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Abstract

In this paper, we consider the problem of community de-
tection in directed networks by using probabilistic mod-
els. Most existing probabilistic models for community
detection are either symmetric in which incoming links
and outgoing links are treated equally or conditional

in which only one type (i.e., either incoming or out-
going) of links is modeled. We present a probabilistic
model for directed network community detection that
aims to model both incoming links and outgoing links
simultaneously and differentially. In particular, we in-
troduce latent variables node productivity and node pop-

ularity to explicitly capture outgoing links and incom-
ing links, respectively. We demonstrate the generality
of the proposed framework by showing that both sym-
metric models and conditional models for community
detection can be derived from the proposed framework
as special cases, leading to better understanding of the
existing models. We derive efficient EM algorithms for
computing the maximum likelihood solutions to the pro-
posed models. Extensive empirical studies verify the
effectiveness of the new models as well as the insights
obtained from the unified framework.
keywords: community detection, popularity, produc-
tivity, stochastic block model, directed network

1 Introduction

Community detection is an important topic in analyzing
networked data because it reveals underlying structures
in a complex network, a key to the network analysis.
A community can be intuitively considered as a set of
nodes that are densely connected with each other while
sparsely connected with other nodes in the network.
Based on this intuition, many previous studies (e.g.,
[7, 13, 15]) focused on defining appropriate metrics
to quantify the connection and efficient algorithms to
optimize the defined metrics. These approaches usually
rely on some heuristics and lack a rigorous mathematical
model.

More recently, various probabilistic models have
been proposed for community detection. Among them,
stochastic block models [10, 14, 17, 3, 16, 2, 12] are
probably the most successful ones in terms of capturing
meaningful communities, producing good performance,
and offering probabilistic interpretations. The basic
idea is first to define a generative process where links
are generated based on latent community memberships
of nodes, and then to infer the community memberships
from the links by either maximizing the data likelihood
or computing the posterior distribution for community
memberships.

Most stochastic block models can be classified into
two categories: the symmetric approaches [14, 17] that
model links by symmetric joint probabilities, and the
conditional approaches [3, 16] that focus on the condi-
tional probability of receiving links. Neither of these
models is satisfying: a symmetric model misses the se-
mantics of link directions, a key factor that distinguishes
directed networks from undirected networks; a condi-
tional model only captures one type of links, either in-
coming links or outgoing links, and therefore is unable
to characterize nodes in a full spectrum. As an exam-
ple, in a blog readership network, there are two types of
bloggers: “writers” who generate influential blogs read
by many, and “readers” who read a lot but seldom write
anything for others to read. Evidently, to characterize
these two types of bloggers, it is important to examine
both incoming links and outgoing links of the network.

In this work, we propose a novel probabilistic frame-
work for directed network community detection, termed
Popularity and Productivity Link model or PPL
for short, that explicitly addresses the shortcomings of
the existing stochastic block models. In particular, we
model both outgoing links and incoming links by the in-
troduction of the latent variables productivity and pop-

ularity. We demonstrate the generality of the proposed
framework by showing that both the symmetric models
and the conditional models can be derived from the pro-
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posed framework as special cases, leading to the unifica-
tion of various seemingly different forms for the existing
models. We develop efficient EM-algorithms for com-
puting the maximum likelihood solutions to the mod-
els proposed in this paper. Extensive empirical studies
show the promising performances of the proposed mod-
els in several application domains. Further analysis is
conducted to investigate the trade-offs of each stochastic
block model when data characteristic varies.

The rest of the paper is organized as follows. In the
rest of this section, we give a general review of related
work. In Section 2, we give background information,
including notation we will use and details of several
previous approaches. In Section 3, we present the
PPL model, several of its variations, and some of their
properties. In Section 4, we provide a detailed analysis
on the relationship between PPL models and several
existing stochastic block models. In Section 5, we
describe an efficient estimation algorithm. In Section 6,
we show the results of experimental studies. Finally, we
conclude in Section 7.

Related Work Link-based approaches for community
detection can be roughly put into two categories. The
first category is metric-based. For approaches of this
category, a metric is first defined to quantify the quality
of any potential community structure; and then, proce-
dures are developed to optimize the proposed metric.
Some well-known metrics include normalized cut pro-
posed by Shi et al. [15], modularity proposed by New-
man et al. [13], betweenness proposed by Gregory [7],
etc. Furthermore, some later work introduces simple
probabilistic interpretations to some of these metrics
and extends the metrics from measuring undirected net-
works to measuring directed networks [11, 18]. A main
weak point among these metric-based approaches is they
usually do not have a rigorous generative model. There-
fore, on one hand, it is difficult to reach a consensus on
the metric; and on the other hand, these approaches lack
the generative power to generate new (or unobserved)
links, which is necessary in many applications (e.g., link
prediction).

The second category of approaches for community
detection are based on probabilistic models. For ap-
proaches in this category, a generative process is first de-
fined in which links are generated based on latent com-
munity memberships, and then, inference algorithms are
used to infer the latent community memberships from
data. One of the most well-studied probabilistic models
is the stochastic block model [10], for which many vari-
ations have been recently proposed and analyzed. For
example, Cohen et al. [3] extend the HITS algorithm to
link analysis and proposed PHITS. Yang et al. [16] pro-

pose conditional stochastic block model to fit indegree
distribution in a network. Airoldi et al. [2] propose a
mixed membership stochastic block model which is later
extended by Nallapati et al. [12] to handle directed net-
works. More recently, Dietz et al. [5], Erosheva et al. [6],
and Hofman et al. [8] propose fully Bayesian versions of
the stochastic block models by using appropriate priors.
The strong points of stochastic block models include rig-
orous generative processes, well-studied algorithms for
efficient inference, and the potentials of fully Bayesian
treatment. We will provide the details for several of
these approaches in the next section.

