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Abstract

In this paper we outline a theoretical framework for the combination of deci-
sion procedures for constraint satisfiability. We describe a general combination
method which, given a procedure that decides constraint satisfiability with re-
spect to a constraint theory 77 and one that decides constraint satisfiability with
respect to a constraint theory T5, produces a procedure that (semi-)decides con-
straint satisfiability with respect to the union of Ty and T5. We provide a number
of model-theoretic conditions on the constraint language and the component con-
straint theories for the method to be sound and complete, with special emphasis
on the case in which the signatures of the component theories are non-disjoint.
We also describe some general classes of theories to which our combination re-
sults apply, and relate our approach to some of the existing combination methods
in the field.

Keywords: combination of satisfiability procedures, decision problems, cons-
traint-based reasoning, automated deduction.
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1 Introduction

An established approach to problem solving is to recast problems in terms of con-
straint satisfaction For automated problem solving, a major advantage of constraint-
based approaches is efficiency. It is often possible to implement a fast constraint
solver for a given application domain by intelligently exploiting some of the features
of the domain itself. A major disadvantage is, of course, specialization. If a problem
also requires solving constraints outside the constraint domain, a constraint reasoner
alone is not enough.!

Now, many potential applications of constraint-based approaches in fields as di-
verse as software/hardware verification, program synthesis, computational linguis-
tics, expert systems, and so on, are often faced with heterogeneous problems, that
is, problems spanning over several constraint domains at once. Semantically, these
are problems in a domain which is a combination of various constraint domains.
Syntactically, they are problems whose constraints are expressed in combination of
the constraint languages of each constraint domain. To deal with heterogeneous
problems, one can certainly try to build from scratch a constraint reasoner for the
combined domain. However, if constraint reasoners are already available for the var-
ious components of the domain, it is sensible to think of obtaining a reasoner for
the combined domain by somehow combining the available reasoners. Ideally, such
a reasoner must able to

e extract from the problem specification the constraints that can be handled by
a component reasoner, for each such reasoners,

e assign these extracted constraints to the corresponding reasoner, and

e compose, at least in principle, the local solutions from the various reasoners
into global solutions for the original problem.

To date, there are very few results on the combination of constraint domains and
their reasoners. The fact is that, as desirable as it is from both a knowledge and a
software engineering standpoint, this sort of combination raises several challenging
model-theoretic and computational issues. Although the computational aspects of
combination have been investigated for some time (see [Sch00] for a recent account),
only recently have people started to study the logical and model-theoretic background
of general methodologies for combining constraint reasoners. This paper represents
our contribution to this study.

!We use the term domain here in a loose sense. Typically a (constraint) domain, a semantical
notion, is represented by a logical (constraint) theory, a syntactical one, which axiomatizes the
domain’s properties of interest. Also, we speak generically of constraint reasoners, as opposed to
constraint solvers, to include those cases in which it not necessary to actually produce a solution
of the input constraints, but it is enough to discover if the constraints are satisfiable, according to
some adopted notion of satisfiability.



1.1 Previous Work

Most of the current work on the combination of constraints reasoners regards the
combination of solvers for equational constraints, in particular, algorithms for E-
unification and related problems [BS95b, Bou93, DKR94, Her86, KR94a, KR94b,
Rin92, SS89]. In this context, the constraint language is restricted to quantifier-
free formulae over a functional signature (no predicate symbols other than equality),
each component constraint domain is axiomatized by an equational theory and the
combined domain is axiomatized by the union of these theories.

The emergence of general constraint-based paradigms, such as constraint logic
programming [JM94], constrained resolution [B§4] and what is generally referred
to as theory-reasoning [BFP92], raises the problem of combining reasoners for first-
order, but not necessarily equational, constraints. The existing work on the com-
bination of such reasoners is better understood by first realizing that combination
problems can be divided into two broad classes, depending on the kind of constraint
satisfiability considered by the component reasoners.

The first class comprises constraint reasoners for which satisfiability is defined in
terms of walidity of existential closures in a given constraint theory: a constraint is
satisfiable if its existential closure is a logical consequence of the constraint theory.
Constraint-based reasoning frameworks using reasoners of this sort are mostly based
on the constraint logic programming scheme by J. Jaffar and J.-L. Lassez [JM94].

The second class comprises constraint reasoners for which satisfiability is defined
in terms of consistency of existential closures with the constraint theory: a constraint
is satisfiable if its existential closure is true in at least one model of the theory. Some
constraint-based reasoning frameworks using reasoners of this sort are the constraint
logic programming scheme of M. Hohfeld and G. Smolka [HS88], the deduction with
constraints framework [KKR90], constrained resolution [B94] constraint contextual
rewriting [AR98], and—at least at the ground level—all theory-reasoning frameworks
[BFP92].

Essentially all existing results in the combination of constraint reasoners in the
first class come from the work of F. Baader and K. Schulz [BS95a, BS95¢c, KS96,
BS98], which lifts and extends to a first-order setting earlier combination results in
the equational case.

In this paper, we are interested in the combination of constraint reasoners of the
second class. Early work on this topic comes from research in automated software
verification. The actual problem of interest there was the validity of assertions (ex-
pressed as universal formulae) in theories axiomatizing common data types. This
problem, however, was conveniently recast as a satisfiability problem since a formula
is entailed by a theory exactly when its negation is satisfiable in no models of that
theory.

Initial combination results were provided by R. Shostak in [Sho79] and in [Sho84].
Shostak’s approach is limited in scope and not very modular—admittedly on purpose,
for efficiency reasons. A rather general and completely modular combination method
was proposed by G. Nelson and D. Oppen in [NO79] and then slightly revised in



[Nel84]. Given, for ¢ = 1,...,n, a procedure P; that decides the satisfiability of
quantifier-free formulae in a universal theory T;, their method yields a procedure
that decides the satisfiability of quantifier-free formulae in the theory 77 U --- U T),.
A declarative and non-deterministic view of the procedure was suggested by Oppen
in [Opp80]. In [THI6], C. Tinelli (the first of us) and M. Harandi followed up on this
suggestion describing a non-deterministic version of the Nelson-Oppen combination
procedure and providing a simpler correctness proof. A similar approach had also
been followed by C. Ringeissen (the second of us) in [Rin93], which describes the
procedure as a set of derivation rules applied non-deterministically.

All the work mentioned above shares one major restriction on the constraint lan-
guages of the component reasoners: they must have no function or relation symbols
in common. The only exception is the equality symbol, which is however regarded
as a logical constant. This restriction has proven really hard to lift. A testament of
this is that, more than two decades after Nelson and Oppen’s original work, their
main results are still state of the art.

Results on non-disjoint combination do exist, but they are still quite limited. To
start with, some results on the union of non-disjoint equational theories can be ob-
tained as a byproduct of the research on the combination of term rewriting systems.
Modular properties of term rewriting systems have been extensively investigated (see
the overviews in [Ohl95, Gra96] for instance). Using some of these properties it is pos-
sible to derive combination results for the word problem in the union of equational
theories sharing constructors.? Outside the work on modular term rewriting, the
first combination results for the word problem in the union of non-disjoint constraint
theories were given in [DKR94] as a consequence of some combination techniques
based on an adequate notion of (shared) constructors. The second of us used sim-
ilar ideas later in [Rin96b] to extend the Nelson-Oppen method to theories sharing
constructors in a sense close to that of [DKR94].

To our knowledge, the only new work since [Rin96b] on the combination of con-
straint reasoners for constraint theories with symbols in common is the one described
in this paper and in a series of related papers by F. Baader and the first of us, the
most recent and comprehensive of which is [BT01]. These papers discuss a very
general decision procedure for the word problem in the union of equational theories
with non-disjoint signatures.®> The procedure’s correctness proof is based on some
of the model-theoretic results reported here. Part of the work reported here is also
described in [Tin99]; a preliminary account was given in [TR98].

2The word problem in an equational theory F is the problem of determining whether a given
equation s = t is valid in E—or, equivalently, whether a disequation —(s = t) is (un)satisfiable in
E. In a term rewriting system, a constructor is a function symbol that does not appear as the top
symbol of a rewrite rule’s left-hand side.

3An alternative and, as it turns out, equivalent approach to this topic has been very recently
proposed by C. Fiorentini and S. Ghilardi in [FGO01].



1.2 Our Contribution

In this paper we focus on constraint satisfiability problems expressible in the language
of first-order logic, or a fragment of it. For these problems, a constraint domain is
formalized by a first-order structure (in the sense of Model Theory) and axiomatized
by a first-order theory. Problem constraints are represented by sets of first-order
formulae, constraint variables by free variables of formulae, constraint solutions by
mappings of free variables into the universe of a constraint structure.

In this context, we are specifically concerned with the following combination
problem: given two constraint theories 77 and T5 and a class £ of constraints, how can
a procedure deciding the satisfiability of £-constraints in T} and a procedure deciding
the satisfiability of L£-constraints in 75 be combined into a procedure deciding the
satisfiability of L£-constraints in 17 U T5?

This problem is unsolvable in its full generality as there exist union theories
T1 UT5 in which constraint satisfiability is undecidable even if it is decidable in their
components. OQur main research effort then has consisted in developing appropriate
restrictions on 77 and 75 and £ that make the above combination problem solvable.
As mentioned earlier, Nelson and Oppen’s had already identified some: L is the class
of quantifier-free formulae and 77 and T3 are universal with no non-logical symbols in
common. This paper relaxes those restrictions to languages that are not necessarily
quantifier-free and to theories that are not necessarily universal and have up to a
finite number of non-logical symbols in common.

We start to discuss the main issues of the combination problem above in Section 3,
after providing some formal preliminaries in Section 2. We first describe what we
consider the most basic notion of combined structure, which we call a fusion, and
then provide a necessary and sufficient condition for two structures with arbitrary
signatures to be combinable into a fusion: the structures reducts to their common
signature must be isomorphic. Then, we show under what conditions the satisfiability
of basic “mixed” constraints in a fusion structure is reducible to the satisfiability of
pure constraints* in the fusion components. The main requirement is that the two
component structures have a set of elements X and Y, respectively, such that any
injection from a finite subset of X into Y extends to an isomorphism of the structures’
reducts to the common signature.

In Section 4, we lift the results in the previous section from fusions of structures
to unions of theories. This lifting is possible for theories that are N-O-combinable
over a given class £ of constraints. The essence of N-O-combinability, a rather
technical notion, is that the satisfiability in a theory 77 U T, of the conjunction
©1 A 2 of two pure constraints can be reduced to the local satisfiability of ¢ in T3
and of y9 in Ty by adding to both formulae an appropriate X -restriction, a particular
kind of first-order restriction on the free variables shared by ¢; and ¢s. Adding a
restriction on the values of the shared variables is in the spirit of the Nelson-Oppen
combination procedure,® but tailored to the case of theories with not necessarily

4By pure we mean made only of symbols from one of the two theories.
SMore precisely, of its non-deterministic version, where the added restrictions are simply con-



disjoint signatures.

In Section 5, we then describe an extension of the Nelson-Oppen procedure that,
by guessing the right Y-restrictions, is sound and complete for N-O-combinable theo-
ries. Our combination procedure is only a semi-decision procedure in general because
the set of possible Y-restrictions is infinite whenever the component theories share
function symbols. Nonetheless, it yields the following modular decidability result
for the union of two N-O-combinable and axiomatizable theories 77 and T5: if the
satisfiability in each T; of pure constraints with 3-restrictions is decidable then the
satisfiability in 77 UT5 of mixed constrains with Y-restrictions is also decidable. This
generalizes both Nelson and Oppen’s combination results and Ringeissen’s initial
results in [Rin96b)].

The definition of N-O-combinable theories is rather abstract and imposes con-
ditions on the two theories as a pair, not individually. As a consequence, it is not
immediate to tell when two theories are N-O-combinable. We dedicate the rest of
the paper to developing more “local” restrictions sufficient for N-O-combinability.

In Section 6, we discuss some criteria for showing that two theories are N-O-
combinable. In particular, we define a local property for component theories that
with some additional conditions makes them N-O-combinable. This property, which
we call stable X-freeness, is an extension of Nelson and Oppen’s idea of a stably-
infinite theory. In essence, a theory T is stably X-free (over a certain constraint
language) if every constraint (in the language) satisfiable in 7' is satisfiable in a
model of T' whose Y-reduct is a free structure with infinitely-many generators.

As discovered by previous research on non-disjoint combination, it is easier to
combine theories whose shared function symbols are constructors in an appropriate
sense. In Section 7, we provide our own definition of constructors, discuss its main
properties, and argue that it generalizes previous notions of constructors in the lit-
erature. The main idea is that a subsignature of a theory T is a set of constructors
for T' if every term has a normal form (in 7') such that its top part is made only
of constructors and the equivalence in T' of two normal forms reduces, in a precise
sense, to the equivalence of their top parts. This notion of constructors is interesting
in its own right, but we use it in this paper mainly to provide an example of a large
class of stably Y-free theories.

In Section 8, we then describe some examples of classes of stably Y-free theories
that are N-O-combinable. In the most important of these examples, the theories
share constructors in the sense of Section 7.

In Section 9, we show that, even if designed to combine satisfiability procedures,
our combination method can also be used to combine certain decision procedures for
the validity of existential equational constraints. Then, we show that in general our
method can be seen as an approximation of a combination method for equational
constraints due to Baader and Schulz [BS95b].

In Section 10, we provide a further application of our method, this time to the
combination of constraint solvers for certain initial structures.

junctions of equations and disequations between shared variables. See, e.g., [TH96] for details.



Section 11 concludes the paper with some directions for further research.

2 Formal Preliminaries

We start by introducing some of the basic notions from Model Theory and Universal
Algebra that we use in the paper. For the most part we will closely adhere to the
notation and terminology of [Hod93] and [Wec92].

A signature ¥ consists of a set BF of relation symbols and a set ¥ of function
symbols, each with an associated arity, an integer n > 0. A constant symbol is a
function symbol of zero arity. A functional signature is a signature with no relation
symbols. We use the letters 33, (2, A to denote signatures.

Throughout the paper, we fix a countably-infinite set V' of variables, disjoint with
any signature ¥.. For any X C V, T(X, X) denotes the set of X.-terms, i.e., first-order
terms of signature X¥. If ¢ is a term, ¢(¢) denotes the top symbol of t, that is, () = ¢
if t is a variable in V', and t(¢) = f if t = f(t1,... ,t,) for n > 0. We generally use
u,v,w to denote logical variables, and r,s,t to denote ¥-terms.

We use ¢, 1,7 to denote first-order formulae. The symbols T, L respectively
denote the universally true and universally false formula; = denotes equality in for-
mulae; s # t is an abbreviation for —(s = t). If ¢ is a term and ¢ a formula, Var(t)
denotes the set of ¢’s variables while Var(y) denotes the set of ¢’s free variables.
This notation is extended in the obvious way to sets of terms or formulae. As usual,
we call a formula is ground if it has no variables and a sentence if it has no free
variables.

In general, £ will denote a sub-language of the language of the first-order for-
mulae, that is, a syntactically definable class of first-order formulae (such as, for
instance, the class of atomic/existential/equational/ ... formulae). The notation
L> restricts the formulae of £ to a specific signature X. Analogously, Qff (Qf~)
denotes the class of all quantifier-free (X-)formulae. For convenience, we will always
assume that T € £* for any £ and X.

Symbols with a tilde on top denote finite sequences. For instance, Z stands for an
n-sequence of the form (z1,x2,...,,), for n > 0.5 We denote by Z,7 the sequence
obtained by concatenating Z with §. We use the tilde notation for members of a
Cartesian product as well. Whenever convenient, we will also treat Z as the set of
its elements.

The notation ¢(v1,...,v,) indicates that the free variables of the formula ¢
are ezactly the ones in (vy,...,v,), ie., Var(p) = {v1,...,v,}.7 Similarly for,
t(vi,... ,v,) where t is a term. In both cases, it is understood that the elements
of (vi,...,v,) are pairwise distinct. We will also use the notation ¢(9) and ¢(?)
whenever convenient. When we write f(0), where f is a function symbol, it is also

5Notice that #; denotes a sequence of index 1, not the first element of the sequence Z.

"This notation is non-standard, as ¢(v1,... ,v,) generally indicates that the free variables of ¢
are included in {v1,...,v,}. We use it here because it simplifies the enunciation of most of our
results.



understood that the length of ¥ equals the arity of f. For any formula ¢(v1,... ,v,),
3 ¢ and V ¢ denote respectively the existential and the universal closure of ¢. For
notational convenience, we will systematically identify finite sets of formulae with
the conjunction of their elements (and identify the empty set of formulae with T).

We use the standard notion of substitution, extended from terms to arbitrary
first-order formulae (and sets thereof) by renaming quantified variables when nec-
essary to avoid capturing of free variables. As common, we denote the empty sub-
stitution by ¢ and write substitution applications in postfix form. Also, if ¢ is a
substitution we call the sets

Dom(o) :=={v eV |vo#v} Ran(o):={vo |v € Dom(o)}

respectively the domain and the range of o. A substitution o such that Dom(o) =
{v1,-.. ,v} and v;jo =t; foralli € {1,... ,n} will be denoted by {vy < t1,... ,v, <
tn}. With no loss of generality we only consider idempotent substitutions, that is,
substitutions o such that 0 o 0 = o. For each U C V, SUB(U) denotes the set of
idempotent substitutions whose domain (in the sense above) is included in U.

Capital letters in calligraphic style such as A, B, C, F denote first-order struc-
tures. The corresponding Roman letter denote the universe of the structure. Unless
otherwise specified, the symbol 3 subscripted with the corresponding Roman letter
(X4,24,,%8,...) denotes the signature of the structure.

Let A be a structure of signature X. If f is a symbol of ¥, fA denotes the
interpretation of f in A. If Q is a subsignature of ¥, A denotes the reduct of A
to €2, that is, the structure obtained from A by “forgetting” the symbols not in Q.
If U a set of variables in V', a valuation of U is a mapping of U into A. The pair
(A, @) defines an interpretation, mapping the terms in T(X,U) to elements of A,
and X-formulae ¢ with free variables in U to true or false. For all t € T/(3,U), [t]4
denotes the element of A which (A, a) assigns to ¢. Using the function #+* induced
by t on A, we may also write such an element as tA(ZL), where @ is the tuple of values
assigned by « to 9. We say that (A, «) satisfies a 3-formula ¢(v), or that « satisfies
v in A, if (A4, ) maps ¢ to true. In that case, we write (A, a) = ¢. Alternatively, if
a is the tuple of values assigned by « to 9, we may write A |= ¢[a]. In either case, we
will call a an A-solution of ¢. If ¢ has no free variables, the choice of « is irrelevant
and so we write just A = ¢. We say that ¢ is satisfiable in A if there is a valuation
of Var(yp) that satisfies ¢ in A (equivalently, if A = 3 ¢). We write A |= ¢ and
say that A models ¢ if every valuation of Var(p) into A satisfies ¢ (equivalently, if
AEVYo.)

If K is a class of YX-structures, we say that ¢ is satisfiable in K if it is satisfiable
in at least one member of K. We say that K entails ¢ and write K = ¢ if A= ¢
for all A € K. We say that K is non-trivial if it contains non-trivial structures, that
is, structures of cardinality greater than 1.

If Ais a X-structure and X C A, (X), denotes the substructure of A generated
by X. Recall that X is said to generate A, or to be a a set of generators for A, if
A = (X) 4. We say that X is a non-redundant set of generators for A if X generates



A and no proper subset of X generates A. While every structure admits a set
of generators (its whole universe, for instance), not every structure admits a non-
redundant set of generators. Non-redundant sets of generators have the following,
easily provable property.

Lemma 1 LetY be a non-redundant set of generators for a structure A. Then, for
all X CY, X is a non-redundant set of generators for (X),.

For brevity, we will often use the definitions below, where A is any structure and
Y. a subsignature of ¥ 4.

Definition 2 (X-generators) We say that A is X-generated by a set X C A, or
that X is a set of Y-generators of A, if A” is generated by X.

It is immediate that when (% A)F C 3 C X4, the notions of generators and
Y-generators coincide.

Definition 3 (2-Isolated Individual) An element a € A is a X-isolated individ-
ual of A if a is not in the range of the interpretation of any function symbol of 3,
i.e., if there is no g € X of arity n > 0 and n-tuple  in A such that a = g(%).

We say that an individual a is, simply, an isolated individual of A if a is a X 4-
isolated individual of A. Since the set of A’s Y-isolated individuals coincides with
the set of A>’s isolated individuals, we will use Is(A%) to denote either of them.
Notice that each ¥-isolated individual of a structure is necessarily included in every
set of Y-generators for that structure. Moreover, any set of Y.-generators consisting
of Y-isolated individuals only is necessarily non-redundant.

A structure B is an expansion of a structure A if A is a reduct of B. We will
implicitly appeal to the following fact almost constantly in the rest of the paper.

Lemma 4 Let A be an 3-structure, p(0) a X-formula, and « a valuation of ¥ into
A. Then, for any expansion B of A to a signature Q 2 ¥, (A, a) = ¢ iff (B,a) = ¢.

A first-order theory is a set of first-order sentences. A Y-theory is a theory all
of whose sentences have signature 3. All the theories we consider will be first-order
theories with equality, which means that equality symbol = will always be interpreted
as the identity relation.

As usual, a X-structure A is a model of a X-theory T if A models every sentence
in T. We denote by Mod™(T'), or just Mod(T) when ¥ is clear from context, the set
of all the ¥-models of T. We say that T is non-trivial if Mod(T) is non-trivial. A
Y-formula ¢ is satisfiable in T if it is satisfiable in Mod(T'). By the above, a formula
o is satisfiable in T exactly when the theory T'U{3 ¢} has a model. Two L-formulae
© and v are equisatisfiable in T if for every model A of T', ¢ is satisfiable in A if and

10



only if 1 is satisfiable in A. We say simply that two formulae are equisatisfiable if
they are equisatisfiable in the empty theory.®

The X-theory T entails ¢, written T = ¢, if Mod(T) = . If T' is another
Y-theory, we write T |= T" if T entails every sentence in 7. For all ¥-terms s, ¢,
we write s =7 t and say that s and ¢ are equivalent in T if T = s =t IfQisa
subsignature of 3 we call Q-restriction of T, or also Q-theory of T, the set T of all
the ()-sentences entailed by T'.

