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Abstract

The Nelson-Oppen combination method combines decision procedures for first-order
theories over disjoint signatures into a single decision procedure for the union theory.
To be correct, the method requires that the component theories be stably infinite.
This restriction makes the method inapplicable to many interesting theories such
as, for instance, theories having only finite models.

In this paper we provide a new combination method that can combine any theory
that is not stably infinite with another theory, provided that the latter is what we
call a shiny theory. Examples of shiny theories include the theory of equality, the
theory of partial orders, and the theory of total orders.

An interesting consequence of our results is that any decision procedure for the
satisfiability of quantifier-free Σ-formulae in a Σ-theory T can always be extended
to accept inputs over an arbitrary signature Ω ⊇ Σ.

1 Introduction

An important research problem in automated reasoning asks how we can mod-
ularly combine decision procedures for theories T1 and T2 into a decision pro-
cedure for a combination of T1 and T2.

The most successful and well-known method for combining decision pro-
cedures was invented in 1979 by Nelson and Oppen [8]. This method is at
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the heart of the verification systems cvc [12], esc [3], eves [2], and sdvs [6],
among others.

The Nelson-Oppen method allows us to decide the satisfiability of quantifier-
free formulae in a combination T of a theory T1 and a theory T2, by using as
black boxes the decision procedures for the satisfiability of quantifier-free for-
mulae in T1 and in T2. To be correct, the Nelson-Oppen method requires that
the theories T , T1, and T2 satisfy the following restrictions:

• T is logically equivalent to T1 ∪ T2;

• the signatures of T1 and T2 are disjoint;

• T1 and T2 are both stably infinite. 3

There are several interesting combination problems that do not satisfy all
these restrictions.

In this paper we concentrate on the issue of relaxing the stable infinite-
ness restriction. This is an important research problem at the theoretical
level because it allows us to better understand the foundations of combination
problems, and to prove more decidability results by combination techniques.
But it is also interesting at a practical level because (i) proving that a given
theory is stably infinite is not always easy, and (ii) many interesting theories,
such as those admitting only finite models, are not stably infinite.

We show that when one component theory satisfies a stronger property
than stable infiniteness, which we call shininess, 4 then the other component
theory does not need to be stably infinite for their decision procedures to
be combinable. We do that by providing and proving correct an extension
of the Nelson-Oppen method that, in addition to propagating equality con-
straints between the component decision procedures, also propagates certain
cardinality constraints.

Examples of shiny theories include the theory of equality, the theory of
partial orders, and the theory of total orders. In particular, the fact that the
theory of equality is shiny leads to a notable side result:

Result 1. If the satisfiability in a Σ-theory T of quantifier-free Σ-formulae
is decidable, then the satisfiability in T of quantifier-free formulae over any
arbitrary signature Ω ⊇ Σ is also decidable.

Result 1 was proven by Policriti and Schwartz [11] for theories T that are
universal. It was also known for theories T that are stably infinite, since
in this case one can use the Nelson-Oppen method to combine the decision
procedure for T with one for the theory of equality over the symbols in Ω \Σ.
In this paper we prove that Result 1 holds regardless of whether T is universal
or not, and regardless of whether T is stably infinite or not.

3 See Definition 2.2.
4 See Definition 2.5.
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1.1 Related work.

Several researchers have worked on relaxing the requirements of the Nelson-
Oppen combination method. The disjointness problem was addressed by Ghi-
lardi [4], Tinelli [13], Tinelli and Ringeissen [15] and Zarba [20]. The stably
infiniteness requirement was addressed by Baader and Tinelli [1] for combi-
nations problems concerning the word problem, and by Zarba [17,18,19] for
combinations of integers with lists, sets, and multisets. (The latter works by
Zarba consider combination problems other than simple set-theoretic union.)

1.2 Organization of the paper

The paper is organized as follows. In Section 2 we introduce some preliminary
notions, including the notion of a shiny theory. In Section 3 we describe
our combination method. In Section 4 we provide two examples showing
our method in action. In Section 5 we prove that our method is correct.
In Section 6 we prove that the theory of equality is shiny. We conclude in
Section 7 with directions for further research.

In order to focus on the main results, we omit here the proofs that the
theories of partial and total orders are shiny. They can be found in the long
version of this paper [16].

