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Abstract

Deep convolutional neural networks (CNN) have seen
tremendous success in large-scale generic object recogni-
tion. In comparison with generic object recognition, fine-
grained image classification (FGIC) is much more chal-
lenging because (i) fine-grained labeled data is much more
expensive to acquire (usually requiring domain expertise);
(ii) there exists large intra-class and small inter-class vari-
ance. Most recent work exploiting deep CNN for image
recognition with small training data adopts a simple strat-
egy: pre-train a deep CNN on a large-scale external dataset
(e.g., ImageNet) and fine-tune on the small-scale target
data to fit the specific classification task. In this paper,
beyond the fine-tuning strategy, we propose a systematic
framework of learning a deep CNN that addresses the chal-
lenges from two new perspectives: (i) identifying easily
annotated hyper-classes inherent in the fine-grained data
and acquiring a large number of hyper-class-labeled im-
ages from readily available external sources (e.g., image
search engines), and formulating the problem into multi-
task learning; (ii) a novel learning model by exploiting a
regularization between the fine-grained recognition model
and the hyper-class recognition model. We demonstrate the
success of the proposed framework on two small-scale fine-
grained datasets (Stanford Dogs and Stanford Cars) and on
a large-scale car dataset that we collected.

1. Introduction

The goal of FGIC is to recognize objects that are both se-
mantically and visually similar to each other. Since the sem-
inal work of [23], deep convolution neural networks (CNN)
have achieved the state-of-the-art performance on large-
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Figure 1. Illustration of large intra-class variance due to different
views.

scale image classification [41, 33]. An important factor in
the success of deep CNNs is the access of large-scale la-
beled training data. However, because it is often expensive
to obtain a large number of labeled images in fine-grained
image classification tasks, it can be difficult to train a good
deep CNN on a small dataset without suffering from sig-
nificant overfitting. Several works have used the ImageNet
dataset (containing 1.2 million images from 1,000 classes)
to pre-train a deep CNN and then directly use the result-
ing CNN to extract features that are then directly used in a
fine-grained image recognition task at hand 1. However, as
we report below, the features learned from a generic dataset
might not be well suited for a specific FGIC task. Recently,
more attempts followed the strategy in [17], where network
parameters are fine-tuned on the target FGIC data.

Another challenge for fine-grained image classification
is that intra-class variation can be quite large due to differ-
ences in pose, view-point, etc. One example of this issue is
illustrated in Figure 1 for fine-grained car recognition.

In this paper, we propose a principled framework to ex-
plicitly tackle the challenges of learning a deep CNN for
FGIC.

Our first contribution is to propose a task-specific data
augmentation approach to address the data scarcity issue.

1https://sites.google.com/site/fgcomp2013/



We augment the FGIC dataset with external data annotated
by some hyper-classes, which are inherent attributes of fine-
grained data. We can easily acquire a large number of
hyper-class-labeled images from readily available sources,
such as online search engines (either keyword-based or
content-based). We use two common types of hyper-classes
to augment our data, with one being the super-type hyper-
classes that subsume a set of fine-grained classes, and an-
other being named factor-type hyper-classes (e.g., different
view-points of a car) that explain the large intra-class vari-
ance. Then we formulate the problem into multi-task deep
learning, allowing the two tasks (fine-grained classification
on target data and hyper-class classification on augmented
data) with disjoint label set to share and learn the same fea-
ture layers.

Our second contribution in the paper is to propose a
novel regularization technique in the multi-task deep learn-
ing that exploits the relationship between the fine-grained
classes and the hyper-classes to provide explicit guidance to
the learning process at the classifier level. When exploiting
factor-type hyper-classes that explain the intra-class vari-
ance, the proposed learning model is able to mitigate the
issue of large intra-class variance and improve the general-
ization performance. We name the proposed framework as
hyper-class augmented and regularized deep learning.

