂1

with a probality at least (1 − δ/S)2. By continuing the process, with S =

dlog2(ε̂1/ε)e+ 1, we can prove that with a probality at least (1− δ/S)S ≥ 1− δ

F (w(S))− F∗ ≤ 2ε̂1/2
S−1 ≤ 2ε

The total number of iterations for the S calls of ASSG-c is bounded by

TS = K

S∑
s=1

Ts = K

S∑
s=1

t122(s−1)(1−θ) = Kt122(S−1)(1−θ)
S∑
s=1

(
1/22(1−θ)

)S−s

≤ Kt122(S−1)(1−θ)

1− 1/22(1−θ) ≤ O

(
Kt1

(
ε̂1
ε

)2(1−θ)
)
≤ Õ(log(1/δ)/ε2(1−θ))

Finally, we make several remarks about the Algorithm 4: (1) if θ = 1, in order

to obtain an increasing sequence of ts, θ can be set to a little smaller value than 1

(for example, 0.95); (2) if D
(1)
1 in RASSG-c and β

(1)
1 in RASSG-r are determined,

the starting number of iterations t1 can be automatically set since t1 ∝ D
(1)
1 in

RASSG-c and t1 ∝ β
(1)
1 in RASSG-r; (3) after the first call of ASSG, one can re-

calibrate the ε0 in the implementation to improve the performance or equivalently

tune ω in practice; (4) the tradeoff is that the stopping criterion for RASSG is not

as automatic as ASSG.

6. Proximal ASSG for Non-smooth Composite Optimization

To obtain solutions with certain structures, many machine learning problems add

a regularizer to the objective function (e.g., adding `1 regularizer for sparsity).

When the regularizers are non-smooth but have closed form of proximal mapping,

some proximal algorithms can be employed to solve the regularized problems. As

an extension of ASSG, in this section, we will present a proximal variant of ASSG

for solving the following non-smooth composite optimization problem:

min
w∈Rd

F (w) , Eξ[f(w; ξ)]︸ ︷︷ ︸
f(w)

+R(w), (6.1)

where both f(w) and R(w) are non-smooth convex functions. The above problem

commonly appears in machine learning, which is also known as regularized risk
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minimization. We assume that the function R(w) is simple enough such that the

proximal mapping given below is easy to compute

Proxη,RΩ [w] = arg min
u∈Ω

1

2
‖u−w‖22 + ηR(u),

where Ω ⊆ Rd is a bounded ball. An example of R(w) is the `1-norm R(w) =

λ‖w‖1. We also make the following assumption throughout this section.

Assumption 6.1. For a stochastic optimization problem (6.1), we assume

(1) there exist w0 ∈ Rd and ε0 ≥ 0 such that F (w0)− F∗ ≤ ε0;

(2) There exist two constants G and ρ such that ‖∂f(w; ξ)‖2 ≤ G and

‖∂R(w; ξ)‖2 ≤ ρ.

Assumption 6.1 is quite similar as Assumption 3.1 except for an additional

assumption of ‖∂R(w; ξ)‖2 ≤ ρ.

We present the detail steps of proximal ASSG (ProxASSG) in Algorithm 5,

which is similar to Algorithm 1 except that Step 5 is replaced by a proximal map-

ping:

wk
τ+1 = Proxηk,RΩk

[
wk
τ − ηk∂f(wk

τ ; ξkτ )
]
,

where Ωk is a ball centered at wk−1 with a radius Dk. The convergence result is

stated in the following theorem:

Theorem 6.1. Suppose Assumptions 6.1 and 3.2 hold for a target ε � 1. Given

δ ∈ (0, 1), let δ̃ = δ/K, K = dlog2( ε0ε )e, D1 ≥ cε0
ε1−θ

and t be the smallest integer

such that t ≥ max
{

max(16, 3072 log(1/δ̃))
G2D2

1

ε20
, 8ρD1

ε0

}
. Then ProxASSG guaran-

tees that, with a probability 1− δ,

F (wK)− F∗ ≤ 2ε.

As a result, the iteration complexity of ProxASSG for achieving an 2ε-optimal so-

lution with a high probability 1− δ is Õ(log(1/δ)/ε2(1−θ)) provided D1 = O( cε0
ε(1−θ)

).

To prove Theorem 6.1, we need the following lemma for each stage of ProxASSG.

Lemma 6.1. Let D be the upper bound of ‖w1 − w†1,ε‖2. Apply t-iterations of

following steps:

wτ+1 = arg minw∈B(w1,D)

1

2
‖w −wτ‖22 + η∂f(wτ ; ξτ )>w + ηR(w).

Given w1 ∈ Rd, for any δ ∈ (0, 1), with a probability at least 1− δ,

F (ŵt)− F (w†1,ε) ≤
ηG2

2
+
‖w1 −w†1,ε‖22

2ηt
+

4GD
√

3 log(1/δ)√
t

+
ρD

t
,

where ŵt =
∑t
τ=1 wt/t.
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Algorithm 5 the ProxASSG algorithm for solving (6.1)

1: Input: the number of stages K, the number of iterations t per stage, and the

initial solution w0, η1 = ε0/(4G
2) and D1 ≥ cε0

ε1−θ

2: for k = 1, . . . ,K do

3: Let wk
1 = wk−1, Ωk = B(wk−1, Dk)

4: for τ = 1, . . . , t do

5: Update wk
τ+1 = Proxηk,RΩk

[
wk
τ − ηk∂f(wk

τ ; ξkτ )
]

6: end for

7: Let wk = 1
t

∑t
τ=1 wk

τ

8: Let ηk+1 = ηk/2 and Dk+1 = Dk/2.

9: end for

10: Output: wK

The proof of Lemma 6.1 is deferred to Appendix G. With the above lemma,

the proof of Theorem 6.1 is similar to that of Theorem 4.1. We include the details

in Appendix H.

Before ending this section, we note that the presented ProxASSG algorithm in

Algorithm 5 is based on the constrained version of ASSG. One can also develop a

proximal variant based on the regularized version of ASSG. We include the details

in Appendix I. However, the convergence guarantee of proximal ASSG based on the

regularized version is slightly worse than that based on the constrained version by

a constant factor depending on G and ρ.

7. Complexity of ASSG for Ensuing the Gradient is Small

Recently, there has been an increasing interest in the complexity of stochastic al-

gorithms for finding a solution for a convex optimization problem with a small

gradient [1,13]. However, these studies assume the smoothness of the objective

function. The non-smoothness of the objective function make it more challenging

to design stochastic algorithms and characterize their complexity of making the

gradient small.

The first challenge is how to quantify the convergence in terms of gradi-

ent for a non-smooth problem. A traditional measure is using the distance from

0 to the subgradient (a set) of the objective function at a solution x ∈ K,

i.e., dist(0, ∂(f(x) + 1K(x)), where 1K is the indicator function of the domain

K. However, for a non-smooth function finding an ε-level stationary point (i.e.,

dist(0, ∂(f(x) + 1K(x)) ≤ ε) is difficult. For example, considering the simple func-

tion f(x) = |x|, as long as x 6= 0 the traditional measure dist(0, ∂(f(x)+1K(x)) = 1

is never 0. To address this challenge, previous studies on non-smooth optimization

have used a new convergence measure based on the Moreau envelop of the objective

function. A Moreau envelope of F (w) associated with a positive constant λ > 0 is
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defined as:

Fλ(w) = min
v∈K

{
F (v) +

λ

2
‖v −w‖2

}
, (7.1)

and the associated proximal mapping is defined as

w̃ = ProxF/λ(w) := arg min
v∈K

{
F (v) +

λ

2
‖v −w‖2

}
. (7.2)

It is easy to show that Fλ(·) is a smooth function whose gradient is λ-Lipchitz

continuous [5] and w̃ satisfies [9]:

F (w̃) ≤ F (w),

∇Fλ(w) = λ(w − w̃)

dist(0; ∂F (w̃)) ≤ ‖∇Fλ(w)‖.