2 Preliminaries

A signature Σ is composed by a set ΣC of constants, a set ΣF of function
symbols, and a set ΣP of predicate symbols. We use the standard notions
of (Σ-)term, atom, literal, formula, and sentence. We use ≈ to denote the
equality logical symbol. We abbreviate with s 6≈ t the negation of a literal
s ≈ t, and we identify a conjunction of formulae ϕ1 ∧ · · · ∧ ϕn with the set
{ϕ1, . . . , ϕn}.

If ϕ is a term or a formula, vars(ϕ) denotes the set of variables occurring
in ϕ. Similarly, if Φ is a set of terms or a set of formulae, vars(Φ) denotes the
set of variables occurring in Φ.

For a signature Σ, a Σ-interpretation A with domain A over a set V of
variables is a map which interprets each variable x as an element xA ∈ A,
each constant c ∈ ΣC as an element cA ∈ A, each function symbol f ∈ ΣF of
arity n as a function fA : An → A, and each predicate symbol P ∈ ΣP of arity
n as a subset PA of An. We adopt the convention that calligraphic letters
A, B, . . . denote interpretations, while the corresponding Roman letters A,
B, . . . denote the domains of the interpretations.

Let A be a Σ-interpretation over a set V of variables. For a Σ-term t over
V , we denote with tA the evaluation of t under the interpretation A. Likewise,
for a Σ-formula ϕ over V , we denote with ϕA the truth-value of ϕ under the
interpretation A. If T is a set of Σ-terms over V , we denote with TA the set
{tA | t ∈ T}.
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A formula ϕ is satisfiable, if it is true under some interpretation, and
unsatisfiable otherwise.

We use the standard model-theoretic notions of embedding and of isomor-
phism between interpretations [5].

Definition 2.1 Let Σ be a signature, and let A and B be Σ-interpretations
over some set V of variables. A map h : A → B is an embedding of A into
B if the following conditions hold:

• h is injective;

• h(uA) = uB for each variable or constant u ∈ V ∪ ΣC;

• h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)), for each n-ary function symbol
f ∈ ΣF and a1, . . . , an ∈ A;

• (a1, . . . , an) ∈ PA if and only if (h(a1), . . . h(an)) ∈ P B, for each n-ary
predicate symbol P ∈ ΣP and a1, . . . , an ∈ A.

An isomorphism of A into B is a surjective (and therefore bijective)
embedding of A into B.

A Σ-theory is any set of Σ-sentences. Given a Σ-theory T , a T -model
is a Σ-interpretation that satisfies all sentences in T . A formula ϕ is T -
satisfiable if it is satisfied by some T -model, and it is T -unsatisfiable otherwise.
Given a set L of formulae, the satisfiability problem of T with respect to L
is the problem of deciding, for each formula ϕ in L, whether or not ϕ is
T -satisfiable. When we do not specify L, it is implicitly assumed that L is
the set of all Σ-formulae. However, when we say “quantifier-free satisfiability
problem”, without specifying L, then we implicitly assume that L is the set
of all quantifier-free Σ-formulae.

We use the usual notion of stable infiniteness for a theory, together with
its “dual” one, which we call stable finiteness.

Definition 2.2 A Σ-theory T is stably infinite (respectively, stably fi-

nite) if every quantifier-free Σ-formula ϕ is T -satisfiable if and only if it is
satisfied by a T -interpretation A whose domain A is infinite (respectively,
finite).

Examples of stably infinite theories include the theory of equality, 5 the
theory of integer arithmetic, the theory of rational arithmetic, the theory of
lists, and the theory of arrays. Examples of stably finite theories include the
theory of equality, all theories satisfied only by finite interpretations, and all
theories finitely axiomatized by formulae in the Bernays-Schönfinkel-Ramsey
class.

Note that a theory can be both stably finite and stably infinite. We will
show that in Section 6 for the theory of equality.

5 Since we regard ≈ as a logical symbol, for us the theory of equality and the empty theory
are the same theory.

4



Tinelli and Zarba

Definition 2.3 A Σ-theory T is smooth if for every quantifier-free Σ-formula
ϕ, for every T -model A satisfying ϕ, and for every cardinal number κ > |A|
there exists a T -model B satisfying ϕ such that |B| = κ.

A direct consequence of Definition 2.3 is that every smooth theory is stably
infinite. The following proposition is useful when proving that a theory is
smooth.

