
Combining Decision Procedures
for Sorted Theories

Cesare Tinelli1 and Calogero G. Zarba2

1 Department of Computer Science, The University of Iowa, USA
2 LORIA and INRIA-Lorraine, France

Abstract. The Nelson-Oppen combination method combines decision
procedures for theories satisfying certain conditions into a decision pro-
cedure for their union. While the method is known to be correct in the
setting of unsorted first-order logic, some current implementations of it
appear in tools that use a sorted input language. So far, however, there
have been no theoretical results on the correctness of the method in a
sorted setting, nor is it obvious that the method in fact lifts as is to
logics with sorts. To bridge this gap between the existing theoretical
results and the current implementations, we extend the Nelson-Oppen
method to (order-)sorted logic and prove it correct under conditions sim-
ilar to the original ones. From a theoretical point of view, the extension
is relevant because it provides a rigorous foundation for the application
of the method in a sorted setting. From a practical point of view, the
extension has the considerable added benefits that in a sorted setting
the method’s preconditions become easier to satisfy in practice, and the
method’s nondeterminism is generally reduced.

1 Introduction

The problem of combining decision procedures for logical theories arises in many
areas of computer science and artificial intelligence, such as constraint solving,
theorem proving, knowledge representation and reasoning. In general, one has
two theories T1 and T2 over the signatures Σ1 and Σ2, for which validity of a
certain class of formulae (e.g., universal, existential positive, etc.) is decidable.
The question is then whether one can combine the decision procedures for T1

and for T2 into a decision procedure for a suitable combination of T1 and T2.
The most widely applied and best known method for combining decision

procedures is due to Nelson and Oppen [8]. This method is at the heart of the
verification systems cvc [9], argo-lib [6] and Simplify [1], among others.

The Nelson-Oppen method allows one to decide the satisfiability (and hence
the validity) of quantifier-free formulae in a combination T of two first-order
theories T1 and T2, using as black boxes a decision procedure for the satisfiability
of quantifier-free formulae in T1 and a decision procedure for the satisfiability
of quantifier-free formulae in T2. The method is correct whenever the theories
T , T1, and T2 satisfy the following restrictions: (i) T is logically equivalent to

T1∪T2, (ii) the signatures of T1 and T2 are disjoint, and (iii) T1 and T2 are both
stably infinite.

While the Nelson-Oppen method is defined in the context of unsorted first-
order logic (with equality), more recent verification tools that rely on it have
a sorted input language. However, strictly speaking, it is not clear how correct
these verification tools are, because it is not clear whether the Nelson-Oppen
method does in fact lift to a sorted setting. The common consensus among the
researchers in the field is that, at least for standard many-sorted logic, “the
method should be correct” as is. But to our knowledge there is no formal proof
of this conjecture, nor is it obvious that the conjecture holds. In fact, a crucial
requirement for the correctness of the method is that the signatures of the com-
ponent theories share no function or predicate symbols (except equality). Now,
in a sorted context, the method is only useful for theories whose signatures Σ1

and Σ2 share, if not function/predicate symbols, at least one sort. Otherwise,
the only well-sorted (Σ1 ∪Σ2)-terms are either Σ1-terms or Σ2-terms, with Σ1-
terms sharing no variables with Σ2-terms, which makes the combination problem
trivial. Sharing sorts however essentially amounts to sharing predicate symbols,
something that the original Nelson-Oppen method does not allow.

We prove in this paper that the method can indeed be lifted to sorted log-
ics, provided that its applicability conditions are adjusted appropriately. For
standard many-sorted logic, the only significant adjustment is to define stable
infiniteness with respect to a set of sorts. The added benefit of using a sorted
logic then becomes that it is easier to prove that a sorted theory is stably infinite
over a certain sort s, than it is to prove that its unsorted version is stably infinite
as a whole.3 Also, one can now combine with no problems theories with sorts
admitting only finite interpretations, say, as long as these sorts are not shared.

For order -sorted logics, the situation is in general considerably more com-
plicated, requiring substantial additions to the method (see Section 5 for more
details). There is however a useful special case in which the many-sorted version
of the method works just as well with order-sorted theories: the case in which the
shared sorts are pairwise disconnected i.e., do not appear in the same connected
component of the subsort relation. Because of this we present our correctness
results directly for order-sorted logic. Or more accurately, since there exist sev-
eral, inequivalent order-sorted logics, we present our results for a fairly general
version of first-order order-sorted logic based on a well developed and studied
equational order-sorted logic by Goguen and Meseguer [5].

We introduce our order-sorted logic in Section 2. Then we present a version
of the Nelson-Oppen combination method for this logic in Section 3, and prove
it correct in Section 4. The correctness proof is based on a suitable order-sorted
version of the model theoretic results used in [12, 15] to prove the correctness
of the (unsorted) Nelson-Oppen method. We conclude the paper in Section 5
with some directions for further research. The interested readers can find the
complete proofs and more details in [13].