It means that if ‖∇Fλ(w)‖ ≤ ε then w is close to some point w̃ that is an ε-

stationary solution for the problem (1.1). This gives a new convergence measure

in terms of gradient for a non-smooth function. We call a solution w an ε-nearly

stationary point if the following inequality holds for some constant λ > 0:

‖∇Fλ(w)‖ ≤ ε. (7.3)

It is also notable that when F is L-smooth c and the constraint domain is the

whole space K = Rd, then an ε-nearly stationary point w also implies that it is

O(ε)-stationary in the traditional sense, i.e., ‖∇F (w)‖ ≤ O(ε). This can be easily

seen from ‖∇F (w)‖ ≤ ‖∇F (w̃)‖+‖∇F (w)−∇F (w̃)‖ ≤ ‖∇Fλ(w)‖+L‖w−w̃‖ =

(1 + L
λ )‖∇Fλ(w)‖ ≤ (1 + L/λ)ε.

Next, we give a simple lemma that will be useful for our analysis later.

Lemma 7.1. For any w ∈ K, it holds

‖∇Fλ(w)‖2 ≤ 2λ(F (w)− F (w∗)), (7.4)

where w∗ ∈ K∗.

Proof. We first show that arg minw∈K Fλ(w) = arg minw∈K F (w). Let us consider

any w̃∗ ∈ K̃∗. Then for any v,w ∈ K, Fλ(w̃∗) ≤ Fλ(w) ≤ F (v) + λ
2 ‖v −w‖2. Let

v = w = w∗, we have

Fλ(w̃∗) ≤ Fλ(w∗) ≤ F (w∗). (7.5)

On the other hand, if we let v̂ := arg minv∈K{F (v) + λ
2 ‖v − w̃∗‖2}, then

F (w∗) ≤ F (v̂) ≤ F (v̂) +
λ

2
‖v̂ − w̃∗‖2 = Fλ(w̃∗). (7.6)

cwhose gradient is L-Lipchitz continuous.
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Therefore, by (7.5) and (7.6) we have F (w∗) = Fλ(w̃∗). Next, let w̃ :=

arg minv∈K F (v) + λ
2 ‖v −w‖2. By the smoothness of Fλ(w), we have

Fλ(w̃)− Fλ(w) ≤∇Fλ(w)>(w̃ −w) +
λ

2
‖w̃ −w‖2

=− 1

λ
‖∇Fλ(w)‖2 +

1

2λ
‖∇Fλ(w)‖2

Rewriting above inequality and combining with Fλ(w̃∗) ≤ Fλ(w̃) we get

1

2λ
‖∇Fλ(w)‖2 ≤ Fλ(w)− Fλ(w̃∗).

By the definition of Fλ(w), for any w ∈ K, we have Fλ(w) ≤ F (w). Therefore, we

have

1

2λ
‖∇Fλ(w)‖2 ≤ F (w)− F (w∗).

Next, we will characterize the complexity of ASSG for finding an ε-nearly sta-

tionary point for the problem (1.1) under the LGC by leveraging the result in

Lemma 7.1.

Theorem 7.1. Under the same setting in Theorem 4.1 or Theorem 4.2, then with

a high probability 1− δ, ASSG-c or ASSG-r guarantees that ‖∇F1/4(wK)‖ ≤ ε with

the iteration complexity of Õ(1/ε4(1−θ)).

Remark. Allen-Zhu [1] considered stochastic gradient descent (SGD) with re-

cursive regularization to solve smooth and convex problems and provided a complex-

ity Õ(1/ε2) for achieving an ε-stationary point. In contrast, we focus on non-smooth

problems in this paper. When θ > 1
2 , our methods achieve better complexities.

Proof. Let λ = 1
4 and w = wK in (7.4) of Lemma 7.1, we get

‖∇F1/4(wK)‖2 ≤ 1

2
(F (wK)− F (w∗)). (7.7)

Let ε = ε2 in Theorem 4.1 or Theorem 4.2, we know that with high probability

1− δ,

F (wK)− F (w∗) ≤ 2ε2. (7.8)

By (7.7) and (7.8) we have

‖∇F1/4(wK)‖ ≤ ε. (7.9)
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8. Applications in Risk Minimization

In this section, we present some applications of the proposed ASSG to risk min-

imization in machine learning. Let (xi, yi), i = 1, . . . , n denote a set of pairs of

feature vectors and labels that follow a distribution P, where xi ∈ X ⊂ Rd and

yi ∈ Y. Many machine learning problems end up solving the regularized empirical

risk minimization problem:

min
w∈Rd

F (w) =
1

n

n∑
i=1

`(w>xi, yi) + λR(w), (8.1)

where R(w) is a regularizer, λ is the regularization parameter and `(z, y) is a loss

function. Below we will present several examples in machine learning that enjoy

faster convergence by the proposed ASSG than by SSG.

8.1. Piecewise Linear Minimization

First, we consider some examples of non-smooth and non-strongly convex problems

such that ASSG can achieve linear convergence. In particular, we consider the

problem (8.1) with a piecewise linear loss and `1, `∞ or `1,∞ regularizers.

Piecewise linear loss includes hinge loss [44], generalized hinge loss [4], absolute

loss [18], and ε-insensitive loss [42]. For particular forms of these loss functions,

please refer to [51]. The epigraph of F (w) defined by sum of a piecewise linear

loss function and an `1, `∞ or `1,∞ norm regularizer is a polyhedron. According

to the polyhedral error bound condition [50], for any ε > 0 there exists a constant

0 < c <∞ such that

dist(w,K∗) ≤ c(F (w)− F∗)

for any w ∈ Sε, meaning that the proposed ASSG has an O(log(ε0/ε)) iteration

complexity for solving such family of problems. Formally, we state the result in the

following corollary.

Corollary 8.1. Assume the loss function `(z, y) is piecewise linear, then the prob-

lem in (8.1) with `1, `∞ or `1,∞ norm regularizer satisfy the LGC in (1.4) with

θ = 1. Hence ASSG can have an iteration complexity of O(log(1/δ) log(ε0/ε)) with

a high probability 1− δ.

8.2. Piecewise Convex Quadratic Minimization

In this subsection, we consider some examples of piecewise quadratic minimization

problems in machine learning and show that ASSG enjoys an iteration complexity

of Õ
(

1
ε

)
. We first give an definition of piecewise convex quadratic functions, which

is from [26]. A function g(w) is a real polynomial if there exists k ∈ N+ such

that g(w) =
∑

0≤|αj |≤k λj
∏d
i=1 w

αji
i , where λj ∈ R and αji ∈ N+ ∪ {0}, αj =

(αj1, . . . , α
j
d), and |αj | =

∑d
i=1 α

j
i . The constant k is called the degree of g. A
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continuous function F (w) is said to be a piecewise convex polynomial if there exist

finitely many polyhedra P1, . . . , Pm with ∪mj=1Pj = Rd such that the restriction

of F on each Pj is a convex polynomial. Let Fj be the restriction of F on Pj .

The degree of a piecewise convex polynomial function F is the maximum of the

degree of each Fj . If the degree is 2, the function is referred to as a piecewise

convex quadratic function. Note that a piecewise convex quadratic function is not

necessarily a smooth function nor a convex function [26].

For examples of piecewise convex quadratic problems in machine learning, one

can consider the problem (8.1) with a huber loss, squared hinge loss or square loss,

and `1, `∞, `1,∞, or huber norm regularizer [52]. The huber function is defined as

`δ(z) =

{
1
2z

2 if |z| ≤ δ,
δ(|z| − 1

2δ)otherwise,

which is a piecewise convex quadratic function. The huber loss function `(z, y) =

`δ(z − y) has been used for robust regression. A huber regularizer is defined as

R(w) =
∑d
i=1 `δ(wi).

