
Combining Decision Procedures for Theories in

Sorted Logics

Cesare Tinelli Calogero G. Zarba1

tinelli@cs.uiowa.edu zarba@theory.stanford.edu

Department of Computer Science

The University of Iowa

Report No. 04-01

February 2004

1Address: Department of Computer Science, Stanford University, Gates Building, Stanford, CA 94305
– USA.



i



Combining Decision Procedures for Theories in Sorted Logics

Cesare Tinelli
Department of Computer Science

The University of Iowa

14 MacLean Hall, Iowa City, IA 52242 – USA

tinelli@cs.uiowa.edu

Calogero G. Zarba
Department of Computer Science

Stanford University

Gates Building, Stanford, CA 94305 – USA

zarba@theory.stanford.edu

February 2004

Revised: May 9, 2004

Abstract

The Nelson-Oppen combination method combines decision procedures for theo-
ries satisfying certain conditions into a decision procedure for their union. While the
method is known to be correct in the setting of unsorted first-order logic, some current
implementations of it appear in tools that use a sorted input language. So far, however,
there have been no theoretical results on the correctness of the method in a sorted set-
ting, nor it is obvious that the method in fact lifts as is to logics with sorts. To bridge
this gap between the existing theoretical results and the current implementations, we
extend the Nelson-Oppen method to (order-)sorted logic and prove it correct under
conditions similar to the original ones. From a theoretical standpoint, the extension
is relevant because it provides a rigorous foundation for the application of the method
in a sorted setting. From a practical standpoint, the extension has the considerable
added benefits that in a sorted setting the method’s preconditions become easier to
satify in practice, and the method’s nondeterminism is generally reduced.

Keywords: Combination of decision procedures, order-sorted logics, the Nelson-
Oppen method.
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1 Introduction

The problem of combining decision procedures for logical theories arises in many areas of
logic in computer science, such as constraint solving, automated deduction, term rewriting,
modal logics, and description logics. In general, one has two theories T1 and T2 over the
signatures Σ1 and Σ2, for which validity of a certain class of formulae (e.g., universal,
existential positive, etc.) is decidable. The question is then whether one can combine the
decision procedures for T1 and for T2 into a decision procedure for a suitable combination
of T1 and T2.

The most widely applied and best known method for combining decision procedures
is due to Nelson and Oppen [NO79]. This method is at the heart of the verification
systems cvc [SBD02, BB04], argo-lib [MJ04] eves [CKM+91], sdvs [LFMM92], and
simplify [DNS03], among others.

The Nelson-Oppen method allows one to decide the satisfiability (and hence the valid-
ity) of quantifier-free formulae in a combination T of two first-order theories T1 and T2,
using as black boxes a decision procedure for the satisfiability of quantifier-free formulae
in T1 and a decision procedure for the satisfiability of quantifier-free formulae in T2.

The method is correct whenever the theories T , T1, and T2 satisfy the following restric-
tions:

• T is logically equivalent to T1 ∪ T2;

• the signatures of T1 and T2 are disjoint;

• T1 and T2 are both stably infinite.1

While the Nelson-Oppen method is defined in the context of unsorted first-order logic
(with equality), more recent verification tools that rely on it, such as cvc or argo-lib, have
a sorted input language. The choice of a sorted language is most natural for verification
applications, which deal with properties of basic data types, such as integers, reals, lists,
arrays, binary strings, and so on. However, strictly speaking, it is not clear how correct
these verification tools are, because it is not clear whether the Nelson-Oppen method does
in fact lift as is to a sorted setting. The common consensus among the researchers in the
field is that, at least for standard many-sorted logic, “the method should be correct” as is.
But to our knowledge there is no formal proof of this conjecture, nor it is obvious that the
conjecture holds. In fact, a crucial requirement for the correctness of the method is that
the signatures of the component theories share no function or predicate symbols.2 Now, in
a sorted context, the method is only useful for theories whose signatures Σ1 and Σ2 share,
if not function/predicate symbols, at least one sort. In fact, if two sorted signatures Σ1
and Σ2 do not even share sorts, the only well-sorted (Σ1∪Σ2)-terms are either Σ1-terms or
Σ2-terms, with Σ1-terms sharing no variables with Σ2-terms, which makes the combination

1A theory T is stably infinite if every quantifier-free formula satisfiable in a model of T is satisfiable in
an infinite model of T .

2Except for the equality symbol, which however is a logical symbol in first-order logic with equality.
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problem trivial. Sharing sorts however essentially amounts to sharing predicate symbols,
something that the original Nelson-Oppen method does not allow.

We prove in this paper that the method can indeed be lifted to sorted logics, provided
that its applicability conditions are adjusted appropriately to the order-sorted setting. For
standard many-sorted logic, the only significant adjustment is to define stable infiniteness
with respect to a set of sorts. The added benefit of using a sorted logic then becomes that
it is easier to prove that a sorted theory is stably infinite over a certain sort s, than it is to
prove that its unsorted version is stably infinite as a whole.3 Also, one can now combine
with no problems theories with sorts admitting only finite interpretations, say, as long as
these sorts are not shared.

For order -sorted logics, the situation is in general considerably more complicated, re-
quiring substantial additions to the methods (see Section 5 for more details). There is
however a useful special case in which the many-sorted version of the method works just as
well with order-sorted theories: the case in which the shared sorts are pairwise disconnected
in each component signature, that is, do not appear in the same connected component of
the subsort relation. Because of this we present our correctness results directly for order-
sorted logic. Or more accurately, since there exist several, inequivalent order-sorted logics,
we present our results for a fairly general version of first-order order-sorted logic based on a
well developed and studied equational order-sorted logic by Goguen and Meseguer [GM92].

We introduce our order-sorted logic in Section 2. Then we present a version of the
Nelson-Oppen combination method for this logic in Section 3, and prove it correct in
Section 4. The correctness proof is based on a suitable order-sorted version of the model
theoretic results used in [TR03, Zar04] to prove the correctness of the (unsorted) Nelson-
Oppen method. We conclude the paper in Section 5 with some directions for further
research.

2 The Logic

We will assume some familiarity in the reader with many-sorted and order-sorted algebras
and logics with equality (denoted here by ≈) as defined for instance in [GM92]. We will
mostly follow the notation used in [GM92]. The logic we present here is inspired by the
order-sorted equational logic proposed by Meseguer in Section 11 of [Mes98] as a successor
of the logic in [GM92]. To simplify the presentation of our logic we introduce it in two steps,
by first defining a basic many-sorted logic (with unordered sorts), and then extending that
logic to accommodate subsorts and, consequently, the subsort overloading of function and
predicate symbols.

For reasons we explain later, our approach will differ from more conventional ones
in that our logic uses a vocabulary of decorated symbols, that is, function and predicate
symbols that carry a sort declaration explicitly in them.

3Intuitively, one has to worry only about what the theory says about s, and can ignore what it says
about other sorts.
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2.1 A Many-sorted Logic with Decorated Symbols

For any set S we denote by S∗ the set all words over S, including the empty word ε. For the
rest of the paper, we fix a countably-infinite set F of function symbols, a countably-infinite
set P of predicate symbols, and a countably-infinite set S of sort symbols.4 We further fix
a countably-infinite set X of variables that is disjoint with F , P and S.

A decorated function symbol, written as fw,s, is a triple (f, w, s) ∈ F × S∗ × S. A
decorated constant is a decorated function symbol of the form fε,s. A decorated predicate
symbol, written as pw, is a pair (p, w) ∈ P × S∗. A decorated variable, written as xs, is a
pair (x, s) ∈ X × S.

A many-sorted (decorated) signature Σ is a tuple Σ = (S, F, P ) where S ⊆ S is a set of
sorts, F ⊆ (F × S∗ × S) is a set of decorated function symbols, and P ⊆ (P × S∗) is a set
of decorated predicate symbols. When convenient, we will write ΣS for S, ΣF for F , and
ΣP for P . For simplicity, in this paper, we will consider only signatures with a finite set of
sorts.

A many-sorted (decorated) Σ-term of sort s (over a set X of decorated variables) is a
well sorted term built in the usual way, but out of decorated symbols from F and decorated
variables from X × S. More precisely, the set of Ts(Σ, X) of many-sorted Σ-terms of sort
s over the variables X ⊆ X is defined as follows by structural induction:

• every decorated variable xs ∈ (X × S) is in Ts(Σ, X);

• if t1, . . . , tn are in Ts1(Σ, X), . . . , Tsn(Σ, X), respectively, for some s1, . . . , sn ∈ ΣS,
and fs1···sn,s ∈ ΣF, then the word fs1···sn,st1 · · · tn, written fs1···sn,s(t1, . . . , tn) for
clarity, is in Ts(Σ, X).