3 Intuitively, one has to worry only about what the theory says about s, and can ignore
what it says about other sorts.

2 An Order-sorted Logic with Decorated Symbols

We will assume some familiarity in the reader with many-sorted and order-sorted
algebras and logics with equality (denoted here by ≈) as defined for instance in
[5]. We will mostly follow the notation used in [5]. The logic we present here is
inspired by the order-sorted equational logic proposed by Meseguer in [7] as a
successor of the logic in [5]. One main difference will be that our logic uses a
vocabulary of decorated symbols, that is, function and predicate symbols that
carry a sort declaration explicitly in them.

For any set S we denote by S∗ the set all words over S, including the empty
word ε. For the rest of the paper, we fix four countably-infinite sets: a set F of
function symbols, a set P of predicate symbols, a set S of sort symbols, and a
set X of variables that is disjoint with F , P and S.

A decorated function symbol, written as fw,s, is a triple (f, w, s) ∈ F×S∗×S.
A decorated constant is a decorated function symbol of the form fε,s. A decorated
predicate symbol, written as pw, is a pair (p, w) ∈ P × S∗. A decorated variable,
written as xs, is a pair (x, s) ∈ X × S.

An order-sorted (decorated) signature Σ is a tuple Σ = (S,≺, F, P) where
S ⊆ S is a set of sorts, F ⊆ (F ×S∗×S) is a set of decorated function symbols,
P ⊆ (P ×S∗) is a set of decorated predicate symbols, and ≺ is a binary relation
over S. We denote by ∼ the symmetric closure of ≺, and by ≺∗ and ∼∗ the
reflexive, transitive closure of ≺ and ∼, respectively. We say that a sort s1 is a
subsort of a sort s2 iff s1 ≺∗ s2, and that s1 and s2 are connected iff s1 ∼∗ s2.
If w1, w2 ∈ S∗, we write w1 ≺∗ w2 iff w1 and w2 have the same length and each
component of w1 is a subsort of the corresponding component of w2. (Similarly
for w1 ∼∗ w2.) When convenient, we will write ΣS for S, ΣF for F , and ΣP for
P . For simplicity, we will consider only signatures with a finite set of sorts.

In the following, we fix an order-sorted signature Σ = (S,≺, F, P).
We say that two distinct decorated function symbols fw,s and fw′,s′ of Σ

are subsort overloaded (in Σ) if ws ∼∗ w′s′. Otherwise, we say that they are
ad-hoc overloaded. (Similarly, for predicate symbols.) As we will see, the logic’s
semantics will allow ad-hoc overloaded symbols to stand for completely unrelated
functions/relations, but will require subsort overloaded symbols to stand for
functions/relations that agree on the intersection of their domains.

Definition 1 (Order-sorted Terms). Let X ⊆ X be a set of variables. For
all s ∈ S, the set Ts(Σ,X) of order-sorted Σ-terms of sort s over X is the set
defined as follows by structural induction:

– every decorated variable xs′ ∈ (X × S) with s′ ≺∗ s is in Ts(Σ, X);
– if fs1···sn,s′ ∈ F , ti ∈ Tsi

(Σ, X) for i = 1, . . . , n, and s′ ≺∗ s,
then fs1···sn,s′(t1, . . . , tn) is in Ts(Σ,X).

We denote by Tw(Σ,X) with w = s1 · · · sn the set Ts1(Σ, X)× · · · × Tsn
(Σ, X).

We say that a Σ-term has nominal sort s if it is a variable of the form xs

or its top symbol has the form fw,s. Note that the nominal sort of a term t is
always the least sort of t.

While decorated terms are cumbersome to write in practice, at the theoreti-
cal level they dramatically simplify or eliminate a number of problems that vex
more standard definitions of sorted logics. For instance, with full decoration of
symbols, sort inference is trivial, terms have a least sort, and the union and the
intersection of two sorted signatures, crucial operations in combination settings,
can be defined in a straightforward way as component-wise union and intersec-
tion. Of course we do not advocate that decorated signatures and terms be used
in practice. They are just a way to abstract away the usual parsing, sort infer-
ence, and signature composition problems that arise when working with sorted
languages, but that are not relevant for the essence of our combination results.

Definition 2 (Order-sorted atoms). A Σ-atom is either an expression of the
form pw(t) where pw ∈ P and t ∈ Tw(Σ, X), or one of the form t1 ≈ t2 where
(t1, t2) ∈ Ts1s2(Σ, X) for some s1, s2 ∈ S such that s1 ∼∗ s2.

Order-sorted (first-order) Σ-formulae are defined on top of Σ-atoms as in the
unsorted case, but with the difference that quantifiers bind decorated variables.
Following [7], and contrary to [5] which allows only equations between terms of
comparable sorts, we allow equations between terms of connected sorts.4 This
makes the logic both more general and more robust—see [7] for a discussion.

A many-sorted Σ-structure is a pair A = (A, I) where A = {As | s ∈ S} is an
S-indexed family of sets, domains, and I is a mapping of the decorated symbols
of Σ to functions and relations over the carrier sets. Specifically, for each word
w = s1 · · · sn ∈ S∗, let Aw denote the set As1 × · · · × Asn

. Then I maps each
decorated function symbol fw,s ∈ F to a (total) function fAw,s ∈ (Aw → As),
and each decorated predicate symbol pw ∈ P to a relation pAw ⊆ Aw.