It has been shown that [26], if F (w) is convex and piecewise convex quadratic,

then it satisfies the LGC (1.4) with θ = 1/2. The corollary below summarizes the

iteration complexity of ASSG for solving these problems.

Corollary 8.2. Assume the loss function `(z, y) is a convex and piecewise convex

quadratic, then the problem in (8.1) with `1, `∞, `1,∞ or huber norm regularizer

satisfy the LGC in (1.4) with θ = 1/2. Hence ASSG can have an iteration complexity

of Õ( log(1/δ)
ε ) with a high probability 1− δ.

Remark: The Lipschitz continuity assumption for some loss functions (e.g.,

squared hinge loss and square loss) can be easily satisfied by adding a boundness

constraint on the solution. We note that a recent work [30] also studied the piecewise

convex quadratic minimization problems under the error bound condition. They

explore the smoothness of the loss functions and develop deterministic accelerated

gradient methods with a linear convergence. In contrast, the proposed ASSG is a

stochastic algorithm and does not rely on the smoothness assumption. One might

also notice that several recent works [16,24] have showed the linear convergence of

SVRG by exploring the smoothness of the loss function and a similar condition as

in (1.4) with θ = 1/2. However, their required condition is a global growth condition

that is required to hold for any w ∈ Rd.
Indeed, a convex and piecewise convex quadratic function enjoy a global growth

condition [26]:

dist(w,K∗) ≤ c[F (w)− F∗ + (F (w)− F∗)1/2], ∀w ∈ Rd.

It remains an open problem that how to leverage such a global growth condition

to develop a linear convergence for SVRG and other similar algorithms for solving

finite-sum smooth problems, which is beyond the scope of this work. Nevertheless,

using the above global growth condition we can reduce the iteration complexity by

a log(ε0/ε) factor for ASSG. We include the details in Appendix J.
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8.3. Structured composite non-smooth problems

Next, we present a corollary of our main result regarding the following structured

problem:

min
w∈Rd

F (w) , h(Xw) +R(w). (8.2)

where X ∈ Rn×d, h(u) is a strongly convex function (not necessarily a smooth

function) on any compact set and R(w) is `1, `∞ or `1,∞ norm regularizer. The

corollary below formally states the LGC of the above problem and the iteration

complexity of ASSG.

Corollary 8.3. Assume h(u) is a strongly convex function on any compact set

and P (w) is polyhedral, then the problem in (8.2) satisfies the LGC in (1.4) with

θ = 1/2. Hence ASSG can have an iteration complexity of Õ( log(1/δ)
ε ) with a high

probability 1− δ.

The proof of the first part of Corollary 8.3 can be found in [50]. One example of

h(u) is p-norm error (p ∈ (0, 1)), where h(u) = 1
n

∑n
i=1 |ui − yi|p. The local strong

convexity of the p-norm error (p ∈ (1, 2)) is shown in [15].

Finally, we give an example that satisfies the LGC with intermediate values

θ ∈ (0, 1/2). We can consider an `1 constrained `p norm regression [37]:

min
‖w‖1≤s

F (w) ,
1

n

n∑
i=1

(x>i w − yi)p, p ∈ 2N+.

[30] have shown that the problem above satisfies the LGC in (1.4) with θ = 1
p .

Table 1. Statistics of real datasets

Dataset #Training (n) #Features (d) Problem Type

covtype.binary 581,012 54 Classification
real-sim 72,309 20,958 Classification

url 2,396,130 3,231,961 Classification

avazu 40,428,967 1,000,000 Classification
gisette 6,000 5,000 Classification

kdd 2010 raw 19,264,097 1,163,024 Classification
news20.binary 19,996 1,355,191 Classification

rcv1.binary 20,242 47,236 Classification
webspam 350,000 16,609,143 Classification

million songs 463,715 90 Regression
E2006-tfidf 16,087 150,360 Regression

E2006-log1p 16,087 4,272,227 Regression

9. Experiments

In this section, we perform some experiments to demonstrate effectiveness of pro-

posed algorithms. For the first two experimens, we use very large-scale datasets
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Fig. 1. Comparison of different algorithms for solving different problems on different datasets

(λ = 10−4).
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Fig. 2. Comparison of different algorithms for solving different problems on different datasets
(λ = 10−2).

from libsvm website in experiments, including covtype.binary, real-sim, url for

classification, million songs, E2006-tfidf, E2006-log1p for regression. While for the

last experimenst, we only consider classification problem and use nine datasets

from libsvm website including covtype.binary, real-sim, avazu, gisette, kdd 2010

raw, news20.binary, rcv1.binary, url and webspam. The detailed statistics of these

datasets are shown in Table 8.3.
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Fig. 3. Comparison of different algorithms for solving different problems on different datasets.

Effectiveness of ASSG-c and RASSG-c for non-smooth problems. We first

compare ASSG with SSG on three tasks: `1 norm regularized hinge loss minimiza-

tion for linear classification, `1 norm regularized Huber loss minimization for linear

regression, and `1 norm regularized p-norm robust regression with a loss function

`(w>xi, yi) = |w>xi− yi|p. The regularization parameter λ is set to be 10−4/10−2

in all tasks. We set γ = 1 in Huber loss and p = 1.5 in robust regression. In all

experiments, we use the constrained variant of ASSG, i.e., ASSG-c. For fairness,

we use the same initial solution with all zero entries for all algorithms. We use a

decreasing step size proportional to 1/
√
τ (τ is the iteration index) in SSG. The

initial step size of SSG is tuned in a wide range to obtain the fastest convergence.

The step size of ASSG in the first stage is also tuned around the best initial step size

of SSG. The value of D1 in both ASSG and RASSG is set to 100 for all problems.

In implementing the RASSG, we restart every 5 stages with t increased by a factor

of 1.15, 2 and 2 respectively for hinge loss, Huber loss and robust regression. We

tune the parameter ω among {0.3, 0.6, 0.9, 1}. We report the results of ASSG with a

fixed number of iterations per-stage t and RASSG with an increasing sequence of t.

The results are plotted in Figure 1 and Figure 2 in which we plot the log difference

between the objective value and the smallest obtained objective value (to which
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Fig. 4. Comparison of SSG and RASSG-s on different datasets (λ = 10−4).

we refer as objective gap) versus number of iterations. The figures show that (i)

ASSG can quickly converge to a certain level set determined implicitly by t; (ii)

RASSG converges much faster than SSG to more accurate solutions; (iii) RASSG

can gradually decrease the objective value.

Effectiveness of ASSG-c and RASSG-c for smooth problems. Second, we

compare RASSG with state-of-art stochastic optimization algorithms for solving

a finite-sum problem with a smooth piecewise quadratic loss (e.g., squared hinge

loss, huber loss) and an `1 norm regularization. In particular, we compare with two

variance-reduction algorithms that leverage the smoothness of the function, namely

SAGA [10] and SVRG++ [2]. We conduct experiments on two high-dimensional

datasets url and E2006-log1p and fix the regularization parameter λ = 10−4 or

λ = 10−2. We use δ = 1 in Huber loss. For RASSG, we start from D1 = 100

and t1 = 103, then restart it every 5 stages with t increased by a factor of 2. We

tune the initial step sizes for all algorithms in a wide range and set the values

of parameters in SVRG++ followed by [2]. We plot the objective versus the CPU

time (second) in Figure 3. The results show that RASSG converges faster than other

three algorithms for the two tasks. This is not surprising considering that RASSG,
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SAGA and SVRG++ suffer from an iteration complexity of Õ(1/ε), O(n/ε), and

O(n log(1/ε) + 1/ε), respectively.