A class of X-structures or a Y-theory is collapse free if it entails no sentences of
the form V (v = t) where v is a variable and ¢ a Y-term different from v.° Notice
that a theory T is collapse-free iff the class Mod(T) is collapse-free and that every
collapse-free theory admits non-trivial models (otherwise, it would entail ¥ (u = v)).

In Universal Algebra, equational theories are defined as theories axiomatized
by a set of (universally quantified) equations. Here, we extend such a notion to
theories whose signature may include predicate symbols as well. We say that a
theory is atomic if it axiomatized by a set of sentences of the form V ¢, where ¢
is an atomic formula. We use the symbol H to denote a given atomic theory. It
can be shown (see, e.g., [Hod93]) that a class K of X-structures is closed under the
formation of substructures, homomorphic images, and direct products exactly when
it is axiomatized by some atomic X-theory H. In analogy to the equational case
then, we call Mod(H) a X-variety.

If T is a ¥-theory, At(T) denotes the atomic theory of T, the set of all the
universally quantified ¥-atoms entailed by 7. For any Q C X, we then call At(T%),
the set of all universally quantified Q-atoms entailed by T', the atomic Q-theory of T'.
Similarly, we call atomic Q-theory of L-structure A, and denote by At(A%), the set
of all the universally quantified Q-atoms modeled by A. We refer to Mod(At(T*?))
as the Q-variety of T and often identify it with At(T*).

3 Combining Constraint Domains

As mentioned in the introduction, we are mainly concerned with the question of how
to solve constraint satisfiability problems with respect to several constraint theories
by combining in a modular fashion the satisfiability procedures available for the single
theories. We will tackle this question at the domain level first and then extend our
approach to the theory level in the next section. To start with, we must be able to
recast a given satisfiability problem as a combined satisfiability problem. That is, we
must be able to, first, describe the solution structure as a proper combination of two
or more distinct component structures; second, decompose the problem into a number

8Notice that although logically equivalent formulae are equisatisfiable, the converse is not true.
For instance, the formulae x = @ and x = a A y = a, where z,y are variables and a is a constant
symbol, are equisatisfiable but are not logically equivalent.

®Qur definition is slightly more restrictive than the standard one, in which ¢ is required to be a
non-variable term. According to that definition, if ¥ has no function symbols the trivial Y-theory is
collapse-free. In any case, the two definitions coincide for non-trivial theories, the theories of interest
in this paper.
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of “pure” subproblems, each solvable over a component structure; third, combine
the subproblem solutions, each ranging over one of the component structures, into a
solution for the original problem, ranging over the combined structure.

We begin by proposing a general notion of combined structure, which we call
fusion'®. Our primary goal is to identify a minimal set of requirements that make
a structure a viable combination of a number of given structures. As it turns out,
the notion of fusion, which we give below, is general enough to include the type of
combined structures found in the literature and, at the same time, provide the basis
for all the combination results given in this paper. For simplicity, we will mostly
consider combinations of just two component structures.

In the following, and in the rest of the paper, we will rely on the standard notions
of morphisms of structures from Model Theory [Hod93]. We will write A & B to
state that the structures A and B are isomorphic, and write h: A = B to state that
h is an isomorphism of A onto B.

Definition 5 (Fusion) Given two structures A and B, a (¥4 U Xpg)-structure F is
a fusion of A and B iff there exist a map ha_p and a map hp_r such that

ha_p: A2 F 4 and hp_p:B=F>B,

We will sometimes use the notation (F,hs_p, hp_r) to indicate the fusion struc-
ture and the relative isomorphisms. Essentially, a fusion of two structures A and B,
when it exists, is a structure that, if seen as a X 4-structure, is identical to A, and,
if seen as a X p-structure, is identical to B. Notice that the signatures of the two
structures are not necessarily disjoint.

Baader and Schulz’s free amalgamated product [BS98] and Kepser and Schulz’s
rational amalgamation [KS96] of two quasi-free structures are both readily shown to
be a fusion of those structures. Similarly, the amalgamation construction given by
Ringeissen in [Rin96b] can also be shown to produce a fusion.

In principle, one could imagine a notion of a fusion based on more general mor-
phisms than isomorphisms. For instance, we could say that a structure F is a fusion
of the structures A and B in Definition 5 if A is embeddable in F>4 and B is em-
beddable in F*B. A justification that the definition we give is the right one for our
purposes will be provided in Section 4 where we show that all models of a union
theory are fusions of models of its component theories.

We denote by Fus(.A, B) the set of all the fusions of two structures .4 and B. By
Definition 5, it is immediate that Fus(A,B) = Fus(B,.A) and that Fus(A,B) is an
abstract class, i.e., it is closed under isomorphism. Note that Fus(A, B) will usually

'0We initially chose the term “fusion” to avoid overloading the term “amalgamation”, which has
a more specific meaning in the Model Theory literature. We have later discovered that [PT97] does
use “amalgamation” for the same type of combined structure as ours while [Hol95] uses “fusion”
for a rather different type of combined structure. Our notion of fusion is closely related to the one
employed in algebraic approaches to modal logics (see, e.g., [Wol98]).
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contain non-isomorphic structures.!! Intuitively, however, all of its members should
be isomorphic over the symbols shared by A and B. Such an intuition is confirmed
by the proposition below, establishing a necessary and sufficient condition for the
existence of fusions.

Proposition 6 For all structures A and B,
Fus(A,B) #0 iff ATANTB &~ BYANTE

Proof. Let ¥ := 34 N Xp. To simplify the notation, in this proof and in the rest of
the paper we adopt the following notational convention. If h: C' — D is a map and
¢ € C™, the expression h(¢) denotes the tuple (h(c1),...,h(cy)). If R is an n-ary
relation over C, the expression h(R) denotes the relation {h(¢) | ¢ € R}.

(=) Let C € Fus(A,B). By definition we have that A = C*4 and B = C*5.
From the fact that ¥ C £4 and ¥ C ¥p it follows immediately that A* = C* and
B> = C*, which implies that A* = B>.

(<) Let h be a (bijective) map such that h: A* = B*. Consider a (X4 U Xp)-
structure C with universe B and such that

for all P € (S4USp)F,

pc._ [ WP i Pe(Sa\Tp)
Tl PP if Pexp

for all n-ary g € (¥4 U EB)F and b € B",
gC(E) = h(g:‘t(h—l((;))) if ge(Za\ZB)
gB(b) if g€ ZB

The structure C interprets ¥ p-symbols the way B does and ¥ 4-symbols as images,
through h, of the corresponding function/relations in A. We prove below that 5 :
A CEa,

If P is an n-ary predicate symbol of ¥4 \ X, for each a € A",

a e PA iff h(a) € h(PA) (by def. of h(PA) and injectivity of h)
iff h(a) € P¢ (by constr. of C);

if P is an n-ary predicate symbol of 3}, for each ¢ € A",

acPA iff h(a) € PB (h: A¥ = B%)
iff h(a) € P¢ (by constr. of C);

if g is an n-ary function symbol of ¥4\ X, for each a € A",
h(gA(@) = h(gA(h 1(h(a)))) (by bijectivity of h)
= ¢%(h(a)) (by coustr. of C);

"For example, assume that the signatures of A and B are disjoint and each contains a constant
symbol. Then, the two symbols may denote the same individual in one fusion of A and B and
distinct individuals in another.
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if g is an n-ary function symbol of ¥, for each a € A",

h(g*@) = g¢°(h@) (h: A” = B%)
g¢(h(@)) (by constr. of C);

By construction of C, it is immediate that id: B = C*B, where id is the identity of
B. It follows from the definition of fusion that (C, h,id) is a fusion of A and B. O

In essence, two structures admit a fusion exactly when they have the same car-
dinality and interpret in the same way the symbols shared by their signatures.

Given an isomorphism s of A* and B*, we will call canonical fusion of A and B
induced by h the fusion of A and B constructed like the fusion (C, h,id) in the proof
above.

We know that for each structure there is at least one set of individuals, the
set of generators, that determines the structure univocally. For pairs of structures
admitting fusions it is sometimes possible to identify a pair of sets of individuals
that, in a sense, determines the possible fusions between the two structures.

Definition 7 (Fusible Structures) Consider two structures A and B, a set X C
A, and a set Y C B with X’s cardinality. We say that A is freely fusible with B
over (X, Y) if every injection from a finite subset of X into Y can be extended to an
isomorphism of AZANEB onto BZAN%B,

Since A is freely fusible with B over (X, Y) whenever B is freely fusible with A
over (Y, X), for brevity we will simply say that A and B are fusible over (X, Y). In
analogy with generators, we call fusors the elements of X and those of Y.

Observe that A and B admit a fusion whenever A and B are fusible over some
(X,Y). In that case in fact, according to the definition above, the empty map-
ping from X to Y extends to an isomorphism of A*4™*B onto B*AM*B. But then,
Fus(A, B) is non-empty by Proposition 6.

We will provide some sufficient conditions for the fusibility of two structures in
Section 6.2. For now, our interest in fusions in general and fusible structures in
particular is motivated by the fact that, under the right conditions, satisfiability in
a fusion of two fusible structures reduces to satisfiability in each of them.

To show this we will start with the simplest type of combined satisfiability prob-
lem: given a formula ¢ satisfiable in a structure A and a formula 1 satisfiable in a
structure B, what can we say about the satisfiability of their conjunction?

Lemma 8 Let A and B be two structures of respective signatures Q0 and A such that
A and B are fusible over some pair (X, Y). Let o(4,0) be an Q-formula and (0, D)
a A-formula such that aNw = 0. If @ is satisfiable in A with v taking distinct values
over X and 1 is satisfiable in B with ¥ taking distinct values over Y, then ¢ A is
satisfiable in a fusion of A and B.
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Proof. Let £ :=QNA and o := (v1,... ,vp). Assume that
Al ¢la,z] and Bl b,

where @, b consist of arbitrary elements of A, B, respectively, Z := (Z1,--- , &) 18 in
X, 9:=(y1,--- ,Ym) is in Y, and neither Z nor § contains repetitions. Consider the
map h: Z — Y such that,

h(zj) =y; forall je{l,...,m}.

By construction of Z and 7, h is injective. Since A is fusible with B over (X, Y'), h can
be extended to an isomorphism h4_p of A* onto B*. Now, where K := {k1,... ,kn}
is a set of constant symbols not appearing in QUA, we define A?YX as the expansion
of A to QU K and BAYK as the expansion of B to A U K such that, for every

JE {]‘"" 7m}’
k;“QUK =x; and kaUK = Y.

AEUK BZUK

It is not difficult to see that h4_p is an isomorphism of onto as well.
By Prop. 6, it follows that Fus(A?YK, BAYK) is not empty. Consider any F €
Fus(AYK  BAVK) . We show that o1 A, is satisfiable in F2Y2. The claim will then
follow from the easily proven fact that 7?2 € Fus(A, B).

Consider the instantiation o := {v1 < k1,... ,v < ky}. By assumption, A |=
o[a, ] and so, by construction of A?K and o, A2K = 3 (po). From the fact that
FOUK = pQUK i follows that F |= 3 (po). Similarly, we can show that F = 3 (o).
By elementary logical reasoning and the fact that Var(po) N Var (o) = 0, it follows
that F = 3 (po Ayo) and therefore that F |= 3 (¢ Av), which implies, by Lemma 4,
that F2 = 3 (o Aeh). O

The lemma above contains the most important model-theoretic result of this
paper, in the sense that all the combination results we present here will ultimately
rest on it. To be able to use it effectively, however, we will need a more syntactic
characterization. We will give this characterization in two steps, starting with the
simple case of structures with disjoint signature and then moving to the general case.

3.1 Disjoint Signatures

Consider the structures A and B, and the sentences ¢ and 1 given in Lemma 8. When
the signatures of A and B have no symbols in common, the sufficient condition for
the satisfiability of ¢ A % can be expressed syntactically by adding to both ¢ and 1
a simple constraint on the free variables they share. We will define this constraint
using the notion of variable identification.

Definition 9 (Identification) Given a finite set U of variables, the set of identifi-
cations of U is defined as follows,?

ID(U) := {¢ € SUB(U) | Ran(§) C U\ Dom(€)}.

12Recall that SUB(U) is the set of idempotent substitutions whose domain is included in U.
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Every substitution in ID(U) defines a partition of U and identifies all the variables
in the same block with a representative of that block. To each ¢ € ID(U) we will
associate the set of constraints

dife(U):=  |J A{uzv}

u,weUE, u#tv

expressing the fact that any two variables not identified by ¢ must take distinct
values. We will write just dif when the set U is clear from context.

Observe that the empty substitution over the variables U always belongs to ID(U)
and that the associated set of constraints, which we will denote simply by dif (U), is
made of all the possible disequations between distinct elements of U. Also observe
that dif (U) is satisfied exactly when no two variables in U are assigned to the same
individual.

We can now use dif (U) to obtain an immediate special case of Lemma 8.

Lemma 10 Let A; and Az be two signature-disjoint structures with same cardinality
and, for i = 1,2, consider the X 4,-formula ¢;(4;,0), where a1 Nag = 0. If ¢; Adif ()
is satisfiable in A;, for i = 1,2, then 1 A @9 is satisfiable in a fusion of A1 and As.

Proof. For i = 1,2, let o; be a valuation such that (A;, a;) E @i A dif (7). Observe
that, because of dif (0), a; assigns pairwise distinct individuals to the shared variables
of ;. The result follows then from Lemma 8 noting that two equinumerous structures
A and B are trivially fusible over (A, B) when their signatures are disjoint. O

This last result can be interpreted in constraint solving terms as follows. Each
; represents a problem in the variables @; U¥ over the domain modeled by A;, while
¢ := p1 A @ represents a (composite) problem in the variables i1 U @ U 0 over the
domain modeled by some fusion of A; and As. In order to merge a solution s1 of ¢
and a solution sy of ¢, into a solution of ¢, it is necessary that s; and sy agree, so to
speak, on the values they assign to the shared variables, if any. The role of dif (v) is
exactly that of assuring such a merging by requiring that the shared variables take
distinct values over the fusors of A; and As.

Now, what if either ¢; is satisfiable only with valuations that assign the same
value to some of the shared variables? For instance, what if A, |= ¢1 = (v; = v;) for
some v;,v; € 97 It should be clear that, if all the A;-solutions of ¢; identify some
variables in @, for ¢1 A g to be satisfiable in a fusion of A; and Ao there must
exist an Ajs-solution of ¢ that also identifies these variables. We can then generalize
Lemma 10 to encompass the case just illustrated by considering a formula of the form
i€, where £ € ID(%). More precisely, a formula obtained from ¢; by a syntactical
identification of those shared variables that will be (semantically) identified by the
A;-solutions. Then, the constraint dif,, which is nothing but dif (3¢), can be used
in the same way dif (0) was used before.

13That is, for subproblems solutions to be mergeable into solutions of the composite problem.
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Proposition 11 Fori=1,2, let A; and p; be as in Lemma 10. If, for i = 1,2,

@il N dif ¢

is satisfiable in A; for some & € ID(0), then o1 A o is satisfiable in a fusion of A;
and As.

The above proposition is the syntactic counterpart of Lemma 8 in the case of
signature-disjoint structures. The addition of a simple constraint guarantees that the
shared variables (after the identification) take distinct values over the fusors of the
component structures, as the lemma requires. Since equinumerous structures with
disjoint signatures are fusible over their whole carriers, the task here was essentially
trivial.

The converse of Proposition 11 holds as well—we will prove a more general ver-
sion of it in the next subsection for structures with non-necessarily disjoint signature.
This already provides a sound and complete combination method to decide the satis-
fiability in Fus(Ai,.A2) of a formula @1 A @2 like the one in the proposition: consider
all possible identifications £ of the variables shared by ¢; and @9 until one is found
that makes ¢;¢ A dif . satisfiable in A;, for 7 = 1,2. The combination method is also
always terminating in this case because there are only finitely-many identifications
to consider. Unfortunately, things are not so nice and simple when A; and A5 have
symbols in common.

3.2 Non-disjoint Signatures

When two structures are not signature-disjoint, they are likely to be fusible only
over sets of fusors that are properly contained in their universes. Now, since the
property of being a fusor does not appear to be first-order definable, this means
that, in general, it may not be possible to force a variable to range over a set of
fusors by the simple addition of a first-order constraint like dif¢, as we did in the
previous subsection. One case in which it is possible is when the fusors in question
are also X-isolated, where X is a finite set of symbols shared by the two structures’
signatures. But to see that we will need some more definitions and notation.

Definition 12 (Instantiation) Given a finite set U of variables and a finite sig-
nature 3, the set of Y-instantiations of U is defined as follows,

IN*(U) := {p € SUB(U) | Ran(p) C T(Z,V)\V}.

Note that a X-instantiation of U either fixes an element of U or maps it to a non-
variable ¥-term. To avoid name conflicts, given that an instantiation may introduce
variables not in its domain, we will only consider Y-instantiations p such that the
variables occurring in Ran(p) are all fresh. To every instantiation p € IN*(U), we
will associate the set

isof(U) = U {Va; v £ fi(t)},

vEVar(Up), f;€XF
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which we will denote just by iso, when ¥ and U are clear from the context.

Observe that the set iso% is satisfied by a valuation « if and only if & maps the
variables in Up to individuals that are not in the range of any »-function, i.e., to
Y-isolated individuals. Also observe that the empty substitution belongs to IN*(U)
for any U and ¥. We will denote its associated set simply by iso™(U).

As we did in the previous subsection, we can use iso™(U) together with dif (U)

to obtain a special case of Lemma 8.

Lemma 13 Let A; and Ay be two structures and let ¥ be a finite subset of ¥ 4,NX 4,.
Assume that for i = 1,2, there is a set X; such that Is(A;>) C X; C A; and A, and
Ag are fusible over (X1, Xo). Fori=1,2, consider the X 4,-formula ¢;(4;,7), where
i1 Ny = (0. If the formula

©i N iso™ (%) A dif (D)
is satisfiable in A; for i = 1,2, then @1 A @9 is satisfiable in a fusion of A1 and As.

Proof. By assumption, for ¢ = 1,2, there is a sequence a; and a sequence Z; of
individuals of A; such that A; = o;[a;, 3] A iso™[%;] A dif [%;]. By Lemma 8, all we
need to show is that Z; is composed of pairwise distinct elements of X;.

That Z; does not contain repetitions is entailed by the fact that dif [Z;] is true in
A;. To see that 7; is included in X;, just recall that iso”[;] is true exactly when ;
is a set of Y-isolated individuals and that all X-isolated individuals of A; are in X
by assumption. O

From the proof above and that of Lemma 8 is clear that we actually have a
slightly stronger result: when the conditions of the Lemma 13 hold, the whole formula
©1 A @ Aiso™ (D) A dif (¥) is in fact satisfiable in a fusion of A; and Aj.

In Lemma 13, the requirement that both sets of fusors contain the -isolated
individuals of their respective structures, allows us to use a first-order formula,
iso™ (%) A dif (¥), to force the variables shared by the two pure formulae to take
distinct values over the fusors. But now, what if either ¢; is satisfiable only with
valuations that map some shared variables to individuals that are not X-isolated?
We can still apply the above result if these individuals are X-generated by Y-isolated
elements. We do this by first instantiating each shared variable in question with a
suitable Y-term over fresh variables and then forcing both the new variables and the
untouched shared variables to range over the Y-isolated individuals, as we did before.

To formalize the intuitions above it is convenient to introduce the following re-
stricted notion of fusibility.

Definition 14 (X-fusibility) Let A; and As be two structures and ¥ be a finite

subset of ¥4, N ¥ 4,. We say that Ay and Ag are ¥-fusible iff for i = 1,2 there is a
set X; such that Is(.AiE) C X; C A; and Ay and Ay are fusible over (X1, X3).
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A little clarification on the above definition is in order here. Recalling the defi-
nition of fusibility, it is not difficult to see that when two structures A; and Aj as
above are fusible over some pair (X7, X5), every bijection between two finite subsets
of X; extends to an automorphism of A;> (i = 1,2). This entails, in particular, that
all the elements of X; satisfy exactly the same Y-formulae in one variable. As a con-
sequence, we obtain that a member of X; is Y-isolated in A; only if every member of
X; is S-isolated in A;. Therefore, unless Is(A;¥) and Is(Ay™) are empty, if A; and
Ay are X-fusible, the pair of sets on which they are fusible is univocally determined
and coincides with (Is(A;%), Is(A2%)).

Proposition 15 Let A; and Ay be two structures X-fusible for some finite 3 C
Y4, NX4,. Fori=1,2, consider the X ,-formula ¢;(4;,0), where 41 Nty = 0. If

(pip A iso,)E A dif ¢

is satisfiable in A; for some p € IN*(%) and & € ID(Var(ip)), then @1 A @y is
satisfiable in a fusion of Ay and As.

Proof. For i = 1,2, assume that (p;p A iso,)§ A dif ¢ is satisfiable in A;, where p and
€ are as described above. Where ¢} := @;p€ and @ := Var(tp)¢, it is easy to see
that iso,§ = iso™ () and dif ¢ = dif (), which means that (pip A iso0,)é A dif ¢ has
actually the form

L (T, W) A iso™ (W) A dif ().

From the assumptions and Lemma 13 we have that ¢} A ¢} is satisfiable in a fusion of
A; and Ay. The claim follows then immediately from the observation that (¢} Ag))

(1 A p2)pt. 0

This proposition is both a syntactic specialization of Lemma 8 and a proper
generalization of Proposition 11 to the case of structures with arbitrary signatures.
It should already be clear though that any combination method based on it will not
in general be terminating, as the number of possible instantiations p above becomes
infinite once the structures share a function symbol of non-zero arity.