Definition 3 (Order-sorted Structure). An order-sorted Σ-structure is a
many-sorted (S, F, P)-structure A = (A, I) such that

1. For all s, s′ ∈ S such that s ≺∗ s′, As ⊆ As′ .
2. For all fw,s, fw′,s′ ∈ F such that ws ∼∗ w′s′, the functions fAw,s and fAw′,s′

agree on Aw ∩Aw′ .5

3. For all pw, pw′ ∈ P such that w ∼∗ w′, the restrictions of pAw and of pAw′ to
Aw ∩Aw′ coincide.

This definition of order-sorted structure is modeled after the definition of
order-sorted algebra in [7]. As in [7], the given semantics supports subsort over-
loading of function symbols by requiring that, whenever ws ∼∗ w′s′, the func-
tions denoted by fw,s and fw′,s′ coincide on the tuples shared by their domains.
(Similarly for predicate symbols.)

Satisfiability of Σ-sentences (i.e. closed Σ-formulae) in an order-sorted Σ-
structure A is defined similarly to the unsorted case. As usual, we say that A is
a Σ-model of a set Φ of Σ-sentences if A satisfies every sentence in Φ.
4 So, for instance, we allow an equation between two terms of respective sort s1 and

s2 if they have a common subsort, even if neither s1 ≺∗ s2 nor s2 ≺∗ s1.
5 Where Aw∩Aw′ denotes the component-wise intersection of the tuples Aw and Aw′ .

Definition 4 (Order-sorted Morphisms). Let A and B be two order-sorted
Σ-structures. A order-sorted Σ-homomorphism h : A → B of A into B is an
S-indexed family {hs : As → Bs | s ∈ S} of functions such that:

1. for all fw,s ∈ F with w = s1 · · · sn and all ai ∈ Asi
with i = 1, . . . , n,

hs(fAw,s(a1, . . . , an)) = fBw,s(hs1(a1) . . . , hsn
(an));

2. for all pw ∈ P with w = s1 · · · sn and all ai ∈ Asi
with i = 1, . . . , n,

(a1, . . . , an) ∈ pAw ⇒ (hs1(a1), . . . , hsn(an)) ∈ pBw.
3. for all s, s′ ∈ S with s ∼∗ s′, the functions hs and hs′ agree on As ∩As′ .

A Σ-isomorphism h of A into B is an order-sorted Σ-homomorphism h :
A → B for which there exists an order-sorted Σ-homomorphism h′ : B → A
such that h′ ◦h = {ids : As → As | s ∈ S} and h◦h′ = {ids : Bs → Bs | s ∈ S}.6

We write A ∼= B if there is an order-sorted Σ-isomorphism from A onto B.
We prove in [13] that ∼= is an equivalence relation over Σ-structures. We also
prove that isomorphic Σ-structures satisfy exactly the same Σ-formulae.7 As in
the unsorted case, a crucial consequence of these results, which we use later, is
that isomorphic order-sorted structures can always be identified.

If Σ1 = (S1,≺1, F1, P1) and Σ2 = (S2,≺2, F2, P2) are two order-sorted sig-
natures, the union and the intersection of Σ1 and Σ2 are the order-sorted sig-
natures defined as follows:

Σ1 ∪Σ2 = (S1 ∪ S2,≺1 ∪ ≺2, F1 ∪ F2, P1 ∪ P2)
Σ1 ∩Σ2 = (S1 ∩ S2,≺∗

1 ∩ ≺∗
2, F1 ∩ F2, P1 ∩ P2) .

It is easy to see that Σ1 ∪ Σ2 and Σ1 ∩ Σ2 are well defined, and thus are
indeed order-sorted signatures. We will consider only unions of signatures that
are conservative in a strong sense with respect to subsort overloading.

Definition 5 (Conservative Union of Signatures). The order-sorted sig-
nature Σ = (S,≺, F, P) is a conservative union of an order-sorted signature
Σ1 = (S1,≺1, F1, P1) and an order-sorted signature Σ2 = (S2,≺2, F2, P2) iff
Σ = Σ1 ∪Σ2 and the following hold:

1. For all pw′ ∈ Pi and pw′′ ∈ Pj with {i, j} ⊆ {1, 2} and w′ ∼∗ w′′, there is a
pw ∈ Pi ∩ Pj such that w′ ≺∗

i w ∼∗
j w′′ or w′′ ≺∗

j w ∼∗
i w′.

2. For all fw′,s′ ∈ Fi and fw′′,s′′ ∈ Fj with {i, j} ⊆ {1, 2} and w′s′ ∼∗ w′′s′′,
there is a fw,s ∈ Fi ∩ Fj such that w′s′ ≺∗

i ws ∼∗
j w′′s′′ or w′′s′′ ≺∗

j ws ∼∗
i

w′s′.

The idea of the definition above is that if two symbols are subsort overloaded
in the union signature, that is only because either they were already subsort
overloaded in one of the component signatures (case i = j in Conditions 1 and

6 Where id denotes the identity function.
7 Note that these two facts are not granted for a sorted logic. For instance, invariance

of satisfiability under isomorphism does not hold in general for the logic in [5].

