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Abstract
We consider the constrained optimization where
the objective function and the constraints are de-
fined as summation of finitely many loss functions.
This model has applications in machine learning
such as Neyman-Pearson classification. We con-
sider two level-set methods to solve this class
of problems, an existing inexact Newton method
and a feasible level-set method. To update the
level parameter towards the optimality, both meth-
ods require an oracle that generates upper and
lower bounds as well as an affine-minorant of the
level function. To construct the desired oracle, we
reformulate the level function as the value of a
saddle-point problem using the conjugate and per-
spective of the loss functions. Then a stochastic
variance-reduced gradient method with a special
Bregman divergence is proposed as the oracle for
solving that saddle-point problem. The special
divergence ensures the proximal mapping in each
iteration can be solved in a closed form. The total
complexity of both level-set methods using the
proposed oracle are analyzed.

1. Introduction
Constrained optimization arises in many fields of science
and engineering and have been studied in a large volume of
literature from both algorithmic or theoretical aspects (Bert-
sekas, 2014; 1999; Nocedal & Wright, 2006; Ruszczyński,
2006, and references therein). A general convex optimiza-
tion problem with inequality constraints is formulated as

f∗ := min
x∈X

f0(x) s.t. fi(x) ≤ ri, i = 1, 2, . . . ,m, (1)

where X ⊂ Rd is a closed convex set and fi for i =
0, . . . ,m are closed convex real functions defined on X .
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A solution x̄ ∈ X is ε-optimal if f0(x̄) − f∗ ≤ ε and
ε-feasible if maxi=1,...,m[fi(x̄)− ri] ≤ ε.

In this paper, we consider an important case of (1) where
each fi for i = 0, . . . ,m in (1) are given as a summation of
a finite but large number of functions, i.e.,

fi(x) =
1

ni

ni∑
j=1

fij(x), (2)

for i = 0, . . . ,m, where fij are closed convex functions
of x ∈ X and ni denotes the number of summands in fi.
An important case of (2) is the empirical risk minimization
problem with empirical risk constraints where

fij(x) = φij(x
>ξij), j = 1, . . . , ni, i = 0, . . . ,m. (3)

Here, φij(z) : R→ R is a convex loss functions measuring
the loss of the linear prediction x>ξij on a data point ξij .

Problem (1) with the structures given in (2) and (3) has
many applications including multi-objective optimization
(Mahdavi et al., 2013; Barba-Gonzaléz et al., 2017; Marler
& Arora, 2004), shape-restricted regression (Seijo et al.,
2011; Sen & Meyer, 2017; Lim, 2014; Fard et al., 2016;
Cotter et al., 2016), and classification in Neyman-Pearson
paradigm (Tong et al., 2016; Rigollet & Tong, 2011; Tong,
2013; Zhao et al., 2015).

One concrete example of (1) with m = 1 is Neyman-
Pearson binary classification. Suppose the training data for a
binary classification has been partitioned into the positive set
{ξ0j}n0

j=1 and the negative set {ξ1j}n1
j=1. Neyman-Pearson

classification problem is formulated as

min
‖x‖2≤λ

1

n0

n0∑
j=1

φ(x>ξ0j), s.t.
1

n1

n1∑
j=1

φ(−x>ξ1j) ≤ r1. (4)

Here, ‖x‖2 ≤ λ is the constraint to avoid overfitting, φ can
be a convex loss function, e.g, φ(z) = log(1 + exp(−z)),
and r1 > 0 is a risk level. Minimizing the objective function
can reduce the rate of Type-II error (identifying a positive
instance as negative) while the constraint controls the rate
of Type-I error (identifying a negative instance as positive)
in a low level (less than r1).

The following assumptions are made in the whole paper.
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Assumption 1. max
i=1,...,m

[fi(x̄)− ri] < 0 for some x̄ ∈ X .

Assumption 2. The set X is compact and either (a) φij is
smooth and its gradient is 1

γ -Lipschitz continuous or (b) the
domain of φ∗ij , the Fenchel conjugate of φij , is compact.

Assumption 1 requires strictly feasiblity. Assumption 2 is
satisfied by many commonly used loss functions. For exam-
ple, the smooth hinge loss and logistic satisfy Assumption 2
(a) while the hinge loss satisfies Assumption 2 (b). To ef-
ficiently solve (1) with the structures (2) and (3) for large
d and ni, we consider first-order optimization algorithms,
which are actively studied in the past decade due to their
good scalability and easy implementation.

Contributions: Our main contributions in this paper are
summarized as follows.

• We proposed an affine-minorized feasible level-set
(AM-FLS) method, which is a new variant of the fea-
sible level-set method in Lin et al. (2017). Compared
to Lin et al. (2017) that guarantees a relative ε-optimal
solution, our method utilizes an affine-minorant oracle
(Definition 1) for a tighter estimation of the level func-
tion and guarantees an absolute ε-optimal solution.

• We compare the AM-FLS method with an inexact New-
ton level-set (IN-LS) method (Aravkin et al., 2016)
under the same oracle. We show that both method have
similar total complexity but the IN-LS method only
guarantee an ε-solution when it terminates while the
AM-FLS method produces a feasible solution path.