2 Background

In this section we first establish some necessary notation
for ease of presentation. We then describe the details
about three representative existing stochastic block
models which are most relevant to our work.

2.1 Notation For a directed network, we denote the
nodes by V = {1, · · · , N}, the directed links by E =
{(i, j)|sij 6= 0}, where sij records the value associated
with link from node i to node j. sij can either be binary,
to denote whether there is a link from node i to node
j, or be non-negative values, to denote the weight of
the link. For simplicity, following [16], we assume the
“link-in” space (i.e., all possible nodes that can point to
a particular node) and “link-out” space(i.e., all possible
nodes that can be pointed to by a particular node) of
every node to be V , i.e., the complete set of nodes. We
use I(i) = {j|sji 6= 0} to denote the set of all nodes
point to node i, and O(i) = {j|sij 6= 0} to denote the set
of all nodes that are pointed to by node i. Let K denote
the number of communities, zi ∈ {1, · · · , K} denote the
community variable of node i, and γi = (γi1, · · · , γiK)
denote the community memberships of node i. In other
words, γik is the probability for the case zi = k, i.e.,
node i belongs to community k.

2.2 Existing Models We now review three variants
of the well-known stochastic block model [10] that are
closely related to the proposed model.

2.2.1 PHITS Model PHITS [3] is a conditional
model that focuses on the conditional link probability
of Pr(j|i), i.e., given that node i produces a link,
how likely this link will point to node j among all
nodes. To compute Pr(j|i), a community variable zi

is first sampled from a multinomial distribution with
parameter γi that describes the community membership
of node i, then for a given zi, the conditional link
probability Pr(j|i, zi) is given by Pr(j|i, zi) = βjzi

,
where the parameter βjk represents the likelihood for
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node j to be pointed to by any node in community k.
By integrating out zi, we get the PHITS model

(2.1) Pr(j|i) =
∑

k

βjkγik

It is well known that PHITS can be considered as an
application of PLSA [9] to network data.

2.2.2 Popularity Conditional Link (PCL)
Model PCL [16] is also a conditional model. It models
Pr(j|i) by introducing the latent variable popularity for
each node that describes how likely a node is to receive
a link. Thus, given zi, i.e., the community assignment
for node i, Pr(j|i, zi) is given by

Pr(j|i, zi) =
γjzi

bj
∑

j′ γj′zi
bj′

where bj is the popularity of node j. By integrating out
zi we have

(2.2) Pr(j|i) =
∑

k

γjkbj
∑

j′ γj′kbj′
γik

As shown in [16], PHITS model can be viewed as
a relaxed version of PCL model if we introduce the
community-dependent popularity. It is important to
note that both conditional models only take into ac-
count one type of links, and therefore are insufficient
for directed network community detection.

2.2.3 Symmetric Joint Link (SJL) Model
SJL [3, 17, 14] is a symmetric model for community
detection. It models the link structure by the joint
probability Pr(i, j), i.e., the likelihood of creating a link
between node i and j, as follows

Pr(i, j) =
∑

k

Pr(j|k) Pr(i|k) Pr(k)

=
∑

k

βjkβikπk(2.3)

In Equation (2.3), πk is the prior probability for a link
to be produced in community k, and βik and βjk are the
conditional probabilities that nodes i and j are selected
as the two ends of the link. Given the symmetric
treatment, i.e., Pr(i, j) = Pr(j, i), it is evident that SJL
may not be suitable for directed network community
detection.

3 Popularity and Productivity Link (PPL)
Model

In this section, we first present our popularity and

productivity link (PPL) model in its general form, then
give three variations of the general PPL model, and
finally discuss several properties of the PPL models.

3.1 General Form of PPL PPL models the joint
link probability Pr(i, j), i.e., how likely there is a
directed link from node i to node j. In order to
emphasize the different roles played by i and j, we write
Pr(i, j) as Pr(i→, j←), denoting that node i plays the
role of producing the link, and node j plays the role of
receiving the link. Following the idea of SJL, we model
Pr(i→, j←) as follows

Pr(i→, j←) =
∑

k

Pr(i→|k) Pr(j←|k) Pr(k)

=
∑

k

(

γikai
∑

i′ γi′kai′

γjkbj
∑

i′ γi′kbi′

∑

i′

γi′kci′

)

(3.4)

where
• γik: the probability for node i to belong to commu-

nity k
• ai: the productivity of node i, i.e., among all the

nodes, how likely a link is produced by node i
• bj: the popularity of node j, i.e., among all the

nodes, how likely a link is received by node j
• ci: the weight of node i in terms of deciding the

community prior Pr(k) (which will be elaborated
momentarily).

To handle scale invariance, we normalize so that
∑

i ai =
∑

j bj =
∑

i ci = 1.

Generative Process We explain Equation (3.4) by
the following generative process of PPL:
• Sample a community z according to a prior dis-

tribution π1, · · · , πK , where πk is computed by
πk =

∑N
i=1 γikci.

• Given community z, the conditional link probabil-
ity is given by

Pr(i→, j←|z) = Pr(i→|z) Pr(j←|z)

=
γizai

∑

i′ γi′zai′

γjzbj
∑

i′ γi′zbi′
(3.5)

There are two unique features in the above generative
process:
• Prior probability πk =

∑

i γikci is constructed as
the weighted sum of node memberships γik, where
ci is used to weight node i in the combination. This
construction enforces the consistency between node
memberships γik and community prior {πk}

K
k=1.

This specific construction of community priors also
simplify relation between the proposed framework
and some existing models for community detection.

• In Equation (3.5), the two ends of link i → j
are treated differently when modeling Pr(i→, j←|z):
besides the dependence on community member-
ships γik and γjk, Pr(i→|z) and Pr(j←|z) are mod-
eled by ai (i.e., the productivity of node i) and bj
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(i.e., the popularity of node j), respectively, lead-
ing to the differentiation of the roles played by the
two nodes.