To demonstrate the effectiveness of the proposed frame-
work, we first perform experiments on two relatively small-
scale fine-grained datasets, namely Stanford Dogs and Stan-
ford Cars. We augment the fine-grained dogs data by using
the super-type hyper-class (dog) and simultaneously learn
a dog vs cat recognition model using a publicly available
dataset in which each image is annotated as dog or as cat.
To augment the Stanford Cars data, we exploit the factor-
type hyper-classes of 3D view-points, by utilizing an online
image search engine.

Our experimental results demonstrate that, when training
on small-scale dataset from scratch and without any fine-
tuning, the proposed approach enables us to train a model
that yields reasonably good performance. When integrated
in the ImageNet fine-tuning process, our approach signifi-
cantly outperforms the current state-of-the-art on Stanford
Cars dataset. To further explore if the proposed framework
is still useful when training on large-scale FGIC, we col-
lect a large dataset containing 157, 023 car images from 333
categories and perform experiments similar to those for the
Stanford Cars data.

2. Related Work
FGIC has recently received a surge of interest in com-

puter vision [40, 42, 14, 39, 19]. To train a fine-grained
recognition model, one can first extract features from im-
ages and then train a multi-class classifier based on the de-
rived feature representation. Many features can be com-

puted from an image, ranging from traditional features
such as SIFT [28] and HOG [7], to visual word fea-
tures [6, 38, 36], and recently proposed deep convolutional
activation features extracted from the activation of a deep
CNN that is pre-trained on a large, fixed set of object recog-
nition tasks (e.g., the 1,000 objects recognition task of Im-
ageNet Challenge) [10]. There have been few works that
directly train a (deep) neural network from the fine-grained
images; one exception is Gnostic Fields [19], which can be
interpreted as a kind of feed-forward neural network relying
on hand-engineered features.

Our model is built upon the recent success of deep CNN
for visual recognition. In the notable work by Krizhevsky
et al. [23], the authors developed a large deep CNN with 5
convolutional layers and 3 fully connected layers.The sim-
ilar deep learning architecture has achieved state-of-the-art
performance on other visual tasks, including face recogni-
tion [34], object detection [30, 17], and human pose estima-
tion [35]. Novel variants [27, 26] have been proposed and
achieved new state-of-the-art performance on tiny-image
datasets like CIFAR-10 and CIFAR-100 [22]. In ImageNet
2014 Challenge, [31] and [33] designed very deep CNN
architectures and achieved impressive results. The devel-
opment in generic image object recognition brings benefits
to the FGIC community: Training those deep models re-
quires significant time and resources, but one can easily uti-
lize the trained models by fine-tuning these models on the
new dataset and get great performance boost. The problem
of having scarce labeled data is alleviated because the pre-
trained deep networks can generalize extremely well and
provides good layer initializations in the fine-tuning pro-
cess. Our implementation is based on Krizhevsky’s widely
used CNN model, but the proposed learning framework can
apply to any deep learning architecture.

Large variation of view-point, pose, appearance etc.
for visual recognition has long been recognized and stud-
ied in computer vision. Out of several proposed meth-
ods, part-based methods have gained significant recent at-
tention to tackle view-point and pose variation, including
DPM model [15] and poselets [2]. Part-based methods have
also been applied to FGIC with the key concept of pose-
normalization [42, 14], which localizes object parts and es-
tablishes their correspondences for deriving an intermedi-
ate level representation of fine-grained images. Zhang et
al. [43] proposed a method that combines part-based mod-
els and deep learning by training pose-normalized CNNs for
inferring human attributes. However, these methods usually
require intensive human annotations of the data and there-
fore are restricted to small datasets. There are some other
studies exclusively devoted to addressing particular varia-
tions, e.g. view-points for car recognition [11, 24, 21]. Nev-
ertheless, as far as we know, there has been no study on
designing a deep CNN for FGIC to explicitly model large



intra-class variance.
The proposed learning framework is closely related to

neural networks with multi-task learning [3]. The idea
is to jointly train multiple related tasks by allowing them
share the same feature layers of the neural network. Multi-
task learning has been incorporated into deep learning in
several applications. For example, Collobert and Weston
[5] proposed a multi-task deep learning method for natu-
ral language processing (NLP), which trains jointly mul-
tiple NLP prediction tasks, e.g., predicting part-of-speech
tags, chunks, named entity tags, semantic roles, etc. Seltzer
and Droppo [29] applied multi-task learning to deep neural
networks for improving phoneme recognition. It has been
observed that multitask learning can improve the general-
ization of the shared tasks. However, in contrast to tra-
ditional multi-task learning for deep neural networks that
aims to transfer knowledge only by sharing the lower level
features in a “blind” way, we explicitly use the classifier
learned for hyper-class recognition to regularize the classi-
fier for the fine-grained recognition, enabling the sharing of
weights among fine-grained classes while maintaining dis-
criminative power.