Proposition 2.4 A Σ-theory T is smooth if and only if for every quantifier-
free Σ-formula ϕ and every finite T -model A of ϕ, there exists a T -model B
of ϕ such that |B| = |A|+ 1.

Given a theory T and a T -satisfiable quantifier-free formula ϕ, we denote
with mincardT (ϕ) the smallest cardinality of a T -model satisfying ϕ. Note
that if T is a stably finite theory then, for every T -satisfiable formula ϕ,
mincardT (ϕ) is a natural number.

Definition 2.5 A Σ-theory T is shiny if it is both smooth and stably finite,
and such that mincardT is computable.

3 The combination method

Let S be a shiny Σ-theory and let T be an Ω-theory such that Σ ∩ Ω = ∅
and the quantifier-free satisfiability problems of S and of T are decidable. We
now describe a method for combining decision procedures for the quantifier-
free satisfiability problems of S and T into a single decision procedure for the
quantifier-free satisfiability problem of S ∪ T .

Since every quantifier free formula is logically equivalent to its disjunctive
normal form, without loss of generality we restrict ourselves to conjunctions of
literals. In addition, we consider only conjunctions of the form Γ1 ∪Γ2, which
we call a separate form, where Γ1 contains only Σ-literals and Γ2 contains
only Ω-literals. The latter restriction is also without loss of generality, as
every conjunction Γ of (Σ ∪ Ω)-literals can be effectively converted into an
equisatisfiable separate form Γ1 ∪ Γ2 with the help of new auxiliary variables.

Let Γ = Γ1 ∪ Γ2 be a conjunction of literals in separate form. The combi-
nation method consists of two phases, described below.

Decomposition phase. Nondeterministically guess an equivalence relation
E over the set V = vars(Γ1) ∩ vars(Γ2) of variables shared by Γ1 and Γ2.

Check phase. Where E is the guessed equivalence relation over V , perform
the following steps:
1. Construct the arrangement of V induced by E, defined by

arr(V,E) = {x ≈ y | x, y ∈ V, x and y are distinct, and (x, y) ∈ E} ∪

{x 6≈ y | x, y ∈ V and (x, y) /∈ E} .
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2. If Γ1 ∪ arr(V,E) is S-satisfiable go to the next step; otherwise output
fail.

3. Compute n = mincardS(Γ1 ∪ arr(V,E)).
4. Construct a set δn of literals whose purpose is to force models with

cardinality at least n. More precisely, let δn = {wi 6≈ wj | 1 ≤ i < j ≤
n}, where w1, . . . , wn are new variables not occurring in Γ1 ∪ Γ2.

5. If Γ2 ∪ arr(V,E)∪ δn is T -satisfiable output succeed; otherwise output
fail.

In Section 5 we will prove that (i) if the check phase outputs succeed for
some equivalence relation E over V , then Γ is (S ∪ T )-satisfiable, and (ii) if
the check phase outputs fails for each equivalence relation E over V , then
Γ is (S ∪ T )-unsatisfiable.

Our combination method differs from the Nelson-Oppen method as follows.
In the check phase, the Nelson-Oppen method omits steps 3 and 4, and in
step 5 it checks the T -satisfiability of Γ2 ∪ arr(V,E) only. Note that this is
enough in the Nelson-Oppen method because there T is assumed to be stably
infinite, and therefore the constraint δn is guaranteed to hold.

Note that our method applies just as well in case T is stably-infinite. 6

However, if one knows that T is stably infinite, resorting to the original Nelson-
Oppen method is more appropriate, as it lets one avoid the cost of computing
mincardS.

4 Examples

In this section we discuss two examples of theories that are not combinable
with the Nelson-Oppen method but are combinable with ours. In both exam-
ples we combine the theory S of equality over a signature Σ with a non-stably
infinite theory T over a signature Ω disjoint from Σ. In the first case, T is
not stably infinite because it only admits finite models. In the second case, T
is not stably infinite even if it has infinite models. The examples are adapted
from [14] and [1], respectively, where they are used to show that the Nelson-
Oppen method is in fact incorrect on non-stably infinite theories.

Example 4.1 Let Σ = {f} and Ω = {g} be signatures, where f and g are
distinct unary function symbols. Let S be the theory of equality over the
signature Σ, and let T be an Ω-theory such that all T -interpretations have
cardinality at most two. Since T is not stably infinite, we cannot use the
Nelson-Oppen combination method. But since S is shiny, we can use our
method.