• To construct an efficient affine-minorant oracle for both
level-set methods, we first provide a novel saddle-point
reformulation of the level function using convex conju-
gate and perspective of the loss functions. Then, we de-
sign the oracle as a stochastic variance-reduced gradi-
ent (SVRG) method to solve this saddle-point problem
using a special Bregman divergence. The special Breg-
men divergence allows the proximal mapping in the
SVRG method solved efficiently in a closed form. The
complexity of both level-set methods with our affine-
minorant oracle is Õ(nd+ n+d

ε2 ) where n =
∑m
i=0 ni

while the existing deterministic oracle costs Õ(ndε ).1

2. Two Level-Set Methods
The level-set function (Lemaréchal et al., 1995; Nesterov,
2013) for (1) is defined as

H(r) := min
x∈X
P(r;x) (5)

1Here and in the rest of the paper, the logarithmic factors in
complexity are suppressed in Õ.

where r is a level parameter and

P(r;x) := max
{
f0(x)− r, f1(x)− r1, . . . , fm(x)− rm

}
.

The following lemma contains the main properties of H(r),
which are collected from Lemmas 2.3.4, 2.3.5, and 2.3.6 in
(Nesterov, 2004) and Lemma 1 in Lin et al. (2017).

Lemma 1. It holds that

(a) H(r) is non-increasing and convex in r;

(b) H(f∗) = 0;

(c) H(r) > 0, if r < f∗ and H(r) < 0, if r > f∗;

(d) H(r)− δ ≤ H(r + δ) ≤ H(r) for any δ ≥ 0.

According to this lemma, f∗ is the unique root of H(r).
A level-set method solving (1) will generate a sequence of
level parameters r(1), r(2), . . . approaching f∗, for example,
by a root finding procedure. When a level parameter r̄ ≈ f∗
is found, an approximate solution x̄ ≈ arg minx∈X P(r̄;x)
can be computed as an approximate solution of (1). The
quality of x̄ can be justified in two situations. First, when
r̄ ≤ f∗ and P(r̄; x̄) ≤ ε, it is easy to see that x̄ is an
ε-optimal and ε-feasible solution for (1). Second, when
f∗ < r̄ ≤ f∗ + ε and P(r̄; x̄) ≤ 0, one can show that x̄ is
an ε-optimal and feasible solution for (1).

Applying a classical root-finding algorithm to H(r) to find
r̄ ≈ f∗ requires knowing the exact value of H(r), which
is hard to compute due to the nontrivial minimization in
(5). One natural approach is to use an iterative optimization
algorithm as an oracle to solve (5) approximately in order
to get an upper bound U(r) and a lower bound L(r) of
H(r) and use them to update r towards f∗. For instance, by
Lemma 1, we will know r < f∗ when we receive L(r) > 0
and r > f∗ when we receive U(r) < 0 from the oracle,
which suggests if we should increase or decrease r. A class
oracles used in a level-set method is defined below.

Definition 1. An algorithm A(r, θ, ε) is an affine-
minorant oracle if, for any θ > 1 and r, it returns
(L(r), U(r), S(r)) ∈ R3 and x̄ ∈ X such that:

1. L(r) ≤ H(r) ≤ U(r);

2. P(r; x̄) ≤ U(r);

3. Either ε < U(r) ≤ θL(r) or U(r) ≤ ε, if r ≤ f∗;
4. θU(r) ≤ L(r), if r > f∗;

5. H(r′) ≥ L(r) + S(r)(r′ − r) for any r′.

Moreover, there exits a non-increasing function C(·) such
that the expected computational complexity2 for A to return
these outputs is no more than C(max{|H(r)|, ε}) if r ≤ f∗
and no more than C(|H(r)|) if r > f∗.

2We consider expected complexity here because we allow A
to be a stochastic algorithm that returns the desired output almost
surely in a random complexity.
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The name of affine-minorant oracle mainly comes from
Property 5 above, which requires an affine function with
a slope S(r) that passes through (r, L(r)) and minorizes
H(r) globally. The original definition of affine-minorant
oracle is given by Aravkin et al. (2016) for r ≤ f∗. Here,
we generalize it for any r in order to support the AM-FLS
method where r > f∗. The inequality H(r) ≤ U(r) in
Property 1 and Property 2 above can be easily satisfied
with any x̄ ∈ X by setting U(r) = P(r; x̄), but not every
optimization method can provide L(r) and S(r). Property
3 and 4 can be satisfied when r 6= f∗ as long as Property 1
holds and U(r)− L(r) ≤ θ−1

θ |H(r)|. Typically, a smaller
gap U(r) − L(r) requires a higher computational cost in
the oracle. Hence, the complexity of the oracle will increase
(in a rate of C(|H(r)|)) as |H(r)| decreases to zero.