With the joint link probability defined in Equa-
tion (3.4), the log-likelihood for links can be written
as

L(a, b, c, γ) =

∑

(i,j)∈E

sij log
∑

k

γikai
∑

i′ γi′kai′

γjkbj
∑

i′ γi′kbi′

∑

i′

γi′kci′

(3.6)

Note that we use original data sij in the joint link

model rather than normalized data ŝij =
sij

∑

j sij

used

in conditional link models [3, 16] . Parameters γ, a, b,
and c can be inferred by maximizing the log-likelihood
L(a, b, c, γ).

3.2 Three Variants of the General PPL Model
In this subsection, we show three variants of PPL model
by introducing different restrictions on parameters a, b
and c.

Popularity Link (PoL) Model In the first restricted
variation, we enforce ci = ai, ∀i in Equation (3.4),
leading to the following expression for Pr(i→, j←)

(3.7) Pr(i→, j←) =
∑

k

γjkbj
∑

i′ γi′kbi′
γikai

We refer to this variant as the Popularity Link (PoL)
Model. By assuming ci = ai, we essentially assume that
the prior probability of each community (i.e.,

∑

i γikci)
is identical to the prior probability for a link to be
produced from that community (i.e.,

∑

i γikai).

Productivity Link (PrL) Model In the second re-
stricted variation, we enforce ci to be equal to bi, leading
to the following expression for Pr(i→, j←),

Pr(i→, j←) =
∑

k

γikai
∑

i′ γi′kai′
γjkbj(3.8)

We refer to this variant as the Productivity Link (PrL)
Model. By assuming ci = bi, we essentially assume that
the prior probability of each community (i.e.,

∑

i γikci)
is identical to the prior probability for a link to be
received by that community (i.e.,

∑

i γikbi).

Regularized PPL (PPL-D) Model In this varia-
tion, instead of enforcing the relationship between ci

and ai or bi, we learn ci from data, under certain regu-
larization. In particular, we introduce a Dirichlet prior

for parameters c = (c1, . . . , cN ), i.e., Pr(c) ∝
∏

i cα
i ,

where α is the hyper-parameter of Dirichlet distribu-
tion. Using the prior Pr(c) as the regularization, we
obtain an MAP estimation of parameters by maximiz-
ing the following log-posterior probability

(3.9) L(a, b, c, γ) + log Pr(c)

where L(a, b, c, γ) is given in Equation (3.6). We call
this PPL model regularized by the Dirichlet prior the
PPL-D model.

3.3 Properties of PPL Models In this subsection,
we show two important properties of the PoL, PrL, and
general PPL model.

Equivalence between the Variants of PPL Mod-
els The first property is about the relationship between
PoL model, PrL model, and general PPL model. Sur-
prisingly, although their formulas are different, the op-
timal solutions for the three models actually result in
identical joint link probability and therefore identical
data likelihood. This property is described in the fol-
lowing theorem.

Theorem 3.1. Under the optimal solution, the joint

link probability Pr(i→, j←) of PoL model, PrL model

and general PPL model are the same. That is,

Pr1(i→, j←|a1, b1, γ1) = Pr2(i→, j←|a2, b2, γ2) =
Pr3(i→, j←|a3, b3, c3, γ3), where Pr1(i→, j←),
Pr2(i→, j←), Pr3(i→, j←) are the joint link proba-

bilities of PoL model, PrL model, and general PPL

model, respectively; {a1, b1, γ1}, {a2, b2, γ2} and

{a3, b3, c3, γ3} are the optimal solutions to maximizing

the log-likelihood of PoL model, PrL model and general

PPL model, respectively. In particular, denoting the

log-likelihood of PoL, PrL and general PPL model by

L1(a, b, γ),L2(a, b, γ),L3(a, b, c, γ) respectively, we have

L1(a
1, b1, γ1) = L2(a

2, b2, γ2) = L3(a
3, b3, c3, γ3).

The proof for Theorem 3.1 is given in the appendix.
One implication of this theorem is that the space of
the optimal solution to the general PPL model is not a
unique fixed point. As a consequence, if in addition
to the joint link probability, we also care about the
exact solution to the community membership γ, then
we should not directly apply PPL in its general form.
Instead, we should either choose PoL and PrL if the
MLE solution is needed, or choose PPL-D if the MAP
solution is needed.

Perfect Fitting of the Distributions of Indegree
and Outdegree The second property of the PPL
model is about degree fitting. It turns out that the
optimal solutions to PoL model, PrL model, and general
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PPL model all fit exactly the degree distributions (both
indegree and outdegree) in the network data. This is
described in the following theorem, whose proof is given
in the appendix.

Theorem 3.2. The model outdegree distribution

Pr(i→) and model indegree distribution Pr(j←) of PoL

model, PrL model and general PPL model fit exactly

the actual indegree and outdegree distributions of the

network data.

This property of degree fitting is a consequence of
the concepts of productivity and popularity. We argue
that degree fitting is a very important property for
a generative model. This is because in real world,
most networks have heavy-tailed (or power-law) degree
distribution. So far, no existing stochastic block models
can guarantee to generate degree distributions fitting
both indegree and outdegree distributions of real-world
networks.

4 Relationship with Existing Models

In this section, we describe the relationship between
PPL and several existing models, including conditional
link models, namely PCL [16] and PHITS [3], and
symmetric joint link model (SJL) [14, 17]. It turns
out that these existing models all can be considered as
special cases of PPL, with different constraints. Such a
connection demonstrates that PPL provides a consistent
framework to unify the existing models.