We denote by Ts(Σ, X) the set of such terms. Many-sorted atomic Σ-formulae are also
defined as expected: a Σ-atom (over a set X of decorated variables) is either an expression
of the form ps1···sn(t1, . . . , tn) where ps1···sn ∈ ΣP and ti ∈ Tsi(Σ, X) for i = 1, . . . , n, or
one of the form t1 ≈ t2 where t1, t2 ∈ Ts(Σ, X) for some s ∈ ΣS. Many-sorted (first-order)
formulae and sentences are defined as usual, but with the difference that quantifiers bind
decorated variables. For simplicity, and without loss of generality, we will consider only
formulae built with the ¬ and ∧ connectives and the ∃ quantifier symbol.

While decorated terms/predicates are cumbersome to write in practice, at the theo-
retical level they dramatically simplify or eliminate a number of problems that vex more
standard definitions of sorted logics. For instance, ad hoc overloading in the usual sense is
not a problem as there is no need of such a notion with decorated terms. We still get the
same flexibility as usual overloading however because we can use, say, the same symbol
f in a decorated constant fε,s, in another constant fε,s′ , in a decorated function symbol
fs1,s2 , or even in a decorate predicate symbol fw.

Furthermore, and more importantly, with full decoration of symbols sort inference is
trivial, terms have a unique sort, and unions and intersections of sorted signatures, crucial
operations in combination settings, can be defined in a straightforward way. In fact, if

4For our purposes, F , P or S need not be pairwise disjoint—they could even coincide.
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Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2) are two sorted signatures in the sense above, then
we simply define Σ1 ∪ Σ2 as (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2), without having to worry about
unintended overloading of symbols, for instance. Similarly, we simply define Σ1 ∩ Σ2 as
(S1 ∩S2, F1 ∩F2, P1 ∩P2). The intersection of signatures is not as trivial to define in more
usual definitions of many-sorted logic, where signatures consist of undecorated symbols
and mappings of these symbols to strings of sorts. There the mappings themselves have
to be “intersected” appropriately. In contrast to other approaches, defining the union
and intersection operators as above always yield well-defined sorted signatures, as one can
easily verify.

Of course we do not advocate that decorated signatures and terms be used in practice.
They are just a way to abstract away the usual parsing, sort inference, and signature
composition problems that arise in computer science practice when working with sorted
languages, but that are not relevant for the essence of our combination results. In a sense,
the situation here is analogous to the difference between abstract syntax and concrete
syntax in the programming languages literature. A sorted logic with decorated symbols
can be seen as the abstract version of a more conventional sorted logic, after all parsing
issues have been resolved and abstracted away.

For every many-sorted signature Σ = (S, F, P ), a many-sorted Σ-structure is a pair
A = (A, I) where A = {As | s ∈ S} is an S-indexed family of sets, domains, and I

is a mapping of the decorated predicate symbols of Σ to functions and relations over
the carrier sets. Specifically, for each word w = s1 · · · sn ∈ S∗, let Aw denote the set
As1 × · · · × Asn .

5 Then I maps each decorated function symbol fw,s ∈ F to a (total)
function fAw,s ∈ (Aw → As), and each decorated predicate symbol pw ∈ P to a relation

pAw ⊆ Aw. The support for ad hoc overloading of function symbols comes from the fact
that the interpretations fAw,s and f

A
w′,s′ , say, need not coincide if ws and w′s′ are different.

(Similarly for predicate symbols interpretations.)

Definition 1 (Many-sorted Morphisms). Let Σ = (S, F, P ) be a many-sorted signa-
ture, and let A and B be two many-sorted Σ-structures. A many-sorted Σ-homomorphism
h : A → B of A into B is a family {hs : As → Bs | s ∈ S} of functions such that

1. for all fw,s ∈ F with w = s1 · · · sn and all ai ∈ Asi with i = 1, . . . , n,

hs(f
A
w,s(a1, . . . , an)) = fBw,s(hs1(a1) . . . , hsn(an));

2. for all pw ∈ P with w = s1 · · · sn and all ai ∈ Asi with i = 1, . . . , n,

(a1, . . . , an) ∈ p
A
w =⇒ (hs1(a1), . . . , hsn(an)) ∈ p

B
w. ¤

5With Aε denoting an arbitrary singleton set.
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2.2 An Order-sorted Logic with Decorated Symbols

An order-sorted (decorated) signature Σ is a tuple Σ = (S,≺, F, P ) where (S, F, P ) is a
many-sorted decorated signature and ≺ is a binary relation over S. We denote by ∼ the
symmetric closure of ≺, and by ≺∗ and ∼∗ the reflexive, transitive closure of ≺ and ∼,
respectively. We say that a sort s1 is a subsort of a sort s2 iff s1 ≺

∗ s2. We say that
two sorts s1 and s2 are connected iff s1 ∼

∗ s2. If w1, w2 ∈ S∗, we write w1 ≺
∗ w2 iff w1

and w2 have the same length and each component of w1 is a subsort of the corresponding
component of w2. (Similarly for w1 ∼

∗ w2.)
For greater flexibility we do not insist, as in other approaches, that ≺ be a partial

ordering. The relation ≺ is just the specification of the ordering ≺∗, the relation we really
use. Even ≺∗ is not really a partial-ordering, but just a quasi-ordering. As we will see,
semantically, (proper) cycles in ≺∗ are never a problem. They just mean that all the sorts
participating in a cycle denote the same set. In the sorted logics in the literature cycles
are essentially a syntactical problem, as they complicate sort inference for terms. In our
case, however, thanks to the use of decorated symbols, sort inference is always trivial.

We say that two signatures Σ1 = (S1,≺1, F1, P1) and Σ2 = (S2,≺2, F2, P2) are equiv-
alent, and write Σ1 ≡ Σ2, iff (S1, F1, P1) = (S2, F2, P2) and ≺∗

1=≺
∗
2.
6 Two equivalent

signatures differ only in the way they present their subsort relation, and nothing else.
Since for all purposes of this paper equivalent signatures are interchangeable, we will tac-
itly identify them when needed.

Definition 2 (Compositions of signatures). If Σ1 = (S1,≺1, F1, P1) and Σ2 = (S2,≺2
, F2, P2) are two order-sorted signatures, the union of Σ1 and Σ2 is the order-sorted signa-
ture

Σ1 ∪ Σ2 = (S1 ∪ S2,≺1 ∪ ≺2, F1 ∪ F2, P1 ∪ P2);

the intersection of Σ1 and Σ2 is the order-sorted signature

Σ1 ∩ Σ2 = (S1 ∩ S2,≺
∗
1 ∩ ≺

∗
2, F1 ∩ F2, P1 ∩ P2) . ¤

It is easy to see that Σ1∪Σ2 and Σ1∩Σ2 are well defined, and thus are indeed order-sorted
signatures.

For the rest of the section, we fix an order-sorted signature Σ = (S,≺, F, P ) for conve-
nience, and use it throughout.

Definition 3 (Order-sorted Terms). Let X ⊆ X be a set of variables. For all s ∈ S,
the set Ts(Σ, X) of order-sorted Σ-terms of sort s over X is the set defined as follows by
structural induction:

• every decorated variable xs′ ∈ (X × S) with s′ ≺∗ s is in Ts(Σ, X);

• if fs1···sn,s′ ∈ F , ti ∈ Tsi(Σ, X) for i = 1, . . . , n, and s′ ≺∗ s, then fs1···sn,s′(t1, . . . , tn)
is in Ts(Σ, X).

6It is immediate that ≡ is in fact an equivalence relation over signatures.

7



We denote by T(Σ, X) the set
⋃

s∈S Ts(Σ, X) and by Tw(Σ, X) with w = s1 · · · sn the set
Ts1(Σ, X)× · · · × Tsn(Σ, X). ¤

We say that a Σ-term has nominal sort s if it is a variable of the form xs or its top
symbol has the form fw,s. Note that the nominal sort of a term t is always the least sort
of t. More precisely, we have the following.

Lemma 4. Let X ⊆ X be a set of variables. For all Σ-terms t over X of nominal sort s′

and all s ∈ S, t ∈ Ts(Σ, X) iff s′ ≺∗ s. ¤

Order-sorted (first-order) Σ-formulae with free-variables X are defined as in the many-
sorted case, with the difference that equational atoms are all and only those formulas of
the form t ≈ t′ where the nominal sorts of t and t′ are connected.