Furthermore, being a specialization of Lemma 8, Proposition 15 provides just
a sufficient condition for the joint satisfiability of ¢; A @o. The satisfiability of
(pip A is0,)€ A dif ¢ in A;, although sufficient, is typically not necessary for the
satisfiability of ¢1 A ¢y in Fus(A;, A2). It does become necessary, however, if A; and
As have a fusion Y-generated by its X-isolated individuals alone.

Proposition 16 Let A;, As be two structures with respective signatures X1, Yo and
admitting a fusion F which is X-generated by its Y-isolated individuals, for some
finite 3 C 31 NXy. Fori=1,2, consider the %;-formula ¢;(4;,), with @ Ny = 0.
Then, if o1 A @9 is satisfiable in F, there is a p € IN(¥) and a & € ID(Var(ip))
such that (pip A iso,)E A dif ¢ is satisfiable in A; for i =1,2.
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Proof. Let X be the set of F’s Y-isolated individuals. By assumption, there is
a valuation « such that (F,a) = ¢1 A p2. We show that o and X induce an
instantiation p and identification ¢ that satisfy the claim.

For all v; € ¥, such that a(v;) € X, we choose any non-variable X-term ¢;(w;) and
sequence Z; in X such that a(v;) = tjf [Z;]."* We assume, with no loss of generality,
that all the variables in each 1, are new and expand « to these variables by mapping
each of them to the corresponding element of Z;. Then, we choose the instantiation
p € IN*(%) such that, for all v; € 9,

vip— 4 Vi if a(vj) € X
P = tj(w;) otherwise

and the identification £ € ID(p) such that, for all v,w € Var(vp),
v€E=wé iff o(v) =d(w),

where o is the expansion of « just described. We leave it to the reader to verify
that (F,o') = (wip Aiso,)E A dif ¢ for i = 1,2. Now, (pip A iso,)€ A dif ¢ is actually
a X;-formula and so is also satisfied by F>i. The claim then follows from the fact
that F> is isomorphic to A; by definition of fusion. O

It should be noted that the requirement that a structure (in the case above, a
fusion) be X-generated by its Y-isolated individuals is rather strong. It is easy to
find natural examples of structures that are not. For instance, let A be the integers
with zero, successor and predecessor and let 3 consist of the zero and successor
symbols. Now, although the set of A’s Y-isolated individuals is empty—as every
integer is the successor of another one—the structure A is not Y-generated by the
empty set. However, we will see in Section 7 that there is a large and interesting
class of structures Y-generated by their 3-isolated individuals.

3.3 Y-Restricted Formulae

We will use formulae with an added constraint of the form iso™(%) A dif (¥) often
enough to justify the following definition.

Definition 17 (2-Restricted Formula) Given a finite signature ¥ and a (pos-
sibly empty) tuple of variables © we say that a formula v is Y-restricted on o, or
simply, Y-restricted, if it has the form

© A iso™ (D) A dif (D).

We call o the body of 1 and iso™ (%) A dif (¥) the D-restriction of .

4 The existence of such a term and sequence is guaranteed by the assumption that X Y-generates
F.
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We will often use the abbreviation res™(%) for the S-restriction iso™ (%) A dif (7).
According to the above definition, a formula of the form (pp A is0,)§ A dif ¢ (such
as those seen in Proposition 15), where p € IN*(@) with @ = Var(p) and & €
ID(Var(©p)), is in fact a S-restricted formula with body pp¢ and Y-restriction iso ,{ A
dif ¢.

All combination results in this paper will require Y-restricted formulae. Many
of them will hold only for formulae Y-restricted on all of their free variables. We
call such formulae totally Y-restricted. More precisely, a Y-restricted formula ¢ A
res™ (%) is totally S-restricted if Var(p) C #. Notice that closed formulae, and ground
formulae in particular, are always totally X-restricted for any X.

Where £ is a class of formulae and ¥ a finite subset of a signature 2, we will
denote by Res(L?, X) the class of all the S-restricted formulae whose body belongs to
£, Similarly, we will denote by TRes(L£, %) the class of all the totally Z-restricted
formulae whose body belongs to £.

By definition, £? and TRes(L%,Y) are always included in Res(£?,¥). For the
common case in which £ is Qff, notice that Qﬁﬂ will be usually strictly included in
Res(Qff,%). In fact, unless X contains at most constant symbols (or @ is empty), the
iso>(¥) component of every X-restricted formula will contain universal quantifiers.
Finally, notice that when ¥ is empty, every 9 € Res(L£%, %) is simply of the form
@ A dif (§). Then, L2, TRes(L?, %) and Res(L£?, %) all coincide if £ is closed under
conjunction with disequations—as is the case with Qff.

Understanding Y.-restrictions

The effect of T-restrictions is clear by looking at the definition of iso™ and dif: they
constraint some variables to be distinct Y-isolated individuals. Since the notion of
Y-isolated individual is quite technical, what may not be clear of this point is whether
Y-restrictions have a place in common constraint solving practice. We show below
that there are situations in which X-restrictions arise naturally.

In this discussion, we will consider just the iso™ component as the L-restriction
and ignore the dif component, which is essentially unproblematic. The satisfiability
of a formula ¢(?) is reducible to the satisfiability of the formula

(o A dif (9)€1V -V (o A dif (0))én

where &1,... ,&, are all the (finitely many) identifications of ©. Therefore, by con-
sidering a finite number of identifications we can turn any satisfiability problem into
one with additional dif constraints without changing its set of solutions. That is not
the case for iso™ constraints because in general we may need to consider infinitely
many Y-instantiations of the constraint ¢; and even that will not be enough if ¢ is
only satisfied by values that are not »-generated by Y-isolated individuals.

Now, as in many applications of logics to computer science, 3-restrictions are
better understood in terms of (data) types, or sorts, in logic parlance. Even if classical
first-order logic—which we use in this paper—has no explicit notion of sort, we do
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think of elements in a given domain as naturally grouped in sorts, sets of individuals
with common features. Correspondingly, we think of functions as mapping tuples
of values of certain sorts to values of some fixed sort, and of relations as subsets
of the Cartesian products of certain sorts.!®> We show that under the right—and
quite reasonable—conditions, a constraint like iso™(v) on a variable v amounts to
requiring that the value of v does not belong to a certain sort.

In fact, suppose (2 is the signature of interest and 3 collects only function symbols
f of Q that have some fixed sort S as codomain (i.e., the intended type of f is
Sy x---x S, = S). In every Q-structure including S in its universe and in which
all the elements of S are X-generated, the only ¥-isolated individuals are those that
do not belong to S. For such structures then, a Y-restriction of the form iso*(v)
denotes the restriction that a(v) ¢ S for every valuation « of v.

Example 18 With Q := {0,s, nil, cons, length}, consider the Q-structure .A whose
universe A is made of pairwise disjoint sorts N, L and I where N is the set of the
natural numbers, L the set of the LISP lists over A (including non-nil terminated
lists), and I a set of ill-sorted individuals. The constants 0 and nil are interpreted
by A in the obvious way. The interpretation of the other symbols is such that a)
cons? is the injective function behaving as the LISP list constructor and mapping
values of A into L as expected, b) sA coincides over N with the successor function
and injects the elements of L U I into I, c) IengthA coincides over L with the list
length function and injects the elements of N U I into I. Now let ¥ := {nil, cons}.
The X-isolated individuals of A are exactly the elements of N U I. Therefore, the
Y-restriction iso™(v) is equivalent in A to the requirement that v is not a list.

The above example provides insights on Y-instantiations as well. In fact, L
contains by construction no circular lists'®: every list in A is a (possibly nested) list
of atoms, the elements of N U I. This is what it means in our terminology for A to
be Y-generated by its Y-isolated individuals.

Now, let ¢ be an Q-formula satisfiable in A and assume for simplicity that ¢
has just one free variable, v. If the value of v that satisfies ¢ is not a list, then this
value is E-isolated and so it satisfies ¢ A iso™(v) as well. If the value of v is a list,
then it can be denoted by some ¥-term ¢(%) whose variables are mapped to non-lists
values; these values satisfy the formula pp A iso?(ﬂ) where p is the X-instantiation
{v + t(@)}. It should be now easy to see that, in general, a formula ¢(?) is satisfiable
in the structure A above if and only if there is a p € IN*(%) and a ¢ € ID(Var(dp))
such that (pip A iso,)E A dif ¢

To conclude this section, we show another structure B that combines in a natural
way LISP lists with some other data-type, is ¥-fusible with the structure A above,
and has a fusion with A that is X-generated by its Y-isolated individuals.

5Notoriously, this picture is complicated by the fact that all functions and relations are total
in classical first-order logic and so each first-order structure also has to specify how a function or
relation behaves over input values that do not have the intended sort.

$Formally, there are no -terms ¢ such that (A, a) = v = t for some v € Var(t) and valuation a.
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Example 19 Let A := {a,b, -, nil,cons} and consider the A-structure B whose uni-
verse B is made of pairwise disjoint sorts W, L and J, where L is again the set of the
LISP lists but over B this time, W is the set of strings over the characters a,b, and J
is the set of B’s ill-sorted individuals. The symbols in ¥ := {nil, cons} are interpreted
by B in a way similar to that of the previous example. The characters are interpreted
as distinct elements of S. The binary symbol - is interpreted an associative operator
that behaves over W X W as string concatenation and maps pairs not in W x W to
elements of J. The Y-isolated individuals of B are exactly the elements of W U J.

First we show that A and B have a fusion. Observing that N UTI and W U J
are both countably infinite, let h be any bijection of the former onto the latter.
Recalling that A is Y-generated by N U I, let hy_p be the (necessarily) unique
$-homomorphic extension of h to A mapping nil* to nil® and cons?(ay,as) to
consB(ha_p(a1),ha_p(az)) for all ai,ay € A. It should be easy to see that ha_p is
in fact a bijection of A onto B, which entails that ha_p: A* = B¥. It follows from
Proposition 6 that A and B have a fusion. Now, let F be the canonical fusion of
A and B induced by hs_p. Since F> coincides with B> it is immediate that F is
3-generated by its X-isolated individuals.

Although it is possible to show directly that A and B are X-fusible, we will do
that by using some general results about the fusibility of free structures. But for
that we will have to wait until Section 6.

4 Fusions and Unions of Theories

The combined satisfiability results of the previous section can be lifted from struc-
tures to theories. What makes this possible is the close link between fusions and
unions of theories, as illustrated in the proposition below. If 77 and T, are two
theories, let Fus(T1,T) denote the following class of structures:

Fus(Ty,Ty) := U Fus(A,B).
AEMod(Ty), BE Mod(T»)

Proposition 20 For any theories Ty and Ty, Fus(Ty,T>) = Mod(T; U Ty).

Proof. For i = 1,2, let 3; be the signature of T;.

(C) Assume that F is a fusion of some A € Mod(T1) and B € Mod(T3). From
the definition of fusion we have that A = F*t and B = F>2. Therefore, F models
every sentence of T and every sentence of T5. It follows immediately that F models
Ty UTs.

(D) Immediate consequence of the obvious fact that any C € Mod(T; UTy) is a
fusion of C*! and C*? and that C* models T}, for i = 1,2. O

Recalling Proposition 6 on the existence of fusions, we have the following corol-
lary, first proved in [Rin96b] and [TH96].
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Corollary 21 The union of a X1-theory T1 and a Xo-theory Ty is consistent iff there
is a model of T1 and a model of Ty such that their reducts to 31 N Yo are isomorphic.

We will see later that all the theories we consider for combination satisfy the
right-hand-side condition in the above corollary, therefore it will indeed make sense
to work on their union.

In the rest of the paper, we will be mostly interested in pairs of formulae belonging
to the Cartesian product £*! x £>2, for a given class £ of formulae and signatures
%1 and 5. For technical reasons we explain in the following, we will only consider
pairs in which at most one of the two formulae is, or has subformulae, made entirely
of shared symbols, i.e., symbols in 31 N ¥9. We formalize this restriction in the
definition below.

Definition 22 Where L is a class of formulae and 1 and X9 two signatures, we
call disjoint product of £>' and L£L¥? and denote by L¥' @ L>* the following subset
of L x L¥2:

L@ LY = {{p1, p2) € LZ' x L¥? | no subformula of ¢y is in L7\ {T}} U
{1, w2) € L¥ x L¥? | no subformula of @1 is in L¥2\{T}}

Since £L¥' ® £L>? is a subset of L¥1 x £>2, all of its pairs (1, ¢2) are such that
©; contains predicate and function symbols from ¥; only (i = 1,2). For this reason,
we call ; the i-pure component of (@1, ¢2).!7 For convenience, we say that the pair
(1, p2) is satisfiable in a structure (theory) iff ¢1 A 9 is satisfiable in the structure
(theory).

We are now ready to identify a class of theories whose satisfiability procedures
can be combined in a modular way to yield a satisfiability procedure for their union,
as we will see in Section 5.

Definition 23 (N-O-combinable Theories) Let L be a class of formulae and
T1,T5 two theories with respective signatures 1,9 such that ¥ := X1 N Yo is fi-
nite.

o We say that Ty and T are partially N-O-combinable over £ if Condition 2/
below holds for all (p1, @) € L @ L>2.

e We say that Ty and T, are (totally) N-O-combinable over L if both Condition 2/
and Condition 25 below hold for all {p1, o) € L' @ L*2.

Condition 24 For all p € IN*(3) and ¢ € ID(Var(dp)) with © := Var(p1) N
Var((nO?); if
Vi == (pip N is0,)E A dif ¢

is satisfiable in T; for i = 1,2, then 1; is satisfiable in a model A; of T; such that Ay
and Ay are X-fusible.

17Observe that £¥! ® £¥2 also contains pairs of the form (¢1, T) or (T, p2)—effectively making
every i-pure formula a member of £>! ® £2.
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Condition 25 If p1 Ay is satisfiable in Ty UTy, it is satisfiable in a model of T1 UTs
that is 3-generated by its Y-isolated individuals.

While Condition 25 is straightforward and easy to understand, it may be hard
to grasp Condition 24 at an intuitive level. To do that it is helpful to concentrate on
the case in which p is the empty instantiation (and iso, is then empty), as the other
cases are reducible to this one. For that case, the condition is roughly saying that
if each set T'U {¢;} is satisfied by X-isolated individuals, the only way for 7'U {1 }
and T'U {g2} to contradict each other is to disagree on which variables of ¥ get the
same value and which don’t.

The use of £ ® £>? in the definition above instead of £>! x £>? is a necessary
technicality to guarantee the existence of pairs of N-O-combinable theories at all. As
an example of what can go wrong with £ x £¥2, assume that £ is closed under
conjunction and negation and take any two theories 77 and 75 of signature ¥ and 3o,
respectively, with ¥ := ¥; N Xy non-empty. Then, {p1 A @, w2 A—p) € LZ1 x L>2 for
any ¢ € LZ, 1 € L' and py € £>2; but it is obvious that, against the requirements
of Condition 24, for no p and £ is a model of T} satisfying ((¢1 A p)p A iso,)E A dif ¢
fusible with a model of T3 satisfying ((p2 A —p)p A iso,)E A dif§.18

We point out that even the current definition of £*' ® £>? could be improved as it
still rules out many theories that one would like to be N-O-combinable.'® However,
we doubt that much improvement can be achieved without abandoning a strictly
syntactical definition of £ @ £>2.

When combining two theories one should make sure that their combination is
meaningful to start with, that is, it is not inconsistent (or trivial). This is particularly
important when one considers, as we do, theories that share non-logical symbols, as
it is much easier for such theories to have contradicting consequences. Now, a first
consequence of Definition 23 is that N-O-combinable consistent theories do have a
consistent union, and so it does make sense to combine them.

Proposition 26 Let Ty and Ty be partially N-O-combinable over L. If Th and To
are consistent, then Ty U Ty is consistent.

Proof. Let 1 and @3 both be T. From an earlier observation we know that (o1, @2) €
L¥ ® L2, If, for 4 = 1,2, T} is consistent, then ¢; is trivially satisfiable in a model
of T;. Observing that Var(y1) N Var(ys) = 0, we can conclude from Condition 24

18We do not even need £ to be closed under negation and conjunction. It is enough that there is
a formula ¢ € £¥1, say, and a formula v € £= such that T} |= =3 (¢ A ). Then, for no theory Ty
will {yp, 1) satisfy Condition 24.

19 A case in point are pairs of theories of the form T3 UT, and T>UTs where T1, T, and T are pairwise
signature-disjoint. Not all of such pairs are N-O-combinable even if they represent a trivial case of
non-disjoint combination. To see that, let T1 := {Vz,y. Pi(z,y) = ¢ =y}, T> := {a = a, b = b} and
T5 := {Vz,y. P3(z,y) = = Z y}. Then consider the pair of pure formulae (Pi(z,y), Ps(z,y)), the
instantiation p := {z < a,z < b} and the identification £ := {}. Again, models of T1 UT> satisfying
(P1(z,y)pAiso,)§Adif . = Pi(a,b) and models T> UT3 satistying (Ps(x,y)pAiso,){ A dif . = P3(a,b)
do exist, but they are obviously not fusible.
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(by considering the empty instantiation and identification) that @1 A @9 is satisfiable
in a fusion of a model of 77 and a model of T5. By Proposition 20, this fusion is a
model of T7 U T5. O

If the class £ contains disequations of variables, we can show in a similar way
that 71 U T is non-trivial whenever T} and T5 are N-O-combinable and non-trivial.

N-O-combinable theories make viable candidates for combination methods for
satisfiability thanks to the properties below. Let 11, T, 31, 39, 3, and £ be as in
Definition 23.

Proposition 27 Let T1 and Ty be partially N-O-combinable over L. Then, for all
{p1, p2) € L @ L and © = Var(p1) N Var(p2), @1 A o is satisfiable in Ty UTy if
there is a p € IN*(9) and ¢ € ID(Var(9p)) such that (wip A i80,) A dif ¢ is satisfiable
inT; fori=1,2.

Proof. Immediate consequence of Condition 24, Proposition 15 and Proposition 20.
O

If 17 and T> satisfy Condition 25 as well, the implication in the proposition above
becomes a full equivalence.

Theorem 28 When Ty and T are totally N-O-combinable over L the following are
equivalent for all {1, p2) € L¥ @ L¥? and § = Var(p1) N Var(ps).

1. There exists a p € IN*(3) and ¢ € ID(Var(9p)) such that, fori=1,2,
(pip N iso,)E A dif ¢ is satisfiable in T;.

2. 1 N o is satisfiable in T U Ts.

Proof. Tt is enough to show that (2 = 1). But that is an immediate consequence of
Condition 25, Proposition 20 and Proposition 16. O

We exploit the above properties of N-O-combinable theories in the next section
where we describe a sound and complete general procedure for combining constraint
reasoners for N-O-combinable theories.

5 Combining Satisfiability Procedures

We show in this section that when a certain type of satisfiability problem is decidable

for two N-O-combinable theories, it is possible to build a decision procedure for a

corresponding satisfiability problem in the union theory, using the very decision

procedures for the component theories. We do this by means of a combination

procedure whose correctness relies on the combination results of the previous section.
In the following, we will fix
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Input: (1, p2) € L¥ @ L2

1. Generate the pair (y1, 72) := (p1p A iso,, p2p A is0,)
for some p € IN*(%) with 9 := Var(¢1) N Var(ps).

2. Generate the pair (11, ¥2) := (11§ A dif ¢, v2€ A dif ¢)
for some & € ID(Var(vp)).

3. Succeed if 1)1 is satisfiable in T} and 5 is satisfiable in T5.
Fail otherwise.

Figure 1: The Combination Procedure.

e a class of formulae £ closed under identification and instantiation of free vari-
ables;

e two countable signatures 31 and X9 such that 3 := 31 N 3 is finite;
e 3 Xi-theory 17 and a Yo-theory T5.

Our combination procedure is defined in Figure 1. It considers the satisfiability
in 77 U T, of formulae from £*' @ £*2 by reducing it non-deterministically to the
satisfiability in 77 and in 75 of pure Y-restricted formulae. Given the input problem
(p1, p2), the procedure first applies to (¢1, p2) an arbitrary instantiation p (into
Y-terms) of the variables shared by (1 and 9. Then, it applies an arbitrary identi-
fication £ of the shared variables in the new pair. Lastly, it checks that each member
w;p€ of the final pair is satisfiable in the corresponding theory under the restriction
is0,& A dif ¢, succeeding only when both members are satisfiable.

In essence, the procedure is a non-deterministic version of the Nelson-Oppen
combination procedure [NO79], but it extends that procedure in a number of ways:
(1) it does not require that the input formulae be quantifier-free, (2) it does not
require (correspondingly) that the component theories be universal, (3) it allows the
signatures of the component theories to share up to a finite number of symbols, (4)
it considers only identifications over the free variables shared by the two input for-
mulae, whereas Nelson and Oppen’s considers identifications over all the variables.
The latter improvement is significant for practical computational concerns if not the-
oretical ones because it reduces the number of possibles choices in the identification
and instantiation steps (steps 1 and 2). It has also been considered by Baader and
Schulz in their own combination methods, starting with the one described in [BS96].

Proposition 27 immediately tells us that the procedure in Figure 1 is sound for
component theories that are partially N-O-combinable over the given language L.
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Proposition 29 (Soundness) Let T and Ty be partially N-O-combinable over L.
If one of the possible outputs of the identification step is a pair (11,v9) such that 1;
is satisfiable in T; for i = 1,2, then the input pair (@1, @2) is satisfiable in Th U Ty.

If the component theories are totally N-O-combinable over £, Theorem 28 tells
us that the procedure is also complete, in the sense specified below.

Proposition 30 (Completeness) Let 11 and T be totally N-O-combinable over
L. If the input pair (@1, @2) is satisfiable in Ty U Ty, then there is a pair (1,19)
among the possible outputs of the identification step such that 1; is satisfiable in T;
fori=1,2.