Effectiveness of RASSG-s. Finally, we compare RASSG-s with SSG on `1 norm

regularized hinge loss minimization for linear classification. The regularization pa-

rameter λ is set to be 10−4, and the initial iteration number of RASSG-s is set to

be 10, 000. We fixed the total number of iterations as 1, 000, 000 both for SSG and

RASSG-s. Although the parameter θ = 1 in the considered task, we can always

reduce it to θ = 1
2 [48]. Thus we set GGC parameter θ = 1

2 in this experiment.

The other parameters of SSG and RASSG-s are set as same as the first experiment.

The results are presented in Figure 4, showing that RASSG-s converges much faster

than SSG to more accurate solutions.

10. Conclusion

In this paper, we have proposed accelerated stochastic subgradient methods for

solving general non-strongly convex stochastic optimization under the functional

local growth condition. The proposed methods enjoy a lower iteration complexity

than vanilla stochastic subgradient method and also a logarithmic dependence on

the impact of the initial solution. We have also made an extension by developing

a more practical variant. Applications in machine learning have demonstrated the

faster convergence of the proposed methods.

Appendix A. Proof of Corollary 4.1

Proof. First, we show that for any 1 ≤ k ≤ K,

‖wk −w0‖2 ≤ 2D1 (A.1)

When k = 1, it is easy to show that ‖w1 −w0‖2 ≤ D1, which satisfies inequality

(A.1). When k ≥ 2, we have

‖wk −w0‖2
≤‖wk −wk−1‖2 + ‖wk−1 −wk−2‖2 + · · ·+ ‖w2 −w1‖2 + ‖w1 −w0‖2
≤D1/2

k−1 +D1/2
k−2 + · · ·+D1/2 +D1 ≤ 2D1

where the second inequality is based on the updates of Algorithm 1. With proba-

bility 1, we have

F (wk)− F (w0) =F (wk)− F∗ + F∗ − F (w0)

≤‖∂F (wk)‖2‖wk −w0‖2 + F∗ − F (w0) ≤ 2GD1 + ε0 (A.2)

where the last inequality using the fact that ‖∂F (wk)‖2 ≤ G, inequality (A.1) and

Assumption 3.1 (a). Based on Theorem 4.1, ASSG-c guarantees that

Prob(F (wK)− F∗) ≤ ε) ≥ 1− δ (A.3)
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Then

E [F (wK)− F∗] =E [F (wK)− F∗|F (wK)− F∗ ≤ ε]Prob(F (wK)− F∗) ≤ ε)
+ E [F (wK)− F∗|F (wK)− F∗ ≥ ε]Prob(F (wK)− F∗) ≥ ε)

≤ε+ (2GD1 + ε0)δ ≤ 2ε

where the first inequality uses inequalities (A.2) and (A.3), and the second inequalty

is due to δ ≤ ε
2GD1+ε0

. Therefore, ASSG-c achieves that E [F (wK)− F∗] ≤ 2ε

using at most O
(
dlog2( ε0ε )e log

(
2GD1+ε0

ε

)
c2G2/ε2(1−θ)) iterations provided D1 =

O( cε0
ε(1−θ)

).

Appendix B. Proof of Lemma 4.2

Proof. By the optimality of ŵ∗, we have for any w ∈ K(
∂F (ŵ∗) +

1

β
(ŵ∗ −w1)

)>
(w − ŵ∗) ≥ 0.

Let w = w1, we have

∂F (ŵ∗)
>(w1 − ŵ∗) ≥

‖ŵ∗ −w1‖22
β

.

Because ‖∂F (ŵ∗)‖2 ≤ G due to ‖∂f(w; ξ)‖2 ≤ G, then

‖ŵ∗ −w1‖2 ≤ βG.

Next, we bound ‖wt −w1‖2. According to the update of wt+1 we have

‖wt+1 −w1‖2 ≤ ‖w′t+1 −w1‖2 = ‖ − ηt∂f(wt; ξt) + (1− ηt/β)(wt −w1)‖2.

We prove ‖wt−w1‖2 ≤ 2βG by induction. First, we consider t = 1, where ηt = 2β,

then

‖w2 −w1‖2 ≤ ‖2β∂f(wt; ξt)‖2 ≤ 2βG.

Then we consider any t ≥ 2, where ηt/β ≤ 1. Then

‖wt+1 −w1‖2 ≤
∥∥∥∥−ηtβ β∂f(wt; ξt) +

(
1− ηt

β

)
(wt −w1)

∥∥∥∥
2

≤ηt
β
βG+

(
1− ηt

β

)
2βG ≤ 2βG.

Therefore

‖ŵ∗ −wt‖2 ≤ 3βG.
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Appendix C. Proof of Lemma 4.3

In this proof, we need the following lemma.

Lemma Appendix C.1. (Lemma 3 [23]) Suppose X1, . . . , XT is a martingale

difference sequence with |Xt| ≤ b. Let

VartXt = Var(Xt|X1, . . . , Xt−1).

where Var denotes the variance. Let V =
∑T
t=1 VartXt be the sum of conditional

variance of Xt’s. Further, let σ =
√
V . Then we have for any δ < 1/e and T ≥ 3,

Pr

(
T∑
t=1

Xt > max{2σ, 3b
√

log(1/δ)}
√

log(1/δ)

)
≤ 4δ log T.

Then, let us start the proof of Lemma 4.3.

Proof. Let gt = ∂f(wt; ξt) + (wt −w1)/β and ∂F̂ (wt) = ∂F (wt) + (wt −w1)/β.

Note that ‖gt‖2 ≤ 3G. According to the standard analysis for the stochastic gradi-

ent method we have

g>t (wt − ŵ∗) ≤
1

2ηt
‖wt − ŵ∗‖22 −

1

2ηt
‖wt+1 − ŵ∗‖22 +

ηt
2
‖gt‖22.

Then

∂F̂ (wt)
>(wt − ŵ∗) ≤

1

2ηt
‖wt − ŵ∗‖22 −

1

2ηt
‖wt+1 − ŵ∗‖22 +

ηt
2
‖gt‖22

+ (∂F̂ (wt)− gt)
>(wt − ŵ∗).

By strong convexity of F̂ we have

F̂ (ŵ∗)− F̂ (wt) ≥ ∂F̂ (wt)
>(ŵ∗ −wt) +

1

2β
‖ŵ∗ −wt‖22.

Then

F̂ (wt)− F̂ (ŵ∗) ≤
1

2ηt
‖wt − ŵ∗‖22 −

1

2ηt
‖wt+1 − ŵ∗‖22 +

ηt
2
‖gt‖22

+ (∂F̂ (wt)− gt)
>(wt − ŵ∗)−

1

2β
‖ŵ∗ −wt‖22

≤ 1

2ηt
‖wt − ŵ∗‖22 −

1

2ηt
‖wt+1 − ŵ∗‖22 +

ηt
2
‖gt‖22

+ (∂F (wt)− ∂f(wt; ξt))
>(wt − ŵ∗)︸ ︷︷ ︸

ζt

− 1

2β
‖ŵ∗ −wt‖22.
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By summing the above inequalities across t = 1, . . . , T , we have

T∑
t=1

(F̂ (wt)− F̂ (ŵ∗)) ≤
T−1∑
t=1

1

2

(
1

ηt+1
− 1

ηt
− 1

2β

)
‖ŵ∗ −wt+1‖22 +

T∑
t=1

ζt

− 1

4β

T∑
t=1

‖ŵ∗ −wt‖22 −
1

4β
‖ŵ∗ −w1‖22 +

1

2η1
‖ŵ∗ −w1‖22 +

9G2

2

T∑
t=1

ηt

≤
T∑
t=1

ζt −
1

4β

T∑
t=1

‖ŵ∗ −wt‖22 + 9βG2(1 + log T ).

where the last inequality uses ηt = 2β
t .

Next, we bound R.H.S of the above inequality by using Lemma Appendix C.1.

To proceed the proof of Lemma 4.3. We let Xt = ζt and DT =
∑T
t=1 ‖wt − ŵ∗‖22.