Definition 5 (Order-sorted Structure). An order-sorted Σ-structure is a many-sorted
(S, F, P )-structure A = (A, I) such that

1. For all s, s′ ∈ S such that s ≺∗ s′, As ⊆ As′ .

2. For all fw,s, fw′,s′ ∈ F such that ws ∼∗ w′s′, the functions fAw,s and fAw′,s′ agree on

Aw ∩Aw′ .7

3. For all pw, pw′ ∈ P such that w ∼∗ w′, the restrictions of pAw and of pAw′ to Aw ∩Aw′

coincide. ¤

This definition of order-sorted structure is modeled after the definition of order-sorted
algebra in [Mes98], where the subsort relation denotes set inclusion. As in [Mes98], the
given semantics supports subsort overloading of function symbols by requiring that, when-
ever ws ∼∗ w′s′, the functions denoted by fw,s and fw′,s′ coincide on the tuples shared by
their domains. (Similarly for predicate symbols.)

We will say that two distinct decorated function symbols fw,s and fw′,s′ of Σ are subsort
overloaded (in Σ) if ws ∼∗ w′s′. Otherwise, we say that are ad-hoc overloaded (in Σ).
Similarly, we will say that two distinct decorated predicate symbols pw and pw′ of Σ are
subsort overloaded (in Σ) if w ∼∗ w′ and ad-hoc overloaded otherwise. As in previous works,
the semantic of the logic will allow two ad-hoc overloaded function symbols to stand for
completely different functions, whereas it will require subsort overloaded function symbols
to stand for functions that agree on the intersection of their domains.

We point out that every many-sorted structure of signature (S, F, P ) can be seen as
an order-sorted structure of signature Σ = (S,≺, F, P ) with ≺ empty, that is, as an order-
sorted structure in which the subsort relation ≺∗ and the “connected” relation ∼∗ both
coincide with the identity relation. A similar relation exists between many-sorted homo-
morphisms and order-sorted homomorphisms, defined later.

An order-sorted signature Σ0 is a subsignature of Σ iff Σ0∩Σ ≡ Σ0. Let A be an order-
sorted Σ-structure. If A is an order-sorted Σ-structure, the reduct of A to Σ0, denoted

7Where Aw ∩Aw′ denotes the component-wise intersection of the tuples Aw and Aw′ .
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by AΣ0 , is the order-sorted Σ0-structure with domains {As | s ∈ Σ0
S} that interprets the

function and predicate symbols of Σ0 exactly as A does.

For our combination purposes we will consider only combinations of signatures that
are conservative in a strong sense with respect to subsort overloading. The idea is that
if two symbols are subsort overloaded in the union signature, then that is only because
either they were already subsort overloaded in one of the component signatures or, when
the two symbols belong to different component signatures, each was subsort overloaded
in its signature with a same connecting symbol belonging to the shared signature. More
precisely, we will consider only combined signature from the class defined below.

Definition 6 (Conservative Union of Signatures). The order-sorted signature Σ =
(S,≺, F, P ) is a conservative union of an order-sorted signature Σ1 = (S1,≺1, F1, P1) and
an order-sorted signature Σ2 = (S2,≺2, F2, P2) iff all of the following hold:

1. Σ = Σ1 ∪ Σ2;

2. For all pw′ ∈ Pi and pw′′ ∈ Pj with {i, j} ⊆ {1, 2} and w
′ ∼∗ w′′, there is a pw ∈ Pi∩Pj

such that w′ ≺∗
i w and w ∼∗

j w
′′ or w′′ ≺∗

j w and w ∼∗
i w

′.

3. For all fw′,s′ ∈ Fi and fw′′,s′′ ∈ Fj with {i, j} ⊆ {1, 2} and w′s′ ∼∗ w′′s′′, there is a
fw,s ∈ Fi ∩ Fj such that w′s′ ≺∗

i ws and ws ∼∗
j w

′′s′′ or w′′s′′ ≺∗
j ws and ws ∼∗

i w
′s′.

In Condition 2 above we consider at the same time the case in which two overloaded
symbols belong to the same component signature (i = j) and the case in which they do
not (i 6= j). In the first case, w might as well be w′ or w′′. (Similarly for Condition 3.)

In essence, conservative unions have no new subsort overloadings with respect to their
component signatures. Examples of conservative unions are easy to generate. It might be
more instructive then to consider some counter-examples instead.

Example 7. Let

Σ1 = (S1,≺1, F1, P1) = ({s1, s2}, {}, {}, {ps1 , ps2}) and

Σ2 = (S2,≺2, F2, P2) = ({s1, s2}, {(s1, s2)}, {}, {}) .

Then

Σ = Σ1 ∪ Σ2 = (S,≺, F, P ) = ({s1, s2}, {(s1, s2)}, {}, {ps1 , ps2})

is not a conservative union of Σ1 and Σ2 because s1 ∼
∗ s2 and, while ps1 and ps2 are both

in P1, it is not the case that s1 ∼
∗
1 s2. ¤

Example 8. Let

Σ1 = (S1,≺1, F1, P1) = ({s1, s2}, {(s1, s2)}, {}, {ps1}) and

Σ2 = (S2,≺2, F2, P2) = ({s1, s2}, {(s1, s2)}, {}, {ps2}) .

9



Then

Σ = Σ1 ∪ Σ2 = (S,≺, F, P ) = ({s1, s2}, {(s1, s2)}, {}, {ps1 , ps2})

is not a conservative union of Σ1 and Σ2 because s1 ∼
∗ s2 but neither ps1 nor ps2 is in

P1 ∩ P2. ¤

Example 9. Let

Σ1 = (S1,≺1, F1, P1) = ({s1, s}, {(s1, s)}, {}, {ps1}) and

Σ2 = (S2,≺2, F2, P2) = ({s, s2}, {(s, s2)}, {}, {ps2}) .

Then

Σ = Σ1 ∪ Σ2 = (S,≺, F, P ) = ({s1, s, s2}, {(s1, s), (s, s3)}, {}, {ps1 , ps2})

is not a conservative union of Σ1 and Σ2 because ps1 ∈ P1, ps2 ∈ P2, s1 ∼
∗ s2 but P1 ∩ P2

is empty. ¤

Definition 10 (Order-sorted Valuation). Let A be an order-sorted Σ-structure. Let
X ⊆ (X×S) be a set of decorated variables, and for all s ∈ S letXs be the set of all elements
of X of the form xs. A valuation α of X in A is a family α = {αs : Xs → As | s ∈ S}.

For any a ∈ As , x ∈ X and s ∈ S, we denote by α[xs 7→ a] the valuation of X ∪ {xs}
in A that maps xs to a and is otherwise identical to α. ¤

Where A is an order-sorted Σ-structure, X ⊆ (X × S) a set of decorated variables,
and α a valuation of X in A, we call the pair (A, α) an order-sorted Σ-interpretation over
X. A Σ-interpretation (A, α) over X induces a mapping ( )A,α of terms in T(Σ, X) into
elements of A, inductively defined as follows:

• xA,αs = αs(xs) for all xs ∈ X.

• fs1···sn,s(t1, . . . , tn)
A,α = fAs1···sn,s(t

A,α
1 , . . . , t

A,α
n ) for all fs1···sn,s ∈ F and ti ∈ Tsi(Σ, X)

with i = 1, . . . , n.

It is easy to see that this definition is well defined, and in particular that if fw,s, fw′,s′ ∈
F , with ws ∼∗ w′s′, and t is a tuple of terms in both Tw(Σ, X) and Tw′(Σ, X), then
fw,s(t)

A,α = fw′,s′(t)
A,α. For ground (i.e. variable-free) terms t, the valuation α is irrele-

vant in determining the value tA,α. So we will abuse the notation and write just tA.

Satisfiability of formulae in an order-sorted Σ-interpretation is defined exactly as in the
unsorted case.

Definition 11 (Satisfiability). Let A be an order-sorted Σ-structure, X ⊆ (X ×S) a set
of decorated variables, α a valuation of X in A, and ϕ a Σ-formula with free variables from
X. The interpretation (A, α) satisfies ϕ iff (A, α) and ϕ are in the relation |= inductively
defined as follows:

10



• (A, α) |= t1 ≈ t2 iff tA,α1 = t
A,α
2 ;

• (A, α) |= pw(t1, . . . , tn) iff (tA,α1 , . . . , t
A,α
n ) ∈ pAw ;

• (A, α) |= ¬ψ iff (A, α) 6|= ψ;

• (A, α) |= ϕ1 ∧ ϕ2 iff (A, α) |= ϕ1 and (A, α) |= ϕ2;

• (A, α) |= ∃xs ψ iff (A, α[xs 7→ a]) |= ϕ for some a ∈ As. ¤

As usual, we say that a Σ-structure A satisfies, or is a model of, a Σ-sentence (i.e.
a closed Σ-formula) ϕ iff any (or equivalently, every) Σ-interpretation (A, α) satisfies ϕ.
Similarly, we say that A is a model of a set Γ of Σ-sentences if A satisfies every sentence
in Γ.