The formula 9; (7 = 1,2) in the two results above, which has the form (p;p A
i80,)€ A dif ¢, is a Y-restricted formula in the sense of Definition 17. More precisely,
1; is an element of Res(L¥, ) as ¢; € L¥ and L is closed under identification and
instantiation. For for Step 3 of the combination procedure to be effective then it
must be able to resort, for 1 = 1,2, to a procedure that decides the satisfiability in 7;
of formulae in Res(£*i, ). In that case, recalling that non-deterministic procedures
are said to succeed iff one of their possible runs is successful, we can claim by the
above the following result.

Proposition 31 Assume that T1 and Ty be totally N-O-combinable over L and the
satisfiability in T; of formulae in Res(L>,X) is decidable, for i = 1,2. Then, the
combination procedure succeeds on an input (p1, p2) € L ®@ L2 iff (p1, p2) is
satisfiable in Ty U Ty.

We point our that, contrary to what Proposition 31 might seem to imply, the
combination procedure is in general only able to semi-decide the satisfiability in
Ty UT, of formulae in £¥'® £¥2. The problem lies in the unbounded non-determinism
of Step 1. As we have already observed, whenever ¥ contains a function symbol of
non-zero arity and the set of variables shared by the two formulae in the input is
nonempty, there is an infinite number of possible instantiations over that set.

In that case, if the input pair is unsatisfiable in the union theory, by the proce-
dure’s soundness, none of these instantiations will make both formulae 11 and 9
in Step 3 satisfiable in their respective theory. It follows that the procedure will in
general diverge?® on unsatisfiable inputs.

Notice that the procedure can be easily reformulated so that it will not diverge
on input pairs containing an ¢-pure formula that is already unsatisfiable in T;, and
hence in 77 U T5. The non-termination problem arises only for genuine combination

20Gtrictly speaking, we should say something like: “it will infinitely fail”. It should be clear that,
at the cost of a less elegant definition, we could give an equivalent reformulation of the procedure
according to the standard (that is, bounded) notion of non-determinism. (For instance, by consid-
ering all instantiations p into terms of height n first, then those into terms of height n + 1, and so
on.) According to that definition, the procedure would diverge in the conventional sense.
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questions, input pairs that are unsatisfiable in the union theory even if each of their
pure members is satisfiable in the corresponding component theory.

We will illustrate later some special cases in which the combination procedure
can be modified so that it always terminates. Interestingly, though, even if it is only
a semi-decision procedure, the procedure does yield decidability results when the
theories considered are axiomatizable.?! In fact, as pointed out, the procedure will
diverge only on those inputs that are not satisfiable in the union theory. This means
that when the procedure is applicable, the set of pairs satisfiable in the union theory
is recursively enumerable. Now, by the completeness of first-order predicate calcu-
lus, the set of formulae unsatisfiable in an axiomatizable theory is also recursively
enumerable. It follows that if our procedure is applicable to two theories 77 and T3
such that 77 UT5 is axiomatizable, the set of pairs satisfiable in 77 U T5 is recursive.
Although this observation does not provide us with a practical decision procedure
for satisfiability in 77 UT5, it does lead to the following decidability result—once we
notice that 77 U T5 is axiomatizable whenever both 77 and T5 are.

Proposition 32 Assume that, for i = 1,2, T; is axiomatizable and the satisfiability
in T; of formulae of Res(L>,%) is decidable. If Ty and Ty are N-O-combinable over
L, then the satisfiability in Ty UTy of formulae in L™ ® L? is decidable.

Up to now, we have used a rather weak language for (mixed) constraints, namely
L>¥'® L>2. We have considered only constraints expressible as the conjunction of two
pure formulae which, in addition, share non-logical symbols is a very limited way.
In general, however, combined satisfiability problems are not always expressible in
the nice separated format given by £*' ® L£2, but rather as mixed constraints in
L¥1Y*2_ Our combination results would certainly be more useful then if they could
be given in terms of £¥1Y*2 instead. This is in fact possible, but at the cost of some
closure assumptions on £.22 We describe such assumptions in the following and then
show, as an example, how they let us improve on Proposition 32.

Definition 33 Given two signatures 1 and Qs, we say that a class L of for-
mulae is purifiable w.r.t. (Q, Qo) if for every ¢ € LNV there is a finite set
{(ej, @) }icm C LM ® L2 such that

1. go} A 90? € LY. for gll j < m,
2. ¢ and \/;p, (gaj1 A w?) are equisatisfiable.

We call \/; ,,, (<,0]1 A <p]2) a disjunctive pure form of ¢ (w.r.t. (1, Q2)). We say that L
is effectively purifiable w.r.t. (Qy, Qo) if for each formula ¢ € L4Y? | q disjunctive
pure form of @ is effectively computable.

2L A theory is aziomatizable if its deductive closure coincides with the deductive closure of a
recursive set of sentences.
%2 Notice that we have hardly made any assumptions on £ so far.
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If the class L specified the beginning of this section is effectively purifiable with
respect to our initial pair of signatures (31, ¥o), we can modify the combination
procedure of Figure 1, by adding a “preprocessing” step that, given an input formula
@ from £>1Y*2 computes a disjunctive pure form 1) of ¢ and the returns—in a don’t
know non-deterministic way—one of 1’s disjuncts.

Given that ¢ is satisfiable in T7 UT5 if and only if some disjunct of its disjunctive
pure form is satisfiable in T} U T5, it is immediate that the new procedure is correct
as well. We can now express the previous decidability result more neatly as follows.

Proposition 34 Assume that, for 1 = 1,2, T; is axiomatizable and the satisfia-
bility in T; of formulae of Res(L¥,Y)) is decidable. If L is effectively purifiable
w.r.t. (X1, X2) and Ty and Ty are N-O-combinable over L, then the satisfiability in
T, UTy of formulae of LZ1Y*2 is decidable.

The above proposition seems to suggest that we get a somewhat weaker decid-
ability result for the union theory, since we start with restricted formulae in the
component theories and end up with unrestricted formulae in the union theory. This
is not true, as the corollary below shows.

Corollary 35 Assume that L is effectively purifiable w.r.t. (31, X2), T1 and T» are
N-0O-combinable over L, and T; is aziomatizable for i = 1,2. Then, if the satisfiability
in T; of formulae of Res(L™,X) is decidable, the satisfiability in Ty UTy of formulae
of Res(L¥1Y>2 %) is also decidable.

The result above is interesting because it can lead by iteration to decidability
results for more than two theories. Suppose in fact that, in addition to the theories
in the corollary, there is a third axiomatizable theory T3 of signature 3 whose
common signature with T} U T is also 3 and for which the satisfiability of formulae
of Res(L£>3,%) is decidable. Then, if £ is effectively purifiable w.r.t. (3; U 29, £3)
and Ty U Ty and T3 are N-O-combinable over £, by the above, the satisfiability in
T) UT, UT; of formulae of Res(L£¥1Y¥2Y%3 %)) is also decidable.

Proving Corollary 35 is easy but tedious. The following informal argument should
suffice. Recall that given a formula ¢, the new combination procedure first purifies
it into a pair (@1, @2), then specializes (p1, p2) into a pair (p1p€, 2p€), and finally
adds to each ¢;p{ the X-restriction iso,£ A dif ¢ before passing the pair to Sat;. It is
possible to show that all our combination results lift to the case in which non-shared
variables are also considered for possible instantiation and identification.?® Now, if
the input ¢ is already of the form ¢ A res™ (%) with ¢ € £¥1Y*2 it is enough for the
procedure to purify ¢ into (¢1, ¢2) and then generate the formulae (ppAiso,){ Adif ¢
as before with the only differences that ¢} is now @; A res™ (%), p is chosen so that it
does not instantiate any variables in ¥, and £ is chosen so that it does not identify
any two variables in . It is a simple exercise to show that each (jp A iso,)& A dif ¢

2 (Considering only shared variables is in a sense an optimization of this more general case.
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can be effectively reduced?* to a logically equivalent formula in Res(£*i,Y), which
can then be processed by T;’s satisfiability procedure.

5.1 An Effectively Purifiable Class of Formulae

We conclude this section by showing that an important class of formulae, the quantifier-
free formulae, is effectively purifiable w.r.t. any pair of signatures. For that we first
need to give a precise definition to some concepts we have been using only informally
so far.

Let us fix again two arbitrary countable signatures 3; and 5 and let 3 := ¥1N¥s.
We call shared symbols the elements of ¥ and shared terms the elements of T(3,V).
Observe that when ¥ is empty, the only shared terms are the variables. We call
(strict) 1-symbols the elements of ¥; (X1 \X) and (strict) 2-symbols the elements
of £y (¥2\ X). Shared symbols are both 1- and 2-symbols, and they are strict for
neither signature. A term ¢t € T(X1 U X9, V) is an i-term iff its top symbol ¢(e) is
an element of VUY; (: = 1,2). Variables and terms ¢ with top symbol in ¥; N %,
are both 1- and 2-terms. For 1 = 1,2, an i-term is pure iff it contains only #-symbols
and variables.

There is a standard purification procedure that when 31 and X4y are disjoint can
convert any set S of literals of signature ¥; UX9 into a set of pure literals (see [BS95a)
among others). The purification process is achieved by replacing “alien” subterms
by new variables and adding appropriate new equations to S. Intuitively, an alien
subterm of an i-term ¢ is a maximal subterm of ¢ that is not itself an i-term. The
gist of the procedure then is to abstract by a fresh variable v, each alien subterm s of
an atom in S and add the equation vy = s to S. The abstraction process is applied
repeatedly to S until no more subterms can be abstracted. This procedure always
terminates and produces a set of literals that is satisfiable in a (31 U Xy)-structure
A iff the original set S is satisfiable in A.

Now, for disjoint ¥; and Y9 a formal definition of the notion of alien subterm
to be used by the purification procedure is straightforward. If one allows 3; and
Y9 to share symbol, however, things gets tricky because one has to decide how to
consider shared function symbols (see [BT01] for a detailed discussion). We adopt
the following definition among a number of possible ones.

Definition 36 (Alien subterms) Let t € T(X,UZX, V). If the top symbol of t
is a strict i-symbol, then a subterm s of t is an alien subterm of t iff it is not an
i-term and it is mazimal with this property, i.e., every proper superterm of s in t is
an i-term.

If the top symbol of t is a shared symbol, then for ¢ =1,2, let S; be the set of all
(proper) mazimal subterms of t whose top symbol is a strict i-symbol.

o If Sy # 0, then t is considered to be a 1-term, i.e., a subterm s of t is an alien
subterm of t iff it is not a 1-term and it is mazimal with this property.

2 Exploiting the associativity, commutativity, and idempotency of A.
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o If Sy = 0 and Sy # 0, then t is considered to be a 2-term, i.e., a subterm s
of t is an alien subterm of t iff it is not a 2-term and it is mazimal with this
property.25

We extend the definition of alien subterm from terms to atomic formulae by
treating the formula’s predicate symbol as if it was a function symbol—with the
equality symbol being treated a shared symbol.

With this definition of alien subterm, the purification procedure described earlier
can be applied, unchanged and with the same results, to a set of (£; U X3)-literals
regardless of whether 3; and 35 are disjoint or not. Relying on this procedure, we
can finally show the following.

Proposition 37 The class Qff of quantifier-free formulae is effectively purifiable
w.r.t. <21, 22)

Proof. Let ¢ € Qff™"*2. We first convert ¢ into its disjunctive normal form,
a logically equivalent formula of the form \/ j<m P> where every disjunct ¢; is a
conjunction of literals. Then, for each j < m, we apply the purification procedure to
the set of literals in ¢; and produce a set S; of pure literals. Finally, we collect the
Yi-literals of S; into a conjunction <p} and the Y»-literals of S; into a conjunction @?,
making sure that 3-literals are either all collected in <p} or all collected in <p§. This
process is clearly effective. Furthermore, it is easy to verify that \/ j<m (90} A (,0?) is
a disjunctive pure form of ¢. O

Incidentally, notice that even if the process described in the proof above is non-
deterministic (because of the choice of where to collect shared literals), for our pur-
poses this is a don’t-care kind of non-determinism since all the disjunctive pure forms
that can be obtained this way are equisatisfiable with the original formula.

6 Identifying N-O-combinable Theories

The combination method presented in the previous section applies correctly to pairs
of N-O-combinable theories. Now, as defined in Definition 23, N-O-combinability is
a rather abstract notion, expressing conditions not on the single theories but on both
of them as a pair. As a consequence, it is not immediate to see whether two given
theories are N-O-combinable.

In this section, we try to establish sufficient conditions for N-O-combinability
that are less abstract and more “local” to the theories. As we will see, our attempts
are only partially successful. More research, and maybe new insights, on this are
needed. Once again, it will be beneficial to start with the simple case of theories
with disjoint signatures, and then move to the general case.

21f S; = 0 and S = 0, then ¢ is pure and so it has no aliens subterms.
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6.1 Disjoint Signatures

A sufficient, and local, condition for the N-O-combinability of two signature-disjoint
theories over the language of quantifier-free formulae has been known for quite some
time. It was introduced in [Opp80] to justify the correctness of the Nelson-Oppen
combination method. There, each theory T; is required to be stably-infinite, that is,
universal and such that every quantifier-free formula satisfiable in T; is satisfiable in
an infinite model of T;. In the following, we show that the notion of stable-infiniteness
can be extended to arbitrary theories and parameterized by the language of interest.
Then, we use this extended and parameterized notion to show how the original
combination results by Nelson and Oppen are subsumed by ours.

Looking back at Lemma 10 one realizes that, with disjoint signatures, all is needed
for the combination result there is that the component structures that satisfy the
pure formulae have the same cardinality. One way to guarantee this with theories is
to restrict one’s attention to those satisfying the following property.

Definition 38 (Stably-Infinite Theory) Let £ be a class of formulae and T a
consistent theory of signature Q. We say that T is stably-infinite over £? iff every
formula of LY satisfiable in T is satisfiable in an infinite model of T

It is immediate that complete theories admitting infinite models are stably-infinite
over the whole language of first-order formulae. In [BT97], it is shown that equational
theories augmented with the non-triviality axiom Jzdy.xz # y are stably infinite
over the class of quantifier-free formulas. We prove below that this result can be
generalized to any theory axiomatized by Horn sentences.?6

Proposition 39 Every consistent Horn theory T of signature 0 such that T =
Jx3y.x £ y is stably infinite over L, where L is the class of Horn formulae or the
class of quantifier-free formulae.

Proof. Let £ be the class of Horn formulae first and ¢ a member of £ satisfiable
in T Tt is enough to show that the theory 7" := T'U {3 ¢} has an infinite model.

Observe that 3¢ is a Horn sentence, which entails that 7" is Horn theory as well.
From the assumption that T = Jz3y.z # y, we know that 7" admits a non-trivial
model A. By a result originally due to Alfred Horn, the class of models of a Horn
theory is closed under direct products (see, e.g. [Hod93]). This means that the direct
product B of A with itself countably infinitely many times, say, is a model of T".
Now, B is infinite by definition of direct product and the fact that the set A has at
least two elements.

If £ is Qff , we can prove the claim by reduction to the previous case, observing
that a quantifier-free formula is satisfiable in T iff one of the disjuncts of its disjunctive
normal form is, and that conjunctions of literals are Horn formulae. O

26 A Horn formula is a first-order formula of the form Q. p1 A --- A @n, where Q is an arbitrary
quantifier prefix and each ¢; is a disjunction of literals other than | and —T, at most one of which
is positive.
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Some specific examples of stably-infinite theories interesting in program verifica-
tion can be found in [Opp80].

One consequence of Definition 38 is that stably-infinite theories admit infinite
models and so, by the Upward and Downward Léwenheim-Skolem theorems [Hod93],
admit models of any infinite cardinality?’. This entails, first, that if a formula is satis-
fiable in a stably-infinite theory, it is satisfiable in models of the theory of arbitrary,
infinite cardinality; second (by an application of Corollary 21), that the union of
two stably-infinite, signature-disjoint theories is always consistent. In addition, for
classes of formulae closed under variable identification we have the following.

Proposition 40 Let £ be a class of formulae closed under variable identification
and Ty, Ty two theories with respective signatures 31, X9 such that X := X1 N Xy = ().
If T; is stably-infinite over Res(L>!, %) fori = 1,2, then Ty and Ty are totally N-O-
combinable over L.

Proof. First we show that T} and T satisfy Condition 24. Let (@1, @9) € L¥' @ L>2,
¥ := Var(p1) NVar(ps), p € IN®(%) and ¢ € ID(Var(p)). Now, each (¢;p A i80,,)& A
dif ¢ is logically equivalent to the formula 1; := @;§ A dif ¢ since p necessarily coincides
with the empty instantiation (as ¥ = @) and iso , with the empty set. Given that £
is closed under variable identification, it is immediate that 1; € Res(L£>¢, ). From
the stable-infiniteness of T; it follows that if v; is satisfiable in T;, it is satisfiable
in a model A; of T; of cardinality x, for any infinite x greater than or equal to the
cardinality of ¥; U 5. We have already seen that structures like A; and A are
trivially Y-fusible.

To see that T7 and T3 satisfy Condition 25 as well, simply notice that since 3 is
empty, every individual of any model of T} U T5 is Y-isolated. a

As a consequence of the above proposition, we obtain the following simplified
version of Theorem 28.

Theorem 41 Let £ a class of formulae closed under variable identification and
T1,T5 two theories with disjoint signatures X1,Ys, respectively. For i = 1,2, as-
sume that T; is stably-infinite over Res(L¥i,0) and let p; € L. Then, where
0 := Var (1) N Var(ps2), the following are equivalent:

1. @i A dif ¢ is satisfiable in T; for each i = 1,2 and some £ € ID(D);

2. 1 N\ o is satisfiable in Ty U Ts.

The soundness and completeness of the Nelson-Oppen combination method (in
the case of two component theories) can be proved by an application of the theorem
above, observing that the class Qff is closed under variable identification and that

Res(Qfft, 0) coincides with Qff* for any signature Q. See [Rin96b] or [TH96] for
more details.

*TGreater than, or equal to, the cardinality of their signature, to be precise.
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6.2 Non-disjoint Signatures

Let us now consider the question of finding local sufficient conditions for N-O-com-
binability for theories that might share function or predicate symbols. We first focus
on the problem of showing that two theories are partially N-O-combinable (that is,
satisfying Condition 24). Then, we consider what extra conditions must be true for
them to be totally N-O-combinable (that is, satisfying Condition 25 as well).

In the previous subsection, to provide sufficient conditions for the N-O-combin-
ability of two theories with disjoint signatures we looked for restrictions that would
guarantee the existence of fusible models. In that case, it was enough to guarantee the
existence of two models with the same cardinality. When the theories’ signatures have
a non-empty common part 3, the two models must be 3-fusible (cf. Definition 14).
The question then is: what structures are Y-fusible?

A sufficient condition for two structures to be Y-fusible is that their 3-reducts
are free in the same variety over the same set of generators. We will prove this fact
later and use it to define a general class of N-O-combinable theories. But first, we
will go over the definition and the properties of free structures that we will need for
that.

6.2.1 Free Structures

The concept of free structure is a natural extension to First-order Logic of the concept
of free algebra from Universal Algebra. We adopt the following among the many
(equivalent) definitions in the literature.

Definition 42 (Free Structure) Given a class K of Z-structures and a set X, a
S-structure A is free for K over X iff

1. A is generated by X;

2. every map from X into the universe of a structure B € K extends to a (neces-
sarily unique) homomorphism of A into B.

We say that A is free in K over X (or free over X in K) if A is free for K over X
and A € K. In either case, we call X a basis of A.

For convenience, given a Y-theory T', we will sometimes say that A is free over
X inT,if Ais free over X in Mod(T). In that case, we will also say that A is a free
model of T.28

It is immediate from the above definition that a -structure A is free in some class
of Y-structures if and only if it is free in the singleton class {A}. As a consequence,
we will simply say that a structure A is free (over X) if it is free in {A} (over X).

%8To avoid misunderstandings, notice that for A to be a free model of 7T it is not enough that A
is a model of T free for some class. It must be free for the class Mod(T).
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A structure free over an empty basis is called initial.?® A structure of signature 3
free in the class of all X-structures is called absolutely free.
We will often use the following characterization of freeness.

Proposition 43 (Characterization of Free Structure [Hod93]) Let K be any
class of ¥-structures, A a X-structure, and X a subset of A. Then, A is free for K
over X iff

1. X generates A and

2. K |= Vo for all S-atoms ¢(%) such that A = @[Z] for some sequence & of
pairwise distinct elements of X.

Free models with infinite bases are canonical for atomic formulae, in the sense
specified by the following corollary of Proposition 43.

Corollary 44 Let T be a theory of signature ¥ and A a X-structure free in T over
an infinite basis. Then, for all atomic X-formulae o,

AEVe iff TEVe.
Equivalently, the atomic theory of A coincides with the atomic theory of T'.

It is possible to show that every basis of a free structure is non-redundant as a
set of generators, and that a structure can be free over more than one basis [Hod93].
Free structures in a collapse-free class, however, have unique bases.

Proposition 45 The basis of a structure free in a collapse-free class is unique and
coincides with the set of the structure’s isolated individuals.

Proof. Let A be a Y-structure free over some set X in a collapse-free class of -
structures. For being a set of generators for .4, X must contain all of A’s isolated
individuals, as we observed earlier. Ad absurdum, assume X also contains a non-
isolated individual y. Since ¥ is not isolated and X generates A, there is a non-
variable ¥-term ¢(%) and a sequence Z in X with no repetitions such that y = #4[].3

That means that A satisfies the atomic formula (v = t) with an assignment
Qf elements of X to the formula’s variables. By Proposition 43 then, the sentence

V (u = t) is entailed by the class, against the assumption that the class is collapse-
free. O

Free structures have a close connection to varieties. In fact, every non-trivial
Y-variety contains structures free in it. Furthermore, every free ¥-structure is free
in some Y-variety [Hod93], and in particular, absolutely free ¥-structures are free
in the Y-variety of the empty theory. When a structure is free in an axiomatizable
class of Y-structures, a corresponding Y-variety is readily identified.

29This definition is equivalent to a more common definition of initial structure according to which
a structure A is initial (in a class K) if, for all structures B € K, there is a unique homomorphism
from A into B.