2) or, when the two symbols belong to different component signatures, each was
subsort overloaded in its signature with a same connecting symbol belonging to
the shared signature (case i 6= j).

An order-sorted Σ-theory is a pair T = (Σ, Ax) where Ax is a set of Σ-
sentences. A model of T is a Σ-structure that models Ax. A set Φ of Σ-sentences
is T -satisfiable (resp. T -unsatisfiable) if it is satisfied by some (resp. no) model
of T . The combination of two order-sorted theories T1 = (Σ1, Ax1) and T2 =
(Σ2, Ax2) is defined as T1 ∪ T2 = (Σ1 ∪Σ2, Ax1 ∪Ax2) .

In this paper we consider for convenience expansions of order-sorted signa-
tures to sets of new constants. Formally, we will fix a countably-infinite set C of
free constants, symbols that do not occur in any of the symbols sets F , P, S
and X defined earlier. Then, for every order-sorted signature Σ = (S,≺, F, P),
we will denote by Σ(C) the signature Σ = (S,≺, F ∪ (C × {ε} × S), P).8

The quantifier-free satisfiability problem for an order-sorted Σ-theory T is
the problem of determining whether a ground Σ(C)-formula is T -satisfiable.

As we will see, the decidability of the quantifier-free satisfiability problem is
modular with respect to the union of order-sorted theories whenever the signa-
tures of theories satisfy certain disjointness conditions and the theories are stably
infinite with respect to the sorts they share.

Definition 6 (Stably Infinite Theory). A Σ-theory T is stably infinite with
respect to S′ for some S′ ⊆ ΣS if every ground Σ(C)-formula ϕ that is T -
satisfiable is satisfied by a Σ(C)-model A of T such that |As| ≥ ℵ0 for all s ∈ S′.

We point out that the logic defined here is a proper extension of conventional
many-sorted logic, obtainable from ours by considering only signatures with
empty subsort relation ≺. All the results presented here then apply for instance
to the many-sorted logics used by the verification systems described in [9, 6].

3 The Combination Method

In this section we present a method for combining decision procedures for order-
sorted theories whose signatures may share sorts, but no function or predicate
symbols. We will further impose the restriction that the union of the two sig-
natures is conservative (cf. Definition 5). The method is closely modeled after
the non-deterministic version of the Nelson-Oppen combination method (for un-
sorted theories) as described in [11] and [15], among others.

For the rest of this section, let Σ1 = (S1,≺1, F1, P1) and Σ2 = (S2,≺2, F2, P2)
be two order-sorted signatures such that

1. F1 ∩ F2 = P1 ∩ P2 = ∅,
2. Σ1 ∪Σ2 is a conservative union of Σ1 and Σ2,
3. for all distinct s, s′ ∈ S1 ∩ S2, s 6∼∗

1 s′ and s 6∼∗
2 s′.

8 All the signature-dependent notions we have introduced so far extend to signatures
with free constants in the obvious way.

Condition 1 corresponds to the original restriction in the Nelson-Oppen
method that the two theories share no function or predicate symbols. In our
case, however, the restriction is on decorated symbols. This means, for instance,
that we allow one signature to contain a symbol fw1,s1 , while the other contains
a symbol fw2,s2 , provided that w1s1 6= w2s2. By Condition 2, the two symbols
become ad hoc overloaded in the union signature, because that condition implies
that w1s1 6∼∗ w2s2, where ∼ is the symmetric closure of ≺ = ≺1 ∪ ≺2. Note
that Condition 2 and 3 are immediately satisfied in the many-sorted case, i.e.,
when both ≺1 and ≺2 are the empty relation.

The problem. We are interested in the quantifier-free satisfiability problem for
a theory T1 ∪ T2 where Ti is a Σi-theory, for i = 1, 2, and both T1 and T2 are
stably infinite over S0 = S1 ∩ S2.

Here are two examples of theories satisfying (or not) the conditions above.

Example 7. Let T1 be an order sorted version of linear rational arithmetic, with
Σ1 having the sorts Int and Rat, the subsorts Int ≺ Rat, and the expected function
and predicate symbols, say 0: Int, 1: Int, +: Int × Int → Int, +: Rat × Rat → Rat,
< : Int × Int, and so on.9 Then let T ′

2 be the theory of a parametric datatype
such as lists, with signature Σ′

2 having the “parameter” sort Elem (for the list
elements), the list sorts EList, NList (for empty and non-empty lists respectively),
and List, the subsorts EList,NList ≺ List, and the expected function symbols, say,
[]: EList, hd:NList → Elem, tl: List → List, cons:Elem× List → NList.

Then consider a renaming T2 of T ′
2 in which Elem is renamed as Rat, so that

T1 ∪ T2 then becomes a theory of rational lists. Where Σ2 is the signature of T2

and S0 = {Rat}, it is easy to see that Σ1 and Σ2 satisfy Conditions 1–3 above.
The stable infiniteness of T1 over S0 is trivial because in all models of T1 Int is
infinite (as the theory entails that all successors of zero are pairwise distinct).
As discussed in [13], the stable infiniteness of T2 over S0 is not hard to show.