Definition 12 (Order-sorted Morphisms). LetA and B be two order-sorted Σ-structures.
An order-sorted Σ-homomorphism h : A → B of A into B is a many-sorted (S, F, P )-
homomorphism such that

(*) for all s, s′ ∈ S with s ∼∗ s′, the component maps hs and hs′ agree on As ∩As′ . ¤

A Σ-isomorphism h of A into B is an order-sorted Σ-homomorphism h : A → B for
which there exists an order-sorted Σ-homomorphism h′ : B → A such that h′ ◦ h is the
identify function on A and h ◦ h′ is the identity function on B.

It is a simple exercise to show that if h is a Σ-isomorphism of A into B, then hs is a
bijection of As into Bs for all s ∈ S; moreover, for all pw ∈ P with w = s1 · · · sn and all
(a1, . . . , an) ∈ Aw, (a1, . . . , an) ∈ p

A
w iff (hs1(a1), . . . , hsn(an)) ∈ p

B
w.

[to do: note Venn diagrams and on on why isomorphisms are defined this way]
We point out that, although we will not need it here, the semantics of our logic can

be also equipped with a notion of embedding analogous to the one used in unsorted first-
order logic. It is enough to define a notion of substructure, similarly to the unsorted case,
and then define an embedding from a structure A to a structure B as an order-sorted
Σ-isomorphism of A into a substructure of B.

Lemma 13. For all order-sorted Σ-structures A, B, C the following hold:

1. The family {ids | s ∈ S}, where ids is the identity function of As, is an order-sorted
Σ-isomorphism of A into itself.

2. The family h−1 = {h−1s : Bs → As | s ∈ S} obtained by inverting component-wise an
order-sorted Σ-isomorphism h : A → B is an order-sorted Σ-isomorphism of B into
A.

3. The component-wise composition g ◦ h = {gs ◦ hs : As → Cs | s ∈ S} of two order-
sorted Σ-isomorphisms h : A → B and g : B → C is an order-sorted Σ-isomorphism
of A into C. ¤

11



Proof. Simple exercise. ¥

We writeA ∼= B if there is an order-sorted Σ-isomorphism fromA onto B. By the lemma
above it is immediate that ∼= is an equivalence relation over Σ-structures. Another crucial
property of order-sorted Σ-isomorphisms is that the satisfiability relation is invariant under
them.

Proposition 14. Let A and B be two Σ-structures and assume that there is a Σ-isomorphism
h : A → B. Then, for all valuations α and Σ-formulae ϕ,

(A, α) |= ϕ iff (B, h ◦ α) |= ϕ . ¤

Proof. Let β = h ◦ α. We first prove the claim, by structural induction on formulae,
under the assumption that ϕ is quantifier-free.

(ϕ = pw(t1, . . . , tn)) Let w = s1 · · · sn. By induction on terms one can show for all

i = 1, . . . , n that tA,αi ∈ Asi and hsi(t
A,α
i ) = t

B,β
i . As observed earlier, we then have

that (tA,α1 , . . . , t
A,α
n ) ∈ pAw iff (tB,β1 , . . . , t

B,β
n ) ∈ pBw. The claim then derives by definition of

satisfiability of atomic formulae.
(ϕ = t1 ≈ t2) By well-sortedness there are s1, s2 ∈ S such that s1 ∼

∗ s2 and ti ∈

Tsi(Σ, X) for i = 1, 2. Again, we have that hsi(t
A,α
i ) = t

B,β
i for i = 1, 2. Assume that

(A, α) |= t1 ≈ t2, which means that tA,α1 = t
A,α
2 . Since s1 and s2 are connected, we have

that hs1(t
A,α
1 ) = hs2(t

A,α
2 ). It follows that

t
B,β
1 = hs1(t

A,α
1 ) = hs2(t

A,α
2 ) = t

B,β
2

and so (B, β) |= t1 ≈ t2. Now assume that (B, β) |= t1 ≈ t2, i.e., tB,β1 = t
B,β
2 . By

Lemma 13(2), h−1 is a Σ-isomorphism of B intoA. As before, since s1 and s2 are connected,

we then have that h−1s1 (t
B,β
1 ) = h−1s2 (t

B,β
2 ). It follows that

t
A,α
1 = h−1s1 (hs1(t

A,α
1 )) = h−1s1 (t

B,β
1 ) = h−1s2 (t

B,β
2 ) = h−1s2 (hs2(t

A,α
2 )) = t

A,α
2

and so (A, α) |= t1 ≈ t2.
(ϕ = ¬ψ), (ϕ = ϕ1 ∧ϕ2) Immediately by induction hypothesis and the definition of |=.

Now we show, again by structural induction, that the claim holds for arbitrary formulas.
The base case in which ϕ is quantifier-free was already proven above. The cases in which
ϕ has the form ¬ψ or ϕ1 ∧ ϕ2 are again elementary. We show then only the case in which
ϕ = ∃xs ψ.

Assume that (A, α) |= ϕ. Then there in an a ∈ As such that (A, α[xs 7→ a]) |= ψ.
By induction hypothesis this implies that (B, h ◦ (α[xs 7→ a])) |= ψ, or, equivalently, that
(B, β[xs 7→ hs(a)]) |= ψ. It follows by definition of |= that (B, β) |= ∃xs ψ. Now assume
that (B, β) |= ϕ. Then we can prove that (A, α) |= ϕ in a similar way by using the
isomorphism h−1 : B → A. ¥
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Like the equational logic proposed by Meseguer in [Mes98], with regards to the proposi-
tion above our order-sorted logic contrasts with the one given in [GM92], where invariance
under isomorphism is achieved only by requiring the signature in question to be locally-
filtered, i.e., such that each connected component of its ≺∗ relation contains a largest sort.
In our case, no such restriction is necessary. This makes the logic more robust and also
better suited to combination settings given that the property of being locally filtered is not
modular with respect to the union of signatures.

As in the unsorted case, a crucial consequence of Proposition 14—which we will use
later—is that for all purposes isomorphic order-sorted structures are indistinguishable.
Hence, they can always be identified.

An order-sorted Σ-theory is a pair T = (Σ, Ax) where Ax is a set of Σ-sentences, that
is, closed Σ-formulae.

Definition 15. Let T be a Σ theory, ϕ a Σ-formula over the variables X, and Γ a set
of Σ-formulae over X. The formula is T -entailed by Γ, written Γ |=T ϕ, iff every Σ-
interpretation over X that satisfies T ∪ Γ satisfies ϕ as well. The formula ϕ is T -valid,
written |=T ϕ, iff ∅ |=T ϕ. The set Γ is T -satisfiable (resp. T -unsatisfiable) if it is satisfied
by some (resp. no) Σ-interpretation satisfying T . ¤

Definition 16 (Combinations of Σ-theories). The combination of two order-sorted
theories T1 = (Σ1, Ax1) and T2 = (Σ2, Ax2) is defined as

T1 ∪ T2 = (Σ1 ∪ Σ2, Ax1 ∪Ax2) . ¤

In this paper we consider for convenience expansions of order-sorted signatures to sets
of new constants. Formally, we will fix a countably-infinite set C of free constants, symbols
that do not occur in any of the symbols sets F , P, S and X defined earlier. Then,
for every order-sorted signature Σ = (S,≺, F, P ), we will denote by Σ(C) the signature
Σ = (S,≺, F ∪ (C × {ε} × S), P ). All the signature-dependent notions we have introduced
so far extend to signatures with free constants in the obvious way.

The quantifier-free satisfiability problem for an order-sorted Σ-theory T is the problem
of determining whether a ground Σ(C)-formula is T -satisfiable.

As we will see, the decidability of the quantifier-free satisfiability problem is modular
with respect to the union of order-sorted theories whenever the signatures of theories
satisfy certain disjointness conditions and the theories are stably infinite with respect to
their share sorts.

Definition 17 (Stably Infinite Theory). Let Σ be an order-sorted signature, and let
S ⊆ ΣS. A Σ-theory T is stably infinite with respect to S if for every ground Σ(C)-formula
ϕ that is T -satisfiable is satisfied by a Σ(C)-model A of T such that |As| ≥ ℵ0 for all
s ∈ S. ¤
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This definition extends to the sorted case the definition of stable infiniteness used with
the (unsorted) Nelson-Oppen method, according to which a theory T is stably infinite if
every T -satisfiable ground formula is satisfied by an infinite model of T .

We point out that the logic defined in this subsection is a proper extension of con-
ventional many-sorted logic, defined in the previous subsection. All the results presented
in this paper then apply for instance to the many-sorted logics used by the verification
systems described in [SBD02, MJ04].

3 The Combination Method

In this section we present a method for combining decision procedures for order-sorted
theories whose signatures may share sorts, but no function or predicate symbols. We
will further impose the restriction that the union of the two signatures is conservative
(cf. Definition 6).