Before we specify the oracle, we first study the relationship
between the complexity of an oracle and the complexity
of solving (1) by level-set methods based on that oracle.
We will focus on two different level-set methods: the IN-
LS method (Aravkin et al., 2016) presented in Algorithm 1
which increases r to f∗ and AM-FLS method presented
in Algorithm 2 which decreases r to f∗.3 We defer the
illustration of Algorithm 2 to Figure 3 in Appendix A. The
proposition below characterize how the complexity of Algo-
rithm 1 and 2 depend on the complexity of the oracle.
Theorem 1. The following statements hold:
(a) Algorithm 1 returns an ε-optimal and ε-feasible solution.
(b) Algorithm 2 returns an ε-optimal and feasible solution.
Moreover, the solution x(k) generated in any iteration of
Algorithm 2 is feasible.
(c) The total complexity of Algorithm 1 is at most

C(ε) max

{
log 2

θ

(
2 max{|S(r(0))||f∗ − r(0)|, L(r(0))}

θε

)
, 2

}
and the total complexity of Algorithm 2 is at most

C
(
β2ε

4θ

)
2θ

β
log

(
2θ

β
max

{
r(0) − f∗

ε
, 1

})

where β := − H(r(0))
r(0)−f∗ ∈ (0, 1].

In both complexities above, the factor involving C is from
solving the subproblem (5) by oracle A and the logarithmic
factor is mainly from searching for the level parameter.

3. Oracles for Level-Set Methods
In this section, we consider the optimization methods for (5)
that can be used as an affine-minorant oracle in Algorithm 1
and 2. Whether an optimization method for (5) is a good
candidate depends on the following two aspects.

3Algorithm 1 increases r as S(r(k)) < 0 while Algorithm 2
decreases r as U(r(k)) < 0.

Algorithm 1 IN-LS Method (Aravkin et al., 2016)

1: Input: r(0) < f∗, ε > 0 and θ ∈ (1, 2)
2: for k = 0, 1, . . . , do
3: (L(r(k)), U(r(k)), S(r(k)),x(k)) = A(r(k), θ, ε)
4: if U(r(k)) ≤ ε then
5: Return x(k)

6: else
7: r(k+1) ← r(k) − L(r(k))/S(r(k))
8: end if
9: end for

Algorithm 2 AM-FLS Method

1: Input: r(0) > f∗, ε > 0 and θ ∈ (1,∞)
2: for k = 0, 1, . . . , do
3: (L(r(k)), U(r(k)), S(r(k)),x(k)) = A(r(k), θ, ε)
4: if L(r(k)) ≥ εS(r(k)) then
5: Return x(k)

6: else
7: r(k+1) ← r(k) + U(r(k))/2
8: end if
9: end for

Capability of generating L(r) and S(r). Although U(r)
can be easily obtained from any x ∈ X as U(r) = P(r;x),
the lower bound L(r) and the slope S(r) are not directly
available from most primal optimization methods for (5).

Complexity for large-scale problems. The complexity
of most first-order methods is the product of per-iteration
cost and the number of iterations to ensure the outputs
(L(r), U(r), S(r)). Deterministic methods must read the
whole data at a cost of O(nd) per-iteration, which can be
prohibited for large-scale problems. On the other hand, a
stochastic oracle based on sampling over data has a low
per-iteration but potentially requires more iterations.

Next, we will discuss a few candidates for affine-minorant
oracle and their potential issues from the two aspects above,
which motivate our choice of oracle in this paper.

3.1. Challenges with Oracles based on Saddle-Point
Formulation

Since P(r;x) is in general a non-smooth convex function
regardless of the smoothness of fi, one may use the standard
subgradient method as the oracle which has a complexity
of C(ε) = O(ndε2 ). Here, the factor O(nd) is the cost of
evaluating the subgradient of P(r;x), which requires read-
ing through the whole data. If fi is smooth for each i, the
special maximization structure in P(r;x) allows using the
smoothing technique (Beck & Teboulle, 2012) to construct a
smooth approximation of P(r;x), which is then minimized
by an accelerated gradient method. This approach will have
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a complexity of C(ε) = O(ndε ) (Lin et al., 2017).

The factor O(nd) in the complexity makes the methods
above not scalable for large instances. Moreover, as we
mentioned earlier, a lower bound L(r) is not directly avail-
able from both methods. One possible solution is to set
L(r) = U(r)− G, where the upper bound U(r) = P(r; x̄)
for some x̄ ∈ X and G is a computable quantity that satisfies
P(r; x̄) −H(r) ≤ G (Lin et al., 2017). This inequality is
available for an iterate x̄ in many first-order methods with
G decreasing to zero as the iteration proceeds. However,
G is the worst-case optimality gap, which can be used to
derive the iteration complexity but will be too conservative
to construct a tight L(r). Besides, how to construct the
slope S(r) from a primal algorithm is still unknown.

In an alternative approach, we can reformulate subproblem
(5) into an equivalent min-max saddle-point problem

H(r) = min
x∈X

max
y∈∆

m∑
i=0

yi(fi(x)− ri), where (6)

∆ :=
{
y = (y0, . . . , ym)> ∈ Rm+1|

∑m
i=0 yi = 1, yi ≥ 0

}
and r0 = r, and then solve (6) by a primal-dual optimiza-
tion method. The potential solvers include the Mirror-Prox
method (Nemirovski, 2004) for smooth fi and the subgradi-
ent method for saddle-point problems (Nemirovski et al.,
2009) for non-smooth fi. These methods generate a pair of
primal and dual solutions, denoted by (x̄, ȳ), with which
we can construct U(r) = maxy∈∆

∑m
i=0 yi(fi(x̄) − ri)

and L(r) = minx∈X
∑m
i=0 ȳi(fi(x) − ri). One can show

that Property 5 in Definition 1 holds for this L(r) with
S(r) = −ȳ0. However, the complexity of these methods is
similar to the aforementioned primal methods in the factor
O(nd), and computing L(r) requires solving a non-trivial
minimization which makes this approach impractical.