4.1 Relationship with Conditional Link Models
We show that the Popularity Conditional Link(PCL)
model in [16] is a conditional version of the Popularity
Link(PoL) model described in Section 3.2. Starting
from the joint probability given in Equation (3.7), we
can express the conditional probability of the PoL model
as

(4.10) Pr(j←|i→) =
Pr(i→, j←)

Pr(i→)
=
∑

k

γjkbj
∑

i′ γi′kbi′
γik

Note that in the above derivation, we use the fact
that Pr(i→) = ai, which is obtained in the proof of
Theorem 3.2. Equation (4.10) is exactly the same as
the Popularity Conditional Link(PCL) model proposed
in [16]. Because of this connection, in the following
discussion, we also refer to the PCL model described in
Equation (4.10) (and in [16]) as PoCL model.

Following a similar idea, from Productivity
Link(PrL) model we can derive a Productivity Condi-
tional Link model by computing the conditional proba-
bility Pr(i→|j←) from Equation (3.8) as the following

(4.11) Pr(i→|j←) =
Pr(i→, j←)

Pr(j←)
=
∑

k

γikai
∑

i′ γi′kai′
γjk

In the above derivation, we use the fact that Pr(j←) =
bj, which is obtained in the proof of Theorem 3.2.
Because of its connection to PrL, we refer to this new
conditional model as PrCL.

As we can see, PoCL and PrCL capture the con-
ditional link probability in different directions. PoCL
depends on the popularity of the receiving node j while
PrCL depends on the productivity of the producing node
i. In addition, both PoCL and PrCL can be naturally
derived from the PPL models, i.e., PoL and PrL.

Because as we have discussed before, PHITS is a
relaxed version of PoCL, obviously it can also be derived
from PPL.

4.2 Relationship with Symmetric Joint Link
Model To show its relationship with SJL, we enforce
that ci = ai = bi, ∀i in the general PPL model. From a
probabilistic view point this restricts that for each node,
the probability for producing links is equal to that for
receiving links. With this restriction, Equation (3.4) is
reduced to

Pr(i→, j←) =
∑

k

γikci
∑

i′ γi′kci′

γjkcj
∑

j′ γj′kcj′

∑

i′

γi′kci′

The following theorem, whose proof is given in the
appendix, shows that this restricted version of PPL is
exactly the SJL model.

Theorem 4.1. Under the constraint that ai = bi =
ci, ∀i, the general PPL model is equivalent to the SJL

model.

The relationship revealed by Theorem 4.1 shows
that SJL is a special PPL with the constraint that nodes
having the same probability in terms of producing and
receiving links, which is appropriate only for modeling
undirected networks.

4.3 Putting It All Together In Table 1, we sum-
marize all the models discussed in this paper. Models
that are newly developed in this paper are print in bold.
We believe such a unified picture, offered through the
PPL model, will be very helpful for understanding and
further studying different stochastic block models for
community detection.

5 Estimation Algorithm

In this section, we present efficient EM algorithms for
computing the MLE solutions to PoL and PrL and
the MAP solution to PPL-D. Because the derivation
of the algorithms is rather lengthy, here we only present
the final form of the algorithms as well as offer several
observations, and we provide the detailed derivation in
the appendix.
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Table 1: Taxonomy of the models discussed in this
paper, categorized by (1) if a conditional, joint, or
symmetric probability is modeled and (2) if popularity,
productivity, or both are considered. Names of the
models newly introduced in this paper are in bold.

popularity productivity both

conditional
PHITS,
PoCL

PrCL

joint PoL PrL
PPL,

PPL-D
symmetric SJL

Theorem 5.1. The following EM algorithms converge

to the MLE solutions to PoL and PrL, and the MAP

solution to PPL-D.

E-step:

qijk ∝ Prt−1(i, j, k)

where t-1 indicates the result in the previous iteration

M-step:

PoL :γik =
nik

mτ
kbi + nout(i)

,

bi =
nin(i)

∑

k mτ
kγik

, ai =
nout(i)
∑

i nout(i)

PrL :γik =
nik

mη
kai + nin(i)

,

ai =
nout(i)
∑

k mη
kγik

, bi =
nin(i)
∑

i nin(i)

PPL-D :γik =
nik + mζ

ik

mη
kai + mτ

kbi + mζ
i

, ci =
mζ

i + eα
∑

i(m
ζ
i + eα)

ai =
nout(i)
∑

k mη
kγik

, bi =
nin(i)

∑

k mτ
kγik

where e is the summation of all sij and the rest variables

are defined as:

ηk =
∑

i′

γt−1
i′k at−1

i′ , τk =
∑

j′

γt−1
j′k bt−1

j′ , ζik =
γt−1

ik ct−1
i

∑

i′ γt−1
i′k ct−1

i′

nin(i, k) =
∑

j∈I(i)

sjiqjik, nout(i, k) =
∑

j∈O(i)

sijqijk

nin(i) =
∑

k

nin(i, k), nout(i) =
∑

k

nout(i, k)

nik = nin(i, k) + nout(i, k), mk =
∑

(i→j)∈E

sijqijk

mτ
k =

∑

(i→j)∈E sijqijk

τk

, mη
k =

∑

(i→j)∈E sijqijk

ηk

mζ
ik = ζik

∑

(i→j)∈E

sijqijk, mζ
i =

∑

k

mζ
ik.

It can be observed from the EM algorithm that in
every iteration (and therefore in the final solutions) for
each node i, its productivity ai is proportional to its
outdegree and its popularity bi is proportional to its
indegree. This is consistent with our intentions that the
productivity of a node reflects how likely it produces a
link and the popularity of a node reflects how likely it
receives a link.