The method is closely modeled after the non-deterministic version of the Nelson-Oppen
combination method (for unsorted theories) as described in [TH96] and [Zar04], among
others.

For the rest of this section, let Σ1 = (S1,≺1, F1, P1) and Σ2 = (S2,≺2, F2, P2) be two
order-sorted signatures such that

1. F1 ∩ F2 = P1 ∩ P2 = ∅,

2. Σ1 ∪ Σ2 is a conservative union of Σ1 and Σ2,

3. for all distinct s, s′ ∈ S1 ∩ S2, s 6∼
∗
1 s

′ and s 6∼∗
2 s

′.

By Condition 3 above, the restrictions of ∼∗
1 and of ∼∗

2 to S0 × S0 coincide (with the
identity relation). We will denote this common relation by ∼∗

0.

Condition 1 corresponds to the original restriction in the Nelson-Oppen method that the
two theories share no function or predicate symbols. In our case, however, the restriction
is on decorated symbols. This means, for instance, that we allow one signature to contain
a symbol fw1,s1 , while the other contains a symbol fw2,s2 , provided that w1s1 6= w2s2. By
Condition 2, f becomes ad hoc overloaded in the union signature, because that condition
implies that w1s1 6∼

∗ w2s2, where ∼
∗ is the reflexive, symmetric and transitive closure of

≺ = ≺1 ∪ ≺2. To see that, assume that instead w1s1 ∼
∗ w2s2. Then, by Definition 6,

both signatures must contain a symbol fw′,s′ (for some w1s1 such that w1s1 ∼
∗
1 w

′s′ and
w′s′ ∼∗

2 w2s2). But that contradicts Condition 1. Note that Condition 2 and 3 are
immediately satisfied in the many-sorted case, i.e., when both ≺1 and ≺2 are the empty
relation.

We are interested in the quantifier-free satisfiability problem for a theory T1∪T2 where

• T1 is a Σ1-theory,

• T2 is a Σ2-theory,

14



• both T1 and T2 are stably infinite over S0.

Here is an example of two theories satisfying the conditions above.

Example 18. Let T1 be an order sorted version of linear rational arithmetic, with Σ1
having the sorts Int and Rat the subsorts Int ≺ Rat, and the expected function and predicate
symbols, say 0: Int, 1: Int, +: Int × Int → Int, +: Int × Rat → Rat, < : Int × Int, and so on.8

Then let T ′
2 be the theory of a parametric datatype such as lists, with signature Σ′

2 having
the “parameter” sort Elem (for the list elements), the list sorts EList NList, (for empty and
non-empty lists respectively), and List, the subsorts EList,NList ≺ List, and the expected
function symbols, say, []:EList, hd:NList→ Elem, tl: List→ List, cons:Elem× List→ Nlist.

Then consider a renaming T2 of T ′
2 in which Elem is renamed as Rat, so that T1 ∪ T2

then becomes a theory of rational lists. Where Σ2 is the signature of T2 and S0 = {Rat},
it is easy to see that Σ1 and Σ2 satisfy Conditions 1–3 above.

The stable infiniteness of T1 over S0 is trivial because in all models of T1 Int is infinite (as
the theory entails that all successors of zero are pairwise distinct). The stable infiniteness
of T2 over S0 is not difficult to show. One possible proof uses the fact that T is convex
over the sort Rat9 and the general facts that i) every ground formula satisfiable in T2 is
satisfiable in T = T2 ∪ {∃xs, ys x 6≈ y} and ii) all convex theories like T are stably infinite.
The third point, can be shown, as in the unsorted case [BDS02], by means of a compactness
argument.10 ¤

In contrast to the previous one, here is an example of two theories not satisfying the
conditions above.

Example 19. Let T1 be as in Example 18. Then let T ′
2 be an order-sorted theory of arrays,

with signature Σ′
2 having the “parameter” sorts Index and Elem (for the array indexes and

elements, respectively), the array sort Array, the subsorts Index ≺ Elem, and the usual
function symbols select:Array × Index → Elem and store:Array × Index × Elem → Array.
Then consider a renaming T2 of T ′

2 in which Elem is renamed as Rat and Index as Int, so
that T1 ∪ T2 then becomes a theory of arrays with integer indexes and rational elements.
Where Σ2 is the signature of T2, it is immediate that Σ1 and Σ2 do not satisfy Condition 3
above because the shared sorts, Int and Rat, are comparable. While perfectly reasonable in
practice, T1 ∪ T2 is a combined theory that the combination method cannot accommodate
at the moment (but see Section 5 for possible extensions in this direction).

Finally, we remark that a perhaps more natural combination of the two signatures
would be the one in which no renamings are applied but Int becomes a subsort of Index and
Rat a subsort of Elem. This kind of combination, however, is not achievable by a simple

8For convenience, we are using here a more conventional notation here for decorated symbols, instead
of the less readable in this case 0ε,Int, 1ε,Int, +Int Int,Int, etc.

9That is, whenever a quantifier-free formula ϕ T2-entails a disjunction of equations between variables of
sort Rat, it T2-entails one of the equations.

10This of course presupposes that our logic is compact, but that too is not very difficult to show using
standard model-theoretic techniques.
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union of signatures and theories, and as such is out the scope of combination methods a
la Nelson-Oppen. ¤

When the quantifier-free satisfiability problem for T1 and for T2 is decidable, we can
decide the quantifier-free satisfiability problem for T1 ∪ T2 by means of the combination
method described below and consisting of four phases: Variable abstraction, Partition,
Decomposition, and Check.

To simplify the presentation, and without loss of generality, we restrict ourselves to the
(T1 ∪ T2)-satisfiability of conjunctions of literals only.

First phase: Variable abstraction.

Let Γ be a conjunction of ground (Σ1 ∪ Σ2)(C)-literals. In this phase we convert Γ into a
conjunction Γ′ satisfying the following properties:

(a) each literal in Γ′ is either a Σ1(C)-literal or a Σ2(C)-literal;

(b) Γ′ is (T1 ∪ T2)-satisfiable if and only if so is Γ.

Properties (a) and (b) can be enforced with the help of new auxiliary constants from
C. For instance, in the simplest kind of transformation, Γ can be purified by applying to it
to completion the following rewriting step, for all terms t of nominal sort s ∈ S0 = S1 ∩S2
occurring in Γ that are not decorated free constants: if t occurs as the argument of an
non-equality atom in Γ, or occurs in an atom of the form t ≈ t′ or t′ ≈ t where t′ is not a
decorated free constant, or occurs as a proper subterm of an atom of the form t1 ≈ t2 or
t2 ≈ t1, then t is replaced by cε,s for some fresh c ∈ C, and the equality cε,s ≈ t is added to
Γ. It is easy to see that this transformation satisfies the properties above.11

Second phase: Partition.

Let Γ′ be a conjunction of literals obtained in the variable abstraction phase. In the second
phase we partition Γ′ into two sets of literals Γ1, Γ2 such that, for i = 1, 2, each literal in
Γi is a Σi(C)-literal. A literal with an atom of the form cε,s ≈ c′ε,s′ with c, c

′ ∈ C, which is
both a Σ1(C)- and a Σ2(C)-literal, can go arbitrarily in either Γ1 or Γ2.

We call Γ1 ∪ Γ2 a conjunction of literals in separate form.

Third phase: Decomposition.

Let Γ1 ∪ Γ2 be the conjunction of literals in separate form obtained in the variable ab-
straction phase. Note that the only decorated symbols shared by Γ1 and Γ2, if any, are
decorated free constants of a shared sort—constants of the form cε,s with c ∈ C and s ∈ S0.

11But see [TR03], among others, for a more practical kind of abstraction process that minimizes the
number of fresh constants introduced.
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For all shared sorts s ∈ S0, let Cs be the set of decorated constants of sort s shared by Γ1
and Γ2. In this phase we choose nondeterministically a family E = {Es ⊆ Cs×Cs | s ∈ S0}
of equivalence relations Es.

Intuitively, in this phase we guess for each pair of shared constant in Cs, whether the
two constants denote the same individual or not. In essence, partitioning the shared free
constants into sorted classes and considering identifications only of constants of the same
sort is the only difference of this version of the Nelson-Oppen method with respect to the
unsorted version, where all pairs of constants are considered for possible identification.

We point out that the nondeterministic choice in the Decomposition Phase above is
finitary because it always involves a finite number of shared constants. Correspondingly,
every possible arrangement is finite.