3.2. The Proposed Solution: Saddle-Point Formulation
by Persepective Function

To overcome the aforementioned issues in existing methods
when used as oracles, we utilize the special structure of fij
given in (3) and propose a new saddle-point formulation
for (5). Based on convex conjugate, the function H(r) can
be reformulated as the value of a saddle-point problem

H(r) =

min
x∈X

max
y∈∆,α̃∈Rn

{ ∑m
i=0

yiα̃
>
i Θix
ni

−
∑m
i=0

∑ni
j=1

yi
ni
φ∗ij(α̃ij)− y>r

}
where r = (r0 = r, r1, . . . , rm)>, Θi := [ξi1, . . . , ξini ]

>

are the data matrices, and α̃ = (α̃>0 , α̃
>
1 , . . . , α̃

>
m)> ∈ Rn

with n :=
∑m
i=0 ni and α̃i = (α̃i1, . . . , α̃ini)

> ∈ Rni for
i = 0, 1, . . . ,m is the associated dual variable whose each
coordinate corresponds to a data point in either the objective
function or a constraint.

The objective function of this min-max problem is not
jointly concave in (y, α̃). However, with simple changes
of variables, it can be reformulated as a convex-concave
saddle-point problem. In particular, we define a new variable
αi := yiα̃i for i = 0, 1, . . . ,m such that H(r) becomes

H(r) = min
x∈X

max
w∈W

K(r;x,w) (7)

whereW := ∆× Rn, w = (y,α), and

K(r;x,w) :=

m∑
i=0

α>i Θix

ni
−

m∑
i=0

ni∑
j=1

yi
ni
φ∗ij
(αij
yi

)
− y>r

= α>Ax−
m∑
i=0

ni∑
j=1

yi
ni
φ∗ij
(αij
yi

)
− y>r. (8)

Here, A := [
Θ>0
n0
,

Θ>1
n1
, . . . ,

Θ>m
nm

]> is an n× d matrix formed
by stacking the data matrices Θi

ni
vertically. The function

yφ∗ij
(
α
y

)
: [0, 1]×R→ R∪{+∞} is called the perspective

of φ∗ij and is jointly convex in (y, α) if φ∗ij is convex. Strictly
speaking, this perspective function equals yφ∗ij

(
α
y

)
if y > 0

and equals zero if y = 0. We only use yφ∗ij
(
α
y

)
for both

cases under the convention that 0φ∗ij
(
α
0

)
= 0 for any α.

In the rest of the paper, the notation w and its versions with
superscript and accent (e.g. w′ and ŵ) will always represent
a vector like (y,α) in W with the same superscript and
accent on both components (e.g. (y′,α′) and (ŷ, α̂)). Let

P(r;x) := max
w∈W

K(r;x,w),D(r;w) := min
x∈X

K(r;x,w).

Compared to (6), the new formulation (7) has an advantage
that variables x and α only interact in the bilinear term
α>i Θix such that both P(r;x) and D(r;w) can be evalu-
ated easily for most commonly used loss function φij and
domain X . As a result, for any solution (x̄, w̄) ∈ X ×W ,
we can construct U(r) and L(r) as U(r) = P(r; x̄) and
L(r) = D(r; w̄).

Let (x∗,w∗ = (y∗,α∗)) be a saddle point of (7), namely,

x∗ ∈ arg min
x∈X

K(r;x,w∗), w∗ ∈ arg max
w∈W

K(r;x∗,w).

With the bilinear structure in (8), we can use Mirror-Prox
method or the primal-dual methods in Chambolle & Pock
(2011) and Chambolle & Pock (2016) as an oracle to solve
(7) at a complexity of O(nd‖A‖2ε ), where ‖A‖2 is the oper-
ator norm of A. The factor O(nd) here is from the matrix-
vector multiplication Ax̄ and A>ᾱ performed in each itera-
tion of both methods. To reduce the per-iteration cost, one
can utilize the finite-sum structure in α>Ax to construct a
stochastic gradient with reduced noise at a per-iteration cost
of only O(n+ d). This technique is known as the stochastic
variance-reduced gradient (SVRG) method which we will
discuss in the next section.
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3.3. SVRG Method for Saddle-Point Subproblem

The SVRG method was originally developed for finite-sum
minimization with simple constraint (Johnson & Zhang,
2013; Defazio et al., 2014; Xiao & Zhang, 2014; Allen-Zhu
& Yuan, 2016; Allen-Zhu, 2017). A primal-dual SVRG
algorithm has been proposed by Palaniappan & Bach (2016)
for finite-sum saddle-point problems under strong convexity
assumption. However, some challenges arise in applying
their methods to (7) and we will discuss these challenges
and our solutions as follows.