It should be noted that the proposed approach also
closely relates to attribute-based learning [13, 25, 37], since
one can consider that factor-type hyper-classes are (or can
be generalized to) object attributes. To the best of our
knowledge, our work is the first to exploit attribute-based
learning and information sharing in a unified deep learning
framework.

3. Hyper-class Augmented and Regularized
Deep Learning

In this section, we present the proposed hyper-class aug-
mented and regularized deep learning framework for tack-
ling the challenges of FGIC. The first challenge for FGIC is
that fine-grained labels are expensive to obtain, requiring in-
tensive labor and domain expertise. Therefore the available
labeled training data is usually insufficiently large to train
a deep CNN without overfitting. The second challenge is
large intra-class variance vs small inter-class variance. To
address the first challenge, we propose a data augmentation
method. The key idea is to augment the fine-grained data
with a large number of auxiliary images labeled by some
hyper-classes, which are inherent attributes of fine-grained
data and can be much more easily annotated. To address the
second challenge, we propose a novel deep CNN model that
can fully utilize the hyper-class labeled augmented data.

3.1. Hyper-class Data Augmentation

Typical data augmentation approaches in visual recogni-
tion are translations (cropping), reflections, and adding ran-
dom noise to the images. However, their improvement for
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Figure 2. Two types of relationships between hyper-classes and
fine-grained classes.

fine-grained image classification is limited because patches
from different fine-grained classes could be more similar to
each other (small inter-class variance), leading to difficul-
ties in discriminating them, after these augmentations have
been applied. We propose a data augmentation approach to
address the scarcity of labeled fine-grained images. Our ap-
proach is inspired by the fact that images have other inher-
ent “attributes” besides the fine-grained classes, which can
be annotated with much less effort than fine-grained classes,
and therefore a large number of images annotated by these
inherent attributes can be easily acquired. We will refer to
these easily annotated inherent attributes as hyper-classes.

The most common hyper-class is super-type class, which
subsumes a set of fine-grained classes. For example, a fine-
grained dog or cat image can be easily identified as a dog
or cat. We can acquire a large number of dog and cat im-
ages by fast human labeling or from external sources such
as image search engines. The hierarchy of super-type hyper-
classes and fine-grained classes has been exploited in many
previous studies. For instance, Deng et al. [8] proposed a
HEX graph to capture the hierarchical and exclusive rela-
tionships between classes and defined a joint distribution of
an assignment of all classes as a conditional random field.
Srivastava & Salakhutdinov [32] exploited the class hierar-
chy for transfer learning, in which one aims to improve the
classification of lower level classes (with a small number of
examples) by transferring knowledge among similar lower
level classes. However, in contrast to these approaches that
restrict learning to the given training data (either assuming



Figure 3. An query image (left) and retrieved images by Google (top right) and by Baidu (bottom right). Baidu search engine allows us to
retrieve a large number of images with clean view annotations.

the class hierarchy is known or inferring the class hierarchy
from the data), our approach is based on data augmenta-
tion which enables us to utilize as many auxiliary images as
possible to improve the generalization performance of the
learned features.