Fourth phase: Check. Given the equivalence relations E = {Es | s ∈ S0} guessed in
the decomposition phase, the fourth phase consists of the following steps:

Step 1. Construct the arrangement of C = {Cs | s ∈ S0} induced by E, defined by

arr(C,E) = {u ≈ v | (u, v) ∈ Es and s ∈ S0} ∪

{u 6≈ v | (u, v) ∈ (C2s \ Es) and s ∈ S0} .

Step 2. if Γ1 ∪ arr(C,E) is T1-satisfiable and Γ2 ∪ arr(C,E) is T2-satisfiable, output
succeed; else output fail.

In Section 4 we will prove that this combination method is sound and complete in the
following sense:

• if there exists an arrangement arr(C,E) of C for which the check phase outputs
succeed, then Γ is (T1 ∪ T2)-satisfiable;

• if the check phase outputs fails for every possible arrangement arr(C,E) of C, then
Γ is (T1 ∪ T2)-unsatisfiable.

4 Correctness of the Method

To prove our the combination method correct, we first need to prove a few of basic results
used in the correctness proof. The first result is an order-sorted version of a general
combination result given in [TR03, Zar04] for unsorted theories. The second result is an
order-sorted version of the classic Downward Löwenheim-Skolem Theorem for first-order
logic, which in turn is proved by using an order-sorted version of the Hintikka Lemma on
the existence of term-generated models for Hintikka sets.
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4.1 The Order-sorted Combination Theorem

Theorem 20 (Order-Sorted Combination Theorem). Let ΣA = (SA,≺A, FA, PA) and
ΣB = (SB,≺B, FB, PB) be two order-sorted signatures, and let ΦA and ΦB be two sets of
ΣA- and ΣB-sentences, respectively. Whenever ΣA∪ΣB is a conservative union of ΣA and
ΣB, the set ΦA ∪ ΦB is satisfiable if and only if there exists a ΣA-structure A satisfying
ΦA and a ΣB-structure B satisfying ΦB such that

AΣA∩ΣB ∼= BΣA∩ΣB . ¤

Proof. Let

ΣC = ΣA ∩ ΣB = (SC ≺C , FC , PC)

= (SA ∩ SB,≺
∗
A ∩ ≺

∗
B, FA ∩ FB, PA ∩ PB) ,

and

Σ = ΣA ∪ ΣB = (S,≺, F, P )

= (SA ∪ SB,≺A ∪ ≺B, FA ∪ FB, PA ∪ PB) .

Next, assume that ΦA∪ΦB is satisfiable, and let D be a Σ-structure satisfying ΦA∪ΦB.
Then, by letting A = DΣA and B = DΣB , we clearly have that

• A satisfies ΦA;

• B satisfies ΦB;

• AΣC ∼= BΣC .

Vice versa, suppose there exists a ΣA-structure A satisfying ΦA and a ΣB-structure B
satisfying ΦB such that AΣC ∼= BΣC . Then, by Proposition 14, we can assume with no
loss of generality that AΣC = BΣC .12 We define a Σ-structure D by letting for each s ∈ S,
fw,s ∈ F , and pw ∈ P :

• for the domains:

Ds =

{

As , if s ∈ SA

Bs , if s ∈ SB \ SA

• for each fw,s ∈ F :

fDw,s =

{

fAw,s , if fw,s ∈ FA

fBw,s , if fw,s ∈ FB \ FA

12Observe that is assumption implies that As = Bs for all shared sorts s.
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• for each pw ∈ P :

pDw =

{

pAw , if pw ∈ PA

pBw , if pw ∈ PB \ PA

Because AΣC = BΣC , it is clear that D is well defined as a many-sorted Σ-structure.
To show that D is also a well defined order-sorted Σ-structure, we start by showing that
in D the denotation of a sort includes the denotations of its subsorts.

In fact, let s, s′ ∈ S be two distinct sorts such that s ≺∗ s′. Since ≺ = ≺A ∪ ≺B (and S
is finite), there is a sequence s = s0, s1, . . . , sn, sn+1 = s′ such that for all i = 0, . . . , n either
si ≺A si+1 or si ≺B si+1. It is enough to show then that Dsi ⊆ Dsi+1

for all i = 0, . . . , n.
Recall that, since AΣC = BΣC , Dsi = Asi = Bsi whenever si ∈ SA∩SB. Now, if si ≺A si+1
we have by construction of D and definition of A that Ds = Asi ⊆ Asi+1

= Dsi+1
. Similarly,

if instead si ≺B si+1, we have that Ds = Bsi ⊆ Bsi+1
= Dsi+1

.

It remains to show that D respects the subsort overloading of function and predicate
symbols.13 This is true for every two symbols of FA or of PA because (i) DΣA = A, trivially,
and (ii) since Σ = ΣA∪ΣB is a conservative union of ΣA and ΣB, if two symbols are subsort
overloaded in Σ then they are subsort overloaded in ΣA. The argument is symmetric for
the symbols of FB and PB. Finally, D respects the possible subsort overloading of a symbol
of FA (PA) and a symbol of FB (PB) because again Σ is a conservative union of ΣA and
ΣB, and A and B agree on their shared symbols.

In fact, for illustration, assume that pw′ ∈ PA, pw′′ ∈ PB \ PA, and w
′ ∼∗ w′′. Then,

by Definition 6, there is a pw ∈ PA ∩ PB such that w′ ≺∗
A w and w ∼∗

B w′′, say. Let
d ∈ Dw′ ∩Dw′′ . We show that d ∈ pDw′ iff d ∈ pDw′′ .

Observing that Dw′ = Aw′ ⊆ Aw = Bw and Bw′′ = Dw′′ by construction of D and
definition of A and B, it is not difficult to see that d ∈ Aw′ ∩Aw and d ∈ Bw ∩Bw′′ . Then

d ∈ pDw′ iff d ∈ pAw′ (by construction of D)

iff d ∈ pAw (as w′ ∼∗
A w and d ∈ Aw′ ∩Aw)

iff d ∈ pBw (as pAw = pBw by AΣA∩ΣB = BΣA∩ΣB )

iff d ∈ pBw′′ (as w ∼∗
B w′′ and d ∈ Bw ∩Bw′′)

iff d ∈ pDw′′ (by construction of D)

The other cases are proven similarly. Now, given that D is well defined, and that DΣA = A
and DΣB = B by construction, it is immediate that D satisfies ΦA ∪ ΦB. ¥

4.2 The Order-sorted Hintikka Lemma

In the following, we write ϕ(xs) to indicate that the decorated variable xs may occur free
in ϕ. We write ϕ(t) to denote the formula obtained from ϕ(xs) by replacing one or more

13That is, fDw,s(d) = fDw′,s′(d) for all fw,s, fw′,s′ ∈ F with ws ∼∗ w′s′ and d ∈ Dw ∩Dw′ , and d ∈ pDw iff

d ∈ pDw′ for all pw, pw′ ∈ P with w ∼∗ w′ and d ∈ Dw ∩Dw′ .
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occurrences of xs in ϕ by t. Also, we denote by Ts(Σ) the set Ts(Σ, ∅) of ground Σ-terms
of sort s, and by Tw(Σ) where w = s1 . . . sn the set Ts1(Σ)× · · · × Tsn(Σ).

Definition 21. Let Σ = (S,≺, F, P ) be an order-sorted signature. A Hintikka set H with
respect to Σ is a set of order-sorted Σ-sentences such that:

1. for each atomic formula ϕ, it is not the case that both ϕ and ¬ϕ belong to H;

2. if ¬¬ϕ ∈ H, then ϕ ∈ H;

3. if ϕ1 ∧ ϕ2 ∈ H, then both ϕ1, ϕ2 ∈ H;

4. if ¬(ϕ1 ∧ ϕ2) ∈ H, then ¬ϕ1 ∈ H or ¬ϕ2 ∈ H;

5. if ¬∃xs ϕ(xs) ∈ H, then ¬ϕ(t) ∈ H, for all t ∈ Ts(Σ);

6. if ∃xs ϕ(xs) ∈ H, then ϕ(t) ∈ H, for some t ∈ Ts(Σ);

7. for every t in Ts(Σ) and s ∈ S, t ≈ t ∈ H;

8. if t1 ≈ t2 ∈ H, then t2 ≈ t1 ∈ H;

9. if t1 ≈ t2, t2 ≈ t3 ∈ H, then t1 ≈ t3 ∈ H;

10. for every fw,s, fw′,s′ ∈ F , t ∈ Tw(Σ), and t
′ ∈ Tw′(Σ) with ws ∼∗ w′s′, if t ≈ t′ ⊆ H,14

then fw,s(t) ≈ fw′,s′(t
′) ∈ H;

11. for every pw, pw′ ∈ P , t ∈ Tw(Σ), and t′ ∈ Tw′(Σ) with w ∼∗ w′, if t ≈ t′ ⊆ H and
pw(t) ∈ H, then pw′(t′) ∈ H.