Non-Strongly Convex: The SVRG method by Palaniappan
& Bach (2016) require strong convexity in the saddle-point
problem which is not available in (7). Therefore, we adapt
the standard approach by solving the following strongly
convex approximation to (7)

Hµ,ν(r) := min
x∈X

max
w∈W

{
K(r;x,w) +

µ‖x‖22
2
− νhB(w)

}
(9)

where µ > 0, ν > 0 and hB : ∆× Rn → R ∪ {+∞} is 4

hB(w) := 2(1 +B)2
(

m∑
i=0

yi ln yi + lnm

)
+

m∑
i=0

‖αi‖22
yi

(10)

whereB is a positive constant to be determined later. Similar
to P and D, we define

Pµ,ν(r;x) := max
w∈W

K(r;x,w) +
µ‖x‖22

2
− νhB(w)

Dµ,ν(r;w) := min
x∈X

K(r;x,w) +
µ‖x‖22

2
− νhB(w).

The strong convexity of the minimization problem in (9) is
from the term ‖x‖22/2. The strong convexity of the maxi-
mization problem in (9) is guaranteed by 1-strong convexity
of hB according to the following lemma.

Lemma 2 (Proposition 3.4, Hoda et al. (2010)). For any
B > 0 in (10), hB is continuously differentiable and 1-
strongly convex with respect to the norm ‖(y,α)‖1,2 :=√
‖y‖21 + ‖α‖22 on the bounded domain

WB :=

{
(y,α)

∣∣∣∣ y ∈ int∆,α = (αi)
m
i=0,αi = yiα̃i

where α̃i ∈ Rni , ‖α̃i‖2 ≤ B

}
.

The reason for us to introduce hB instead of simply use
the quadratic term ‖w‖22/2 to gain strong convexity is that
hB allows a closed-form solution for the proximal mapping
which is main step in each iteration of the SVRG method.
We will discuss this property of hB below.

4We define ‖αi‖
2
2

yi
as +∞ if yi = 0 but αi 6= 0 and as 0 if

yi = 0 and αi = 0.

Closed-form solution for proximal mapping: When ap-
plied to (7), the SVRG method based on Euclidean distance
must solve a proximal mapping

min
w∈W

‖w −w′‖22
2τ

+

m∑
i=0

ni∑
j=1

yi
ni
φ∗ij
(αij
yi

)
(11)

for some w′ = (y′,α′) and τ > 0 in each iteration in order
to update w (Palaniappan & Bach, 2016). However, for
most of the interesting loss function φij ,this minimization
problem does not have a closed-form solution. Same issue
occurs if SVRG is applied to (9) with hB(w) replaced by
‖w‖22/2. To address this issue, one key observation is that
the function hB not only provides strong convexity but also
allows us to design a special Bregman divergence that can
replace the Euclidean distance in (11) so that the proximal
mapping can be solved in a closed-form. In particular, the
Bregman divergence we consider is induced by hB as

D(w,w′)

:= hB(w)− hB(w′)− 〈∇hB(w′),w −w′〉

= 2(1 +B)2
m∑
i=0

yi ln

(
yi
y′i

)
+

m∑
i=0

yi

∥∥∥∥αiyi − α′i
y′i

∥∥∥∥2

2

.

To simplify the notation, we define a function Gν(w) as

Gν(w) :=

m∑
i=0

ni∑
j=1

yi
ni
φ∗ij
(αij
yi

)
+ y>r + νhB(w).

The proximal mapping in the SVRG method based on
D(w,w′) can be formulated as

min
w∈W

−α>v +Gν(w) +
D(w,w′)

τ
(12)

for some v, w′ = (y′,α′) ∈ WB and τ > 0. The solution
for (12) is characterized below. Its proof and the intuition
behind the solution are postponed to Appendix D.

Proposition 1. Given any vi ∈ Rni , w′ = (y′,α′) ∈ WB

and τ > 0, let α̃′i :=
α′i
y′i

and α̃#
i be the optimal solution of

the following minimization problem

ρi := min
α̃i∈Rni

{
−α̃>i vi +

∑ni
j=1

1
ni
φ∗ij
(
α̃ij
)

+ν ‖α̃i‖22 + 1
τ ‖α̃i − α̃′i‖

2
2

}
(13)

for i = 0, 1, . . . ,m. Let ρ = (ρ0, ρ1, . . . , ρm)>. Then,
(y#,α#) ∈ W defined as follows is a solution to (12):

y#
i :=

(y′i)
1

τν+1 exp
(
− ri+ρi

2(1+B)2(ν+1/τ)

)
∑m
l=0

{
(y′l)

1
τν+1 exp

(
− rl+ρl

2(1+B)2(ν+1/τ)

)}
α#
i := y#

i α̃
#
i for i = 0, 1, . . . ,m.
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Algorithm 3 CheckGap(x,w, ε, θ)

if

 0 ≤ D(r;w) ≤ P(r;x) ≤ ε or
0 ≤ P(r;x) ≤ θD(r;w) or
θP(r;x) ≤ D(r;w) < 0

 then

Return “Succeed”
else

Return “Continue”
end if

Note that, for many commonly used loss function φij , the
vector α̃#

i can be solved at a cost of O(ni) in a closed form,
which is the basis for many existing dual (Shalev-Shwartz
& Zhang, 2013) or primal-dual algorithms (Zhang & Xiao,
2015) for unconstrained empirical risk minimization.