Besides the super-type hyper-class that captures ‘a kind
of’ relationship, we also consider another important hyper-
class to capture ‘has a’ relationship and to explain the intra-
class variances (e.g., the pose variance). In the follow-
ing discussion, we focus on fine-grained car recognition as
an instance. A fine-grained car image annotated by make,
model and year could be photographed from many differ-
ent views, yielding images from the same fine-grained class
with very different visual appearances (see Figure 1). For
a particular fine-grained class, images could have different
views (i.e., factor-type hyper-classes). This is completely
different from the class hierarchy between a super-type
hyper-class and fine-grained classes, where a fine-grained
class can only belong to one single super-type class, for ex-
ample, a fine-grained class “Chihuahua” belongs to a super-
type class “Dog”, but not “Cat”. However, a fine-grained
class of car in the dataset (e.g. “Acura TSX 2006”) could
have images from different views (e.g. “Passenger-side”,
“Front”, “Back”, etc.), and thus not necessarily belongs to
one single hyper-class. From a generative perspective, the
fine-grained class of a car image can be generated by first
generating its view (hyper-class) and then generating the
fine-grained class given the view. This is also the probabilis-
tic foundation of our model described in next subsection.
Since this type of hyper-class can be considered as a hid-
den factor of an image, we refer to this type of hyper-class
as a factor-type hyper-class. The key difference between
super-type and factor-type hyper-class is that a super-type
hyper-class is implicitly implied by the fine-grained class
while the factor-type hyper-class is unknown for a given
fine-grained class. Without annotation of the factor class
of an image, there is no way to infer that from the fine-
grained class. Another example of factor-type hyper-classes
is different expressions (happy, angry, smile, and etc) of a
human face, where each individual can have multiple pho-
tos with different expressions. Although intra-class vari-
ance has been studied previously, to the best of our knowl-
edge, this is the first work that explicitly models the intra-

class variance to improve the performance of deep CNN.
Figure 2 illustrates the two types of hyper-classes. Next, we
use fine-grained car recognition as an example to discuss
how to obtain a large number of auxiliary images annotated
by different views. An existing approach for acquiring addi-
tional car images with specific view-points is by rendering
images from 3D CAD models [21]. The issue of rendered
images is that they are not photo-realistic and thus they may
not follow the same distribution of real images. To sur-
mount this issue, we put forward a more effective and ef-
ficient approach by exploiting the recent advances of online
content-based image search engines. Modern image search
engines have the capability to retrieve visually similar im-
ages to a given query image. We investigated several image
search engines, including Google, Baidu and Bing. Bing
can only find exactly matched images and corresponding
source pages, which is not useful for our purpose. Google
and Baidu can serve our purpose to find visually similar im-
ages. We found that images retrieved by Baidu are more
suited for view prediction since it always returns visually
similar images, while Google image search tries to “seman-
tically” recognize the car and return images within the same
model. To demonstrate this, we show in Figure 3 the top
9 or 10 images returned by Google and Baidu for a given
query image. In our experiments, we use images retrieved
from Baidu as our augmented data.

3.2. Hyper-class Regularized Learning Model

Before describing the details of our model, we first in-
troduce some notation and terminology used throughout the
paper. Let Dt = {(xt

1, y
t
1), . . . , (x

t
n, y

t
n)} be a set of train-

ing fine-grained images with yti ∈ {1, . . . , C} indicating
the fine-grained class label (e.g., make, model and year of
a car) of image xt

i, and let Da = {(xa
1 , v

a
1 ), . . . , (x

a
m, v

a
m)}

be a set of auxiliary images, where vai ∈ {1, . . . ,K} indi-
cates the hyper-class label of image xa

i (e.g., view-point of
a car). Using v to denote a super-type hyper-class, by vc we
denote the super-type hyper-class of the fine-grained class
c. In the sequel, the two terms ‘classifier’ and ‘recognition
model’ are used interchangeably.

The goal is to learn a recognition model that can predict
the fine-grained class label of an image. In particular, we
aim to learn a prediction function given by Pr(y|x), i.e.,
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Figure 4. The network structures.

given the input image what is the probability that it belongs
to a fine-grained class. Similarly, we let Pr(v|x) denote
the hyper-class classification model. Given the fine-grained
training images and the auxiliary hyper-class labeled im-
ages, a straightforward strategy is to train a multi-task deep
CNN, by sharing common features and learning classifiers
separately. Multi-task deep learning has been observed to
improve the performance of individual tasks [3]. We reit-
erate that in the multi-task learning, the label sets of hyper-
classes and fine-grained classes are disjoint, and we don’t
label the fine-grained data with hyper-class labels.