Then X1, . . . , XT is a martingale difference sequence. Let D = 3βG. Note that

|ζt| ≤ 2GD. By Lemma Appendix C.1, for any δ < 1/e and T ≥ 3, with a probability

1− δ we have

T∑
t=1

ζt ≤ max

2
√

log(4 log T/δ)

√√√√ T∑
t=1

Vartζt, 6GD log(4 log T/δ)

 .

Note that

T∑
t=1

Vartζt ≤
T∑
t=1

Et[ζ
2
t ] ≤ 4G2

T∑
t=1

‖wt − ŵ∗‖22 = 4G2DT .

As a result, with a probability 1− δ,

T∑
t=1

ζt ≤4G
√

log(4 log T/δ)
√
DT + 6GD log(4 log T/δ)

≤16βG2 log(4 log T/δ) +
1

4β
DT + 6GD log(4 log T/δ).

As a result, with a probability 1− δ,

T∑
t=1

ζt −
1

4β

T∑
t=1

‖ŵ∗ −wt‖22 ≤16βG2 log(4 log T/δ) + 6GD log(4 log T/δ)

=34βG2 log(4 log T/δ).

Thus, with a probability 1− δ

F̂ (ŵT )− F̂ (ŵ∗) ≤
34βG2 log(4 log T/δ)

T
+

9βG2(1 + log T )

T

≤34βG2(1 + log T + log(4 log T/δ))

T
.
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Using the facts that F (ŵT ) ≤ F̂ (ŵT ) and F̂ (ŵ∗) ≤ F̂ (w) = F (w) +
‖w−w1‖22

2β , we

have

F (ŵT )− F (w)− ‖w −w1‖22
2β

≤ 34βG2(1 + log T + log(4 log T/δ))

T
.

Appendix D. Proof of Theorem 4.2

Proof. Let w†k,ε denote the closest point to wk in the ε sublevel set. Define εk , ε0
2k

.

First, we note that βk ≥ 2c2εk−1

ε2(1−θ)
. We will show by induction that F (wk)−F∗ ≤ εk+ε

for k = 0, 1, . . . with a high probability, which leads to our conclusion when k = K.

The inequality holds obviously for k = 0. Conditioned on F (wk−1)−F∗ ≤ εk−1 + ε,

we will show that F (wk)−F∗ ≤ εk+ε with a high probability. We apply Lemma 4.3

to the k-th stage of Algorithm 2 conditioned on the randomness in previous stages.

With a probability at least 1− δ̃ we have

F (wk)− F (w†k−1,ε) ≤
‖w†k−1,ε −wk−1‖22

2βk
+

34βkG
2
(

1 + log t+ log
(

4 log t

δ̃

))
t

.

(D.1)

Similar to the proof of Theorem 4.1, by Lemma 3.1, we have

‖w†k−1,ε −wk−1‖2 ≤
cεk−1

ε1−θ
. (D.2)

Combining (D.1) and (D.2), we have

F (wk)− F (w†k−1,ε) ≤
1

2βk

(cεk−1

ε1−θ

)2

+
34βkG

2(1 + log t+ log(4 log t/δ̃))

t
.

Using the fact that βk ≥ 2c2εk−1

ε2(1−θ)
and t ≥ 68βkG

2(1+log t+log(4 log t/δ̃))
εk

=
136β1G

2(1+log t+log(4 log t/δ̃))
ε0

, we get

F (wk)− F (w†k−1,ε) ≤
εk−1

4
+
εk
2

= εk,

which together with the fact that F (w†k−1,ε)−F∗ ≤ ε by definition of w†k−1,ε implies

F (wk)− F∗ ≤ ε+ εk.

Therefore by induction, we have with a probability at least (1− δ̃)K ,

F (wK)− F∗ ≤ εK + ε =
ε0
2K

+ ε ≤ 2ε,

where the last inequality is due to the value of K = dlog2( ε0ε )e. Since δ̃ = δ/K,

then (1− δ̃)K ≥ 1− δ.
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Appendix E. Proof of Lemma 4.4

Proof. Let rewrite the update of wτ+1 in k-th epoch as

w′ = wτ − η∂f(wτ ; ξτ ),wτ+1 = ΠK[w′].

Then for any fixed w ∈ K we have

1

2η
‖wτ+1 −w‖2 ≤ 1

2η
‖w′ −w‖2 =

1

2η
‖wτ − η∂f(wτ ; ξτ )−w‖2

=
1

2η
‖wτ −w‖2 − 〈∂f(wτ ; ξτ ),wτ −w〉+

η

2
‖∂f(wτ ; ξτ )‖2,

which implies

〈∂F (wτ ),wτ −w〉 ≤ 1

2η
‖wτ −w‖2 − 1

2η
‖wτ+1 −w‖2 +

η

2
‖∂f(wτ ; ξτ )‖2

− 〈∂f(wτ ; ξτ )− ∂F (wτ ),wτ −w〉.

By the convexity of F (w), i.e., F (w)− F (wτ ) ≥ 〈∂F (wτ ),w−wτ 〉, and Assump-

tion 3.1 (c), then

F (wτ )− F (w) ≤ 1

2η
‖wτ −w‖2 − 1

2η
‖wτ+1 −w‖2 +

ηG2

2

− 〈∂f(wτ ; ξτ )− ∂F (wτ ),wτ −w〉.

Taking expectation over 1, . . . , τ , we have

E[F (wτ )− F (w)] ≤ 1

2η
E[‖wτ −w‖2]− 1

2η
E[‖wτ+1 −w‖2] +

ηG2

2
,

where uses the fact that E[〈∂f(wτ ; ξτ )− ∂F (wτ ),wτ −w〉] = 0. By summing the

above inequalities across τ = 1, . . . , t, we have

t∑
τ=1

(E[F (wτ )− F (w)]) ≤ 1

2η
‖w1 −w‖2 +

ηG2t

2
.

It implies

E

[
1

t

t∑
τ=1

(F (wτ )− F (w))

]
≤ 1

2ηt
‖w1 −w‖2 +

ηG2

2
.

We complete the proof by using the convexity of F (w).

Appendix F. Monotonicity of Bε/ε

Lemma Appendix F.1. Bε
ε is monotonically decreasing in ε.
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Proof. Consider ε′ > ε > 0. Let xε′ be any point on Lε′ such that dist(xε′ ,Ω∗) =

Bε′ and x∗ε′ be the closest point to xε′ in Ω∗ so that ‖x∗ε′ − xε′‖ = Bε′ . We define a

new point between xε′ and x∗ε′ as

x̄ =
Bε
Bε′

xε′ +
Bε′ −Bε
Bε′

x∗ε′ .

Since 0 < Bε < Bε′ , x̄ is strictly between xε′ and x∗ε′ and dist(x̄,Ω∗) = ‖x∗ε′ − x̄‖ =
Bε
Bε′
‖x∗ε′ − xε′‖ = Bε. By the convexity of F , we have

F (x̄)− F∗
dist(x̄,Ω∗)

≤ F (xε′)− F∗
dist(xε′ ,Ω∗)

=
ε′

Bε′
.

Note that we must have F (x̄) − F∗ ≥ ε since, otherwise, we can move x̄ towards

xε′ until F (x̄) − F∗ = ε but dist(x̄,Ω∗) > Bε, contradicting with the definition of

Bε. Then, the proof is completed by applying F (x̄)− F∗ ≥ ε and dist(x̄,Ω∗) = Bε
to the previous inequality.

Appendix G. Proof of Lemma 6.1

In this proof, we need the following lemma.

Lemma Appendix G.1 (Lemma 2 of [25]). Let X1, . . . , Xt be a martingale

difference sequence, i.e. E[Xτ |X1, . . . , Xτ−1] = 0 for all τ . Suppose that for some

values στ , for τ = 1, . . . , t, we have E
[
exp

(
X2
τ

σ2
τ

)
|X1, . . . , Xτ−1

]
≤ exp(1). Then

with probability at least 1− δ, we have

t∑
τ=1

Xτ ≤

√√√√3 log(1/δ)
t∑

τ=1

σ2
τ .