As in unsorted logic, all Hintikka sets are satisfiable.

Lemma 22 (Order-sorted Hintikka Lemma). Let Σ be an order-sorted signature. Then
any set H of Σ-formulae that is a Hintikka set wrt. Σ is satisfied by an order-sorted Σ-
structure A with As countable for every s ∈ ΣS. ¤

Proof. Let us define a relation ≡ over T(Σ) =
⋃

s∈ΣS Ts(Σ) by letting

t1 ≡ t2 iff t1 ≈ t2 ∈ H .

Note that by Properties 7, 8, 9, and 10 of a Hintikka set, ≡ is a congruence relation on
T(Σ). If t ∈ T(Σ), let us denote with [t] the equivalence class of t with respect to ≡.

We then define a Σ-structure A by letting:

• for each sort s ∈ ΣS:
As = {[t] | t ∈ Ts(Σ)} .

14Where t ≈ t′ denotes the set of equations between the corresponding components of t and t′.
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• for each function symbol fw,s ∈ ΣF with w = s1 . . . sn and each ([t1], . . . , [tn]) ∈ Aw:
15

fAw,s([t1], . . . , [tn]) = [fw,s(t1, . . . , tn)] ,

• for each predicate symbol pw ∈ ΣP and each ([t1], . . . , [tn]) ∈ Aw:

([t1], . . . , [tn]) ∈ p
A
w iff pw(t1, . . . , tn) is in H .

Using the fact that ≡ is a congruence relation and H satisfies Property 1 of Hintikka
sets, it is easy to show that A is well-defined as a many-sorted structure and tA = [t], for
each ground term t ∈ T(Σ).

To see that A is also well-defined as an order-sorted structure, first note that As1 ⊆ As2

for all s1, s2 ∈ ΣS with s1 ≺
∗ s2. In fact, let [t] ∈ As1 . As explained earlier, we can assume

with no loss of generality that t ∈ Ts1(Σ). Since Ts1(Σ) ⊆ Ts2(Σ), we can then conclude
that [t] ∈ As2 . Finally, A respects the overloading condition on function symbols thanks to
Property 10 of a Hintikka set, and respects the overloading condition on predicate symbol
thanks to Property 11. In fact, let fw,s, fw′,s′ ∈ F with ws ∼∗ w′s′ and let ([t1], . . . , [tn]) ∈
Aw∩Aw′ . Then we can assume that (t1, . . . , tn) ∈ Tw(Σ), say, and moreover there is a tuple
(t′1, . . . , t

′
n) ∈ Tw′(Σ) such that [ti] = [t′i] for all i = 1, . . . , n. By definition of ≡ it must then

be that ti ≈ t′i ∈ H for all i = 1, . . . , n. But then fw,s(t1, . . . , tn) ≈ fw′,s′(t
′
1, . . . , t

′
n) ∈ H by

Property 10 and so [fw,s(t1, . . . , tn)] = [fw′,s′(t
′
1, . . . , t

′
n)]. It follows that fAw,s agrees with

fAw′,s′ over Aw ∩Aw′ . The proof for predicate symbols is analogous.

We claim that A satisfies H. This can be easily verified by proving by structural
induction on Σ-formulae that every formula ϕ ∈ H is satisfied A. Finally note that As is
countable for every s ∈ ΣS because we consider only countable sets of function symbols,
and so each Tsi(Σ) is countable. ¥

4.3 The Order-sorted Löwenheim-Skolem Theorem

Theorem 23 (Order-sorted Löwenheim-Skolem Theorem). Where Σ is an order-
sorted signature, let Φ be a satisfiable set of Σ-formulae, and let A be a Σ-structure A
satisfying Φ. Then there exists a Σ-structure B satisfying Φ such that |As| ≥ ℵ0 implies
|Bs| = ℵ0, for each sort s ∈ ΣS. ¤

Proof. The idea of the proof is to extend Φ to an appropriate Hintikka set H with respect
to an extended signature Σ(C ′), where C′ ⊆ C is a set of fresh constant symbols constructed
as follows.

Let S be the set of sorts in ΣS such that |As| ≥ ℵ0. For each sort s ∈ S, let Cs ⊆ C×{s}
be a countably infinite set of fresh decorated constants of sort s. In addition, for each sort

15Note that for all i = 1, . . . , n, Asi contains by construction at least one term from Tsi(Σ). Therefore,
we can assume that each given ti is in fact in Tsi(Σ). This assures that the term fw,s(t1, . . . , tn) is well
sorted. A similar observation applies later to predicate symbols.
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s ∈ ΣS, let Ds ⊆ C × {s} be another countably infinite set of fresh constant symbols of
sort s. Then let

C =
⋃

s∈S

Cs ∪
⋃

s∈ΣS

Ds .

Let ΣC be the signature obtained from Σ by adding C to ΣF, and letH0 be the following
set of ΣC-sentences:

H0 = Φ ∪ {u 6≈ v | u, v ∈ Cs are distinct and s ∈ S} .

By construction, H0 is satisfiable. A structure A0 satisfying H0 can be obtained by
appropriately expanding A to interpret the constant symbols in Cs, for all s ∈ S.

We now describe an infinite process that will allow us to construct an increasing se-
quence of sets of sentences H0, H1, H2, . . ., and another sequence of structures A0,A1,A2
such that Ai |= Hi, for each i. Letting

H =
⋃

i

Hi ,

we will prove later that H is a Hintikka set with respect to the signature ΣC .
Given Hi and Ai, we construct Hi+1 by applying one of the rules in Figure 1 to Hi.

Then, we define Ai+1 to be a structure that is either identical to Ai, or appropriately
expands Ai. More precisely, if Hi+1 is derived by a rule other than the quantifier rules,
Ai+1 = Ai. If Hi+1 is derived by the first quantifier rule, then Ai+1 is an expansion
of Ai that interprets arbitrarily any constants in the term t that are not already in the
signature of Ai.

16 If Hi+1 is derived by the second quantifier rule, then Ai+1 expands Ai

by interpreting the new constant u = cε,s as the element a of As such that (Ai, {xs 7→
a}) |= ϕ(xs).

It is crucial that this process be done fairly, in the sense that no applicable instance of
a rule is delayed infinitely often. We refer the reader to [Fit96], for instance, for details on
how to ensure fairness.17 Fairness ensures that H is saturated with respect to the rules in
Figure 1, i.e., every consequence of H by one of the rules is already in H.

We claim that the obtained set H is a Hintikka set. Clearly, Properties 2–11 of a
Hintikka set follow by saturation of H. To prove Property 1, suppose, ad absurdum,
that H contains a pair of contradictory atoms ϕ,¬ϕ. Then there is an i ≥ 0 such that
Hi contains both ϕ and ¬ϕ. But this contradicts the fact that Ai is a model of Hi by
construction.

Since H is a Hintikka set, Lemma 22 tells us that H is satisfiable in a structure B all
of whose domains are countable. Since H contains all the literals in

{u 6≈ v | u, v ∈ Cs are distinct and s ∈ S} ,

16This is possible because there is no overloading among the free constants in C.
17Strictly speaking, the fairness arguments in [Fit96] apply only to a finite initial set, whereas our set

H0 can be infinite. However, those arguments can be extended to an infinite initial set by a standard
diagonalization construction.
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Propositional rules

¬¬ϕ
ϕ

ϕ1 ∧ ϕ2

ϕ1 ϕ2

¬(ϕ1 ∧ ϕ2)
¬ϕ1

¬(ϕ1 ∧ ϕ1)
¬ϕ2

The third rule applies to the set Hi provided that Ai satisfies ¬ϕ1. The fourth rule applies
to Hi provided that Ai satisfies ¬ϕ2.

Quantifier rules

¬∃xs ϕ(xs)

¬ϕ(t)

∃xs ϕ(xs)

ϕ(u)

In these rules t is any ground term in Ts(ΣC) and u ∈ Ds is a fresh constant—that is, not
appearing in the particular set Hi the rule is applied to.

Equality rules

t1 ≈ t1

t1 ≈ t2
t2 ≈ t1

t1 ≈ t2 t2 ≈ t3
t1 ≈ t3

In these rules t1, t2, t3 are any ground ΣC-terms.

Congruence and overloading rules

t ≈ t′

fw,s(t) ≈ fw′,s′(t′)

t ≈ t′ pw(t)

pw′(t′)

In both rules, t ∈ Tw(ΣC) and t
′ ∈ Tw′(ΣC). The first rule applies if fw,s, fw′,s′ are in ΣC

and ws ∼∗ w′s′. The second rule applies if pw, pw′ are in ΣC and w ∼∗ w′.