30Incidentally, notice that y € # otherwise X would be redundant.
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Proposition 46 Let K := Mod(T) for some X-theory T. For all A € K and X C A,
if A is free in Mod(T') over X then A is free in Mod(At(T)) over X.

Proof. Let ¢(9) be a ¥-atom and assume that A |= ¢[Z] for some discrete Z in X. By
Proposition 43, it is enough to show that At(T) |= V. By assumption and thanks to
the same proposition, we know that 7' |= v ¢. Recalling the definition of At(T"), we
can then conclude that ¥V ¢ € At(T), from which the claim follows immediately. O

The above result also entails that a free ¥-structure with an infinite basis is free
(over that basis) in its own ¥-variety Mod(H ), where H is the set of all the ¥-atoms
modeled by A.

The free structures of a variety can be identified modulo isomorphism according
to the following immediate consequence of Definition 42.

Lemma 47 If two X-structures A and B are free in the same X-variety over re-
spective bases X and Y having the same cardinality, then any bijection of X onto Y
extends to an isomorphism of A onto B.

We are now ready to prove our earlier claim on the fusibility of structures with
a free X-reduct.

Proposition 48 Let A and B be two structures and 3 := %4 N Xp. Assume that
A” is free over X and B> is free over Y in the same class of %-structures. If
Card(X) = Card(Y'), then A and B are E-fusible.

Proof. We start by showing that A and B are fusible over (X, Y). Given a finite set
Xo C X, consider any injective map h: Xo — Y. Since Xj is finite and Card(X) =
Card(Y'), h can always be extended to a bijection from X onto Y. By Lemma 47
then, h can be extended to an isomorphism of A* onto B*. To see that A and
B are Y-fusible, recall that the isolated individuals of a structure are included in
every set that generates that structure. Since X generates A> and Y generates B>
by assumption, we have that Is(A*) C X and Is(B*) C Y, from which the claim
follows. O

Notice that in the result above the Y-reducts of the structures are required to
be free, not the whole structures. Also notice that this is indeed a generalization of
the signature-disjoint case. In fact, when ¥ is empty the 3-reduct of any structure
is (trivially) free over the whole carrier of the structure.

A pair of structures that satisfy the proposition above are the structures seen
in Example 18 and Example 19 of Section 3. The structure A in the first example
combined natural numbers and LISP lists, whereas the structure B in the second
example combined strings and LISP lists. Recall that, as data structures, two LISP
lists are equal if and only if they are both nil or are both non-nil and have equal
head and tail. Mathematically, this means that an equation between two terms in
the signature ¥ := {nil, cons} is valid in A* (or B¥) if and only if the two terms are
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identical. From the fact that, as we have seen in the examples, A is generated by
the set N U I and B* is generated by the set W U J, it easily follows that they are
both free in the empty Y-theory, respectively over N U I and W U J. Since both
N UIT and W U J are countably infinite, we can conclude by Proposition 48 that A
and B are X-fusible.

6.2.2 Stably -free Theories

We can use Proposition 48 to extend the notion of stable-infiniteness so that it
provides, along with some additional requirements, a sufficient condition for the N-
O-combinability of theories with non-disjoint signatures.

Definition 49 (Stably X-free Theory) Let T be a consistent theory of signature
Q, 3 a finite subset of Q, L a class of formulae and « the first infinite cardinal such
that k > Card(Q). The theory T is stably S-free over L iff every formula of L
satisfiable in T is satisfiable in a model A of T such that A* is free in Mod(At(T%)),
the Y-variety of T, over a basis of cardinality k.

As said, the notion of stable Y-freeness is meant to generalize that of stable-
infiniteness for pairs of theories whose shared signature is . Indeed, when ¥ is
empty the two notions coincide.

Proposition 50 Let L be a class of formulae, T a consistent theory of signature €,
and ¥ an empty signature. Then, T is stably-infinite over L iff T is stably B-free
over L.

Proof. Let k be the first infinite cardinal such that x > Card ().

(=) Assume that T is stably-infinite over £ and let ¢ € L% be satisfiable in T
By definition of stable-infiniteness, 7U{34} has an infinite model and so, as observed
earlier, one of cardinality x. Call it A and notice that A” is absolutely free over A.
Moreover, the atomic Y-theory of T' is empty. In fact, since 3. has no symbols, the
only non-empty atomic ¥-theory is the one axiomatized by {VzVy. z = y}. However,
VaVy. x = y is clearly not a consequence of 1" given the assumption that 7' is stably-
infinite. It follows that ) is satisfiable in a model of T' whose reduct to X is free in
the ¥-variety of T' over a basis of cardinality x.

(<) Assume that T is stably Z-free over £ and let ¢ € L be satisfiable in T
By Definition 49, v is satisfiable in a model of T' containing at least x individuals
and so it is satisfiable in an infinite model of T'. O

We will see in Section 8 that the class of stably 3-free theories is non-empty for
all signatures Y. For now, it might be interesting to see how a stably-infinite theory
can fail to be stably Y-free when ¥ is non-empty.
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Example 51 Consider the Q-theory T := {a £ b, ¢ # dV a = d} where a,b,c and d
are constant symbols. It is easy to see that T is a consistent Horn theory entailing
Jzy.z £ y. Therefore, it is stably infinite over QS by Proposition 39.

Now let ¥ := {a,d} and observe that the atomic X-theory of T is empty. Since
a equals d in every model of T that satisfies the quantifier-free formula ¢ = d, the
model’s reduct to X2 is certainly not free in the X-variety of T. It follows that T is
not stably L-free over Qff ‘L.

We show below that under certain conditions stably Y-free theories are N-O-
combinable. To do that we will fix

e a class L of formulae closed under identification and instantiation and

e two countable signatures ¥; and 93! such that ¥ := £; N Xy is finite.

Lemma 52 Let T, T» be two consistent theories of respective signature ¥1,Ys, and
Hy an atomic theory of signature . If Hy is the atomic X-theory of both Ty and Tb
and each T; is stably 3-free over some class of formulae, then Hy is also the atomic
Si-theory of Ty U Th.

Proof. Let T := T, UT,. It is immediate that Hy C At(T”). We show that
At(T*) C Hy. First recall that we assume that every class of formulae contains a
universally true sentence. Together with Definition 49, this entails that for ¢ = 1,2,
T; has a model A; whose X-reduct is free in Hy over a countably-infinite set. It
follows by Proposition 48 and Proposition 20 that A4; and Ay are fusible in a model
F of T. Since, by definition of fusion, F is isomorphic to A;>, say, we can conclude
that F> as well is free in Hy (over some countably infinite set).

Now, let ¥ ¢ € At(T™), which means that ¢ is a S-atom such that T |= V ¢.
Then, F* |= V¢ as well because F is a model of T and V ¢ is a S-formula. Since F=
is a free model of Hy with an infinite basis, we have by Corollary 44 that Hy |= V.
Recalling that Hy is the atomic S-theory of T}, we can conclude that V¢ € Hy. O

Theorem 53 For all consistent theories Ty, Ty of respective signature 1,9, we
have the following.

1. If T1 and T5 have the same atomic X-theory Hy and each T; is stably X-free
over Res(L>,%), then Ty and Ty are partially N-O-combinable over L.

2. If, in addition, Hy is collapse-free and Ty U Ty is stably ©-free over L7 ® L2,
then T1 and T are totally N-O-combinable over L.

Proof. Let {1, @) € L¥* ® L2 and ¥ := Var(p1) N Var(ps2).
(1) Tt suffices to show that (1, o) satisfies Condition 24. Let p € IN*(%) and
§ € ID(Var(vp)) such that v; := (pip A is0,)€ A dif ¢ is satisfiable in T; for ¢ = 1, 2.

31 All we need really is that ©; and ¥ have the same cardinality whenever one of them is not
countable. We assume that they are both countable for simplicity.
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We already know that 1; belongs to Res(L>,%); therefore, by the stable S-freness
of Ty, it is satisfiable in some A; € Mod(T;) such that A;” is free in Mod(H,) over a,
countably-infinite set X;. The models A; and Az are ¥-fusible by Proposition 48.
(2) It suffices to show that (@1, @9) satisfies Condition 25. Let T := Ty U Ty
and assume that (@1, @o) is satisfiable in 7. As T is stably Y-free over £L¥! @ L*?
by assumption, (p1, ¢2) is satisfiable in a model A of T' whose reduct to X is free
in the X-variety of T. Since the X-variety of T' is Mod(Hy) by Lemma 52, and H)
is collapse-free by assumption, we have by Proposition 45 that A* is generated by
its isolated individuals. In conclusion, ¢; A @9 is satisfiable in a model of T that is
Y-generated by its 3-isolated individuals. O

Total (as opposed to partial) N-O-combinability of the component theories is
important for our combination method because it guarantees its completeness, as we
have seen in Section 5. An irksome feature of the theorem above is that it explicitly
assumes that T U Ty is stably Z-free over £7' ® £>? in order to yield the total
N-O-combinability of 77 and T5.

It would be much nicer instead, if the stable X-freeness of a union theory could
be proved from the stable Y-freeness of its component theories. Unfortunately, we
have not been able to do that. In fact, we believe that it is unlikely to be the case
in general. More constraints on either the language or the component theories are
needed. For instance, it is possible to show that if ¥ is empty, then 77 U Ts is
indeed stably X-free over L£> ® L>2 whenever both T} and T, are stably X-free over
Res(L*) ).

Although we are not able to show in general that stable »-freeness over Y-
restricted formulae is modular with respect to the union of theories, we can show a
weaker result in terms of totally Y-restricted formulae.

Proposition 54 Let T1,Ty be two consistent theories of respective signature X1, 2o,
such that T; is stably B-free over TRes(L™,%) for i = 1,2. If Ty and Ty have the
same atomic N-theory Hy, then Ty U T, is stably X-free over TRes(L¥ @ £>2,%)32.

Proof. Let 1 A @ A res™ (@) be an element of TRes(L¥' ® £¥2,X) satisfiable in
Ty U Ty, where (@1, p2) € L™ ® L¥? and Var(p1 A p2) C 4. We show that the
formula is satisfiable in a model of T; U Ty whose Y-reduct is free in the atomic
Y.-theory of T7 UT5 over a countably infinite base.

Clearly, the sentence 1; := ¢; A res™(@i) is satisfiable in T; for 4 = 1,2. In
particular, since 1; € TRes(L¥,X) and T; is stably %-free over TRes(L>,%) by
assumption, 1); is satisfiable in a model A; of T; such that A;> is free in Hy over a
countably-infinite basis. By Proposition 48, A; and A5 are 3-fusible.

Since the shared variables of 1 and ¢9 are included in the restriction res® () =
iso™ (@) A dif (@), we can already conclude by Lemma, 13 that o1 Ay is satisfiable in a

32By a small abuse of notation, we consider each pair in £Z! ® £¥2 here as the conjunction of its
components.
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fusion F of A; and A,. By an argument similar to the observation after Lemma 13,
we can actually show that the whole ¢ A 3 A res™ () is satisfiable in F.

We have already seen that F € Mod(Ti U Ty) and F* is free in Hy over a
countably-infinite basis. To complete the proof then, it is enough to recall that, by
Lemma, 52, the atomic X-theory of 17 U T5 coincides with Hj. O

The above result is not sufficient for our needs given that, in general, the class
TRes(L* ® L£L¥2,%) is strictly included in Res(£¥ ® £>2,%). One might argue,
however, that if we limit ourselves to totally 3-restricted formulae, we do get the
kind of modularity and completeness results we desire. As a matter of fact, we
can show that our combination procedure is sound and complete for all partially
Y-restricted formulae of the form @1 A @o A res™ (@) in which @ includes the variables
shared by ¢1 and @2. Unfortunately, even this is not enough.

In fact, our ultimate goal is to work with formulae in £>1Y*2, whether they have
an attached X-restriction or not. As we saw, these formulae can be dealt with by our
combination method provided that L is effectively purifiable w.r.t. (31, ¥2). What
we do then is, first, to convert an input formula ¢ (%) € £L*1Y*2 into disjunctive pure
form and, then, test the satisfiability of its disjuncts, which are members of L1 ® L>2.
Now, these disjuncts may have a different (typically larger) set of free variables.
Therefore, even if we start with the totally X-restricted formula ¢(%) A res™ (@),
after purification we may end up with partially »-restricted formulae of the form
@1 A o A res™ () where not all the shared variables of 1 and @9 are included in %.

When £ coincides with Qff, it is possible to generate the disjuncts @1 A @2 so
that

e S:=Var(pi A ps)\ v consists only of shared variables and
o 1 A |=u; =t; for all u; € S, where ¢; is a pure term.

This entails that we can extend the X-restriction of ¢ to the whole Var(p1 A ¢2)
without loss of solutions only if we are guaranteed that the terms ¢; above denote
only ¥-isolated individuals.

We show in Section 8.4 that a situation like this can in fact be achieved for
certain pairs of component theories. A crucial feature of some of these theories will
be that their shared symbols are constructors in the sense formally defined in the
next section.

7 Theories with Constructors

In the rest of the paper, we show the range of applications of our combination method
by providing ways to identify N-O-combinable theories with decidable satisfiability
problem. A major class of N-O-combinable theories will involve theories sharing con-
structor symbols. We define in this section what we mean by constructors, and prove
some of their properties which we use later in the paper. The notion of constructors
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presented here was introduced in [TR98] after a similar one in [DKR94], and further
refined with Franz Baader in [BT98] in the context of equational theories. In the
following, we provide a unified treatment of the results in [TR98] and [BT98] for the
case of arbitrary first-order theories.??

There are several definitions of constructors in Computer Science, but they are
all based on the same fundamental idea. In essence, a set of constructors is a set of
constants and functions that can be used to construct a computable data type. For
instance, zero and the successor function are the constructors of the positive integer
data type, the empty stack and the push function are the constructors of the stack
data type, and so on.

In symbolic computation, constructors are the symbols that denote constructor
functions. As such, they can be given syntactical definitions such as the one used in
term rewriting (see later). The algebraic approaches to abstract data types, however,
provide insights for formally understanding constructor symbols at a semantic level.
In the algebraic ADT literature (see, e.g., [EM85, EM90]), abstract data types are
typically defined by initial algebras.>* In that context, the constructors of an initial
algebra A of signature €2, are those function symbols of {2 that can be used to incre-
mentally generate the universe of A out of an initially empty set. Non-constructors
then, are function symbols that, while also denoting maps from A to A, are not
necessary to build A. More formally, we could say that a signature > C Q is a set of
constructors for A if the empty set, which is a set of (Q-)generators for A, is also a
set of (¥-)generators for A>.

We could think of extending this notion to non-initial free algebras by saying
that a signature ¥ C Q is a set of constructors for a free algebra A with signature
and basis X, if X, which is a set of generators for A, is also a set of generators for
A*. As it turns out, this straightforward generalization is more restrictive than it
needs be. To see that, consider the equational theory E of signature Q := {0,s,+}
axiomatized by the sentences:

Vz,y, 2. z+y+z2) = (z+y)+=2
Ve, y. r+y = y+=zx
Vr,y. z+s(y) = s(z+vy)
Vz. z+0 = =z

The algebra of the natural numbers with addition is an initial model of this theory
(where s denotes the successor function). Now, the reduct of this algebra to the
signature ¥ := {0,s} is also initial, which means that ¥ is a set of constructors for
the algebra. We would like to say then that X is also a set of constructors for all the
free models of F, but this is not the case. In fact, if A is an Q-algebra free in E over
a nonempty set X, the individual z +4 z of A, for any z € X, cannot be generated
by 04 and s* alone. Therefore, X is not a set of generators for A¥. The interesting

33Recently, the notion has been extended even further, again in the context of equational theories.
See [BT01] for more details.
34Recall that an initial algebra is a free algebra with an empty basis.
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thing about this example is that A* is indeed a free algebra. And while it is not
free over X, it is free over an easily definable superset of X which includes all the
individuals that, like z +4 z, are not generated by 04 and s* alone. Moreover, A>
is free precisely in the Y-variety Mod(E®).

We have developed our notion of constructors around the observation above and
have found it very useful in the combination results described later in the paper. The
key facts about constructors used for those results are that free structures with a set
3} of constructors are Y-generated by their Y-isolated individuals and are X-fusible.

We will start with a general syntactic definition of constructors and then provide
a semantical characterization of it in terms of free structures with an infinite basis.
Then, we will show how our definition extends a similar one from term rewriting.

7.1 Constructors

For the rest of the section let us fix a signature €2 and a subsignature 3 of .

Given a subset G of T(Q,V), we denote by T(X,G) the set of terms over the
“variables” G. More precisely, every member of T'(3,G) is obtained from a term
s € T(3,V) by replacing the variables of s with terms from G. To express this
construction we will denote any such term by s(7) where 7 is a discrete tuple collecting
the terms of G that replace the variables of s. Notice that this notation is consistent
with the fact that G C T(3,G). In fact, every r € G can be represented as s(r)
where s is a variable of V. Also notice that T'(X,V) C T(X,G) whenever V C G.
In this case, every s € T(X,V) can be trivially represented as s(7) where ¢ are the
variables of s.

For every theory T with signature 2 and every subset ¥ of €, we define the
following subset of T'(Q2,V):

Gr(Z,V) = {reT(Q,V)|r#rtforallte T(Q,V) with t(e) € X}.

In essence, Gr(%, V) is made, modulo equivalence in T', of Q-terms whose top symbol
is not in X.

We start with a syntactical definition of our notion of constructors for a the-
ory. We then show that for theories admitting free models with an infinite basis,
this definition has a simple model-theoretic characterization. We will use both the
syntactical definition and the semantical characterization of constructors in the next
sections, as convenient.

Definition 55 (Constructors) Let T be a non-trivial theory of signature Q, ¥ C
Q, and G := Gp(2,V). The signature ¥ is a set of constructors for T' iff the following
holds:

1. VCQ@G.
2. Forallt € T(Q,V), there is an s(7) € T(X,G) such that

t =7 s(7).
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3. For all n-ary P € XY U {=} and 51(71),... ,s.(Fn) € T(Z,G),

T =V P(s1(71), ... ,sn(fn)) iff T =Y P(s1(t1),...,5n(n))

where U1, ... ,0, are fresh variables abstracting 7, ... , 7, so that two terms are
abstracted by the same variable iff they are equivalent in T.

Notice that when ¥ has no predicate symbols, condition (3) reduces to:

3. For all s1(71), s2(72) € T(X,G),
s1(f1) =7 s2(72) iff s1(91) =71 52(02)

where ¥1,02 are fresh wvariables abstracting 71,79 so that two terms are ab-
stracted by the same variable iff they are equivalent in T'.

It is easy to see that any set of constant symbols of €2 is a set of constructors for
any -theory T'. It is also easy to show that the whole €2 is a set of constructors for
T if and only if T is collapse-free.

The following is an another immediate consequence of the definition of construc-
tors.

Proposition 56 For every theory T and signature X3, X is a set of constructors for
T iff ¥ is a set of constructors for At(T).

We show below that when ¥ is a set of constructors for an Q-theory T admitting
a free model A with an infinite basis,3® the ¥-reduct of A is free in T* with a basis

determined by Gp(X%,V). For this purpose, we will use the following properties of
Gr(%,V).

Lemma 57 For all non-trivial theories T of signature €,

1. Gp(X%,V) is closed under equivalence in T';
2. Gp(2,V) is nonempty iff V. C Gp(2,V);
3. If VC Gr(%,V), then T is collapse-free.

Proof. Let G := Gr(X,V). We prove only points 2 and 3, as 1 is trivial.

(2) Since V is assumed to be countably infinite, V' C G obviously implies that
G is nonempty. We prove the other direction by proving its contrapositive. Assume
that there exists a variable v € V' \ G. By definition of G then, there exists an f € &
and a tuple ¢ of Q-terms such that v =7 f(). Now consider any r € T(Q,V). By
applying the substitution {v «+ 7} to the equation v = f(f), we obtain a tuple of

3% An important class of theories admitting free models with infinite bases is the class of non-trivial
universal Horn theories.
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Q-terms # such that r =7 f (t~'), which means that r € G. From the generality of r
it follows that G is empty.

(3) Again, we prove the contrapositive. Assume that 7% is not collapse-free.
Since T is non-trivial by assumption, there must exist a non-variable Y-term s and
a variable v € V such that v =;= s. By definition of G this implies that v ¢ G, and
thus V Z G. O

Proposition 58 Let T a Q-theory admitting a free model A with a countably infinite
basis X and let a be a bijective valuation of V onto X.3% If ¥ is a set of constructors
for T then A* is free in T™ over the superset Y of X defined as follows:

Y = {[r]d|reGr(=, V)

Proof. Let G := Gp(X,V) and assume that ¥ is a set of constructors for 7'. First
notice that X C Y because V C G. Then observe that since A is a model of T, its
reduct A is a model of T*. We show that A* is S-generated by Y. In fact, let a be
an element of A—which is also the carrier of A*. We know that as an Q-structure
A is generated by X; thus there exists a term ¢t € T(2,V) such that a = [t]JA. By
Definition 55(2), the term ¢ € T(2, V) is equivalent in T to a term s(7) € T(%, G).
Since A is a model of T, this implies that a = [t]2 = [s(7)], from which it easily
follows by definition of Y that a is YX-generated by Y.

The above entails that A* satisfies the first condition of Proposition 43. To
show that it is free in 7 then it is enough to show that it also satisfies the second
condition of the same proposition.

Thus, consider any terms s1(01),...,8,(0,) € T(X,V), relation symbol P €
»P U{=}, and injection 3 of V; := Var(P(s1(1),--- ,5,(Pn))) into ¥ such that

(A%, 8) = P(s1(1); - - , 80 (Bn))-

By definition of Y we know that for all v € V{, there is a term r, € G such that
B(v) = [r]A. Using these terms we can construct two tuples 71 and 7 of terms in
G such that, for 1 = 1,2, the term s;(7;) is obtained from s;(?;) by replacing each
variable v in 9; by the term r,, and (A, a) = P(s1(71),... ,82(7n)). Since A is free
in T over X and « is injective as well we can conclude by Proposition 43(2) that
T IZ A P(Sl(fl), e ,32(7:”)).