To further improve this simple strategy, we propose a
novel multi-task regularized learning framework by exploit-
ing regularization between the fine-grained classifier and
the hyper-class classifier. We begin with the description of
the model regularized by factor-type hyper-class.

3.2.1 Factor-type Hyper-class Regularized Learning

As a factor-type hyper-class can be considered as a hidden
variable for generating the fine-grained class, therefore we
model Pr(y|x) by

Pr(y|x) =
K∑

v=1

Pr(y|v,x) Pr(v|x) (1)

where Pr(v|x) is the probability of any factor-type hyper-
class v and Pr(y|v,x) specifies the probability of any fine-
grained class given the factor-type hyper-class and the input
image x. If we let h(x) denote the high level features of x,
we model the probability Pr(v|x) by a softmax function

Pr(v|x) = exp(u>
v h(x))∑K

v′=1 exp(u
>
v′h(x))

(2)

where {uv} denote the weights for the hyper-class classifi-
cation model. Note that in all formulations we ignore the
bias term since it is irrelevant to our discussion. Neverthe-
less it should be included in practice. Given the factor-type
hyper-class v and the high level features h of x, the proba-
bility Pr(y|v,x) is computed by

Pr(y = c|v,x) =
exp(w>

v,ch(x))∑C
c=1 exp(w

>
v,ch(x))

(3)

where {wv,c} denote the weights of factor-specific fine-
grained recognition model. Putting together (2) and (3), we
have the following predictive probability for a specific fine-
grained class, and we use this equation to make the final
predictions

Pr(y = c|x) =
K∑

v=1

exp(w>
v,ch(x))∑C

c=1 exp(w
>
v,ch(x))

exp(u>
v h(x))∑K

v′=1 exp(u
>
v′h(x))

(4)

Although our model has its root in mixture models [1], how-
ever, it is worth noting that unlike most previous mixture
models that treat Pr(v|x) as free parameters, we formulate
it as a discriminative model. It is the hyper-class augmented
images that allow us to learn {uv} accurately. Then we
can write down the negative log-likelihood of data inDt for
fine-grained recognition and that of data in Da for hyper-
class recognition, i.e.,

L({wv,c},{uv}) = − log Pr(D)

=−
n∑

i=1

C∑
c=1

δ(yti , c) log Pr(y = c|xt
i)

−
m∑
i=1

K∑
v=1

δ(vai , v) log Pr(v|xa
i )

(5)

To motivate the non-trivial regularization, we note that
factor-specific weights wv,c should capture similar high-
level factor-related features as the corresponding factor-type
hyper-class classifier uv .

To this end, we introduce the following regularization
between {wv,c} and {uv},

R ({wv,c}, {uv}) =
β

2

K∑
v=1

C∑
c=1

‖wv,c − uv‖22 (6)

To understand the regularization, in our car recognition ex-
ample, original fine-grained data is not capable to learn
a per-viewpoint category classifier wv,c, because there is
no way to infer the viewpoint hyper-class. But now we
can train viewpoint classifiers uv on hyper-class augmented



data, so the regularization is responsible for transferring the
knowledge to the per-viewpoint category classifier and thus
helps mode the intra-class variance in the fine-grained task.
The above regularization can also be interpreted by impos-
ing a normal prior on wv,c by

Pr(wv,c|uv) ∝ exp

(
−β
2
‖wv,c − uv‖22

)
The regularization in (6) enjoys another interesting intu-

ition of sharing weights among the factor-type hyper-class
recognition model and the fine-grained recognition model.
To see this, we introduce w′

v,c = wv,c − uv and write the
regularizer in (6) as

R
(
{w′

v,c}
)
=
β

2

K∑
v=1

C∑
c=1

‖w′
v,c‖22

and Pr(y = c|x) is computed by

Pr(y = c|x) =
K∑

v=1

exp((w′
v,c + uv)

>h(x))∑C
c=1 exp((w

′
v,c + uv)>h(x))

exp(u>
v h(x))∑K

v′=1 exp(u
>
v′h(x))

It can be seen that the fine-grained classifier share the same
component uv of the factor-type hyper-class classifier. It
therefore connects the proposed model to weight sharing
employed in traditional shallow multi-task learning [12, 4].