With these notations and preparations, the SVRG method
applied to (9) is presented in Algorithm 4, where A:k and
Al: denote the kth column and the lth row ofA, respectively,
and xk and αl represent the kth coordinate of x and the lth
coordinate of α, respectively. This algorithm is originally
proposed by Palaniappan & Bach (2016) using Euclidean
distance and generalized with Bregman divergence by Shi
et al. (2017). Here, we use the special Bregman divergence
D to facilitate the update on dual variables. Similar to the
SVRG method for finite-sum minimization, Algorithm 4
runs in stages with each stage consisting of T inner itera-
tions. At the beginning of stage s, a deterministic gradient
of the bilinear part, i.e., (ū(s), v̄(s)), is computed at a ref-
erence point (x̄(s), w̄(s)) using the full matrix A. Then, by
sampling the rows and columns of A, a stochastic gradient
(v(t),u(t)) is constructed in inner iteration t to update the
solution (x(t),w(t)). The variance of this stochastic gra-
dient will decrease to zero as (x̄(s), w̄(s)) and (x(t),w(t))
both approach the optimality. The reference point is up-
dated only once per stage so that the complexity spent in
computing the deterministic gradients remains low.

The main computational cost in each iteration of the SVRG
method is from solving the two minimizations (proximal
mappings). The first one can be solved in a closed form
when X has a simple structure, e.g., a `1-ball or `2-ball. The
second one can also be solved as described in Proposition 1.
A subroutine given in Algorithm 3 is used to terminate
Algorithm 4. Obviously, if Algorithm 3 returns “Succeed”,
the output constructed as

(U(r), L(r), S(r), x̄) = (P(r; x̄(s)),D(r; w̄(s)),−ȳ(s)
0 , x̄(s))

will satisfy the properties in Definition 1.

The convergence of Algorithm 4 depends on the strong
convexity of hB which exists onWB . The following lemma
(with proof in Appendix B) affirms that w̄(s) and w(t) will
stay inWB for a particular B > 0 so that, by choosing that
B in hB , the strong convexity can be guaranteed.

Algorithm 4 SVRG(x̄(0), w̄(0), µ, ν, ζ, ε, θ)

1: for s = 0, 1, . . . , do

2: if
{

CheckGap(x̄(s), w̄(s), ε, θ) = “Success” or
Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s)) ≤ ζ

}
then

3: Return (x̄(s), w̄(s))
4: end if
5: (x(0),w(0)) = (x̄(s), w̄(s))
6: (ū(s), v̄(s)) = (A>ᾱ(s), Ax̄(s))
7: for t = 0, 1, . . . , T − 1 do
8: Uniformly sample k from [d] and l from [n]

9: v(t) = v̄(s) + dA:kx
(t)
k − dA:kx̄

(s)
k

10: u(t) = ū(s) + nA>l: α
(t)
l − nA>l: ᾱ

(s)
l

11: x(t+1) = arg min
x∈X

x>u(t) +
µ‖x‖22

2 +
‖x−x(t)‖22

2σ

12: w(t+1) = arg min
w∈W

−α>v(t) +Gν(w) + D(w,w(t))
τ

13: end for
14: (x̄(s+1), w̄(s+1)) = (x(T ),w(T ))
15: end for

Lemma 3. Let Θik be the kth column of Θi, Bx :=

max
x∈X
‖x‖2, α̃∗i :=

α∗i
y∗i

and B be a constant that satisfies

B ≥ max

{
2 ‖α̃∗i ‖2 ,

8dmaxk ‖Θik‖2Bx

γ
, 2

∥∥∥∥ ᾱ(0)
i

ȳ
(0)
i

− α̃∗i

∥∥∥∥
2

}

for i = 0, 1, . . . ,m if Assumption 2 (a) holds and satisfies

B ≥ max
α̃ij∈domφij

‖α̃i‖2 for i = 0, 1, . . . ,m

if Assumption 2 (b) holds. Then w̄(s),w(t) ∈ WB for all
s, t ≥ 0 in Algorithm 4 as long as w̄(0) ∈ WB .

The definition of saddle-point ensures that α̃∗ij ∈
∂φij(ξij>x∗) so that it is not hard to compute such a con-
stant B based on Bx. With B defined in Lemma 3, hB is
1-strongly convex on the region Algorithm 4 is active on.

The convergence of SVRG for saddle-point problem has
been proved by Palaniappan & Bach (2016) and Shi et al.
(2017) in terms of the Euclidean distance and Bregman di-
vergence from the iterate to the saddle point. We present the
convergence of Algorithm 4 in terms of the primal-dual ob-
jective gap below. The proof follows the idea from Yu et al.
(2015) and is given in the Appendix E just for completeness.