Example 8. Let T1 be as in Example 7. Then let T ′
2 be an order-sorted theory

of arrays, with signature Σ′
2 having the “parameter” sorts Index and Elem (for

the array indexes and elements, respectively), the array sort Array, the subsorts
Index ≺ Elem, and the usual function symbols select:Array × Index → Elem and
store:Array× Index×Elem → Array. Then consider a renaming T2 of T ′

2 in which
Elem is renamed as Rat and Index as Int, so that T1 ∪ T2 then becomes a theory
of arrays with integer indeces and rational elements. Where Σ2 is the signature
of T2, it is immediate that Σ1 and Σ2 do not satisfy Condition 3 above because
the shared sorts, Int and Rat, are comparable.

While perfectly reasonable in practice, T1 ∪T2 is a combined theory that the
combination method cannot accommodate at the moment (but see Section 5 for
possible extensions in this direction).

We remark that a perhaps more natural combination of the two signatures
would be the one in which no renamings are applied but Int becomes a subsort
9 For readability, we use here a more conventional notation for decorated symbols,

instead of 0ε,Int, +Int Int,Int, etc.

of Index and Rat a subsort of Elem. This kind of combination, however, is not
achievable by a simple union of signatures and theories, and as such is out the
scope of combination methods a la Nelson-Oppen.

The method. When the quantifier-free satisfiability problem for T1 and for T2

is decidable, we can decide the quantifier-free satisfiability problem for T1∪T2 by
means of the combination method described below and consisting of four phases.

To simplify the presentation, and without loss of generality, we restrict our-
selves to the (T1 ∪ T2)-satisfiability of conjunctions of literals only.

First phase: Variable abstraction. Let Γ be a conjunction of ground (Σ1 ∪
Σ2)(C)-literals. In this phase we convert Γ into a conjunction Γ ′ satisfying the
following properties: (a) each literal in Γ ′ is either a Σ1(C)-literal or a Σ2(C)-
literal, and (b) Γ ′ is (T1 ∪ T2)-satisfiable if and only if so is Γ .

Properties (a) and (b) can be enforced with the help of new auxiliary con-
stants from C. For instance, in the simplest kind of transformation, Γ can be
purified by applying to it to completion the following rewriting step, for all terms
t of nominal sort s ∈ S0 = S1 ∩ S2 occurring in Γ that are not free constants:
if t occurs as the argument of an non-equality atom in Γ , or occurs in an atom
of the form t ≈ t′ or t′ ≈ t where t′ is not a free constant, or occurs as a proper
subterm of an atom of the form t1 ≈ t2 or t2 ≈ t1, then t is replaced by cε,s for
some fresh c ∈ C, and the equality cε,s ≈ t is added to Γ . It is easy to see that
this transformation satisfies the properties above.10

Second phase: Partition. Let Γ ′ be a conjunction of literals obtained in the
variable abstraction phase. We now partition Γ ′ into two sets of literals Γ1, Γ2

such that, for i = 1, 2, each literal in Γi is a Σi(C)-literal. A literal with an atom
of the form cε,s ≈ c′ε,s′ with c, c′ ∈ C, which is both a Σ1(C)- and a Σ2(C)-literal,
can go arbitrarily in either Γ1 or Γ2.

Third phase: Decomposition. Let Γ1 ∪ Γ2 be the conjunction of literals ob-
tained in the variable abstraction phase. The only decorated symbols shared by
Γ1 and Γ2, if any, are decorated free constants of a shared sort—constants of
the form cε,s with c ∈ C and s ∈ S0. For all shared sorts s ∈ S0, let Cs be the
set of constants of sort s shared by Γ1 and Γ2. We choose nondeterministically
a family E = {Es ⊆ Cs × Cs | s ∈ S0} of equivalence relations Es.

Intuitively, in this phase we guess for each pair of shared constant in Cs,
whether they denote the same individual or not. In essence, partitioning the
shared free constants into sorted classes and considering identifications only of
constants of the same sort is the only difference with respect to the unsorted
version of the Nelson-Oppen method, where all pairs of constants are considered
for possible identification.

Fourth phase: Check. Given the equivalence relations E = {Es | s ∈ S0}
guessed in the decomposition phase, this phase consists of the following steps:
10 But see [12], among others, for a more practical kind of abstraction process that

minimizes the number of fresh constants introduced.

1. Construct the arrangement of C = {Cs | s ∈ S0} induced by E, defined by

arr(C,E) = {u ≈ v | (u, v) ∈ Es and s ∈ S0} ∪
{u 6≈ v | (u, v) ∈ (C2

s \ Es) and s ∈ S0} .

2. if Γ1 ∪ arr(C,E) is T1-satisfiable and Γ2 ∪ arr(C,E) is T2-satisfiable, output
succeed; else output fail.