Then, let us start the proof of Lemma 6.1.

Proof. Based on the fact that 1
2‖w−wτ‖22 +η∂f(wτ ; ξτ )>w+ηR(w) is 1

2 -stongly

convex in terms of w, then for any w ∈ B(w1, D), we have

1

2
‖wτ+1 −wτ‖22 + η∂f(wτ ; ξτ )>wτ+1 + ηR(wτ+1)

≤1

2
‖w −wτ‖22 + η∂f(wτ ; ξτ )>w + ηR(w)− 1

2
‖w −wτ+1‖22.

Rewrite the inequality and then it becomes

∂f(wτ ; ξτ )>(wτ+1 −w) +R(wτ+1)−R(w)

≤ 1

2η
‖w −wτ‖22 −

1

2η
‖w −wτ+1‖22 −

1

2η
‖wτ+1 −wτ‖22. (G.1)
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Then we can lower bound the first term, that is

∂f(wτ ; ξτ )>(wτ+1 −w)

=∂f(wτ ; ξτ )>(wτ+1 −wτ ) + ∂f(wτ ; ξτ )>(wτ −w)

=∂f(wτ ; ξτ )>(wτ+1 −wτ ) + [∂f(wτ ; ξτ )− ∂f(wτ )]>(wτ −w)

+ ∂f(wτ )>(wτ −w)

≥∂f(wτ ; ξτ )>(wτ+1 −wτ ) + [∂f(wτ ; ξτ )− ∂f(wτ )]>(wτ −w) + f(wτ )− f(w).

(G.2)

The last inequality uses the convexity of f(w). Plugging inequality (G.2)

into (G.1), we get

f(wτ )− f(w) +R(wτ+1)−R(w)

≤ 1

2η
‖w −wτ‖22 −

1

2η
‖w −wτ+1‖22 −

1

2η
‖wτ+1 −wτ‖22

− ∂f(wτ ; ξτ )>(wτ+1 −wτ ) + [∂f(wτ )− ∂f(wτ ; ξτ )]>(wτ −w)︸ ︷︷ ︸
ζτ (w)

. (G.3)

On the other hand, by the Cauchy-Shwartz Inequality,

−∂f(wτ ; ξτ )>(wτ+1 −wτ ) ≤ 1

2η
‖wτ+1 −wτ‖22 +

1

2
η‖∂f(wτ ; ξτ )‖22

≤ 1

2η
‖wτ+1 −wτ‖22 +

1

2
ηG2. (G.4)

Combining inequalities (G.3) and (G.4) it will have

f(wτ ) +R(wτ+1)− f(w)−R(w)

≤ 1

2η
‖w −wτ‖22 −

1

2η
‖w −wτ+1‖22 +

1

2
ηG2 + ζτ (w).

Taking summation over τ from 1 to t and dividing by t on both sides of the in-

equality, then

1

t

t∑
τ=1

F (wτ )− F (w)

≤1

t
(R(w1)−R(wt+1)) +

1

2ηt
‖w −w1‖22 +

ηG2

2
+

1

t

t∑
τ=1

ζτ (w).

Since ‖∂R(w)‖2 ≤ ρ and the convexity of F (w), let w = w†1,ε, then we get

F (ŵt)− F (w†1,ε) ≤
ρ‖w1 −wt+1‖2

t
+
‖w1 −w†1,ε‖22

2ηt
+
ηG2

2
+

1

t

t∑
τ=1

ζτ (w†1,ε)

≤ρD
t

+
‖w1 −w†1,ε‖22

2ηt
+
ηG2

2
+

1

t

t∑
τ=1

ζτ (w†1,ε). (G.5)
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Next, we will use the Lemma Appendix G.1 of martingale inequality to upper

bound
∑t
τ=1 ζτ (w†1,ε) with a high probability. By using the Jensen’s inequality,

we have ‖∂f(wτ )‖2 = ‖E[∂f(wτ ; ξτ )]‖2 ≤ E[‖∂f(wτ ; ξτ )‖2] ≤ G. Let’s denote

Xτ = ζτ (w†1,ε) = [∂f(wτ )− ∂f(wτ ; ξτ )]>(wτ −w†1,ε), then E [Xτ ] = 0 and

|Xτ | ≤‖∂f(wτ )− ∂f(wτ ; ξτ )‖2‖wτ −w†1,ε‖2

≤ (‖∂f(wτ )‖2 + ‖∂f(wτ ; ξτ‖2)
(
‖wτ −w1‖2 + ‖w1 −w†1,ε‖2

)
≤ 4GD,

where we use the fact that wτ ∈ B(w1, D) and ‖w1 − w1,ε‖2 ≤ D. This implies

that

E

[
exp

(
X2
τ

16G2D2

)]
≤ exp(1).

Then with probability at least 1− δ, we have

t∑
τ=1

Xτ ≤

√√√√3 log(1/δ)

t∑
τ=1

16G2D2 = 4GD
√

3 log(1/δ)t. (G.6)

We complete the proof by combining (G.5) and (G.6).

Appendix H. Proof of Theorem 6.1

Proof. This proof is similar to that of Theorem 4.1. Let w†k,ε denote the closest

point to wk in Sε. Define εk = ε0
2k

. Note that Dk = D1

2k−1 ≥ cεk−1

ε1−θ
and ηk = εk−1

4G2 .

We will show by induction that F (wk) − F∗ ≤ εk + ε for k = 0, 1, . . . with a

high probability, which leads to our conclusion when k = K. The inequality holds

obviously for k = 0. Conditioned on F (wk−1) − F∗ ≤ εk−1 + ε, we will show that

F (wk)− F∗ ≤ εk + ε with a high probability. By Lemma 3.1, we have

‖w†k−1,ε −wk−1‖2 ≤
cεk−1

ε1−θ
≤ Dk. (H.1)

We apply Lemma 6.1 to the k-th stage of Algorithm 1 conditioned on randomness

in previous stages. With a probability 1− δ̃ we have

F (wk)− F (w†k−1,ε) ≤
ρDk

t
+
ηkG

2

2
+
‖wk−1 −w†k−1,ε‖22

2ηkt
+

4GDk

√
3 log(1/δ̃)
√
t

.

(H.2)

We now consider two cases for wk−1. First, we assume F (wk−1) − F∗ ≤ ε, i.e.

wk−1 ∈ Sε. Then we have w†k−1,ε = wk−1 and

F (wk)− F (w†k−1,ε) ≤
ρDk

t
+
ηkG

2

2
+

4GDk

√
3 log(1/δ̃)
√
t

≤ εk
4

+
εk
4

+
εk−1

8
=

3εk
4
.
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The second inequality using the fact that ηk = εk
2G2 , t ≥ 3072 log(1/δ̃)

G2D2
1

ε20
and

t ≥ 8ρD1

ε0
. As a result,

F (wk)− F∗ ≤ F (w†k−1,ε)− F∗ +
3εk
4
≤ ε+ εk.

Next, we consider F (wk−1)−F∗ > ε, i.e. wk−1 /∈ Sε. Then we have F (w†k−1,ε)−F∗ =

ε. Combining (H.1) and (H.2), we get

F (wk)− F (w†k−1,ε) ≤
ρDk

t
+
ηkG

2

2
+

D2
k

2ηkt
+

4GDk

√
3 log(1/δ̃)
√
t

.

Since ηk = εk
2G2 and t ≥ max

{
max{16, 3072 log(1/δ̃)}G

2D2
1

ε20
, 8ρD1

ε0

}
, we have

ρDk

t
≤ ρDkε0

8ρD1
=
εk
4
,

ηkG
2

2
=
εk
4
,

D2
k

2ηkt
≤ (D1/2

k−1)2

2εk/(2G2)

ε20
16G2D2

1

=
εk
4
,

4GDk

√
3 log(1/δ̃)
√
t

≤
4G(D1/2

k−1)
√

3 log(1/δ̃)ε0

GD1

√
3072 log(1/δ̃)

=
εk
4
.