Let Γ = Γ1 ∪ Γ2, where

Γ1 = {f(x) 6≈ f(y) , f(x) 6≈ f(z)} and Γ2 = {g(y) 6≈ g(z)} .

6 Recall that S is already stably infinite, since it is shiny.
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Note that Γ is (S ∪ T )-unsatisfiable. In fact, Γ implies x 6≈ y ∧ x 6≈ z ∧ y 6≈ z,
and therefore every interpretation satisfying Γ must have cardinality at least
three. Since every (S ∪ T )-interpretation has at most two elements, it follows
that Γ is (S ∪ T )-unsatisfiable.

Let us apply our combination method to Γ. Since vars(Γ1) ∩ vars(Γ2) =
{y, z}, there are only two equivalence relations available for guessing: either
(y, z) ∈ E or (y, z) /∈ E.

If (y, z) ∈ E we have that Γ1∪{y ≈ z} is S-satisfiable and that Γ2∪{y ≈ z}
is T -unsatisfiable. Thus, we will output fail when reaching step 4 of the check
phase.

If instead (y, z) /∈ E then Γ1∪{y 6≈ z} is S-satisfiable. In addition, we have
mincardS(Γ1∪{y 6≈ z}) = 3. To see this, first observe that Γ1∪{y 6≈ z} implies
x 6≈ y∧x 6≈ z∧y 6≈ z, and therefore mincardS(Γ1∪{y 6≈ z}) ≥ 3. In addition,
we can construct an interpretation A of cardinality 3 satisfying Γ1 ∪ {y 6≈ z}
by letting A = {a1, a2, a3}, x

A = a1, y
A = a2, z

A = a3, and fA(a) = a, for
each a ∈ A. 7 In the third step of the check phase we introduce three new
variables w1, w2, w3, and construct δ3 as the set {w1 6≈ w2, w1 6≈ w3, w2 6≈ w3}.
Since Γ2 ∪ {y 6≈ z} ∪ δ3 is T -unsatisfiable, in the fourth step we output fail.
We can therefore declare that Γ is (S ∪ T )-unsatisfiable.

Example 4.2 Let Σ = {k} and Ω = {f, g, h} be signatures, where k, f and
g are distinct unary function symbols. Let S be again the theory of equality
over the signature Σ, and let T be the following equational theory:

T =







(∀x)(∀y)(x ≈ f(g(x), g(y))),

(∀x)(∀y)(f(g(x), h(y)) ≈ y)







.

Using simple term rewriting arguments, it is possible to show that T ad-
mits models of cardinality greater than one, and so admits models of infinite
cardinality. 8 However, T is not stably infinite.

In fact, consider the set quantifier-free formula g(z) ≈ h(z). This formula
is T -satisfiable because both the formula and T admit a trivial model, that is,
a model with just one element. Now let A be any T -model of g(z) ≈ h(z), let
a0 = zA, and let a ∈ A. Because of T ’s axioms, we have that

a = fA(gA(a), gA(a0)) = fA(gA(a), hA(a0)) = a0 .

Given that a is arbitrary, this entails that |A| = 1. Thus, g(z) ≈ h(z) is
only satisfiable in trivial models of T , and therefore the theory T is not stably
infinite.

For an application of our combination method to S and T , let Γ = Γ1∪Γ2,

7 We will see how to effectively compute mincardS in Section 6.
8 This is because the set of models of an equational theory is closed under direct products.
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where

Γ1 = {g(z) ≈ h(z)} and Γ2 = {k(z) 6≈ z} .

The conjunction Γ is (S∪T )-unsatisfiable, because g(z) ≈ h(z) is satisfiable
only in trivial models of S∪T (for being satisfiable only in trivial models of T ,
as seen above), while k(z) 6≈ z is clearly satisfiable only in non-trivial models
of S ∪ T .

Let us apply our combination method to Γ. Since vars(Γ1) ∩ vars(Γ2) =
{z}, in the check phase there are no equivalence relations to examine, therefore
we generate the empty arrangement. Clearly, Γ1 is S-satisfiable, and in models
of cardinality at least 2. Therefore, we have that mincardS(Γ1) = 2.