In addition, it is worth mentioning that in the real
implementation, we avoid to explicitly compute all qijk ’s
(whose number is N2K, which can be extremely large).
Instead, qijk ’s are computed in an “on-demand” fashion.
We can show that the complexity (per iteration) of
our EM algorithms is linear in the number of links in
the network. Therefore, the algorithm is very efficient
because in most real applications, networks are sparse
and so the number of links is usually manageable.

6 Experiments

In this section, we show experiment results. We evaluate
a variety of models (variations of PPL and existing
models) on two tasks: community detection and link
prediction. In addition, we also investigate the issue of
degree fitting. We start by describing the data sets used
in the experiments.

6.1 Data Sets In the following experiments, we use
a blog network and two paper citation networks.

Political Blog Network This is a directed network of
hyperlinks between a set of weblogs about US politics,
recorded by Adamic and Glance [1]. In this network,
there are totally 1,490 nodes and 19,090 links. Each
node is labeled as either conservative or liberal.

Paper Citation Networks We use the Cora paper ci-
tation network and the Citeseer paper citation network
processed by Getoor et al.1. There are totally 2,708
nodes and 5,429 links in Cora network, and 3,312 nodes
and 4,732 links in Citeseer network. Each paper in Cora
network is categorized into one of 7 classes (e.g., Genetic
Algorithms, Neural Networks, etc.), and each paper in
Citeseer network is labeled as one of 6 classes.

6.2 Community Detection In the first task, com-
munities are to be detected from the networks. In this
task, the real class labels in the data sets are used as the
ground truth to evaluate the communities detected by
different models. More specifically, we use the following
evaluation metrics.

1http://www.cs.umd.edu/projects/linqs/projects/lbc/
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Evaluation Metrics for Community Detection
We use three commonly used metrics for evaluating the
performance of community detection, i.e. normalized
mutual information (NMI), pairwise F measure (PWF),
and modularity (Modu). We first give detailed descrip-
tion about the three metrics.

Normalized mutual information (NMI) is defined
as follows: given the true community structure C =
{C1, · · · , CK}, where Ck denote the set of nodes in
the k-th community, and the community structure
C′ = {C′1, · · · , C′K} obtained from a model, the mutual
information is computed as

MI(C, C′) =
∑

Ck,C′

l

p(Ck, C′l) log
p(Ck, C′l)

p(Ck)p(C′l)

where p(Ck) denotes the probability that a randomly
selected node belongs to Ck, and p(Ck, C′l) denotes the
joint probability that a randomly selected node belongs
to Ck and C′l . The normalized mutual information is
defined as

NMI(C, C′) =
MI(C, C′)

max(H(C), H(C′))

where H(C) =
∑

k

p(Ck) log
1

p(Ck)
is the entropy of

partition C.
Pairwise F measure (PWF) is another commonly

used measure for evaluating clustering algorithms. As-
sume T is the set of node pairs (i, j) where nodes i and
j belong to the same community in the ground truth,
and S is the set of node pairs that belong to the same
community in the outcome of a specific model. Then the
pairwise F measure is computed from pairwise precision
and recall as

precision = |S
⋂

T |/|S| recall = |S
⋂

T |/|T |

PWF =
2 × precision× recall

precision + recall

where | · | indicates the cardinality of a set.
Note that to compute the normalized mutual in-

formation and pairwise F measure, the ground truth
must be used. However, in some cases, the ground truth
does not necessarily faithfully reflect the link structure.
Therefore, we also use another measure called directed
modularity (Modu), which is proposed by Leicht et
al. [11] for measuring community partitions in directed
networks without using ground truth. The definition of
the directed modularity is given by

Modu =
1

e

∑

ij

(

sij −
dout(i)din(j)

e

)

δ(ci, cj)

where din(i) and dout(i) are the indegree and outdegree
of node i in the network, e is the number of directed
links in the network, and ci denotes the community of
node i assigned by a model, and δ(·, ·) is the Kronecker
delta function.

For all the three metrics, i.e., NMI, PWF, and
Modu, larger values correspond to better performances.

Performance on Community Detection The com-
munity detection performances for different models on
the three data sets are given in Tables 2, 3, and 4.
Among the models, PHITS, PoCL, and PrCL are con-
ditional link models. PHITS [4] represents the model
described in Equation (2.1); PoCL represents the Popu-
larity Conditional Link model [16] described in Equa-
tion (2.2); PrCL represents the Productivity Condi-
tional Link model described in Equation (4.11). SJL
represents symmetric link model as described in [14].
PoL, PrL, and PPL-D are the joint link models pro-
posed in this work.

All the EM algorithms for MLE and MAP are run
with 100 iterations, which according to our observation
is more than enough for convergence. In order to alle-
viate the problem of local minimum of EM algorithms,
for each test we conduct 10 trials with different random
initializations, and choose the one giving the largest like-
lihood. The prior α for the parameter c in PPL-D is set
to 1. Actually, we found the performance not sensitive
to α—we tested different values for α ranging from 0.01
to 1, and the results are almost the same.

From the performance results, we can make the
following comparisons and observations.
Joint link models vs. conditional link models
Joint link models clearly outperform conditional link
models. These can be seen from that our joint link
models, i.e., PoL, PrL, and PPL-D always have the top
performances and clearly outperform their conditional
counterparts PoCL and PrCL. Even the symmetric joint
link model SJL outperforms its conditional counterpart
PHITS in most of the cases. This result verifies our as-
sumption that modeling both behavior in receiving links
(popularity) and that in producing links (productivity)
is better than modeling just one behavior or none at all.
Non-symmetric vs. symmetric joint link mod-
els Comparing the performances of non-symmetric link
models, i.e., PoL, PrL, and PPL-D, with that of tradi-
tional SJL model, which is symmetric, we can see that
the non-symmetric models consistently outperform SJL
and the improvement is quite significant in many cases.
This verifies the benefit of separating the behavior of
nodes in receiving links and that in producing links over
simply ignoring the direction of links.
PPL models without vs. with restrictions Com-
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paring PPL-D, which does not restrict c other than pro-
viding a weak prior, with PoL, PrL and SJL, which en-
force c = a, c = b, and c = a = b, respectively, we can
see that PPL-D has the best performance. However,
as shown in Section 3.3 we can always derived PoL and
PrL from PPL-D that give the identical data likelihood,
and so the above result suggests that PPL-D tends to
find better solutions for community memberships.
Popularity vs. productivity If we can only choose
one feature between popularity and productivity for
community detection in our data sets, it seems that
popularity has a small edge over productivity. This can
be observed both in joint link models (i.e., PoL over
PrL) and conditional models (i.e., PoCL over PrCL).
Such a result suggests that to determine the community
membership of a node i in these three data sets, those
nodes point to i may be more important than those
nodes pointed to by i.