3.2.2 Super-type hyper-class regularized learning

The only difference for super-type hyper-class regularized
deep learning is on Pr(y|v,x), which can be simply mod-
eled by

Pr(y = c|vc,x) =
exp(w>

vc,ch(x))∑C
c=1 exp(w

>
vc,ch(x))

since the super-type hyper-class vc is implicitly indicated by
the fine-grained label c. The regularization then becomes

R ({wvc,c}, {uv}) =
β

2

C∑
c=1

‖wvc,c − uvc‖22 (7)

It is notable that a similar regularization has been exploited
in [32]. However, there is a big difference between our work
and [32]. In our model, the weight uv for the super-type
classification is also discriminatively learned from the aug-
mented auxiliary data.

3.3. A Unified Deep CNN

Using the hyper-class augmented data and the multi-task
regularization learning technique, we reach to a unified deep

CNN framework as depicted in Figure 4 (right column). We
also exhibit the optimization problem:

min
{wv,c},{uv},{wl}

L({wv,c}, {uv}) +R({wv,c}, {uv})

+

K∑
v=1

r(uv) +

H∑
l=1

r(wl)

where wl, l = 1, . . . ,H denote all the weights of the CNN
in determining the high level features h(x), H denotes the
number of layers before the classifier layers, and r(w) de-
notes the standard Euclidean norm square regularizer with
an implicit regularization parameter (or a weight decay pa-
rameter).

3.4. Training

The proposed deep learning model is trained by back-
propagation using mini-batch stochastic gradient descent
with settings similar to that in [23]. A key difference is that
we have two sources of data and two loss functions corre-
sponding to the two tasks. It is very important to sample
both images in Dt and images in Da in each mini-batch to
compute the stochastic gradients. Using the alternative ap-
proach that alternates between training the two tasks could
yield very bad solutions. This is because the two tasks may
have different local optimal in different directions and the
solution can be easily trapped into a bad local optimal.

4. Experiments
4.1. Model Architecture

We use exactly the same feature layers as in [23], in-
cluding 5 convolutional layers and 2 fully connected layers.
We refer to [23] for a detailed discussion of the architec-
ture and training protocol. We emphasize that we do not
intend to optimize the design of the feature layers but rather
focus our attention on different learning strategies. The
code and hyper-parameter settings are developed based on
Krizhevsky’s cuda-convnet. To validate our development,
we first repeat their experiments on ImageNet-2012 data.
Our instance of the model attains an error rate of 41.6% on
the validation set. We refer to this model as Alex-net and
use it to extract features for the ImageNet-Feat-LR baseline
as described below.

4.2. Baselines

We compare our approach with three baselines: (i)
ImageNet-Feat-LR, which learns a multinomial logistic re-
gression (LR) classifier on the activation features extracted
using a deep CNN pre-trained on ImageNet data; (ii) the
CNN baseline trained directly on the given fine-grained im-
ages. (iii) the FT-CNN baseline in which the pre-trained
network is fine-tuned on the fine-grained images. For the



ImageNet-Feat-LR baseline, we use the activation feature
extracted from the fully connected layer 6 and train a logis-
tic regression classifier with dropout. For the FT-CNN base-
line, we initialize the network with the pre-trained Alex-net
model and fine-tune it on our target data. For our approach,
we report two results when training from scratch on the tar-
get data: one for hyper-class augmented deep CNN (HA-
CNN) and another for hyper-class augmented and regular-
ized deep CNN (HAR-CNN) for examining the effect of
the two components. To show that in our multitask learning
setting, HA-CNN, the hyper-class data are indeed useful,
we report another baseline (HAR-CNN-Random), where
instead of hyper-class data, irrelevant data are used as the
auxiliary data. In order to show that our model is com-
patible with the fine-tuning strategy, we further report two
results (FT-HA-CNN) and (FT-HAR-CNN) on Stanford-
Car dataset, where instead of training the network from
scratch, we initialize the network layers from a pre-trained
model. We also report state-of-the-art results where avail-
able. Note that previous state-of-the-art methods utilized
bounding box information provided in the dataset during
training and testing process. In all experiments on Stanford-
Cars and Stanford-Dogs datasets, for training, we mix both
original and cropped images; for testing, we average the
predictions of cropped and original images. Unless speci-
fied, all the results are obtained using standard 10-view test-
ing.