Figure 1: Constructing a Hintikka set.

we also have that |Bs| is countably infinite for each s ∈ S. Finally, note that B satisfies Φ
because Φ ⊆ H by construction. ¥

4.4 Correctness and Decidability Results

We are now ready to proof that the combination method is correct. We will therefore
consider again the order-sorted signatures Σ1, Σ2 and the theories T1 and T2 defined in
Section 3.

Theorem 24. For i = 1, 2, let Φi be a set of Σi(C)-sentences. For each s ∈ S0 let Cs be
the set of decorated free constants cε,s shared by Φ1 and Φ2, with c ∈ C. Then, Φ1 ∪ Φ2 is
satisfiable if and only if there exists a Σ1(C)-structure A satisfying Φ1 and a Σ2(C)-structure
B satisfying Φ2 such that:
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(i) |As| = |Bs|, for all s ∈ S0;

(ii) uA = vA if and only if uB = vB, for all decorated constants u, v ∈ Cs and s ∈ S0. ¤

Proof. Let Σ0 = Σ1∩Σ2 = (S0,≺0, F0, P0) = (S1∩S2,≺
∗
1 ∩ ≺

∗
2, F1∩F2, P1∩P2). Observe

that because of the assumptions, F0 and P0 are both empty, and ≺∗
0 coincides with the

identity relation.
Clearly, if there exists a (Σ1 ∪ Σ2)(C)-structure D satisfying Φ1 ∪ Φ2, then the only if

direction holds by letting A = DΣ1(C) and B = DΣ2(C).
Concerning the if direction, assume that there exists a Σ1(C)-structure A satisfying Φ1

and a Σ2(C)-structure B satisfying Φ2 such that both (i) and (ii) hold. With the goal of
applying the Many-Sorted Combination Theorem we define a function family h = {hs :
Cs

A → Cs
B | s ∈ S0} by letting hs(u

A) = uB, for every u ∈ Cs
A and s ∈ S0. Note that

each function hs is well defined and bijective thanks to property (ii). As a consequence, we
have that |Cs

A| = |Cs
B| for all s ∈ S0. By property (i) then, we can extend each function

hs to a bijective function h′s : As → Bs.
Let C0 be the set of all constant symbols in {Cs | s ∈ S0}. Observing that the only

symbols in the signature Σ0(C0) are constant symbols (from C0) and all of its sorts are
pairwise disconnected, it is clear that the function family h′ = {h′s : As → Bs | s ∈ S0} is
an order-sorted Σ0(C0)-isomorphism of AΣ0(C0) into BΣ0(C0). Therefore, by Theorem 20 we
obtain the existence of a (Σ1 ∪ Σ2)(C)-structure D satisfying Φ1 ∪ Φ2. ¥

Proposition 25 (Correctness). Let Γ1 and Γ2 be conjunctions of ground Σ1(C)-literals
and ground Σ2(C)-literals, respectively, and for all shared sorts s ∈ S0, let Cs be the set of
decorated free constants shared by Γ1 and Γ2. Then, the following are equivalent:

1. The conjunction Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable.

2. There is a family E = {Es | s ∈ S0} of equivalence relations Es over Cs such that
Γi ∪ arr(V,E) is Ti-satisfiable, for i = 1, 2. ¤

Proof. (1 ⇒ 2) Let D be a (T1 ∪ T2)-structure satisfying Γ1 ∪ Γ2. We define a family
E = {Es | s ∈ S0} of equivalence relations Es over Cs by letting (u, v) ∈ Eσ if and only if
uD = vD, for every u, v ∈ Cs. By construction, D satisfies both Ti and Γi ∪ arr(V,E), for
i = 1, 2.

(2 ⇒ 1) Assume there exists a family E = {Es | s ∈ S0} of equivalence relations Es

over Cs such that Γi ∪ arr(V,E) is Ti-satisfiable, for i = 1, 2.
Since T1 is stably infinite with respect to S0, we can assume that Γ1 ∪ arr(V,E) is

satisfied by a model A of T1 such that As is infinite for each s ∈ S0. By the Order-sorted
Löwenheim-Skolem Theorem we can further assume that As is countably infinite for each
s ∈ S0. Similarly, we can assume that Γ2 ∪ arr(V,E) is satisfied by a model B of T2 such
that Bs is countably infinite for each s ∈ S0. But then we obtain a model A of T1 ∪ Γ1
and a model B of T2 ∪ Γ2 such that:
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• |As| = |Bs|, for each s ∈ S0;

• uA = vA iff uB = vB, for each u, v ∈ Cs and s ∈ S0.

By Theorem 24 it follows that (T1 ∪ Γ1) ∪ (T2 ∪ Γ2) is satisfiable, which is equivalent to
saying that Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable. ¥

Combining Proposition 25 with the observation that the nondeterminism of the de-
composition phase of the sorted Nelson-Oppen method is finitary, we obtain the following
modular decidability result for order-sorted theories T1 and T2 defined as in Section 3.

Theorem 26 (Modular Decidability). If the quantifier-free satisfiability problems of
T1 and of T2 are decidable, then the quantifier-free satisfiability problem of T1 ∪ T2 is also
decidable. ¤

5 Conclusions and Further Research

We addressed the problem of modularly combining order-sorted first-order theories and
their decision procedures. For that, we first defined a fairly general version of order-sorted
logic that uses decorated symbols to abstract away, for simplicity, the usual parsing and
sort inference problems that arise in order-sorted logics. Then we presented and proved
correct a method for combining decision procedures for two order-sorted theories that have
no function or predicate symbols in common and are stably infinite with respect to a set
of shared, disconnected sorts.

The method is a direct lifting to the given order-sorted logic of the Nelson-Oppen
method for combining theories in (unsorted) first-order logic. The main difference with
the unsorted version is that the introduction of sorts helps reduce the nondeterminism of
the decomposition phase—because the guessing of equalities between shared constant is
limited to constants with the same sort—and allows one to limit the stable infiniteness
requirement to just the shared sorts.

We used the assumption that the shared sorts are disconnected in order to obtain
a method that is as close as possible to the Nelson-Oppen method for unsorted logic.
When the shared sorts are connected, the combination problem becomes considerably more
complex model-theoretically, and consequently so does any corresponding combination
method. More in detail, consider the case of two theories T1 and T2 sharing two sorts s1, s2,
with s1 ≺

∗ s2 (in both theories), and assume that u is a shared free constant of nominal
sort s2. Then, in a combination method for T1 and T2, the component decision procedures
also need to share the information on whether u “is in s1” or not—that is, whether u could
be interpreted as an element of the set denoted by s1 or not. Thinking of the problem in
terms of Venn diagrams for the denotations of the sorts, a combination procedure also has
to guess the portion of the diagram to which u belongs, and generate a sort membership
constraint to that extent. Such constraints are easily expressible in our logic—to say that
u is [not] in s1, one simply writes [¬](∃xs1 xs1 ≈ u)—but involve quantifiers. Clearly,
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membership constraints add to the complexity of the combination procedure because there
is much more to guess, Furthermore, since some of added constraints are (inherently)
non-quantifier-free, they add to the complexity of the component decision procedures as
well.

Finally, with connected shared sorts, the requirements that the two component theories
be stably infinite over their shared sorts is not enough anymore—at least if one wants to
use an extension of the proofs given here. In fact, even with just two connected shared
sorts s1 and s2, the analogous of Theorem 24 requires on the structures A and B not
only that |As| = |Bs| for every shared sort s, but also that |As1 ∩ As2 | = |Bs1 ∩ Bs2 |,
|As1 \ As2 | = |Bs1 \ Bs2 |, and |As2 \ As1 | = |Bs2 \ Bs1 |. Note that these are cardinality
requirements on the regions of the Venn diagram determined by As1 , As2 and Bs1 , Bs2 .
They are a necessary condition for the family of mappings h in the proof of Theorem 24 to
be extensible to an isomorphism between the reducts of A and B to the shared signature.
With n > 2 pairwise connected sorts, the requirements explode along with the explosion
of the Venn regions. It is not clear at the moment if there are local conditions on the
component theories (along the lines of stable infiniteness, for instance) that are sufficient
for these extended requirements.

Another limitation of the current method is that it does not apply to component the-
ories that share function or predicate symbols. The problem of extending the Nelson-
Oppen method to theories with symbols in common has recently received much atten-
tion [TR03, Tin03, Zar02, Zar04, Ghi03, Ghi04]. Concurrently with the work presented
here, the specific approach of [Ghi03, Ghi04] has been adapted in [GBTD04], with compa-
rable results, to many-sorted logic (with no subsorts). An important direction for future
research then would be to see how those results, which allow shared symbols but no sub-
sorts, can be combined with the ones presented here, which allow subsorts but no shared
function or predicate symbols.
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and suggestions on the order-sorted logic presented here.
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