Table 2: Community detection performance on the
Political Blog data set, where the best performances are
in bold.

Algo. NMI PWF Modu

PHITS 0.3829 0.7152 0.4200

PoCL 0.4905 0.7947 0.4270

PrCL 0.4569 0.7776 0.4243

SJL 0.4409 0.7425 0.4323

PoL 0.5156 0.8072 0.4324

PrL 0.5178 0.8091 0.4324

PPL-D 0.5365 0.8167 0.4324

Table 3: Community detection performance on the Cora
data set, where the best performances are in bold.

Algo. NMI PWF Modu

PHITS 0.0591 0.1862 0.3594

PoCL 0.0797 0.1982 0.5982

PrCL 0.0211 0.1666 0.4959

SJL 0.0602 0.1840 0.6091

PoL 0.0886 0.2014 0.6310

PrL 0.0870 0.1993 0.6307

PPL-D 0.0972 0.2085 0.6381

Table 4: Community detection performance on the
Citeseer data set, where the best performances are in
bold.

Algo. NMI PWF Modu

PHITS 0.0117 0.1788 0.4374

PoCL 0.0292 0.1909 0.6214

PrCL 0.0131 0.1805 0.5954

SJL 0.0236 0.1896 0.6348

PoL 0.0292 0.1921 0.6648

PrL 0.0263 0.1904 0.6612

PPL-D 0.0317 0.1948 0.6687

6.3 Link Prediction In this task, we study the
performance of the joint link models on predicting
the links (both incoming links and outgoing links).
Specifically, for each node in the network we randomly
hide one of its incoming links and one of its outgoing
links and ask each model to recover the missing links.
Such a task has practical values in applications such as
friend recommendation in social networks and citation
suggestion in citation networks.

Evaluation Metric for Link Prediction We mea-
sure the performance of link prediction by Recall mea-
sure. Two types of recall are presented, namely outlink

recall and inlink recall. The outlink recall measures the
ability of a model to predict nodes pointed to by a given
node. The inlink recall measures the ability of a model
to predict the nodes point to a given node. To compute
outlink recall for node i, we first compute the outlink
probabilities Pr(j←|i→) for node i to all other nodes by

Pr(j←|i→) =
Pr(i→, j←)

∑

j Pr(i→, j←)
. The resulting probabili-

ties assign an outlink rank to each node j. The outlink
recall at rank position K is defined as the fraction of
nodes whose top-K ranked predictions contain the true
missing link. Inlink recall is defined similarly based on
Pr(j→|i←). In addition, we also report the average of
the inlink and outlink recalls.

Performance on Link Prediction The recalls at
top-1 through top-20 on the three data sets are given
in Figures 1, 2, and 3. All the results are averaged
over 10 trials with different randomly selected missing
links. Because we have that PoL, PrL and general PPL
model have equal link probabilities, and because we
also found that PPL-D achieves almost the same per-
formance as PoL and PrL, we will only report one result
for these models which are denoted by P-family mod-
els. We also report the results of a naive baseline, the
Frequency-based model, where the outgoing link prob-
abilities are proportional to the indegree of nodes, i.e.,
Pr(j←|i→) ∝ din(j), and the incoming link probabil-
ities are proportional to the outdegree of nodes, i.e.,
Pr(j→|i←) ∝ dout(j).

As can be seen from the figures, compared to SJL
and the Frequency-based baseline, P-family models per-
form the best in all the cases except the inlink recall
for Cora network. This result illustrates that most of
the time, it is beneficial to use productivity and pop-
ularity to model indegree and outdegree distributions
separately in a directed network.

However, the inlink recall for Cora network is an
abnormal case, where SJL performs the best, P-family
models perform worse, and the Frequency-based model
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(a) average Recall on Political Blog
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(b) outlink Recall on Political Blog
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(c) inlink Recall on Political Blog
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Figure 1: Average (a), outlink (b), and inlink (c) recalls at ranks 1 through 20 for different models on Political
Blog data. The histograms of degree distribution of the network are shown in (d).
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(a) average Recall on Cora
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(b) outlink Recall on Cora
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Figure 2: Average (a), outlink (b), and inlink (c) recalls at ranks 1 through 20 for different models on Cora data.
The histograms of degree distribution of the network are shown in (d).
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(a) average Recall on Citeseer
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(b) outlink Recall on Citeseer
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(c) inlink Recall on Citeseer
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Figure 3: Average (a), outlink (b), and inlink (c) recalls at ranks 1 through 20 for different models on Citeseer
data. The histograms of degree distribution of the network are shown in (d).

has extremely poor performance (almost constantly
zero). To see why this case is special, we show the de-
gree distributions of the three networks in the rightmost
panels of Figures 1, 2, and 3. All the degree distribu-
tions follow a power-law distribution except the outde-
gree distribution in Cora network. The outdegree in
Cora follows a rather uniform distribution with out-
degree no lager than 5. (We suspect such a distribu-
tion is due to the small scale of the Cora data which
leads to many references, and therefore outlinks, to be
outside the data set.) Because of such a uniform dis-
tribution, the outdegrees of nodes are not informative,
which explains the extremely poor performance of the
Frequency-based model. The P-family models treat in-
degree and outdegree equally importantly and therefore
also suffer from the uninformative outdegree distribu-

tion. SJL, in comparison, ignores the link direction and
as a result makes the more informative indegree distri-
bution dominate the uninformative outdegree distribu-
tion and therefore suffers the least. This special case
actually reveals some trade-offs made by different mod-
els.