In the third step of the check phase, we then compute δ2 as the set {w1 6≈
w2} for some fresh variables w1, w2. For what we argued above, Γ2 ∪ δ2 is
T -unsatisfiable, so in the fourth step we output fail, as needed.

5 Correctness

In this section we prove that our combination method is correct.

Clearly, our combination method is terminating. This follows from the
fact that, since there is only a finite number of equivalence relations over a
finite set V of variables, the nondeterministic decomposition phase is finitary.
Thus, we only need to prove that our method is also partially correct.

We will use the following theorem which is a special case of a more gen-
eral combination result given in [15] for theories with possibly non-disjoint
signatures. A direct proof of this theorem can be found in [7].

Theorem 5.1 (Combination Theorem for Disjoint Signatures) Let Φi

be a set of Σi-formulae, for i = 1, 2, and let Σ1 ∩ Σ2 = ∅.

Then Φ1 ∪ Φ2 is satisfiable if and only if there exists an interpretation A
satisfying Φ1 and an interpretation B satisfying Φ2 such that:

(i) |A| = |B|,

(ii) xA = yA if and only if xB = yB, for every x, y ∈ vars(Φ1) ∩ vars(Φ2).

The following proposition proves that our method is partially correct.

Proposition 5.2 Let S be a shiny Σ-theory and let T be an Ω-theory such
that Σ ∩Ω = ∅. Let Γ1 be a conjunction of Σ-literals and Γ2 a conjunction of
Ω-literals. Where V = vars(Γ1) ∩ vars(Γ2), the following are equivalent:

(i) Γ1 ∪ Γ2 is (S ∪ T )-satisfiable.

(ii) There exists an equivalence relation E over V such that Γ1∪ arr(V,E) is
S-satisfiable and Γ2∪arr(V,E)∪δn is T -satisfiable, with n = mincardS(Γ1∪
arr(V,E)).

Proof. (1⇒ 2). Assume that Γ1 ∪Γ2 is (S ∪ T )-satisfiable, and let F be one
of its (S ∪ T )-models. Let E = {(x, y) | x, y ∈ V and xF = yF}.

8



Tinelli and Zarba

Clearly, F is an (S∪T )-model of Γ1∪Γ2∪arr(E, V ). It follows that F is also
an S-model of Γ1 ∪ arr(E, V ). In addition, F is a T -model of Γ2 ∪ arr(E, V ).
Let κ = |F |, and let n = mincardS(Γ1∪arr(V,E)). By definition of mincardS,
we have n ≤ κ, which implies that F is also a T -model of Γ2 ∪ arr(E, V )∪ δn.

(2⇒ 1). Let V1 = vars(Γ1) and V2 = vars(Γ2∪δn), and observe that V1∩V2 =
V . Assume there is an equivalence relation E of V such that Γ1∪ arr(V,E) is
S-satisfiable and Γ2∪arr(V,E)∪δn is T -satisfiable, where n = mincardS(Γ1∪
arr(V,E)). Then there exist an S-model A of Γ1 ∪ arr(V,E) and a T -model
B of Γ2 ∪ arr(V,E) ∪ δn.

Since B satisfies δn, we have |B| ≥ n. Thus, by the smoothness of S, we
can assume without loss of generality that |A| = |B|. In addition, because
both A and B satisfy arr(V,E), we have that xA = yA if and only if xB = yB,
for all x, y ∈ V . By Theorem 5.1, S∪T ∪Γ1∪Γ2∪arr(V,E)∪δn is satisfiable.
Thus, Γ1 ∪ Γ2 is (S ∪ T )-satisfiable. 2

Combining Proposition 5.2 with the fact that our combination method is
terminating, we obtain the following decidability result.

Theorem 5.3 Let S be a shiny Σ-theory and let be T an Ω-theory such that
Σ∩Ω = ∅. If the quantifier-free satisfiability problems of S and of T are decid-
able, then the quantifier-free satisfiability problem of S ∪ T is also decidable.

6 The theory of equality

It is known that the theory of equality (over an arbitrary signature) is stably
infinite and has a decidable quantifier-free satisfiability problem [10]. We show
here that it is also shiny.

We will use the following basic lemma of model theory [5].

Lemma 6.1 Let A,B be two interpretations such that there is an embedding
of A into B, and let ϕ be a quantifier-free formula. Then ϕ is satisfied by A
if and only if it is satisfied by B.