Now, by the injectivity of 8 we know that r, #7 r, for distinct variables u,v €
Vo. Therefore, considered the other way round, the atom P(s1(%1),... ,8n(0s)) can
be obtained from P(s1(71),...,$2(7n)) by abstracting the terms in 7y,...,7, so
that two terms are abstracted by the same variable iff they are equivalent in 7.
But then, by Definition 55(3) we can conclude that T' |= V P(s1(1), ... ,Sn(7n))-
Since V P(s1(91), ... ,8,(y)) is a S-sentence, this is the same as saying that T> |=
YV P(s1(01),--- ,8,(0n)). O

36Such a valuation « exists since V is assumed to be countably infinite.
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The freeness of the structure A* above is therefore necessary for  to be a set
of constructors for T. It becomes also sufficient when T is collapse-free, as the
following theorem shows.

Theorem 59 Let T a Q-theory admitting a free model A over a countably infinite
set. Then, % is a set of constructors for T iff

e the B-reduct of A is free in T* and

o T is collapse-free.

Proof. As before, let X be a countably infinite basis of A, a a bijective valuation of
Vonto X, G := Gp(%,V), and Y := {[r]2 | r € G}.

(=) By Proposition 58, A is free in T”. By Lemma 57(3), the fact that V C G
(cf. Condition (1) of Definition 55) implies that 7% is collapse-free.

(<) Assume that T is collapse-free and A” is free in T over some set Z. First,
notice that Z cannot be the empty set. Otherwise, A would also be generated by
the empty set, making X a redundant set of generators, which is impossible because
A is free over X by assumption.

We prove Y = Z by first proving that ¥ C Z and then that Z C Y. Ad
absurdum, assume that Y Z Z and let y € Y\ Z. Since A is Q-generated by X and
Y-generated by Z, we know that there exist a non-variable $-term s and a tuple ¢ of
Q-terms such that [;]4 € Z for all elements #; of £, and y = [s(f)]. By definition
of Y we know that there is a term r € G such that y = [r]4. As A is free in T and
« is injective, we can then conclude by Proposition 43(2) that r =7 s(#), but then r
cannot be in G. It follows that Y C Z.

To show that Z C Y, let z € Z. Since A is Q-generated by X, there exists an
Q-term r such that z = [r]A. We prove by contradiction that r is an element of
G, which will then entail by construction of Y that z € Y. Therefore, assume that
r ¢ G. Then, there must be a function symbol f € ¥ and a tuple of Q-terms ¢ such
that r = f(#). Since the elements of  are all ¥-generated by Z, there is a variable
v, a non-variable ¥-term s, and an injective mapping S of Var(s) U {v} into Z such
that B(v) =z = |L<>*]]/“34E.37 As A% is free in T* over Z, we obtain that v == s. But
this contradicts the fact that T is collapse-free. It follows that r € G and so z € Y.

In conclusion, we have shown that Z is nonempty and coincides with ¥ =
{[*]& | » € G}. In particular, this means that G is nonempty either. The first
condition in Definition 55 follows then directly from Lemma 57(2). The second con-
dition follows by Proposition 43(2) and Corollary 44, given that A is free in T' and
Y-generated by Y = Z. Similarly, the third condition follows from Proposition 43(2).

O

We can now give an alternative formulation of Theorem 59 by means of the
following corollary.

3"Note that v may be an element of Var(s).
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Corollary 60 Let T a Q-theory admitting a free model A over a countably infinite
set. Then, the following are equivalent.

1. ¥ is a set of constructors for T.
2. A¥ is free in T™ over Is(A¥).38

Proof. (1 = 2) By Theorem 59, A* is free in the collapse-free theory T=. By
Proposition 45, the unique basis of A* coincides with Is(A%).

(2 = 1) Let A% be free in T over Is(A*¥). By Theorem 59, it is enough to
show that T is collapse-free. Assume the contrary. Then, since 7™ is non-trivial
for admitting the infinite model \A*, there must be a variable v and a non-variable
Y-term s such that v =;= s. From the fact then that variables are equivalent in T,
and so in A”, to a term starting with a S-symbol, it easily follows that no individual
of A* is B-isolated. Therefore, Is(A*) is empty. But then, we can argue as in the
proof of Theorem 59 that A is generated by the empty set, which is impossible as A
is free over an infinite set by assumption. O

Later in the paper we will consider theories T' for which Gr (%, V) is closed under
instantiation into itself, by which we mean that replacing the variables of a term in
Gr(2,V) by terms in Gr(%,V) yields a term also in G (2, V).

Definition 61 Let T be a of signature Q and ¥ C Q. We say that Gp(X,V) is
closed under instantiation into itself iff ro € Gp(X,V) for all terms r € Gp(X,V)
and substitutions o € SUB(V') such that Ran(c) C Gr(X,V).

When Gr(%,V) is closed under instantiation into itself, the set Is(A*) exhibits
in turn the following closure property.

Lemma 62 Let T a Q-theory admitting a free model A over a countably infinite set
X and assume that ¥ is a set of constructors for T. If Gp(X,V) is closed under
instantiations into itself, then

[r]4 € Is(A%)
for all terms r € Gp(%,V) and valuations B of Var(r) into Is(A%).

Proof. Let r(9) € G := Gr(%,V) and 3 a valuation of ¥ into Is(A*). We have seen
that X C Is(A”) = {[r]2 | » € G} for any bijective valuation « of V onto X. This
means that for each v € ¥ there is a term 7, € G such that B(v) = [r,]2. It follows
that there is a substitution o into G such that [[7“]]/“34 = [ro]A. The claim then follows
immediately from the assumption that G is closed under instantiation into itself. 0O

38Recall the Is(A”) is the set of all the isolated individuals of A® (cf. Definition 3).
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7.2 Normal Forms

Condition 2 of Definition 55 says that when ¥ is a set of constructors for an Q-
theory T, every term ¢t € T'(£2,V) is equivalent in T to a term s(7) € T(X, G), where
G = Gr(%,V). We call s(7) a normal form of t in T.3° We say that a term ¢ is
in normal form if it is a member of T(X, G). Because V C G, it is immediate that
Y.-terms are in normal form, as are terms in G.

We point out that, according to our definition it is not necessarily the case that
all the variables occurring the normal form of a term also occur in the term itself.
We can guarantee that under the additional assumption that 3 contains a constant
symbol.40

Proposition 63 Let X be a set of constructors for a theory T of signature . If &
contains a constant symbol, every t € T(, V) has a normal form t" with Var(t') C

Var(t).

Proof. First, let us say that a variable v occurring in a term s is extra for s (in
T) if replacing v in s by a fresh variable produces a term that is equivalent to s
inT. Now let G := Gr(2,V) and t € T(Q,V). Since ¥ is a set of constructors
for T, there is a term s(v1,... ,v,) € T(X,V) and a term 7q,... ,7, € G such that
t =1 S(’I"l, cee ,Tn).

With no loss of generality we can assume that r1,...,r, are all inequivalent in
T—otherwise we can identify the equivalent terms of {ri,...,r,} and the corre-
sponding variables of {v1,... ,v,}. Also with no loss of generality we can assume
that none of the elements of vy,...,v, is extra for s. Otherwise we consider the
term s(v1,... ,v, )00 where o is the substitution mapping each extra variable of s to
a constant symbol of ¥ and 0 := {v1 < r1,... ,v, < 7, }. It is easy to see that this
term is in 7'(X, G) and is equivalent to ¢ in T'; therefore it too is a normal form of ¢.

We now show that each variable of s(ry,...,r,) not occurring in ¢, if any, can
be “removed” without loss of generality. Suppose that the term r; for some i €
{1,...,n} contains (or is) a variable v not in ¢, and let o := {v « v'} where
v' is a fresh variable. From the equivalence s(ri,...,r,) =r t, we can conclude
that v is extra in s(ry,...,7,), from which it follows that s(ri,...,7,...74) =1
$(r1y. e 750, Ty)-

We claim that r;0 is equivalent in 7" to a term in (r1,...7,). Assume the contrary.
Then, since ;0 is an element of G and r1,... ,r, are all inequivalent in 7', we can
conclude from Definition 55(3) that s(vi,... ,v4,...0,) =1 s(v1,... ,U,...v,) Where
u is distinct from all vy,...v,. But then v; is extra for s, against the assumption.

Now let r; be the term of (r1,...,r,) equivalent to r;o. If i # j, consider the
term s(vi,... ,vp){v; <= vj}{v1 < r1,... ,v, < rp}. This term is a normal form of ¢
having less occurrences than s(r1,... ,7,) of the variable v which did not occur in ¢.
If 4 = j, then from r; =7 r;0 we can conclude that v is extra for r; and so r; =7 ;0

39Notice that in general, a term may have more than one normal form.
“0A similar result is also shown in [FGO1].
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with 6 := {v < ¢} for some constant ¢ in ¥. Since G is closed under equivalence

in T, this means that s(rq,...,7:0,...7y,) is also a normal form of ¢. This term too
has less occurrences of v than s(ri,...,r,). Repeating the whole process on the new
normal form eventually produces a normal form of ¢ all of whose variables are in
Var(t). |

We will be interested in normal forms that are computable in the following sense.

Definition 64 (Computable Normal Forms) Let X be a set of constructors for
a theory T of signature £ and consider a map

NFZ: T(Q,V) = T(Z,Gr(Z,V)).

We say that normal forms are computable for 3 and T by NFZ. iff NFZ. is computable
and NFX(t) is a normal form of t, i.e., NF2(t) =r t.

We will simply say that normal forms are computable for 3 and T if there is a
function NF% such that normal forms are computable for ¥ and T by NF2.

From the proof of Proposition 63 it is not hard to see that if 33 has a constant
symbol, normal forms are computable for ¥ and 7 and term equivalence in T is
decidable, then normal forms are computable for ¥ and T by a function NF% such
that Var(NFX(t)) C Var(t) for all terms .

Although we will not needed it here, we point out an important consequence of
Definition 64: if normal forms are computable for 3 and T, it is always possible to
tell whether a term is in normal form or not.

Proposition 65 Let X be a set of constructors for a theory T of signature Q. If nor-
mal forms are computable for X and T, the property of being T-reducible is decidable
for the terms in T(Q,V).

Proof. Every t € T(2,V) can be seen as having the form s(7) where s is a X-term
and 7 are terms with top symbols not in ¥. From the definition of normal form it
is immediate that s(7) is in normal form exactly when every component of 7 is in
G := Gr(%,V). But being a member of G is a decidable property of Q-terms: to
test whether any r € T(Q,V) is in G, it is enough to compute NF%(r) and look at
its top symbol. In fact,

reG iff NFX(r)(e) ¢ .

To see that first notice that, by the definition of G, if NFZ(r) starts with a $-symbol
then 7 ¢ G. Now, if NF&(r) does not start with a ¥-symbol, since it is a term in
T(X,G) it must be an element of G, ' say. But then, by definition of NFZ,  and
r’ are equivalent in 7', which entails that r € G by Lemma 57(1). |
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7.3 Examples

We provide below some examples of theories admitting constructors for situations
other than the trivial ones already mentioned. But first, let us consider some counter-
examples.*!

e The signature ¥ := { f} is not a set of constructors for the theory 7" axiomatized
by {Vz. z = f(g(z))} because it does not satisfy Definition 55(1), as one can
easily show.

e The signature {f} is not a set of constructors for the theory 7" axiomatized by
{Vz. g(x) = f(g9(z))} because it does not satisfy Definition 55(2). In fact, the
term g(z) does not have a normal form.

e The subsignature ¥ := {f} of Q@ := {f,g} is not a set of constructors for
the theory T axiomatized by {Vz. f(g(z)) = f(f(g9(z)))}. It is easy to show
that Gp(2,V) =V u{g(t) | t € T(Q,V)} and that conditions (1) and (2)
of Definition 55 hold. However, condition (3) does not hold since f(g(z)) =r
f(1(g(2))) even'if f(y) #r f(f(y))-

e By a similar argument, one can show that the subsignature {P} of Q := {P, g}
is not a set of constructors for the theory axiomatized by {Vz. P(g(z))}.

The theory of the natural numbers with addition considered earlier is indeed an
example of a theory with constructors.

Example 66 Consider the signature 3¢ := {0, s, +} and the theory FEgg aziomatized
by the sentences:

Ve,y,2. 24+ (y+2) = (z+y)+=z
vz, y. r+y = y+=zx
Vz,y. z+s(y) = s(z+vy)
V. z+0 = =z

The signature ¥ := {0,s} is a set of constructors for Egg in the sense of Definition 55
(see [BTI8] for a proof). In particular, Gr(X,V) is the set of all terms made of zero
or more additions of variables, and each normal forms looks like s™(r) where n > 0
and r is either 0 or a term in Gr(X,V). It is interesting to notice that Gp(2,V) is
closed under instantiation into itself.

The following is another simple, but this time non-equational, example of a theory
with constructors.

41n the (counter-)examples below, x,y,z are variables, numbers and identifiers starting with a
capital letter are function symbols, identifiers starting with a capital letter are relation symbols.
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Example 67 Consider the signature Yg7 := {0,s,+,Even} and the theory Tgr az-
iomatized by Fge above plus the sentences:

Even(0)
Vz. Even(z) = Even(s(s(z)))

It is not difficult to show that the signature ¥ := {0,s,Even} is a set of construc-
tors for Tgr. Interestingly, 3. is not a set of constructors if we also add the axiom
Vz. Even(xz + ). The reason is that then, according to Definition 55(8), since x + x
is in Gp(%,V), Yy. Even(y) should also be entailed by the theory, which is not the

case.

The next examples differ from the previous ones in that their equational X-theory
is no longer empty.

Example 68 Consider the signature ¥gg := {0,1,rev,-} and the theory Egg aziom-
atized by the sentences:

Vz,y, 2. z-(y-2z) = (xz-y) 2
Vz,y. rev(z-y) = rev(y)-rev(z)
V. rev(rev(z)) = =z

rev(0) = 0

rev(l) = 1

We show in Section 7.4 that the signature ¥ := {0,1,-} is a set of constructors for
Egs. The set Gp(X,V) is the equivalence closure in Egg of the set VU{rev(v) | v € V'}.
Moreover, every normal form is a concatenation (with -) of terms in {0, 1}UGr (2, V).
In this case too Gp(2,V) is closed under instantiation into itself.

Example 69 Consider the signature g9 := {0, 1,rev, -, Prefix} and the theory Tso
axiomatized by Fgs plus the sentences:

V. Prefix(z, z)
Vz,y. Prefix(z,z -y)

Again, it is not difficult to see that the signature ¥ := {0,1,-, Prefix} is a set of
constructors for Tgg.

7.4 Constructors in Term Rewriting

In Term Rewriting, a function symbol in the signature of a given term rewriting
system (TRS for short) R is a constructor for R if it does not occur at the top of the
left-hand side of any rule in R. Our constructors are a natural generalization of this
notion. We show in the following that the set of constructors of any confluent and
(weakly) normalizing TRS R is also a set of constructors in the sense of Definition 55
for the equational theory induced by R. We will not provide a direct proof of such
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a claim. Instead, we will show that the claim is a corollary of a more general result
about TRSs modulo an equational theory, as defined in [JK86].

We will assume that the reader is familiar with Term Rewriting and so we will
introduce only the terminology and the notation we need to prove our claims. Com-
prehensive introductions to the field can be found in [BN98, DJ90, Wec92], among
others. Since all the signatures in question will be functional and all the theories of
interest equational, we will speak of algebras rather than structures. Similarly, since
the only atomic formulae will be equations, we will speak of the equational theory of
a theory /algebra rather than the atomic theory.

We will first consider the equational Q-theory E generated by a term rewriting
system R modulo a set of collapse-free Y-equations, for some ¥ C Q. We will see
that, under reasonable conditions, ¥ is a set of constructors for E.

Constructors in term rewriting, which we will call TRS-constructors here, are
defined as follows.

Definition 70 (TRs-constructors) Let Q be a functional signature and R a TRS
over T(Q,V). We say that a signature ¥ C Q is a set of TRS-constructors for R if
no symbol in % occurs at the top of the left-hand side of a rule in R.

For the rest of the subsection, let

e  be a functional signature, and X a subset of €,
e F an equational theory of signature €2,
e Fj a collapse-free equational theory of signature ¥ and

e R a set of rewrite rules built over T(Q, V).

We will need to consider the equivalence in Ey of terms from T (€, V), not just
T(%,V). Formally, this is done by considering the Q-theory E defined as the union
of Ey and the empty (Q\ X)-theory. To simplify the notation, we will often write
5 =g, t instead of s =pa t, for {)-terms s, ¢ that are equivalent in E§.

Definition 71 We denote by S = (R, Ey) the TRS R modulo Ey, that is, the TRS
whose rewrite relation —g over T(Q,V) is defined as follows. For all s,t € T(Q,V),
s —g t if there exists a position p, a substitution o, and a rule | — r € R such that
Sip =K, lo and t = s[p <> ro].

We say that a term t' is a normal form (w.r.t. —g) of an Q-term t iff t’ is

p

irreducible by —g and t S5 t'. We say that two Q-terms t1,ts are joinable modulo
Ey iff there are two Q-terms ), th such that t; g t|, ty S5 th, and t) =g, th.

As customary, the notation s, above denotes the subterm of s at position p,

s[p <> ro] denotes the term obtained by replacing s, in s by 7o, and %5 denotes
the reflexive transitive closure of —g. Note that, when the theory Fy is empty, —g
is a term rewriting relation in the usual sense. Correspondingly, the definitions of
normal form and of joinable modulo Ej reduce to the usual ones.

An example of a TRS R modulo Ej is the following.

52



Example 72 Ey is the theory presented by the aziom:
Ve,y,2. z-(y-z) = (x-y)-z
and R is the TRS consisting of the rules:

reviz-y) — rev(y) - rev(z), rev(0) — 0,
rev(rev(z)) — =z, rev(l) — 1

Observe that ¥ := {-,0,1} is a set of TRS-constructors for R.

Definition 73 (Completeness) The TRS S = (R, Ey) is semi-complete for E iff
all of the following hold.

1. the relation =g coincides with (=g, U <»g)* on T (%, V)—or, equivalently, E
is aziomatized by EgU{VI=r |l —r € R};

2. the relation —g is normalizing, i.e., every Q-term t has a normal form w.r.t —g;

3. the relation —g is confluent modulo Ey, i.e., for all Q-terms t,t1,to such that
t1 <*—5 t —*>5 ta, t1 and ty are joinable modulo Ey.

We say that S is complete for E iff it is semi-complete for E and —g is terminating,
i.e., there is no infinite sequence (to,t1,t2,...) such that tg =g t1 —gta —g---.

It is not difficult to show that when the TRS S = (R, Ej) is semi-complete for
E, F is non-trivial, every 2-term is equivalent in F to its normal forms w.r.t. —g,
and for all s,t € T(f2,V) and respective normal forms s, ¢/,

s=pt iff =F, t.

From this it follows that any two normal forms of the same term ¢ are equivalent in
Ey. For this reason, we will identify them and denote any of them by t|g.

(Semi-)Complete TRSs form a natural class of rewrite systems. The reason is
that if a TRS S = (R, Ep) is complete for some theory F, and the matching and
word problems in Ey are decidable,*? then the normal form t|g of every term ¢ is
computable; as a consequence, the word problem in F is also decidable. As a matter
of fact, using standard results in term rewriting, it can be shown that the word
problem in F is decidable even if S is just semi-complete for F.

To prove that TRS-constructors are constructors for E in the sense of Defini-
tion 55, we will appeal to well-known results from the research on the combination
of decision procedures for the word-problem in a union of collapse-free, signature-
disjoint equational theories [SS89, Nip91, Rin96a, BT97]. Here, the union of interest
will be E§!, the union of the (collapse-free) equational S-theory Eq with the (collapse-
free) empty (2 \ X)-theory.

42Recall that the problem of matching a term t1 against a term ts in Eg is the problem of
determining whether there is a substitution o such that t10 =g, t2.
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Lemma 74 Let E1 and Fs be two collapse-free equational theories of respective sig-
nature X1 and Yo, with X1 N Xy = 0. Then, the following holds.

1. The theory E1 U Es is collapse-free.
2. For all t1,t9 € T (X1 UX,V) such that t;(e) € X; fori=1,2,

t1 #E,UE, t2-

3. For all 0 € SUB(V), i € {1,2}, and i-pure non-variable terms s,t such that

o (vo)(e) ¢ Z; for all v € Var(s =1),

e uo #g,uE, vo for all distinct u,v € Var(s =),
80 =g,uB, to iff s =g, t.
The first property of S that we can show with the lemma above is the following.

Proposition 75 If S = (R, Ey) is semi-complete for E and ¥ is a set of TRS-
constructors for R, then

f(tla"' 7tn)\l«5 =Ep f(tLLSa"' ,th,S)

for all n-ary f € ¥ and t1,... ,t, € T(Q,V).

Proof. Consider the term f(t1,... ,%,) as above. Since f(t1,...,t,) and f(t1lg,... ,tndg)
are obviously equivalent in E, we have by the observation after Definition 73 that

f,o oy talls =my fltilss--- stnds)ds

To prove the claim then it is enough to show that the term f(t1lg,...,tnlg) is
irreducible by —g. Assume the contrary. Then any rule [ — r € R that applies to
t:= f(tilg,... tndg) must apply at the top of ¢, which means that ¢ =g, lo for
some substitution ¢ or, more precisely, that

[ltils, - tals) =po o

It follows by point 2 of Lemma 74 that (lo)(e€) is in 3 as well. But this is impossible
because, since ¥ is a set of TRS-constructors for R, [(€) ¢ %. O

Another property of S is that every Y-term is in normal form w.r.t. —g.

Lemma 76 If S = (R, Ey) is semi-complete for E and X is a set of TRS-constructors
for R, then tlg =t for allt € T(X,V).
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Proof. We prove the claim by term induction.
(Base case) Let t = v € V and assume ad absurdum that v)g # v. Then, by
definition of v] g and —g, there must be an 2-term ¢ other that v such that v = Bt

But this contradicts the fact that E§! is collapse-free by Lemma 74(1) for being the
union of two collapse-free theories.