6.4 Degree Fitting Finally, we verify the degree
fitting properties of PPL models. Figure 4(a) shows
the scatter plots for the indegree and outdegree fitting
of PPL models on the Political Blog data set. Note that
PoL, PrL and PPL-D again give almost the same result
is this experiment and so we refer to them together as
PPL. Each point in the plot represents a node, where
its position on the horizontal axis is determined by its
actual degree (indegree or outdegree) and its position on
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the vertical axis is determined by the degree predicted
by the model. Therefore, a point fell on the diagonal
line (the red lines in the plots) indicates a perfect
degree match. As can be seen from the figure, all
the points fall on the red line, which indicates that
PPL captures the degree distributions for each node
exactly. In comparison, as shown in Figure 4(b), SJL
has very poor performance in terms of degree fitting.
Similar results are obtained for the paper citation data
sets, where in Figures 5(a) and 5(b) we show some of
the results. These empirical studies clearly validate
the degree fitting property of the PPL models that we
previously stated in Section 3.3.
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(a) degree fitting by PPL
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Figure 4: Scatter plots for degree fitting on the Political
Blog data for (a) PPL and (b) SJL.
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(a) degree fitting by PPL

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

actual indegree

m
od

el
 in

de
gr

ee

0 5 10 15 20 25 30
0

20

40

60

actual outdegree

m
od

el
 o

ut
de

gr
ee

(b) degree fitting by SJL

Figure 5: Scatter plots for degree fitting on the indegree
of Cora data (upper panels) and outdegree of Citeseer
data (lower panels) for (a) PPL and (b) SJL.

7 Conclusion and Future Work

Stochastic block model is a promising probabilistic
model for community detection. In this paper, we
present a new stochastic block model, PPL, for com-
munity detection in directed networks. On one hand,
our model is complete, in that it captures the roles
of each node both as a link producer and as a link
receiver whereas a consistent community membership
serves both the roles; on the other hand, our model is
unified, in that it offers a unified framework to connect
and to understand existing models. We believe such a
complete and unified model provides a solid foundation

for further studies in stochastic block models for com-
munity detection. For future work, we are in the process
of incorporating information other than links, such as
the content information, into the model to obtain an
even more general framework.
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Appendix

Proof for Theorem 3.1 In order to prove Theo-
rem 3.1, we first state the following lemma about the op-
timal solution to the PPL model given in Equation (3.4).

Lemma 7.1. Given that (a3, b3, c3, γ3) is the optimal

solution to maximizing the log-likelihood of PPL model,

we define πk =
∑

i γ3
ikc3

i . Then we can obtain one

set of parameters (a1, b1, γ1) such that
∑

i γ1
ika1

i = πk

and (a1, b1, γ1) is the optimal solution to maximizing

the log-likelihood of PoL model. Similarly, we can

obtain another set of parameters (a2, b2, γ2) such that
∑

j γ2
jkb2

j = πk and (a2, b2, γ2) is the optimal solution

to maximizing the log-likelihood of PrL model.

Proof. we first show how to construct such (a1, b1, γ1)
and (a2, b2, γ2).
Given (a3, b3, c3, γ3) and πk =

∑

i γ3
ikc3

i , we can define
q̂ such that

∑

i γ3
ika3

i q̂k = πk. We then construct γ1
ik =

γ3
ik q̂k

∑

k γ3
ik q̂k

, a1
i = a3

i

∑

k γ3
ik q̂k, b1

j =
b3
j

∑

k γ3
jk q̂k

∑

j′ b3
j′

∑

k γ3
j′k q̂k

,

and we can show that
∑

i

γ1
ika1

i = πk

We can also define q̃ such that
∑

j γ3
jkb3

j q̃k = πk. We

then construct γ2
ik =

γ3
ik q̃k

∑

k γ3
ik q̃k

, a2
i =

a3
i

∑

k γ3
ik q̃k

∑

i′ a3
i′

∑

k γ3
i′k q̃k

and b2
j = b3

j

∑

k γ3
jk q̃k, and we can show that

∑

j

γ2
jkb2

j = πk

With constructed (a1, b1, γ1) and (a2, b2, γ2) we can
show that

L3(a
3, b3, c3, γ3) = L1(a

1, b1, γ1) = L2(a
2, b2, γ2)

Next, we need to show that (a1, b1, γ1) is the op-
timal solution to PoL model, (a2, b2, γ2) is the optimal
solution to PrL model. We prove this by contradic-
tion. Assume their exists another set of parameters

(a∗, b∗, γ∗) such that L1(a
∗, b∗, γ∗) > L1(a

1, b1, γ1) =
L3(a

3, b3, c3, γ3), then

L3(a
∗, b∗, a∗, γ∗) = L1(a

∗, b∗, γ∗) > L3(a
3, b3, c3, γ3)

which contradicts that (a3, b3, c3, γ3) is the optimal so-
lution to PPL model. Similarly, we can show (a2, b2, γ2)
is the optimal solution to PrL model. Thus, we com-
plete the proof.

Following the above lemma, we can easily prove
Theorem 3.1.