Theorem 2. Let κ =
2‖A‖2max

µν , σ = 1
20κµ , τ =

1
20κν and T =

(
5
4 + 20κ

)
log(2) where ‖A‖max :=√

max{dmaxk ‖A:k‖22, nmaxl ‖Al:‖22}. Algorithm 4
guarantees

E
[
Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s))

]
(14)

≤ (1/2)s (1 + κ)
(
Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

)



Level-Set Methods for Finite-Sum Constrained Convex Optimization

Algorithm 5 (U(r), L(r), S(r), x̄) = A(r, ε, θ)

1: Choose x̂(0) ∈ X and ŵ(0) ∈ WB

2: Set ζ0 = P(r; x̂(0))−D(r; ŵ(0))
3: for p = 0, 1, . . . , do
4: if CheckGap(x̂(s), ŵ(s), ε, θ) = “Success” then
5: Return (U(r), L(r), S(r), x̄) =

(P(r; x̂(p)),D(r; ŵ(p)),−ŷ(p)
0 , x̂(p))

6: else
7: (x̂(p+1), ŵ(p+1)) =

SVRG(x̂(p), ŵ(p), ζ0
2p+3Qx

, ζ0
2p+3Qw

, ζ0
2p+2 , ε, θ)

8: end if
9: end for

Moreover, the number of outer iterations Algorithm 4 runs
before termination, denoted by S, satisfies

E[S] ≤ 1+2 log

(
(2 + 2κ) [Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))]

ζ

)
.

Since each inner iteration of Algorithm 4 has a complexity
of O(n+ d) while computing (ū(s), v̄(s)) at outer iteration
has a complexity of O(nd), the total expected complexity
of Algorithm 4 is Õ((nd+ (n+ d)κ) log( 1

ζ )).

3.4. Overall Complexity of Level-Set Methods

Algorithm 4 is for the strongly convex approximation prob-
lem (9) with fixed µ and ν. To solve the orginal saddle-point
problem (7), one needs to apply Algorithm 4 to (9) with se-
quentially reduced µ and ν so that (9) approximates (7)
more and more precisely according to the following lemma.

Lemma 4. For any x ∈ X and w ∈ WB , |[P(r;x) −
D(r;w)]−[Pµ,ν(r;x)−Dµ,ν(r;w)]| ≤ µQx+νQw where

Qx := maxx∈X
‖x‖22

2 and Qw := maxw∈WB
hB(w) with

B defined as in Lemma 3.

The proof of this lemma is straightforward and is thus omit-
ted. Then the algorithm for solving (7) is presented in Al-
gorithm 5 with Qx and Qw defined as in Lemma 4, which
will be used as the oracle A(r, θ) in level-set methods.

Theorem 3. Algorithm 5 is an affine-minorant oracle in
Definition 1 with the expected complexity upper bound func-
tion C(ε) satisfies C(ε) = Õ

(
nd+ (n+ d)

‖A‖2max

ε2

)
with

‖A‖2max defined in Theorem 2.

As a consequence of Theorem 1 and 3, if using Algo-
rithm 5 as the oracle, Algorithm 1 returns an ε-optimal
and ε-feasible solution with the complexity of Õ(nd +
n+d
ε2 ‖A‖

2
max) while Algorithm 2 returns an ε-optimal with

a feasible solution path with similar complexity. If a deter-
ministic saddle-point algorithm, e.g., Mirror-Prox method,
is used as the oracle for solving (7), Algorithm 1 and 2

will have complexity of Õ(ndε ‖A‖2). It is known that
1

max{n,d}‖A‖
2
max ≤ ‖A‖22 ≤ ‖A‖2max so that the com-

plexity by using Algorithm 5 as oracle can be lower for
some regime of parameters, for example, when n ≥ d and
εd ≥

√
n‖A‖max. We acknowledge that there is potential

to further reduce the complexity of the SVRG oracle and
Algorithm 1 and 2 to Õ

(
nd+ (n+ d)‖A‖max

√
nd

ε

)
by di-

rect acceleration using auxiliary sequences or the catalyst
technique (Lin et al., 2015; Palaniappan & Bach, 2016; Xiao
et al., 2017). However, the SVRG methods accelerated in
either way in literature all require Euclidean distance and
the similar result for Bregman divergence does not exist.
We leave it as a future work to accelerate our methods.

4. Discussion and Related Work
Lan & Zhou (2016) propose a stochastic gradient method
for convex optimization with a single expectation constraint.
Since a finite-sum constraint is a special case of an expec-
tation constraint, the method by Lan & Zhou (2016) can
be applied to (1) when m = 1. Yu et al. (2017) propose
a different stochastic gradient method for stochastic and
online optimization with multiple expectation constraints.
However, both methods by Lan & Zhou (2016) and Yu et al.
(2017) only ensures ε-feasibility after convergence while
our AM-FLS can ensure a feasible solution path.