Proposition 6.2 Let ϕ be a quantifier-free formula, and let A be a finite
model of ϕ. Then there exists a model B of ϕ such that |B| = |A|+ 1.

Proof. Let k = |A|. We construct a Σ-model B of ϕ such that |B| = k + 1
as follows. Let B = A ∪ {b}, where b /∈ A. Then, fix an arbitrary element
a0 ∈ B, and let

• for variables and constants: uB = uA,

• for function symbols of arity n:

fB(a1, . . . , an) =

{

fA(a1, . . . , an) , if a1, . . . , an ∈ A ,

a0 , otherwise,

9
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Input: An S-satisfiable conjunction Γ of Σ-literals
Output: mincardS(Γ)
1: if Γ is empty then

2: return 1
3: else

4: U ← terms(Γ)
5: Γ′ ← Γ
6: for s, t ∈ U do

7: if Γ′ ∪ {s ≈ t} is S-satisfiable then

8: Γ′ ← Γ′ ∪ {s ≈ t}
9: end if

10: end for

11: E ← {(s, t) | s ≈ t ∈ Γ′}
12: C ← cong-closure(E)
13: return card(U/C)
14: end if

Fig. 1: A procedure for mincardS.

• for predicate symbols of arity n:

(a1, . . . , an) ∈ P B ⇐⇒ a1, . . . , an ∈ A and (a1, . . . , an) ∈ PA .

We have |B| = k+1. In addition, the map h : A→ B defined by h(a) = a, for
each a ∈ A, is an embedding of A into B. Since A satisfies ϕ, by Lemma 6.1
it follows that B also satisfies ϕ. 2

Combining Propositions 2.4 and 6.2, we obtain the smoothness of the the-
ory of equality.

Proposition 6.3 For every signature Σ, the Σ-theory of equality is smooth.

Next, we show that mincardS(ϕ) is computable when S is the theory of
equality. A procedure that computes mincardS is given in Figure 1.

In the procedure, the function terms returns the set of all terms and
subterms occurring in its input Γ. For instance, if Γ = {f(g(x)) ≈ g(f(y))}
then terms(Γ) returns the set {x, g(x), f(g(x)), y, f(y), g(f(y))}. The func-
tion cong-closure computes the congruence closure of the binary relation
E over the signature of Γ. 9 U/C denotes the quotient of U with respect to
the congruence relation C.

Both C and U/C can be computed using any standard congruence closure
algorithm [9]. The complexity of such algorithms is (no more than) O(n2),
where n is the cardinality of U . The test in line 7 can be performed by the
same congruence closure algorithm used for computing C. Since the procedure
in Figure 1 is clearly terminating, it then follows that its complexity is O(n4).

We show below that the procedure is also partially correct.

9 Given a binary relation E, the congruence closure of E is the smallest congruence C
containing E.
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Proposition 6.4 For every input Γ, the procedure shown in Figure 1 returns
mincardS(Γ).

Proof. If Γ is empty then Γ is satisfied by every interpretation. Thus, in this
case the procedure returns the correct value mincardS(Γ) = 1.

Let us consider the case in which Γ is not empty. Let U , Γ′, E, and C
be as computed by the procedure. Moreover, let k be the value returned in
line 13. Note that Γ′ is S-satisfiable, and that Γ ⊆ Γ′. Thus, every model of
Γ′ is also a model of Γ. Finally, since Γ is not empty, then U is also not empty.
It follows that the quotient U/C is not empty, hence k ≥ 1.

Let A be any model of Γ′, and consider the set B = {tA | t ∈ U}.

We claim that |B| = k. To see this, suppose, for a contradiction, that
|B| 6= k. Assume first that |B| < k. Since k is equal to the number of
equivalence classes of C, there exist two terms s, t ∈ U such that (s, t) /∈ C
and sA = tA. But then Γ′ ∪ {s ≈ t} is satisfied by A, which implies that
s ≈ t ∈ Γ′. It follows that (s, t) ∈ E, and therefore (s, t) ∈ C, a contradiction.

Next, suppose that |B| > k. Then there exist distinct terms t1, . . . , tn,
with n > k, such that tAi 6= tAj , for i < j. Since C is the congruence closure
of E, it follows that, for every term s, t, if (s, t) ∈ C then sA = tA. But then,
for every term s, t, if sA 6= tA then (s, t) /∈ C. Thus, (ti, tj) /∈ C, for i < j. It
follows that C has more than k equivalence classes, a contradiction.