As a result,

F (wk)− F (w†k−1,ε) ≤ εk ⇒ F (wk)− F∗ ≤ εk + ε.

with a probability 1− δ̃. Therefore by induction, with a probability at least (1− δ̃)K
we have,

F (wK)− F∗ ≤ εK + ε ≤ 2ε.

Since δ̃ = δ/K, then (1− δ̃)K ≥ 1− δ and we complete the proof.

Appendix I. Proximal ASSG based on the regularized variant

In this section, we will present a proximal ASSG based on the regularized variant,

which is referred to ProxASSG-r. Similar to ASSG-r, we construct a new problem

by adding a strongly convex term 1
2β ‖w −w1‖22 to the original problem (6.1):

min
w∈Rd

F̂ (w) = F (w) +
1

2β
‖w −w1‖22, (I.1)

where F (w) is defined in (6.1). We denote ŵ∗ the optimal solution to problem (I.1)

given the regularization reference point w1. We first extend SSGS to its proximal

version as presented in Algorithm 6. To give the convergence analysis of ProxASSG-

r for solving (6.1), we first present a lemma below to bound ‖ŵ∗−wt‖2 and ‖wt−
w1‖2.
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Algorithm 6 Proxmal SSG for solving (6.1) with a Strongly convex regularizer:

ProxSSGS(w1, β, T )

1: for t = 1, . . . , T do

2: Compute wt+1 = Prox
2β/t,R

Rd

[
(1− 2

t )wt + 2
tw1 − 2β

t ∂f(wt; ξt)
]

3: end for

4: Output: ŵT =
∑T
t=1 wt/T

Lemma Appendix I.1. For any t ≥ 1, we have ‖ŵ∗ − wt‖2 ≤ 3β(G + ρ) and

‖wt −w1‖2 ≤ 2β(G+ ρ).

Proof. By the optimality of ŵ∗, we have for any w ∈ Rd

(∂F (ŵ∗) + (ŵ∗ −w1)/β)>(w − ŵ∗) ≥ 0.

Let w = w1, we have

∂F (ŵ∗)
>(w1 − ŵ∗) ≥

‖ŵ∗ −w1‖22
β

.

We have ‖∂F (ŵ∗)‖2 ≤ G+ ρ due to ‖∂g(w; ξ)‖2 ≤ G and ‖∂R(w)‖2 ≤ ρ, then

‖ŵ∗ −w1‖2 ≤ β(G+ ρ).

Next, we bound ‖wt − w1‖2. According to the update of wt+1, there exists a

subgradient ∂R(wt+1) such that

wt+1 −
(

wt − ηt[∂f(wt; ξt) +
1

β
(wt −w1)]

)
+ ηt∂R(wt+1) = 0,

where ηt = 2β
t . Thus,

‖wt+1 −w1‖2 = ‖ − ηt(∂f(wt; ξt) + ∂R(wt+1)) + (1− ηt/β)(wt −w1)‖2.

We prove ‖wt − w1‖2 ≤ 2β(G + ρ) by induction. First, we consider t = 1, where

ηt = 2β, then

‖w2 −w1‖2 = ‖2β(∂f(wt; ξt) + ∂R(wt+1))‖2 ≤ 2β(G+ ρ).

Then we consider any t ≥ 2, where ηt
β ≤ 1. Then

‖wt+1 −w1‖2 =

∥∥∥∥−ηtβ β(∂f(wt; ξt) + ∂R(wt+1)) + (1− ηt
β

)(wt −w1)

∥∥∥∥
2

≤ηt
β
β(G+ ρ) + (1− ηt

β
)2β(G+ ρ) ≤ 2β(G+ ρ).

Therefore

‖ŵ∗ −wt‖2 ≤ 3β(G+ ρ).

Next, we present a high probability convergence bound of ProxSSGS for opti-

mizing F̂ (w).
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Theorem Appendix I.1. Suppose Assumption 3.2.c holds. Let ŵT be the returned

solution of Algorithm 6. Given w1 ∈ Rd, δ < 1/e and T ≥ 3, with a high probability

1− δ we have

F (ŵT )− F (w) ≤ 1

2β
‖w −w1‖22 +

34β(G+ ρ)2(1 + log T + log(4 log T/δ)

T
.

Proof. Based on the update of wt+1 and the fact that 1
2‖w−wt‖22+ηt[∂f(wt; ξt)+

(wt−w1)/β]>w + ηtR(w) is 1
2 -stongly convex in terms of w, then for any w ∈ Rd,

we have

1

2
‖wt+1 −wt‖22 + ηt[∂f(wt; ξt) + (wt −w1)/β]>wt+1 + ηtR(wt+1)

≤1

2
‖w −wt‖22 + ηt[∂f(wt; ξt) + (wt −w1)/β]>w + ηtR(w)− 1

2
‖w −wt+1‖22.

Rearranging the inequality gives

ηt[∂f(wt) + (wt −w1)/β]>(wt+1 −w) + ηt(R(wt+1)−R(w))

≤1

2
‖w −wt‖22 −

1

2
‖w −wt+1‖22 −

1

2
‖wt+1 −wt‖22

+ ηt[∂f(wt)− ∂f(wt; ξt)]
>(wt+1 −w). (I.2)

By the strong convexity of f(w) + 1
2β ‖w −w1‖22, we have

ηt[∂f(wt) + (wt −w1)/β]>(wt+1 −w)

=ηt[∂f(wt) + (wt −w1)/β]>(wt −w) + ηt[∂f(wt) + (wt −w1)/β]>(wt+1 −wt)

≥ηt
[
f(wt) +

1

2β
‖wt −w1‖22

]
− ηt

[
f(w) +

1

2β
‖w −w1‖22)

]
+
ηt
2β
‖wt −w‖22

+ ηt[∂f(wt) + (wt −w1)/β]>(wt+1 −wt). (I.3)

Plugging inequality (I.3) into (I.2), we get

ηt

[
f(wt) +

1

2β
‖wt −w1‖22

]
− ηt

[
f(w) +

1

2β
‖w −w1‖22

]
+ ηt(R(wt+1)−R(w))

≤1

2
‖w −wt‖22 −

1

2
‖w −wt+1‖22 + ηt[∂f(wt)− ∂f(wt; ξt)]

>(wt+1 −w)

− 1

2
‖wt+1 −wt‖22 −

ηt
2β
‖wt −w‖22 − ηt[∂f(wt) + (wt −w1)/β]>(wt+1 −wt).

(I.4)

On the other hand, by the Cauchy-Shwartz inequality we have

− ηt[∂f(wt) + (wt −w1)/β]>(wt+1 −wt)

≤1

4
‖wt+1 −wt‖22 + η2

t ‖∂f(wt) + (wt −w1)/β‖22

≤1

4
‖wt+1 −wt‖22 + 2η2

t [G2 + 4(G+ ρ)2] (I.5)
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and

ηt[∂f(wt)− ∂f(wt; ξt)]
>(wt+1 −w)

=ηt[∂f(wt)− ∂f(wt; ξt)]
>(wt −w) + ηt[∂f(wt)− ∂f(wt; ξt)]

>(wt+1 −wt)

≤ηt[∂f(wt)− ∂f(wt; ξt)]
>(wt −w) +

1

4
‖wt+1 −wt‖22 + η2

t ‖∂f(wt)− ∂f(wt; ξt)‖22

≤ηt[∂f(wt)− ∂f(wt; ξt)]
>(wt −w) +

1

4
‖wt+1 −wt‖22 + 4η2

tG
2. (I.6)

Plugging inequalities (I.5) and (I.6) into inequality (I.4), we get[
f(wt) +R(wt+1) +

1

2β
‖wt −w1‖22

]
−
[
f(w) +R(w) +

1

2β
‖w −w1‖22

]
≤ 1

2ηt
‖w −wt‖22 −

1

2ηt
‖w −wt+1‖22 + [∂f(wt)− ∂f(wt; ξt)]

>(wt −w)︸ ︷︷ ︸
ζt(w)

− 1

2β
‖w −wt‖22 + 2ηt[3G

2 + 4(G+ ρ)2].