Proof for Theorem 3.2

Proof. We can easily show that the optimal solution to
ai in PoL model is equal to the normalized outdegree of

node i, i.e., a1
i =

∑

j sij
∑

ij sij

; and the optimal solution to

bj in PrL model is equal to the normalized indegree of

node j, i.e., b2
j =

∑

i sij
∑

ij sij

. From the model formulation

in Equation (3.7) for PoL model, we have

Pr1(i→|a1, b1, γ1) =
∑

j

Pr1(i→, j←|a1, b1, γ1) = a1
i

So the model outdegree distribution of PoL model fits
exactly the actual outdegree distribution of the network.

From the model formulation in Equation (3.8) for
PrL model, we have

Pr2(j←|a2, b2, γ2) =
∑

i

Pr(i→, j←|a2, b2, γ2) = b2
j

So the model indegree distribution of PrL model fits
exactly the actual indegree distribution of the network.
Following Theorem 3.1 we have

Pr3(i→|a3, b3, c3, γ3) = Pr2(i→|a2, b2, γ2)

= Pr1(i→|a1, b1γ1) = a1
i

and

Pr3(j←|a3, b3, c3, γ3) = Pr1(j←|a1, b1, γ1)

= Pr2(j←|a2, b2, γ2) = b2
j

We conclude that the model indegree and outdegree
distributions estimated from PoL model, PrL model and
PPL model fit exactly the actual indegree and outdegree
distributions of the network.

Proof for Theorem 4.1
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Proof. The joint link probability of SJL model is given
in Equation (2.3), i.e.,

Pr(i→, j←) =
∑

k

βikβjkπk

The community membership of SJL model is defined
as[17, 14]

(7.12) γf
ik =

βjkπk
∑

k βikπk

We can also define cf
i as

(7.13) cf
i =

∑

k

βikπk

Similarly, given solution (γ, c) to PPL model with a =
b = c, we can define

πp
k =

∑

i

γikci, βp
ik =

γikci
∑

i γi′kci′
(7.14)

All we need to show is that given that (β, π)
is the solution to SJL model, (γf , cf ) defined as in
Equations (7.12,7.13) is the solution to PPL model
under the restriction of a = b = c; and given that
(γ, c) is the optimal solution to PPL model under
the restriction of a = b = c, (πp, βp) defined in
Equation (7.14) is the optimal solution to SJL model.
First note that

L0(β, π) = L3(γ
f , cf )

L3(γ, c) = L0(β
p, πp)

where L0 and L3 are the log-likelihood of SJL model
and PPL model respectively. Given that (β, π) is the
optimal solution to SJL model, if there exists (γ∗, c∗)
such that L3(γ

∗, c∗) > L3(γ
f , cf ) = L0(β, π), then we

can construct (β∗, π∗) as in Equation (7.14) such that
L0(β

∗, π∗) = L3(γ
∗, c∗) > L0(β, π), which contradicts

the assumption that (β, π) is the optimal solution to
SJL model. Similarly, given that (γ, c) is the optimal
solution to PPL model, if there exists (π∗, β∗) such
that L0(π

∗, β∗) > L0(π
p, βp) = L3(γ, c), then we can

construct (γ∗, c∗) as in Equations (7.12,7.13) such that
L3(γ

∗, c∗) = L0(π
∗, β∗) > L3(γ, c), which contradicts

the assumption that (γ, c) is the optimal solution to
PPL model. Therefore, we prove that PPL model under
the restriction of a = b = c is equivalent to SJL model.

Proof for Theorem 5.1 In the E-step, we would
bound the log-likelihood from below. The key
point is to apply the Jensen inequality log

∑

k pk ≥
∑

k qk log pk/qk, where
∑

k qk = 1, to the log-sum-
term in the log-likelihood and to apply the inequality

− logx ≥ 1 −
x

y
− log y to the summation term in the

denominator of the log-sum-term in the log-likelihood.
In particular, at the t-th iteration the log-sum-term is
lower bounded as

log
∑

k

Pr(i, j, k) ≥
∑

k

qijk log Pr(i, j, k)/qijk

with qijk computed as qijk ∝ Prt−1(i, j, k) where super-
script t − 1 means the probability is computed under
the values of the parameters in the (t − 1)-th iteration.
Then the denominator term in Pr(i, j, k) would be lower
bounded as

− log
∑

i′

γi′kai′ ≥ 1 −

∑

i′ γi′kai′

ηk

− log ηk

− log
∑

i′

γi′kbi′ ≥ 1 −

∑

i′ γi′kbi′

τk

− log τk

with ηk, τk computed as

ηk =
∑

i′

γt−1
i′k at−1

i′ τk =
∑

j′

γt−1
j′k bt−1

j′

and the summation term
∑

i′ γi′kci′ in PPL model is
lower bounded as

log
∑

i′

γi′kci′ ≥
∑

i′

ζi′k log γi′kci′/ζi′k

with ζ computed as ζik =
γt−1

ik ct−1
i

∑

i′ γt−1
i′k ct−1

i′

. Due to the

limit of space, we omit the details about deriving the
lower bound of the three log-likelihoods.

In the M-step, we will maximize the corresponding
lower bound over the corresponding parameters as fol-
lows:

PoL :
∑

(i,j)∈E

sij

∑

k

qijk



log γikγjkbj −
∑

j′

γj′kbj′

τk





PrL :
∑

(i,j)∈E

sij

∑

k

qijk

(

log γjkγikai −
∑

i′

γi′kai′

ηk

)

PPL-D :
∑

(i,j)∈E

sij

∑

k

qijk

(

log γikaiγjkbj −
∑

i′

γi′kai′

ηk

−
∑

i′

γi′kbi′

τk

+
∑

i′

(ζi′k + α) log ci +
∑

i′

ζi′k log γi′k

)

By taking the derivatives of the expressions and setting
them to zero, we can obtain the corresponding formulas
in the M-step.
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