In Section 4 we will prove that this combination method is sound and com-
plete in the following sense. If there exists an arrangement arr(C,E) of C for
which the check phase outputs succeed, then Γ is (T1∪T2)-satisfiable. If instead
the check phase outputs fails for every possible arrangement arr(C,E) of C,
then Γ is (T1 ∪ T2)-unsatisfiable.

4 Correctness of the Method

To prove the combination method correct, we first need a couple of basic model-
theoretic results. The first is an order-sorted version of the Downward Löwenheim-
Skolem Theorem, whose proof can be found in [13]. The second is an order-sorted
version of a general combination result given in [12, 15] for unsorted theories.

Theorem 9 (Order-sorted Löwenheim-Skolem Theorem). Where Σ is
an order-sorted signature, let Φ be a satisfiable set of Σ-formulae, and let A be
a Σ-structure satisfying Φ. Then there exists a Σ-structure B satisfying Φ such
that |As| ≥ ℵ0 implies |Bs| = ℵ0, for each sort s ∈ ΣS.

If A is an order-sorted Σ1-structure and Σ0 = Σ1∩Σ2 for some signature Σ2,
we denote by AΣ0 the Σ0-structure with domains {As | s ∈ Σ0

S} that interprets
the function and predicate symbols of Σ0 exactly as A does.

Theorem 10 (Order-Sorted Combination Theorem). Let ΣA = (SA,≺A,
FA, PA) and ΣB = (SB ,≺B , FB , PB) are two order-sorted signatures, and let
ΦA and ΦB be two sets of ΣA- and ΣB-sentences, respectively. When ΣA ∪ΣB

is a conservative union of ΣA and ΣB, ΦA ∪ ΦB is satisfiable iff there is a
ΣA-structure A satisfying ΦA and a ΣB-structure B satisfying ΦB such that
AΣA∩ΣB ∼= BΣA∩ΣB .

Proof. Let ΣC = ΣA ∩ ΣB , and Σ = ΣA ∪ ΣB = (S,≺, F, P) = (SA ∪ SB ,≺A

∪ ≺B , FA ∪ FB , PA ∪ PB) .

Next, assume that ΦA∪ΦB is satisfiable, and let D be a Σ-structure satisfying
ΦA ∪ ΦB . Then, by letting A = DΣA and B = DΣB , we clearly have that A
satisfies ΦA, B satisfies ΦB , and AΣC ∼= BΣC .

Vice versa, suppose there exists a ΣA-structure A satisfying ΦA and a ΣB-
structure B satisfying ΦB such that AΣC ∼= BΣC . Then, as observed in Section 2,

we can assume with no loss of generality that AΣC = BΣC . We define a Σ-
structure D by letting for each s ∈ S, fw,s ∈ F , and pw ∈ P :

Ds =

{
As , if s ∈ SA

Bs , if s ∈ SB \ SA

fDw,s =

{
fAw,s , if fw,s ∈ FA

fBw,s , if fw,s ∈ FB \ FA

pDw =

{
pAw , if pw ∈ PA

pBw , if pw ∈ PB \ PA

Because AΣC = BΣC , it is clear that D is well defined as a many-sorted
Σ-structure. To show that D is also a well defined order-sorted Σ-structure, we
start by showing that in D the denotation of a sort includes the denotations of
its subsorts.

In fact, let s, s′ ∈ S be two distinct sorts such that s ≺∗ s′. Since ≺ = ≺A

∪ ≺B (and S is finite), there is a sequence s = s0, s1, . . . , sn, sn+1 = s′ such that
for all i = 0, . . . , n either si ≺A si+1 or si ≺B si+1. It is enough to show then that
Dsi

⊆ Dsi+1 for all i = 0, . . . , n. Recall that, since AΣC = BΣC , Dsi
= Asi

= Bsi

whenever si ∈ SA ∩ SB . Now, if si ≺A si+1 we have by construction of D
and definition of A that Dsi

= Asi
⊆ Asi+1 = Dsi+1 . (Similarly, if instead

si ≺B si+1.)
It remains to show that D respects the subsort overloading of function and

predicate symbols.11 This is true for every two symbols of FA or of PA because
(i) DΣA = A, trivially, and (ii) since Σ = ΣA ∪ ΣB is a conservative union of
ΣA and ΣB , if two symbols are subsort overloaded in Σ then they are subsort
overloaded in ΣA. The argument is symmetric for the symbols of FB and PB .
Finally, D respects the possible subsort overloading of a symbol of FA (PA) and
a symbol of FB (PB) because again Σ is a conservative union of ΣA and ΣB ,
and A and B agree on their shared symbols.

In fact, for illustration, assume that pw′ ∈ PA, pw′′ ∈ PB \PA, and w′ ∼∗ w′′.
Then, by Definition 5, there is a pw ∈ PA∩PB such that w′ ≺∗

A w and w ∼∗
B w′′,

say. Let d ∈ Dw′ ∩ Dw′′ . We show that d ∈ pDw′ iff d ∈ pDw′′ . Observing that
Dw′ = Aw′ ⊆ Aw = Bw and Bw′′ = Dw′′ by construction of D and definition
of A and B, it is not difficult to see that d ∈ Aw′ ∩ Aw and d ∈ Bw ∩ Bw′′ .
Then d ∈ pDw′ iff d ∈ pAw′ (by construction of D) iff d ∈ pAw (as w′ ∼∗

A w and
d ∈ Aw′ ∩ Aw) iff d ∈ pBw (as pAw = pBw by AΣA∩ΣB = BΣA∩ΣB) iff d ∈ pBw′′ (as
w ∼∗

B w′′ and d ∈ Bw ∩ Bw′′) iff d ∈ pDw′′ (by construction of D). The other
cases are proven similarly.