4.3. Stanford Dogs

The Stanford-Dogs dataset [9] contains 20,580 images
from 120 fine-grained classes. These images were taken
from ImageNet for fine-grained image categorization. We
use the official training/testing splitting. For the data aug-
mentation, we use super-type hyper-class-labeled images
from an external dataset – Asirra 2, which was also used
in Kaggle’s 2013 Dogs vs Cats contest. It contains a total
of 25,000 images annotated by either a dog or a cat. 20,000
images are used as the training set in the auxiliary task to
classify a dog from a cat and 5000 images are used as the
validation set for parameter tuning. The regularization is
only imposed on the weights for fine-grained dog recogni-
tion and the generic dog recognition. The results are shown
in Table 1. Note that recently unsupervised grid alignment
method [16] reports an accuracy of 57.0%. It extracts multi-
channel local descriptors and utilizes unsupervised part de-
tection and segmentation. However, our focus is to show
how our framework can benefit the end-to-end deep learn-
ing framework that treat the FGIC task in a holistic recogni-
tion point of view. The relative improvement (6% for HA-
CNN and 7% for HAR-CNN) compared to a CNN baseline
validates our idea.

2http://research.microsoft.com/en-us/um/redmond/projects/asirra/

Table 1. Accuracy on Stanford-Dogs dataset. The performance
of the baseline ImageNet-Feat-LR on Stanford Dogs data is not
reported because the this dataset is a subset of ImageNet data.

Method Accuracy(%)
Unsupervised Grid Alignment [16] 57.0

Gnostic Fields [19] 47.7
CNN 42.3

HA-CNN (ours) 48.3
HAR-CNN (ours) 49.4

4.4. Stanford Cars

Stanford Cars dataset [19] consists of 196 classes and
16,185 images. In contrast to Stanford dogs, we exploit
factor-type hyper-classes for data augmentation and regu-
larization, because we can easily collect a huge number of
view labeled images as discussed in section 3.1. To do
this, we have identified eight different views: front, back,
driver/passenger side, left-front, right-front, left-back and
right-back with exemplar images shown in Figure 5. For
each view, we randomly select seed images from the train-
ing dataset as query images and retain top 10,000 images
retrieved by Baidu image search engine. In the experi-
ments, we observe that these images have very high qual-
ity in terms of car pose labels. The results 3 are shown
in Table 2. The results show that our proposed framework
performs extremely well on this tasks. Note that in HA-
CNN-Random baseline, we use labeled images from 50 ran-
dom classes from ImageNet (to match the amount of aug-
mented data in HA-CNN experiment) and perform multi-
task training. The result shows that adding random auxil-
iary data during training barely increases the performance,
while adding task-specific hyper-class data brings substan-
tial gain. This conclusion well matches the observations in
traditional multi-task learning research. By collecting and
utilizing the properly designed hyper-class data, we are able
to make the best of the discriminative power of deep learn-
ing, especially when we are training the network on small
scale data from scratch.

Table 2. Accuracy on Stanford-Cars dataset.

Method Accuracy(%)
LLC [18] 69.5

ELLF [20] 73.9
ImageNet-Feat-LR 54.1

CNN 68.6
HA-CNN-Random 69.8

HA-CNN (ours) 76.7
HAR-CNN (ours) 80.8

3Test image labels are not publicly available. An online evaluation
server is available: http://ai.stanford.edu/ jkrause/cars/car dataset.html



Figure 5. Exemplar retrieved images from different views (from
left to right: front, back, side, right-front and right-back).