Since |B| = k, by the generality of A, we can conclude that every model
of Γ has at least k elements.

We now construct a model B of Γ with domain B. The proposition’s claim
will then follow from the fact that |B| = k.

Let b be some element of B. We define

• for variables and constants:

uB =

{

uA , if uA ∈ B ,

b , otherwise ,

• for function symbols of arity n:

fB(b1, . . . , bn) =

{

fA(b1, . . . , bn) , if fA(b1, . . . , bn) ∈ B ,

b , otherwise,

• for predicate symbols of arity n:

(b1, . . . , bn) ∈ P B ⇐⇒ (b1, . . . , bn) ∈ PA .

By structural induction, one can show that tB = tA for all terms t ∈ U ,
and that `B = `A for all literals ` ∈ Γ′. It follows that B satisfies Γ′. Since
Γ ⊆ Γ′, B also satisfies Γ. 2

As an immediate corollary of Proposition 6.4, we obtain the following
result.
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Proposition 6.5 For every signature Σ, the Σ-theory of equality is stably
finite.

Putting together Propositions 2.4, 6.4, and 6.5, we obtain the shininess of
the theory of equality.

Proposition 6.6 For every signature Σ, the Σ-theory of equality is shiny.

Proposition 6.6 is relevant because, together with our combination method
in Section 3, it tells us that any procedure that decides the quantifier-free
satisfiability problem for a Σ-theory T can be extended to accept inputs Γ
containing arbitrary free symbols in addition to the symbols in Σ.

This fact was already known for theories T that are universal [11]. It was
also known for theories T that are stably-infinite, since in this case one can use
the Nelson-Oppen method to combine the decision procedure for T with one
for the theory of equality over the symbols of Γ that are not in Σ. Thanks to
Proposition 6.6 and our combination method, we are able to lift the universal
and/or stable-infiniteness requirement for T altogether.

More formally, we have the following theorem.

Theorem 6.7 Let T be a Σ-theory such that the quantifier-free satisfiability
problem of T is decidable. Then, for every signature Ω ⊇ Σ, the quantifier-free
satisfiability problem of T with respect to Ω-formulae is decidable.

7 Conclusion

We have addressed the problem of extending the Nelson-Oppen combination
method to pairs of theories that are not stably infinite. We provided a modi-
fication of the Nelson-Oppen method in which it is possible to lift the stable
infiniteness requirement from one theory, provided that the other one satisfies
a stronger condition, which we called shininess.

Examples of shiny theories include the theory of equality, the theory of
partial orders, and the theory of total orders.

In particular, the shininess of the theory of equality yields an interesting
useful result: Any decision procedure for the quantifier-free satisfiability prob-
lem of a theory T can be extended to accept input formulae over an arbitrary
signature. The usefulness of this result stems from the fact that, in practice,
satisfiability problems in a theory T often contain free function symbols in
addition to the original symbols of T . These function symbols are typically
introduced by skolemization or abstraction processes. Our result says that
these symbols can be always dealt with properly, no matter what T is.

The Nelson-Oppen method is applicable to an arbitrary number of stably
infinite and pairwise signature-disjoint theories. Similarly, our method can be
extended to the combination of one arbitrary theory and n > 1 shiny theories,
all pairwise signature-disjoint. In is unlikely that our method can be extended
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to allow more than one arbitrary theory. In fact, if this were the case, we
would be able to combine two arbitrary theories.

The correctness proof of both the Nelson-Oppen method and our method
relies on the Combination Theorem for Disjoint Theories (Theorem 5.1). That
theorem requires that the two parts of a separate form of an input formula be
satisfied in models of the respective theories having the same cardinality. This
requirement is impossible to check in general [15]. Considering only stably
infinite theories, as done in the original method, allows one to completely
forgo the check, because stably infinite theories always satisfy it. Our method
deals with the cardinality requirement by assuming enough on one theory, the
shiny one, so that a simpler cardinality check, the one represented by δn, can
be performed on the other.

We plan to continue our research on relaxing the stable infiniteness re-
quirement by aiming at finding general sufficient conditions for shininess, and
at identifying additional specific examples of shiny theories.
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