Now, given that D is well defined, and that DΣA = A and DΣB = B by
construction, it is immediate that D satisfies ΦA ∪ ΦB . ut

Let us now consider again the order-sorted signatures Σ1, Σ2 and the theories
T1, T2 from Section 3.

11 That is, fDw,s(d) = fDw′,s′(d) for all fw,s, fw′,s′ ∈ F with ws ∼∗ w′s′ and d ∈
Dw∩Dw′ , and d ∈ pDw iff d ∈ pDw′ for all pw, pw′ ∈ P with w ∼∗ w′ and d ∈ Dw∩Dw′ .

Theorem 11. For i = 1, 2, let Φi be a set of Σi(C)-sentences. For each s ∈ S0

let Cs be the set of decorated free constants cε,s shared by Φ1 and Φ2, with c ∈ C.
Then, Φ1∪Φ2 is satisfiable iff there exists a Σ1(C)-structure A satisfying Φ1 and
a Σ2(C)-structure B satisfying Φ2 such that:

(i) |As| = |Bs|, for all s ∈ S0;
(ii) uA = vA if and only if uB = vB, for all u, v ∈ Cs and s ∈ S0.

Proof. Let Σ0 = Σ1∩Σ2 = (S0,≺0, F0, P0) = (S1∩S2,≺∗
1 ∩ ≺∗

2, F1∩F2, P1∩P2).
Clearly, if there exists a (Σ1 ∪ Σ2)(C)-structure D satisfying Φ1 ∪ Φ2, then the
only if direction holds by letting A = DΣ1(C) and B = DΣ2(C).

Concerning the if direction, assume that there exists a Σ1(C)-structure A
satisfying Φ1 and a Σ2(C)-structure B satisfying Φ2 such that both (i) and (ii)
hold. We define a function family h = {hs : Cs

A → Cs
B | s ∈ S0} by letting

hs(uA) = uB, for every u ∈ Cs
A and s ∈ S0. Note that each function hs is well

defined and bijective thanks to property (ii). As a consequence, we have that
|Cs

A| = |Cs
B| for all s ∈ S0. By property (i) then, we can extend each function

hs to a bijective function h′s : As → Bs.
Let C0 be the set of all constants in {Cs | s ∈ S0}. Since the signature Σ0(C0)

has only constant symbols (from C0) and all of its sorts are pairwise disconnected,
it is clear that the family h′ = {h′s : As → Bs | s ∈ S0} is an order-sorted Σ0(C0)-
isomorphism of AΣ0(C0) into BΣ0(C0). Therefore, by Theorem 10 we obtain the
existence of a (Σ1 ∪Σ2)(C)-structure D satisfying Φ1 ∪ Φ2. ut

Proposition 12 (Correctness). Let Γ1 and Γ2 be conjunctions of ground Σ1(C)-
literals and ground Σ2(C)-literals, respectively, and for all shared sorts s ∈ S0, let
Cs be the set of free constants shared by Γ1 and Γ2. The following are equivalent:

1. The conjunction Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable.
2. There is a family E = {Es | s ∈ S0} of equivalence relations Es over Cs

such that Γi ∪ arr(V,E) is Ti-satisfiable, for i = 1, 2.

Proof. We only prove that 2 implies 1, as the other direction is straightforward.
Assume there exists a family E = {Es | s ∈ S0} of equivalence relations Es over
Cs such that Γi ∪ arr(V,E) is Ti-satisfiable, for i = 1, 2.

Since T1 is stably infinite with respect to S0, we can assume that Γ1 ∪
arr(V,E) is satisfied by a model A of T1 such that As is infinite for each s ∈ S0.
By the Order-sorted Löwenheim-Skolem Theorem we can further assume that As

is countably infinite for each s ∈ S0. Similarly, we can assume that Γ2∪arr(V,E)
is satisfied by a model B of T2 such that Bs is countably infinite for each s ∈ S0.
But then we obtain a model A of T1 ∪ Γ1 and a model B of T2 ∪ Γ2 such that
(i) |As| = |Bs|, for each s ∈ S0, and (ii) uA = vA iff uB = vB, for each u, v ∈ Cs

and s ∈ S0. By Theorem 11 it follows that (T1 ∪ Γ1) ∪ (T2 ∪ Γ2) is satisfiable,
which is equivalent to saying that Γ1 ∪ Γ2 is (T1 ∪ T2)-satisfiable. ut

Combining Proposition 12 with the observation that the nondeterminism
of the decomposition phase of the sorted Nelson-Oppen method is finitary, we
obtain the following modular decidability result for order-sorted theories T1 and
T2 defined as in Section 3.