By summing the above inequalities across t = 1, . . . , T and setting w = ŵ∗, we

have

T∑
t=1

(F̂ (wt)− F̂ (ŵ∗))

≤
T−1∑
t=1

1

2

(
1

ηt+1
− 1

ηt
− 1

2β

)
‖ŵ∗ −wt+1‖22 +

T∑
t=1

ζt(ŵ∗)−
1

4β

T∑
t=1

‖ŵ∗ −wt‖22

− 1

4β
‖ŵ∗ −w1‖22 +

1

2η1
‖ŵ∗ −w1‖22 + (6G2 + 8(G+ ρ)2)

T∑
t=1

ηt +R(w1)−R(wT+1)

≤
T∑
t=1

ζt(ŵ∗)−
1

4β

T∑
t=1

‖ŵ∗ −wt‖22 + β[(12G2 + 16(G+ ρ)2)(1 + log T ) + 2ρ(G+ ρ)],

where the last inequality uses ηt = 2β
t and R(w1)−R(wT+1) ≤ ρ‖w1 −wT+1‖2 ≤

2βρ(G + ρ). Next, we bound R.H.S of the above inequality. By using Lemma Ap-

pendix C.1, we employ the same technique in the proof of Theorem 4.2 to proceed

our proof. The only difference is that we set D = 3β(G+ ρ). We omit the detailed

steps but present the key results: with a probability 1− δ, we have

T∑
t=1

ζt −
1

4β

T∑
t=1

‖ŵ∗ −wt‖22 ≤16βG2 log(4 log T/δ) + 6GD log(4 log T/δ)

=β(34G2 + 18Gρ) log(4 log T/δ).
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Algorithm 7 the ProxASSG-r algorithm for solving (6.1)

1: Input: the number of stages K and the number of iterations t per-stage, the

initial solution w0 ∈ K, and β1 ≥ 2c2ε0
ε2(1−θ)

2: for k = 1, . . . ,K do

3: Let wk = ProxSSGS(wk−1, βk, t)

4: Update βk+1 = βk/2

5: end for

6: Output: wK

Thus, with a probability 1− δ,

F̂ (ŵT )− F̂ (ŵ∗) ≤β
(34G2 + 18Gρ) log(4 log T/δ)

T

+ β
(12G2 + 16(G+ ρ)2)(1 + log T ) + 2ρ(G+ ρ)

T

≤34β(G+ ρ)2(1 + log T + log(4 log T/δ))

T
.

We complete the proof by using the facts that F (ŵT ) ≤ F̂ (ŵT ) and F̂ (ŵ∗) ≤
F (w) + λ

2 ‖w −w1‖22.

Finally, we present ProxASSG-r in Algorithm 7 and its convergence guaratnee

is presented in theorem below.

Theorem Appendix I.2. Suppose Assumptions 3.1 and 3.2 hold for a target

ε � 1. Given δ ∈ (0, 1/e), let δ̃ = δ/K and K = dlog2( ε0ε )e and t be the smallest

integer such that t ≥ max{ 136β1(G+ρ)2(1+log(4 log t/δ̃)+log t)
ε0

, 3}. Then ProxASSG-r

guarantees that, with a probability 1− δ,

F (wK)− F∗ ≤ 2ε.

As a result, the iteration complexity of ASSG-r for achieving an 2ε-optimal solution

with a high probability 1− δ is Õ(log(1/δ)/ε2(1−θ)) provided β1 = Ω( 2c2ε0
ε2(1−θ)

).

Proof. The proof is the same to the proof of Theorem 4.2 by replacing G by G+ρ.

Appendix J. ASSG for Piecewise Convex Quadratic Minimization

In this section, we develop an ASSG for piecewise convex quadratic minimization

under the global error bound condition:

dist(w,K∗) ≤ c[F (w)− F∗ + (F (w)− F∗)1/2], ∀w ∈ Rd. (J.1)

We assume that an upper bound of c ≤ ĉ is given. Here, we only show the results for

the constrained variant of ASSG, which is presented in Algorithm 8. The regularized

variant is a simple exercise.
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Algorithm 8 the ASSG-c algorithm under the global error bound condition (J.1)

1: Input: the number of stages K, the number of iterations t per stage, and the

initial solution w0, η1 = ε0/(3G
2) and ĉ ≥ c

2: for k = 1, . . . ,K do

3: Let wk
1 = wk−1 and Dk ≥ ĉ(εk−1 +

√
εk−1)

4: for τ = 1, . . . , tk do

5: Update wk
τ+1 = ΠK∩B(wk−1,Dk)[w

k
τ − ηk∂f(wk

τ ; ξkτ )]

6: end for

7: Let wk = 1
tk

∑tk
τ=1 wk

τ

8: Let ηk+1 = ηk/2

9: end for

10: Output: wK

Theorem Appendix J.1. Suppose Assumption 3.1 holds and F (w) is convex and

piecewise convex quadratic function. Given δ ∈ (0, 1), let δ̃ = δ/K, K = dlog2( ε0ε )e,
and tk be the smallest integer such that tk ≥ 6912G2ĉ2 log(1/δ̃) max{1, 1

εk
}. Then

Algorithm 8 guarantees that, with a probability 1− δ,

F (wK)− F∗ ≤ ε.

As a result, the iteration complexity of Algorithm 8 for achieving an ε-optimal

solution with a high probability 1− δ is O(log(1/δ)/ε).

Proof. Define εk = ε0
2k

. Note that ηk = εk−1

3G2 . We will show by induction that

F (wk) − F∗ ≤ εk for k = 0, 1, . . . with a high probability, which leads to our

conclusion when k = K. The inequality holds obviously for k = 0. Conditioned on

F (wk−1)− F∗ ≤ εk−1, we will show that F (wk)− F∗ ≤ εk with a high probability.

First, we have

‖w∗k−1 −wk−1‖2 ≤c[F (wk−1)− F∗ + (F (wk−1)− F∗)1/2]

≤c(εk−1 +
√
εk−1) ≤ Dk,

where w∗k−1 ∈ K∗ is the closest point to wk−1 in the optimal set, the second

inequality follows the global error bound (J.1) and the last inequality uses the value

of Dk. We apply Lemma 4.1 replacing w†1,ε with w∗1 to the k-th stage of Algorithm 1

conditioned on randomness in previous stages. With a probability 1− δ̃ we have

F (wk)− F∗ ≤
ηkG

2

2
+
‖wk−1 −w∗‖22

2ηktk
+

4GDk

√
3 log(1/δ̃)
√
tk

≤ηkG
2

2
+

D2
k

ηktk
+

4GDk

√
3 log(1/δ̃)
√
tk

.

Since ηk = 2εk
3G2 and tk ≥ 6912G2ĉ2 log(1/δ̃) max{1, 1

εk
}, we can derive that F (wk)−

F∗ ≤ εk with a probability 1− δ̃. Therefore by induction, with a probability at least
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(1− δ̃)K we have F (wK)−F∗ ≤ εK ≤ ε. Since δ̃ = δ/K, then (1− δ̃)K ≥ 1− δ and

we complete the proof. In fact, the total number of iterations of ASSG-c is bounded

by T =
∑K
k=1 tk ≤ O

(
log(1/δ̃)

∑K
k=1

1
εk

)
= O

(
log(1/δ̃)

ε

)
.
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