The IN-LS method presented in Algorithm 1 is proposed
by Aravkin et al. (2016) without a detail discussion on the
choice of oracles. In this paper, we propose an oracle based
on the SVRG method with new Bregman divergence so
that it can be applied to large-scale problem. The method
presented in Algorithm 2 is an variant of the feasible level-
set method by Lin et al. (2017). Compared to Lin et al.
(2017), Algorithm 2 has a more efficient stopping criterion
by using the slope S(r) from the oracle while Lin et al.
(2017) does not require S(r) so that it can be applied with
more general oracles. Additionally, the algorithm by Lin
et al. (2017) only ensure a feasible and relative ε-optimal,
namely, a solution feasible solution x̄ with f(x̄) − f∗ ≤
ε(f(x′)−f∗), where x′ is an initial strictly feasible solution.
On the contrary, our AM-FLS can ensure a feasible and
absolutely ε-optimal solution.

5. Numerical Results
In this section, we evaluate the numerical performance of
the proposed methods on Neyman-Pearson classification
problem (Tong et al., 2016) formulated as in (4), where
we choose φ to be the smoothed hinge loss function, i.e.,
a function φ(z) that equals 1

2 − z, if z ≤ 0, 1
2 (1 − z)2 if

0 < z ≤ 1, and 0 if z > 1. We will compared the IN-LS
method and our AM-FLS method using Algorithm 5 and
the deterministic Mirror-Prox method (Nemirovski, 2004)
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to solve (6) as oracles. The comparison also involve the
stochastic gradient methods by Lan & Zhou (2016) and Yu
et al. (2017). The dataset we use is the rcv1 training data set
from LIBSVM library 5. It has n = 20, 242 data points with
a dimension of d = 47, 236, among which the n0 = 10, 491
positive data points are used in the objective function and
n1 = 9, 751 negative data points are used in the constraint
of (4). We choose λ = 5 and r1 = 0.1 in (4).

The numerical comparisons are conducted in two different
scenarios. In the first scenario, all methods are initialized at

xmin-obj := arg min
‖x‖2≤λ

{
f0(x) =

1

n0

n0∑
j=1

φ(x>ξ0j)
}

which is super-optimal but infeasible (i.e., f1(xmin-obj) >
r1). In the second scenario, all algorithms are initialized at

xmin-cst := arg min
‖x‖2≤λ

{
f1(x) =

1

n1

n1∑
j=1

φ(−x>ξ1j)
}

which is strictly feasible to (4) by not optimal. The IN-LS
method is applied in the first scenario where we choose the
initial level r(0) = f0(xmin-obj) < f∗ and θ = 1.2. The
AM-FLS method is applied in the second scenario where
we choose the initial level r(0) = f0(xmin-cst) > f∗ and
θ = 5. The precision level ε is set to be 10−8 in both level-
set methods. The inner loop of SVRG is terminated after
passing the data set twice. We choose τ and σ to be 10 and
ζ0 = 10−3 in SVRG instead of the theoretical values for a
good practical performance. Hence, for a fair comparison,
the step length parameters in the Mirror-Prox method and
the methods by Lan & Zhou (2016) and Yu et al. (2017)
are also tuned for good practical performances. All the
stochastic methods in the comparisons are implemented us-
ing mini-batch to construct the (standard or variance-reduce)
stochastic gradients with a batch size of 5000.

The numerical results in these two scenarios are presented
in Figure 1 and 2, where the x-axis represents the num-
ber of data passes each algorithm performed while the y-
axis represents the logarithm of a joint measurement of
the optimality and the feasibility, namely, P(f∗;x) =
max{f0(x) − f∗, f1(x) − r1}, which is zero only when
the solution is both optimal and feasible. Here, the optimal
value f∗ is obtained by running the IN-LS method with
Algorithm 5 as the oracle for a large number of iterations. In
both scenarios, level-set methods with either oracle will be
slower at the beginning (before 2000 data passes) than the
stochastic gradient methods. However, the level-set meth-
ods will outperform as the number of data passes increase.
Eventually, the level-set methods can reduce P(f∗;x) to
a low level, which the stochastic gradient methods will
need a prohibitively large number of iterations to achieve.

5www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/binary.html

0 1000 2000 3000 4000 5000 6000
Num. of Data Passes

-8

-6

-4

-2

0

lo
g(

P
(f

* ,x
))

IN-LS SVRG
IN-LS MP
Lan and Zhou (2016)
Yu et al(2017)

Figure 1. The convergence of P(f∗;x) to zero in each method
when initialized at the super-optimal solution xmin-obj.
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Figure 2. The convergence of P(f∗;x) to zero in each method
when initialized at the strictly feasible solution xmin-cst.

By comparing the two oracles used in the same level-set
method in both scenario, we conclude the our SVRG or-
acle with the special Bregman divergence is comparable
with and sometimes more effective than the deterministic
oracle. The jumps observed in the curves of both level-set
methods happen at the moment when the level parameter
r(k) is updated, which change the subproblem (7) so that
the solution optimizing the previous subproblem has to be
changed significantly.

6. Conclusion
This paper introduces new numerical schemes for finite-sum
constrained convex optimization. A new affine-minorized
feasible level-set method is proposed which can guarantee
a feasible solution path and absolutely ε-optimal solution.
Moreover, we propose a new oracle for our level-set method
based on the SVRG technique. This oracle leads to a lower
total complexity of our level-set method.

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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tonio J, and Aldana-Montes, José F. Multi-objective big
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