Theorem 13 (Modular Decidability). If the quantifier-free satisfiability prob-
lems of T1 and of T2 are decidable, then the quantifier-free satisfiability problem
of T1 ∪ T2 is also decidable.

5 Conclusions and Further Research

We addressed the problem of modularly combining order-sorted first-order the-
ories and their decision procedures. For that, we first defined a fairly general
version of order-sorted logic. Then we presented and proved correct a method
for combining decision procedures for two order-sorted theories that have no
function or predicate symbols in common and are stably infinite with respect to
a set of shared, disconnected sorts.

The method is a direct lifting to the given order-sorted logic of the Nelson-
Oppen method for combining theories in (unsorted) first-order logic. The main
difference with the unsorted version is that the introduction of sorts helps re-
duce the nondeterminism of the decomposition phase—because the guessing of
equalities between shared constant is limited to constants with the same nomi-
nal sort—and allows one to limit the stable infiniteness requirement to just the
shared sorts.

We used the assumption that the shared sorts are disconnected in order to
obtain a method that is as close as possible to the Nelson-Oppen method for
unsorted logic. When the shared sorts are connected, the combination problem
becomes considerably more complex model-theoretically, and consequently so
does any corresponding combination method. More in detail, consider the case
of two theories T1 and T2 sharing two sorts s1, s2, with s1 ≺∗ s2 (in both theo-
ries), and assume that u is a shared free constant of nominal sort s2. Then, in
a combination method for T1 and T2, the component decision procedures also
need to share the information on whether u “is in s1” or not—that is, whether
u could be interpreted as an element of the set denoted by s1 or not. Thinking
of the problem in terms of Venn diagrams for the denotations of the sorts, a
combination procedure also has to guess the portion of the diagram to which u
belongs, and generate a sort membership constraint to that extent. Such con-
straints are easily expressible in our logic—to say that u is [not] in s1, one simply
writes [¬](∃xs1 xs1 ≈ u)—but involve quantifiers.

Clearly, membership constraints increase the complexity of the combination
procedure because there is much more to guess. Furthermore, since some of added
constraints are (inherently) non-quantifier-free, they add to the complexity of
the component decision procedures as well. Finally, the requirements that the
two component theories be stably infinite over their shared sorts is not enough
anymore—at least if one wants to use an extension of the proofs given here.12

Another limitation of the current method is that it does not apply to compo-
nent theories that share function or predicate symbols. The problem of extending
the Nelson-Oppen method to theories with symbols in common has recently re-
ceived much attention [3, 4, 10, 12, 14]. Concurrently with the work presented
12 See [13] for a discussion on this last point.

here, the specific approach of [3, 4] has been adapted in [2], with comparable re-
sults, to many-sorted logic (with no subsorts). An important direction for future
research then would be to see how those results, which allow shared symbols but
no subsorts, can be combined with the ones presented here, which allow subsorts
but no shared function or predicate symbols.

Acknowledgments. We would like to thank José Meseguer for his insightful
comments and suggestions on the order-sorted logic presented here.

The second author was supported in part by the project geccoo in the
context of the French national research program ACI Sécurité Informatique.

References

1. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2–3-148, HP Laboratories, Palo Alto, CA, 2003.

2. V. Ganesh, S. Berezin, C. Tinelli, and D. Dill. Combination results for many sorted
theories with overlapping signatures. Technical report, Department of Computer
Science, Stanford University, 2004.

3. S. Ghilardi. Quantifier elimination and provers integration. In I. Dahn and L. Vi-
gneron, editors, First Order Theorem Proving, volume 86.1 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

4. S. Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 2004. (To appear).

5. J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105(2):217–173, 1992.

6. F. Maric and P. Janičić. ARGO-LIB: A generic platform for decision procedures.
In International Joint Conference on Automated Reasoning, Lecture Notes in Com-
puter Science. Springer, 2004.

7. J. Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In Recent Trends in Algebraic Development Techniques, volume 1376 of
Lecture Notes in Computer Science, pages 18–61. Springer, 1998.

8. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

9. A. Stump, C. W. Barrett, and D. L. Dill. CVC: A cooperating validity checker.
In E. Brinksma and K. G. Larsen, editors, Computer Aided Verification, volume
2404 of Lecture Notes in Computer Science, pages 500–504, 2002.

10. C. Tinelli. Cooperation of background reasoners in theory reasoning by residue
sharing. Journal of Automated Reasoning, 30(1):1–31, 2003.

11. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson-Oppen combi-
nation procedure. In F. Baader and K. U. Schulz, editors, Frontiers of Combining
Systems, volume 3 of Applied Logic Series, pages 103–120. Kluwer, 1996.

12. C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Computer Science, 290(1):291–353, 2003.

13. C. Tinelli and C. G. Zarba. Combining decision procedures for sorted theories.
Technical Report 04-01, The University of Iowa, 2004.

14. C. G. Zarba. C-tableaux. Technical Report RR-5229, INRIA, 2004.
15. C. G. Zarba. The Combination Problem in Automated Reasoning. PhD thesis,

Stanford University, 2004.