4.5. Hyper-class Training in Fine-tuning

Table 3. Fine-tuning Accuracy on Stanford-Cars dataset.

Method Accuracy(%)
FT-CNN 83.1

FT-HA-CNN (ours) 83.5
FT-HAR-CNN (ours) 86.3

Though we already outperform the state-of-the-art by
training on small FGIC data from scratch, we cannot
ignore the recent success and the benefit of fine-tuning
from a model pre-trained on ImageNet. Our hypothesis
is that hyper-class augmentation and regularization tech-
nique should be compatible with the fine-tuning paradigm.
Here we report our results on Stanford-Car dataset in Ta-
ble 3. fine-tuning the ImageNet pre-trained works surpris-
ingly well on this dataset, which already bypass the best
performance we get when training from scratch. Adding
hyper-class auxiliary data further increase the performance
by a minor margin. This is reasonable since the problem
of scarce data is mostly solved by the fine-tuning process.
The hyper-class regularization, however, shows substantial
impact on the learning process, when testing with only a
single center view, the performance is 78.8% for FT-CNN
vs 82.6% for FT-HAR-CNN. When testing in standard 10-
view, our approach sets the new state-of-the-art result with
86.3% accuracy on this dataset.

4.6. Hyper-class Training at Large

Though in this paper we focus on FGIC tasks with small
dataset, our another hypothesis is that our framework can
still be useful when we train an FGIC task at large. To
this end, we have collected a large number of car images
from the Internet, which were all naturally photographed.
We manually check all crawled images, retain only those
that include the whole car in the images and remove im-
ages either focusing on some parts or on interior of the
car. Annotations of the make, model and year are done
manually with the help of meta information. Finally, we
have 157, 023 training images with each labeled into one of
333 categories. Following the same procedure, we collected
7840 testing images with no overlapping with the training
images. In contrast to Stanford Cars data, we do not label
and use the bounding box annotations for images.

This is the largest dataset for car recognition up to date

in both the number of training images and the number of
categories. We use the same set of view labeled images for
the view recognition task. The results of different learning
strategies are shown in Table 4. Note that when enough data
is available, a vanilla CNN can perform surprisingly well on
this difficult task without any engineering tricks. However
the experimental results demonstrate that the proposed deep
learning framework is still effective even when the number
of fine-grained images is large.

Table 4. Accuracy on Large-scale Cars dataset

Method Accuracy (%)
ImageNet-Feat-LR 42.8

CNN 81.6
HA-CNN (ours) 82.4

HAR-CNN (ours) 83.6

From the results on all datasets, we can observe that (i)
the features exacted from a pre-trained CNN on the present
ImageNet data may not be suited for fine-grained classifi-
cation; (ii) the proposed HAR-CNN dramatically improves
the performance of fine-grained classification on small-
scale datasets; (iii) exploiting the regularization between
the fined-grained classes and hyper-classes further helps im-
prove the generalization.

5. Conclusions
We have presented a hyper-class augmented and regu-

larized deep learning framework for FGIC. To address the
scarcity of data in FGIC, we propose a novel data aug-
mentation approach by identifying inherent and easily an-
notated hyper-classes in the fine-grained data and collect-
ing a large amount of similar images labeled by hyper-
classes. The hyper-class augmented data can generalize
feature learning by incorporating multi-task learning into
a deep CNN. To further improve the generalization per-
formance and deal with large intra-class variance, we have
proposed a novel regularization technique that exploits the
relationship between the fine-grained classes and the asso-
ciated hyper-classes. We demonstrated the success of the
proposed framework on both publicly available small-scale
fine-grained datasets and a large self-collected car dataset.

We hope that the proposed deep joint learning and reg-
ularization framework can open up new directions of re-
search in deep learning. For example, one could consider
multi-task deep learning that incorporates regularization be-
tween different tasks. As we have mentioned, the pro-
posed approach is closely related to attribute-based learn-
ing. Though current formulations can only use one attribute,
it can be modified to handle multiple attributes by adding
more tasks and using pair-wise weight regularization. We
will explore this in our future work.
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