(Induction Step) Let ¢t € T(3,V)\ V. Then ¢ has the form f(t1,...,t,) where,
by induction hypothesis, each t; is irreducible by —¢. Exactly as in Lemma 75 we
can then show that f(¢1,...,t,) as well is irreducible by —g. O

An easily provable consequence of the lemma above is that, under the same
assumptions of the lemma, two YX-terms are equivalent in F exactly when they are
equivalent in Ey. In other words, E( axiomatizes the equational Y-theory of E.

We now show that when ¥ is a set of TRS-constructors for R, the set Gg(2,V)
defined at the beginning of Subsection 7.1 coincides with the set of terms whose
normal forms w.r.t. =g do not start with a 3-symbol.*3

Lemma 77 Assume that S = (R, Ey) is semi-complete for E and ¥ is a set of
TRS-constructors for R. Then,

Ge(2,V) = {reT(Q,V)|rlg(e) ¢ Z}.

Proof. Let r € T(Q,V).

(C) Recalling the definition of Gg (%, V), it is obvious that r ¢ Gg(X, V) when-
ever rlg(€) € X, given that r =g 7lg.

(D) Assume ad absurdum that r]g(€) € ¥ but r € Gg(2,V). Then, there is an
fe€Xandatin T(5,V) such that r =g f(f). By Definition 73 and Proposition 75,
we can then conclude that rlg =g f(tlg). Now, if r/g(€) is in Q\ I, the above
equivalence contradicts point 2 of Lemma 74. If 7] g(€) is a variable, the equivalence
contradicts the fact that Ef! is collapse free by Lemma 74(1). 0

Together with Proposition 75, Lemma 77 has the following consequence.

Lemma 78 Let G := Gg(X,V) and assume that S = (R, Ey) is semi-complete for
FE and ¥ is a set of TRS-constructors for R. Then,

tlg € T(Z,G)
forallt e T(Q,V).

Proof. Let t € T(Q,V) and assume that t|¢ ¢ T(X,G). Then, it is not difficult
to show by the results above that there must be a subterm 7 of t|g with r(¢) ¢ X,
a function symbol f € ¥, and a tuple ¢ in T(Q,V), such that r =g f(f). By
Definition 73(3) then we have that rlg =g, f(f)lg. Now, rlg = r as r is the
subterm of the irreducible term t|g, and f(#)|g =g, f(tlg) by Proposition 75. But
this entails that r =pa f (tlg), which is impossible by Lemma, 74(2). 0

43Notice that when S = (R, Eo) is semi-complete for E, a term has a normal form with top symbol
in X iff all its normal forms have their top symbol in ¥, as one can easily show.
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We are now ready to prove the main result of this subsection.

Proposition 79 If S = (R, Ey) is semi-complete for E and ¥ is a set of TRS-
constructors for R, then X is a set of constructors for E.

Proof. We prove the claim by showing that the three conditions of Definition 55 are
satisfied. Let G := Gg(%,V).

(1) Let v € V. Since v = vlg by Lemma 76, we can immediately conclude by
Lemma 77 that v € G. It follows that V C G.

(2) Let t € T(2,V). We have already observed that ¢t =g t|g. From Lemma 78
we also know that t|g € T(Z,G).

(3) Let s1(71),s2(72) € T(X,G) and s1(01), s2(02) be the corresponding terms
obtained by abstracting 71, 7o with fresh variables so that terms equivalent in E are
abstracted by the same variable. We show that s1(71) =g s2(72) iff s1(01) =g s2(?2)-

The right-to-left implication is immediate, hence assume that s1(71) =g s2(72).
From the hypothesis that (R, Ey) is semi-complete for E we can conclude that

sifi)ls =pa  s2(m2)ls-

Recalling that s; and s, are X-terms, we can show by a simple inductive argument
based on Proposition 75 that

s1(fils) =po  s2(F2ls).

Assuming that E-equivalent terms in 7,7 have the same normal w.r.t. —g,%* it
is easy to see that each s;(7;lg) is the result of applying to s;(9;) a substitution o
satisfying Point 3 of Lemma 74. By that lemma, it then follows that s1(91) =g, s2(?2)
and so 51(’171) =E 32(’52). O

We would like to stress that, although the preconditions in Proposition 79 entail
that 3 is a set of constructors for E, they do not entail that normal forms in the
sense of Definition 64 are computable. A sufficient condition for the computability
of normal forms, under the assumptions of Proposition 79, is that Fy-matching with
free constants is decidable. We will prove that in Subsection 9.2.

Finally, we can produce a result like the above for “conventional” TRSs, i.e.
TRSs not modulo some equational theory, again by observing that such systems are
TRSs modulo the empty equational theory.

Corollary 80 Let R be a TRS over T(Q,V). If - is semi-complete and ¥ is a set
of TRS-constructors for R, then X is a set of constructors for the equational theory
induced by R.

44Such an assumption is with no loss of generality because normal forms of E-equivalent terms
are Ep-equivalent and so can be identified in 71lg, 72 g.
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To summarize, for semi-complete term rewriting systems, our notion of con-
structors is a generalization of the notion of TRS-constructors. In addition, it is a
strict generalization, given that the equational theory over TRS-constructors is al-
ways empty (as one can easily see), which need not be the case for our constructors.

We conclude this section by sketching how the above results can be used to prove
that the signature ¥ in Example 68 of Section 7.3 is indeed a set of constructors.
Consider the TRS S := (R, Ey) where Ey and R are defined as in Example 72.
Clearly, Ey is collapse-free, — g is terminating (therefore, normalizing) and ¥ :=
{0,1,-} is a set of TRS-constructors for R. It is not difficult to show that —p is
confluent modulo Ej. It follows by Proposition 79 that ¥ := {0,1,-} is a set of
constructors for Fgg.

8 Identifying Y-stable Theories

In this section, we give some examples of classes of stably X-free theories and show
which theories within these classes are N-O-combinable. We believe more classes can
and should be identified in order to better assess the practical significance of our
combination method in the case of component theories with non-disjoint signatures.
For now, we can look at the results below and their proofs as a set of general guidelines
on how to apply Theorem 53 in practice.

Again, we will consider only countable signatures. While some results could be
given for greater cardinalities, considering just countable signatures is a sensible
restriction given that we are ultimately interested in building decision procedures
(which are defined only for countable input alphabets).

For the rest of this section, we fix two countable signatures 3i,%o such that
3 := ¥4 N Xy is finite, and two theories 17, T of respective signature 31, Yo.

8.1 Theories Sharing Constants

We start with the simple case of theories sharing just constant symbols. Assume
that for s = 1,2,

e T; is stably-infinite over Qff>';
e ) contains only constant symbols;

o for all kq, ko € %, either T; |= (kl = k’g) or T; |: (kl e k‘g).
Then, we can show the following.

Lemma 81 T; is stably X-free over Res(Qff ™, %) fori=1,2.
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Proof. Tt is enough to notice the following: first, since ¥ is just a set of constants,
Res(Qff¥,%) C Qff™ and so, by the stable-infiniteness of T}, every Z-restricted
formula satisfiable in T; is satisfiable in a countably infinite model of T;; second,
for any countably infinite model A; of Tj, A;> is free in the S-variety of T over a
countably infinite basis (because any ¥-equation valid in A; is also valid in 7;). O

Proposition 82 If T\ = (k1 = ke) iff To = (k1 = ko) for all k1,ke € X, then T
and Ty are totally N-O-combinable over Qff .

Proof. By Lemma 81, T; is stably 3-free over Res(QﬁEi, ¥) for i = 1,2. Tt is imme-
diate that 77 and T, have the same atomic ¥-theory. It follows by Theorem 53(1)
then that 77 and 75 are partially N-O-combinable over Qff. To see that they are
totally N-O-combinable, it is enough to notice that, since X is a set of constant
symbols, every model of 71 U Ty is Y-generated by its Y-individuals, which satisfies
Condition 25 directly. O

This result states in essence that the Nelson-Oppen method is trivially extensible
to theories sharing constants, provided that the theories are “complete” over these
constants and identify them in the same way.

Let us simplify our initial assumptions by requiring that no shared constants are
actually equivalent in T; for ¢ = 1,2. In practice, such a requirement causes no loss
of generality, as we can always identify two equivalent constants and remove one of
them from the signature. Then, we obtain the following decidability result.

Proposition 83 Let T1,Ty be such that fori=1,2,
o T; is stably-infinite over Qff > ;
e 3 contains only constant symbols;
o for all ki,ke € X, T; = (k1 # ka)-

If the satisfiability in T; of formulae in Qff* is decidable for i = 1,2, then the
satisfiability in T := Ty U Ty of formulae in Qff**Y*? is also decidable.

Proof. Since T1 and T5 are N-O-combinable over Qff by Proposition 82, our combina-
tion method is applicable in a sound and complete way. This means that the method
yields a semi-decision procedure for the satisfiability of formulae in Qff>"*2. To see
that it actually yields a decision procedure, simply observe that the non-determinism
in the instantiation step is bounded in this case because the set of shared terms is
finite. O

8.2 Theories Sharing the Finite Trees

In this subsection we show that theories obtained as an extension of the theory of
finite trees are N-O-combinable under certain conditions. Finite trees are a major
data structure in Computer Science and Symbolic Computation. The domain of
finite trees, which is essentially a term algebra, was first axiomatized by Mal’cev (see
[Mal71]). We present this axiomatization below and call it the theory of finite trees.
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Definition 84 (Finite Trees) The theory of the finite trees, over some signature
3., is the universal theory presented by the azioms below.

e V(f(@)=f(®) =>u=10) for every f € F

o« Vf(@) #g(0) forevery f,g €T, f#g
o YuZt(®) for every t(v) € T(S,V)\V andv € ¥

To facilitate the exposition, in the following we will identify the theory above
with its deductive closure and denote it by FT*—which is consistent with the way
we denote the Y-restriction of a theory (cf. Section 2).

The models of FT* can be give an algebraic characterization; they are all what
Mal’cev called locally absolutely free algebras. We will use some of the properties
of such algebras later. We introduce and prove these properties below, but in the
context of a more general class: the class of locally free structures.

Definition 85 (Locally Free Structure) A structure A of signature ¥ is locally
free in a class K of X-structures if every finitely-generated substructure of A is free
in K (over some finite set).

We say that a Y-structure is locally absolutely free if it is locally free in the class
of all the Y-structures. By definition, any substructure of a locally free structure is
itself locally free. A perhaps not so immediate property of locally free structures is
the following.

Proposition 86 If a locally free structure in a collapse-free class K admits a non-
redundant set X of generators, then it is free over X in K.

Proof. Let B be a Y-structure with a non-redundant set of generators X and assume
that B is locally free in some class K of 3-structures. Let ¢(%) be an atomic X-formula
and Z a sequence of distinct elements of X such that B |= ¢[Z]. By Proposition 43,
it is enough to show that K |=V ¢.

Let A := (Z); and I := Is(A¥). Notice that A is free in K, for being a finitely
generated substructure of a locally free structure in K, and that, by Proposition 45,
I is the only basis for A. By construction of A and Lemma 1, Z is a non-redundant
set of generators for A. From what we observed earlier, I as well is a non-redundant
set of generators for A. Tt follows immediately, as I C Z, that £ = I. Now notice
that A |= ¢[Z] as well because A C B and ¢ is atomic. Then, by Proposition 43
applied to A, we obtain that K |= V. O

It possible to show that every substructure of an absolutely free structure is
absolutely free. This immediately entails that absolutely free structures are also
locally absolutely free. The converse, however, is not true. In fact, consider the
Y-structure Z of the integer numbers with signature ¥ := {s} for the successor

59



function. The structure Z cannot be free because it does not admit a non-redundant
set of generators. However, it is easy to see that every finitely generated substructure
of Z is isomorphic to the Y-structure of the natural numbers, which is absolutely
free. Nonetheless, by Lemma, 86, we claim the following special case.

Corollary 87 For any signature 3, the class of locally absolutely free 3-structures
with a non-redundant set of generators coincides with the class of absolutely free
3-structures.

For each signatures ¥ not containing predicate symbols, the class of locally ab-
solutely free S-structures coincides with Mod (FTZ).

Proposition 88 A X-algebra A is locally absolutely free iff A € Mod(FTZ).

Proofs of this characterization can be found in [Mal71, Mah88], among others.

We can now move to the the combination of theories extending the theory of
finite trees, and show under what conditions they are N-O-combinable.

The extended theories will be universal, that is, axiomatized by a set of closed
universal formulae, where a universal formula is a formula in Prenex Normal Form
whose (possibly empty) quantifier prefix contains only universal quantifiers. We
will appeal to the following two properties of universal theories (see [Hod93] among
others).

Lemma 89 Let B be a X-structure and ¢(0) a universal X-formula such that B =
pla] for some a in B. Then, ¢(0) is satisfiable in every substructure A of B whose
universe includes a.

Lemma 90 For every universal X-theory T, the class ModE(T) 1s closed under the
formation of substructures.

In addition, we will use some general properties of what we call X-independent
sets.

Definition 91 Let B be a structure and X C Xg. A set X C B is X-independent
in B iff X is a non-redundant set of generators for the substructure (X)zs of B>
generated by X.

To simplify the enunciation of the next result let us say that a set Ax is -
generated by a set X included in the universe of a structure A, with ¥ C ¥4, if Ax
is contained in the universe of (X) s.

Lemma 92 Let B be an uncountable structure, > a countable subsignature of ¥ p,

and A a finite subset of B. Then, there is a countably infinite subset of B which is
Y.-independent in B and X-generates A in B.
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Proof. Since A is finite, there certainly is a finite subset of A (possibly the empty set)
which is Y-independent and Y.-generates A. If X is any such set, there must be an
z1 € B\ Xy such that X; := Xy U {z1} is ¥-independent in B. Otherwise, B would
be ¥-generated by X, which is impossible as both Xy and 3 are countable while B
is not. Iterating the above argument, we can define a family {X,, | n < w} of finite,
¥-independent subsets of B such that X,, C X; 41 for alln < w. Let X := [, ., Xn.
The set X is clearly countably infinite and, for including X, ¥-generates A. We
show by contradiction that X is 3-independent in B.

Assume that there is an z € X such that {z} is 3-generated by X \ {z}. Then, we
can show that {z} is X-generated by some finite subset Y of X \ {z}. By construction
of X, there is an n < w such that X, includes Y U {z}. But then, by the above, X,
is not X-independent in B, against the assumption. O

For the rest of the subsection we will assume that our theories 77 and 75 are such
that, for i = 1, 2,

e T; is universal,

e 3, contains at least one function symbol of non-zero arity,
o ¥ =15, and

o« TF =FT%.

The Clark completion of a Prolog program, which provides the logical semantics
of the program (see, e.g., [L1087]), is an example of a theory of this sort. Each of the
theories above is stably Y-free over Y-restricted universal formulae.

Lemma 93 For i = 1,2, T; is stably X-free over Res(L¥, %) where L is the class
of universal formulae.

Proof. Because of the assumptions that TiE = FT* for i = 1,2 and ¥ contains at
least one function symbol of non-zero arity, all models of T; are infinite. Moreover,
as ¥ = %;F', every set of S-generators for a model A of T; is also a set of generators
for A. Now, suppose that ¢(#) € Res(L¥i,X) is satisfied in a model B of T; by
some tuple b. Since B is infinite, we can assume without loss of generality that it
is uncountable. By Lemma 92 then, there is a countably-infinite X C B that is
S-independent in B and -generates b. Let A := (X)z. By construction, X is a
non-redundant set of generators for A and b is in A. Observing that ¢ is equivalent
to a universal formula, we can conclude by Lemma 89 and Lemma 90 that A as
well is a model of T} that satisfies . Now, A is clearly a model of FT*, therefore
by Proposition 88 and Corollary 87, A* is an absolutely free algebra. Since the
Y-variety of T} coincides with the Z-variety of the empty theory, it follows that A>
is free over X in the X-variety of T;.

In conclusion, we have shown that an arbitrary formula ¢ € Res(L>, %) satisfi-
able in T;, is also satisfiable is a model of T; whose X-reduct is free in the X-variety
of T; over a basis of cardinality w = Card(%;), which proves the claim. |
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We are almost ready to show that 77 and 75 are N-O-combinable over universal
formulae. We need one more general result about theory restrictions. This result,
which is not limited to universal theories, is not as trivial as it looks and, in fact,
does not hold if the signature ¥ below is strictly contained in ¥; N 3.

Lemma 94 Let I'y be an Qq-theory, I's an Qo-theory, and Q := Q1 N Qy. Then, for
all Q-sentences @,

(T1UT)? o iff TYUTS o

Proof. («) Immediate consequence of the obvious fact that TS? UTS! C (T'; U Ty).
(=) Let ¢ be a Q-sentence and assume that (T'y U T3)? = ¢ or, equivalently,
that the theory I'; U (I's U {—¢}) is inconsistent. By the Craig Interpolation Lemma
[Hod93], there is a Q-sentence 1 such that I'y = -1 and T'y U {—¢} |= 1. By logical
reasoning, we also have that I'; = -9 = ¢. Observing that both ¢ and —1) are
Q-sentences, we can then conclude that =) € T¥ and (- = ¢) € I'S) from which
the claim follows immediately. O

Proposition 95 T and Ty are totally N-O-combinable over the class of universal
formulae.

Proof. Let L be the class of universal formulae. Obviously, both 77 and T5 have the
same atomic Y-theory, the empty theory. Since, by the previous lemma, T; is stably
Y-free over Res(L¥,X) for i = 1,2, we can conclude by Theorem 53(1) that 77 and
T5 are partially N-O-combinable over L.

Now, by Lemma 94, it is easy to see that (T3 UT5)* = FT>. It follows that
T1 U T, satisfies the same preconditions we have on 77 and 75, which means that
Lemma 93 applies to 71 U T5 as well. In other words, 77 U T is stably 3-free
over the class Res(£¥1Y*2 %)). In particular, it is stably Y-free over the subclass
L' ® £>2. Observing that the Z-atomic theory of 77 U T, is also empty and thus
definitely collapse-free, we obtain by Theorem 53(2) that 77 and 75 are totally N-O-
combinable over L. ad

Finally, we obtain the following decidability result.
Proposition 96 Let T,Ty two theories such that for i =1,2,

o T; is an aziomatizable universal theory of signature 3,

¥ contains at least one function symbol of non-zero arity,

e =35 and

° TZ-Z =FT>.
If the satisfiability in T; of formulae in Res(Qff™,X) is decidable for i = 1,2, then
the satisfiability in T := 11 U Ty of formulae in Res(QﬁEIUEQ, %)) is also decidable.

Proof. By Corollary 35, observing that Qff is effectively purifiable, 77 and T3 are
totally N-O-combinable over universal formulae, and every formula in Qff is univer-
sal. O
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8.3 Theories Sharing Decomposition Axioms

In the previous subsection 77 and 75 shared all their function symbols. We can allow
them to have non-shared function symbols if each of them is the complete theory of
a free structure in which the extra symbols are “disjoint” from the shared ones. In
the following, we will assume that > = 3; N Xy contains only function symbols.

Definition 97 Let Q be a signature and = C Q be such that ¥ = ZF. The Q-theory
DEC(Q,X) is the universal theory presented by the azioms of FT* plus the azioms

Y f(@) # g(d) for every f € X and g € Q\ .

An Q-theory T is X-decomposable if T = DEC(Q,%). A Q-structure A is X-
decomposable if A € Mod(DEC(, X)).

Example 98 Consider the following X;-theories:

E, = {Vo. (—z)*(—z) =z *xx}
Ey, = {Vz.z+ (—z) =0}

where 1 := {—,*}, Lo :={—,0,+}, and ¥ := {—}. It can be easily shown that the
free models of E1 and of Es with an infinite basis are Y:-decomposable structures.

Lemma 99 If T and T> are Y-decomposable, then T1 U Ty is X-decomposable.

Proof. Fori = 1,2, if T; = DEC(X};, X)), then T1UTs = DEC(X;, X)) since T; C T1UT.
Therefore, 71 U T, = DEC(X;,%) U DEC(X3,%). The claim then follows from the
fact that DEC(X;,X) UDEC(Z,,¥) = DEC(X; U X5, ). O

Proposition 100 Let T and Ty be both Y-decomposable. Then, the satisfiability in
Ty UTy of formulae in TRes(Qff¥1V¥2, %) is effectively reducible to the satisfiability
in Ty UTy of formulae in the subclass TRes(Qff™' @ Qff>2,%).

Proof. Let ¢ Ares™ (i) be an element of TRes(Qff**“*2,%). As we have seen before,
we can assume without loss of generality that ¢ is a conjunction of literals. Now let
©1 N o be the conjunction of pure formulae obtained by purifying ¢ as described
in Subsection 5.1. Again, the formula 9 := ¢ A 2 A res™ (@) need not be totally
Y-restricted because @1 A @2 may contain a set ¢ of new variables introduced by the
purification process. Notice, however, that each member v of ¥ occurs in @1 A @9
exclusively as the left-hand side of an equation v = ¢, where %, is a term with top-
symbol in ¥;\¥. Now assume that ¢ is satisfiable in a model A of 77 U T and
let g be the top symbol of ¢,. Since g ¢ ¥ and T | VZ,7 g(Z) # f(y) for all
f € X, every A-solution of 9 must map v to a ¥-isolated individual. It follows
that there is an identification ¢ of @ := 4,9 such that p1& A @of A res®(w€) is
satisfiable in T'. The proposition’s claim then is an easy consequence of the fact that

P1€ N p2€ N res™(w€) € TRes(QfF™ ® Qff ™, %). O
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Lemma 101 If T; is X-decomposable, then At(TiE) 18 aziomatized by the empty
equational X-theory.

Proof. Since T; = DEC(X;, ¥), it is easy to prove by structural induction on ¥-terms
that for all S-equations s = s/, T; = s = ¢ iff s = s'. Therefore, At(T}") corresponds
to the empty 3-theory. O

The following proposition is analogous to Proposition 83 presented for the case
of theories sharing only constant symbols.

Proposition 102 Assume that fori=1,2,
o T is stably X-free over TRes(Qff*!,%);

o T; is X-decomposable.
If the satisfiability in T; of formulae in TRes(QﬁEi, X)) is decidable fori = 1,2, then

the satisfiability in T := T; UTy of formulae in TRes(Qff~'"*?,X) is also decidable.
Moreover,

o T is stably B-free over TRes(Qff*V*2,%);

o T is Yi-decomposable.

Proof. According to Lemma 101, 77 and T5 have the same atomic Y-theory, and so we
can apply Proposition 54, Theorem 53, and Theorem 28, where £ = Qff. Thanks to
Proposition 100, we can substitute TRes(Qff ™! @ Qff>2,%) by TRes(Qff*1"*2,x).

O

It is rather easy to find examples of theories satisfying the assumptions of the
previous proposition.

Proposition 103 If T; is the (complete) theory of a L-decomposable ¥;-structure
A; free over a countably infinite basis X, then

o T is stably X-free over TRes(Qff >, %);

o T; is Y-decomposable.

Proof. Tt is easy to see that the set Y := Is(A*), which includes X as T} is collapse-
free, generates A;”. We can show by term induction that s = s’ for all I-terms
s,s' for which there is a discrete tuple § in Y such that A;* = (s = s')[§]. By
Proposition 43 then, AT is free over Y in Mod(At(T.")), which is the class of all 2-
structures according to Lemma, 101. Then, the first point of the proposition follows
directly from the definition of stable X-freeness, the second point from the definition
of Tj. O

From the above results it is then easy to prove the following.
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Proposition 104 Assume that for i = 1,2, T; is the (complete) theory of some %-
decomposable ¥;-structure free over a countably infinite basis. If the satisfiability in
T; of formulae in TRes(Qff*",%) is decidable for i = 1,2, then the satisfiability in
T := T, UTy of formulae in TRes(Qf**Y*2,%) is also decidable.

When the word problem for each T; above is decidable, the result in Proposi-
tion 104 is actually a special case of a more general combination result for theories
sharing constructors. We will prove that result in the next subsection with Theo-
rem 113. Then, to see that Proposition 104 follows from Theorem 113, it will be
enough to consider the following properties of theories of ¥-decomposable structures.

Proposition 105 If T; is the (complete) theory of a X-decomposable structure free
over a countably infinite basis X, then

e X is a finite set of constructors for T;;
o G1,(3,V) is closed under instantiation into itself;

e normal forms are computable for 3 and T;.

Proof. We already know that the S-reduct of A; is free over X in At(7}”), which is
empty. It follows that it is free in TZ-E, where TZ-E is collapse-free. By Theorem 59,
we then have that X is a set of constructors for 7;. Moreover, it is easy to see that
Gr1,(2,V) is the set of terms in T(%;, V) with top-symbol in V' U 3;\ £. From this
it obviously follows that G7,(X2,V) is closed under instantiation into itself. It also
follows that every ¥; term is in normal form, and so we can choose NF% as the
identity on T'(%;, V'), which is obviously computable. a

8.4 Theories Sharing Constructors

In this subsection, we consider the combination of complete theories sharing con-
structors. Specifically, we will assume that for 1 = 1, 2,

e T; is the (complete) theory of some free ¥;-structure A4; with a countably
infinite basis;

o At(A7) = At(A);

e X is a finite set of constructors for T;.

Our goal is to show that T} and T are N-O-combinable over some effectively
purifiable language £ by using the fact that each T; is stably S-free over any £>.
Recall that if we can show this, then we know we can use our combination procedure
in a sound and complete way to (semi)-decide the satisfiability in 77 UT5 of formulae
in Res(L£L¥1Y*2, %), once we have for i = 1,2 a decision procedure for the satisfiability
in T} of formulae in Res(L¥i,Y).

We can easily show that 77 and T5 are partially N-O-combinable over an arbitrary
L, which makes our procedure sound. However, our current result are not strong
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enough to show that 77 and T» are totally N-O-combinable over £, —which would
make the combination procedure also complete. What we can show is that the
procedure is complete for input formulae that are already totally -restricted.

Although this may be a strong restriction in general, it has a remarkable side-
effect. As we will show in the following, with some additional assumptions on the
computability of normal forms in 77 and in 75, we can turn our combination pro-
cedure into a decision procedure for the satisfiability in Ty U Ty of totally restricted
quantifier-free formulae, even when 77 and 75 share infinitely-many terms.

We start by showing that the component theories are stably Y-free over any class
of formulae and (totally) N-O-combinable over totally X-restricted pairs of pure
formulae.

Lemma 106 For every class L of formulae, T; is stably X-free over L> fori = 1,2.

Proof. Let ¢ € {1,2}. Since T is the complete theory of A;, we know that a 3;-formula
is satisfiable in Tj iff it is satisfiable in A4;. All we need to show then is that A;> is
free in At(T}") over a countably-infinite set. Now, since ¥ is a set of constructors for
T; and A; is obviously a free model of T}, we know from Theorem 59 that A* is free
in TiE over some countably infinite set Y. From this and Proposition 46, it is easy
to see that A> is also free in At(7.") over Y. O

Proposition 107 For any class L of first-order formulae, Ty and Ty are totally
N-O-combinable over TRes(L*' ® L¥2,X).

Proof. Let Hy be the atomic X-theory of T. By the construction of 77 and T, and
the assumption that At(A7) = At(AY), it is immediate that Hy is also the atomic
Y.-theory of T5. By Lemma 106, for 1 = 1,2, T; is is stably Y-free over any class of
formulae, in particular over Res(L£”,%). We can then conclude by Theorem 53(1),
that 77 and T» are partially N-O-combinable over L.

From Lemma 106 again and Proposition 54, we also have that 77 U5 is X-stable
over TRes(L*' ® L£*2,%). Since Hy is collapse-free by Theorem 59, we can show
exactly as in the proof of Theorem 53(2) that T} and T5 are totally N-O-combinable
over TRes(L* ® L*2,%). |

By virtue of the above result we can use our combination method to yield,
trivially, a decision procedure for the satisfiability in 7' := T; U Ty of formulae in
TRes(L** ® £*2,%) whenever the satisfiability in T} of formulae in TRes(L>, ) is
decidable for 1 = 1,2. In fact, we can modify the combination procedure so that,
given a formula

©1 A o A iso™(D) A dif () € TRes(L™ @ L™2,Y),

it considers it as the input pair (¢1, p2). However, since all the shared variables
of 1 and 9 are Y-restricted, the procedure chooses, deterministically, the empty
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substitution in both the instantiation and the identification step. At this point, our
decidability claim follows immediately.

Now the decidability of the satisfiability of formulae in TRes(L*! ® £*2,%) is
not terribly exciting because, as already observed, one is more likely to be in-
terested in the satisfiability of formulae in TRes(L£*1Y*2,%), not just of those in
TRes(L™ ® L¥2,%).

We show below, however, that under some more assumption of 77 and 715, the
result provided by Proposition 107 is enough for deciding the satisfiability in T' :=
T, U Ty of a specific instance of TRes(L£¥'Y*2 %), namely TRes(Qff>'"*2,%), the
class of totally restricted quantifier-free formulae of signature 31 U 9. The reason
is that the satisfiability in 7" of such formulae becomes effectively reducible to the
satisfiability in T' of formulae in TRes(Qff™! ® Qff*2, ).

Here are the additional assumptions, which we will make from now on: for ¢ =
1,2,

e G1,(X,V) is closed under instantiation into itself (cf. Definition 61);
e the word problem for 7; is decidable,

e normal forms are computable for 3 and T;.
Lemma 108 FEvery model of T has Y-isolated individuals.

Proof. Assume by contradiction that there is a model B of T with no X-isolated
individuals. Then the ¥-sentence ¢ := —3v. iso™(v) is true in B and hence in B>!,
say. Since B> is a model of T} and T} is the complete theory of A;, we can conclude
that ¢ is true in A; as well. But this is impossible because .A; has infinitely many
Y-isolated individuals by Proposition 58 and Corollary 60. O

The following lemma states that in every model of T' the terms of Gr;(2,V)
(1 = 1,2) map X-isolated individuals to ¥-isolated individuals.

Lemma 109 For alli=1,2, v €V, and r(v) € Gr,(X,V),
T = v=r(®) Aiso™(%) = iso™(v) (1)

Proof. Let i € {1,2}. Since T includes T; and T; is the complete theory of A;, it is
enough to show that the ¥;-sentence in (1) above holds in A4;.

Let 8 be any valuation of V such that (A;, 8) = v = r(9) A iso™ (). To satisfy
iso” (%) in A;,  must map every variable in & to an element of Is(A;*). Since
Gr,(2,V) is closed under instantiation into itself, we obtain by Lemma 62 that
B(v) = [[r]]?l € Is(A;*), which means that (A;, 8) | iso™(v). The claim then follows
from the generality of S. O

As we have seen in Section 7, for i = 1,2, 3;-terms have a normal form in T; that
is a X-term over the “variables” G (X, V). Something analogous holds for (£; UZXs)-
terms in T', where a set of “variables” can be built incrementally out of G, (X, V)
and G, (%, V).
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Definition 110 The set G5.(X,V) is inductively defined as follows:
1. Ewvery variable is an element of G%.(%,V), that is, V C GH(%,V).

2. Assume that 7(0) € G1,(2,V) fori =1 ori =2 and 7 is a tuple of elements
of G5(%,V) such that the following holds:

(a) 7(0) #r v for all variables v € V;
(b) ri(e) & Z; for all components r; of 7;
(c) the tuples © and 7 have the same length;

(d) r; #r 1 if T, 7K Occur at different positions in the tuple 7.
Then r(7) € G5(X2,V).

Notice that for ¢ = 1,2 every non-collapsing element of G; is in G7.(%,V) for
1 = 1,2 because the components of 7 above can also be variables. Also notice that
an element r of G%.(X, V') cannot have a shared symbol (i.e., a symbol in ¥) as top
symbol since r is a variable or it “starts” with an element of G;.

In [Tin99], it is shown that under the given assumptions on 77 and T5, ¥ is also
a set of constructors for 7', normal forms are computable for ¥ and T, and every
normal form can be assumed to be in T(3,GH(Z,V)).%® We will appeal to these
facts in Proposition 112.

Lemma 111 Let ¢ be a conjunction of (X1 UXs)-literals all of whose arguments are
terms in T(X1 U X9, G1(E,V)). Then, ¢ can be effectively converted into a finite set
S which is equisatisfiable with ¢ in T and is partitioned into the sets

- j—— — 2 — .2
Ll, LQ, F1 = {Uj = Tj}jEJU F2 = {’Uj = Tj}j€J2,
where

1. Ly is made of literals of signature 31 and Lo is made of literals of signature
22 \ 21;

2. Var(S)\ Var(p) = {’U;'}i,j;'

3. foralli=1,2 and j € J;,
(a) vj— does not occur in L; and occurs only once in F;;
(b) ri € Gr,(Z,V)\V;

4. forall j € Jy, 'ujl- € Var(Ls) or v} € Var(ry) for some k € Jo;
forall j € Jo, ’UJQ- € Var(L1) or '072 € Var(r}) for some k € Ji;

45 A proof of these facts can also be found in [BT01] for the case of equational theories.
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Furthermore, let © := Var(p), @ := Var(S), A a model of T and « a valuation of V
into A. If (A, a) = S Uiso™(9) then (A, a) = S Uiso™ ().

Proof. We simply apply to ¢ the purification procedure seen in Section 5 and collect
in F; (1 = 1,2) the ¥;-equations added by the purification process, in L; the purified
literals of signature 31, and in Ly the remaining literals.

Then, Point 1 and point 2 are trivial. Point 3a is a consequence of the fact that
each alien term is abstracted by a fresh variable. Point 3b follows from the definition
of G%.(3,V). Point 4 follows from the fact that each v;- is an abstraction variable.

Now let A € Mod(T) and « a valuation such that (A, ) & S U iso”(9). Then
define the binary relation > on F := Fy; U F; as follows: for all (v =7),(v' =7¢') € F,

(w=r)= (=) iff o €Var(r).

From the properties in the previous points and the fact that F consists only of
equations added by purification it not hard to show that > is an acyclic relation.
Then, by a simple well-founded induction argument based on > one can show using
Lemma 109 that (A, a) = isoz(v;) for all4 = 1,2 and j € J;. It follows by point 2
above and the definition of iso™ that (A, a) = S U iso™ (). 0

We are now ready to prove our reducibility claim.

Proposition 112 The satisfiability in T of formulae in TRes(Qf*'V*2, %) is effec-
tively reducible to the satisfiability in T of formulae in the subclass TRes(Qff ™ @ Qff*2,%).

Proof. Let 9(%) := ¢ A res>(?) be a formula of TRes(Qff*'“*2,%) and assume for
simplicity that ¢ is non-empty. This assumption is with no loss of generality because
¥ can be empty only when ¢ is a ground formula. But then, where v is an arbitrary
variable, ¢ is trivially equisatisfiable in 7" by Lemma 108 with the totally X-restricted
formula ¢ A res™(v), which is effectively computable from ¢.

Clearly, 1(?) can be effectively converted into the logically equivalent formula

Y1 A 1es™ (D) V -+ V ahy A res™ (D)

where 91 V --- V 9, is ¢’s disjunctive normal form. Each 1); above is a conjunction
of literals and (%) = (%) A res®(?) is satisfiable in a model A of T if and only if
for some i € {1,... ,n} the totally restricted formula 1; A res” (%) is satisfiable in .A.
With no loss of generality then assume that ¢ is just a conjunction of literals and
consider the following procedure with input ¢ A res™(@).

1. Replace each argument ¢ in each atom of ¢ by its computable normal form,
which we know is an element of T'(3, G)(%,V)).
2. Convert ¢ into the set S := L1 U Ly U Fy U F5 as in Lemma 111.

3. For 2 = 1,2, let ¢; be the conjunction of all the literals in L; U F; and output
the formula @1 A pg A res® (D).
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From our assumptions and the procedure’s construction it is clear that ¢; A
@9 A res™(¥) is computable from the initial formula ¢ A res® (%) and equisatisfiable
with it in 7. Now, in general, ©1 A po A res™ (%) will be only partially S-restricted.
In fact, step 1 above may introduce some new variables ¥; because the computed
normal forms may have variables not occurring in the original terms, and step 2 will
introduce further new variables ¥ whenever ¢ has non-pure literals.

The variables in ¥; are just a technical nuisance and can be identified with any
variable of ¥ without loss of generality. The following brief argument should suffice
in proving that. Suppose the computed normal form ¢’ of a term ¢ in the original ¢
has “extra variables”, that is, variables not occurring in ¢. Recalling that ¢ =7 #', it
is not hard to see that the denotation of ¢’ in any model of T' will not depend on the
value assigned to the extra variables. Therefore, these variables can all be identified
with an arbitrary variable; for instance one in 9—which is non-empty by assumption.
In the following then, we will assume that #; is enclosed in 9, and concentrate on ¥y
instead.

We show below that the partially S-restricted formula @1 A @9 A res™(9) is sat-
isfiable in T if and only if there is an identification & of 4 := ©¥ U 92 that identifies
no variables in ¥ and makes the totally S-restricted formula (@1 A 2)€ A res®(iu€)
satisfiable in T'. From this, the proposition’s claim will then easily follow.

Assume there is a ¢ € ID(@) such that ¢ identifies no two variables in ¢ and
(1 A 2)& A res™(u€) is satisfiable in T. Observing that 9 is contained in ¢, we can
conclude by the definition of res™ that (¢1 A ©2)& A res™ (%) is satisfiable in T. But
then, 1 A @9 A res™ (@) is also satisfiable in 7.

Now assume that (1 A g A res™(7) is satisfiable in 7. By construction of ¢;
and definition of res®, we can conclude that S U iso™(%) U dif (9) is satisfiable in T,
where S is the set generated at step 2 of the procedure above. By Lemma 111 then
S':= S Uiso™(@) U dif () is satisfiable in T. Notice that every valuation satisfying
S’ in a model of T' will assign distinct individuals to the variables in 7. Let o be any
such valuation and let & be the identification of @& induced by «.%6 It is immediate
that ¢ identifies no two variables in ¥ and that the set

(S U iso™ (@) U dif (3))€

is satisfiable in 7. But this is equivalent to saying that S¢ U iso™(a&) U dif (a) is
satisfiable in T'. It follows from the construction of ¢; and the definition of res™ that
(01 A ©2)€ A res™ () is satisfiable in 7. |

Finally, we obtain the following decidability result.

Theorem 113 Let T1,T> be such that for i = 1,2,

e T; is the (complete) theory of some free ¥;-structure A; with a countably infinite
basis;

46That is, the substitution that identifies two variables in @ iff @ maps them to the same individual.
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At(AT) = At(A7);

Gr1,(3,V) is closed under instantiation into itself;

3 is a finite set of constructors for T;;

normal forms are computable for 32 and T;;

the word problem for T; is decidable.

If the satisfiability in T; of formulae in TRes(Qff >, %) is decidable for i = 1,2, then
the satisfiability in T := T; UTy of formulae in TRes(Qff>'"*2,%) is also decidable.

Proof. By Proposition 107, Proposition 112, and our earlier observation on how to
use our combination procedure deterministically with totally restricted formulae. 0O

An interesting and immediate corollary of the theorem above is that, under the
same assumptions on 77 and 75, if the satisfiability of totally 3-restricted quantifier-
free formulae is decidable in each theory, then the satisfiability of ground (£; U X3)-
formulae is decidable in their union.

In their full generality, the conditions on 77 and 75 for the combination result
above might appear somewhat arcane. The reader might be wondering what kinds
of theories are there that satisfy them all. A more specific class of theories that does
so is presented in the following section, where we concentrate on complete theories
of free algebras. There, we will reformulate the above conditions in terms of more
familiar properties of equational theories, and provide some specific examples as well.

9 Complete Theories of Free Algebras

In this section we establish a connection between our combination method and con-
straint reasoners for the entailment of equational constraints. Recall that our method
combines satisfiability procedures, not entailment procedures. As mentioned in the
introduction, some satisfiability procedures check that their input formulae are sat-
isfiable in at least one model of the constraint theory, whereas other check that their
input formulae are satisfiable in every model of the constraint theory. Now, with
complete theories this distinction disappears because a formula is satisfiable in a
complete theory if and only if it is satisfiable in every model of the theory.

Now, it so happens that most satisfiability problems of the second sort in a given
(non-trivial) equational theory E can be recast as satisfiability problems of the second
sort in the complete theory of its free algebra over a countably infinite basis. In this
section, we exploit this fact to show how our combination results can be specialized
in terms of familiar notions from equational reasoning.

A similar approach was already presented in Chapter 4 of [Rin93]. It is argued
there that the Nelson-Oppen method can be seen as a basic combination method,
which can be turned into a combination method for constraint entailment by the
addition of more steps. We follow up on this argument in Subsection 9.3 where we
compare our method to a combination method by Baader and Schulz.
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We start by briefly recalling the definition of the most important entailment
problems for equational theories (see [Sie89, JK91, BS94] for comprehensive sur-
veys), and then recasting them as satisfiability problems in an appropriate complete
theory. In the following, F will be a non-trivial equational theory of signature 2. By
Lemma, 47, all the free models of E over a countably-infinite basis are isomorphic.
We will identify them all and denote any of them Fr, (E).

E-unification. An E-unification problem is a conjunction of Q-equations. An E-
unification problem ¢ is solvable if there is a substitution o into -terms such that
so =g to for every equation s =t of ¢. Equivalently, ¢ is solvable if ¢ is satisfiable
in Fr, (E).

The substitution o above is called an E-unifier of ¢. Sometimes, the set of all
E-unifiers of an F-unification problem ¢ can be denoted by a minimal complete set
pUg(p) of E-unifiers. In that case, every F-unifier of ¢ is an E-instance of a unifier
in uUg(p) w.r.t. an appropriate substitution ordering.*” E-unification is said to be
finitary if uUg(p) is finite for all E-unification problems . In that case, it may
be possible to devise a F-unification algorithm, that is, a procedure that returns
pUEg(yp) for every input unification problem ¢.

E-unification is decidable if there is an effective procedure for determining whether
an arbitrary E-unification problem is solvable. Notice that whereas a decision pro-
cedure for F-unification can be trivially derived from an FE-unification algorithm,
if one exists, a decision procedure for F-unification may exist even if there are no
E-unification algorithms.

E-disunification. F-disunification is an extension of E-unification to include negated
equations. An E-disunification problem is a conjunction of Q-equations and disequa-
tions. An E-disunification problem ¢ is solvable if there is a substitution ¢ into
Q-terms such that so =g to for every equation s =t of ¢, and so #g to for every
disequation s # ¢ of ¢. Equivalently, ¢ is solvable if ¢ is satisfiable in Fy, (E).

The notions of E-disunification algorithm and decision procedure can be defined
as in F-unification.

E-matching. FE-matching can be seen as a restricted kind of E-unification. An
E-matching problem is a directed Q-equation, usually represented as s < t. An E-
matching problem s <t is solvable if there is a substitution o into 2-terms such that
so =g t.

The notions of E-matching algorithm and decision procedure can be defined as
in F-unification.

E-validity. E-validity*®, commonly referred to as the word problem in E, can be
seen in turn as a restricted kind of E-matching. An FE-validity problem is just a

47See [Sie89] or [BS94] for more details.
“The term “E-validity” is non-standard, we adopt it here for uniformity.
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Q-equation. An FE-validity problem s = ¢ is solvable if s =g t. In other words, if
the E-matching problem s < ¢ is solvable with the empty substitution. Equivalently,
s =t is solvable if it is satisfied in Fr,(E) by a valuation that assigns its variables to
distinct individuals in the basis of Fr,(E).

FE-unification as defined above is often called elementary E-unification because all
the unification problems considered are over the signature €2 of E. One usually speaks
of E-unification with (free) constants if unification problems may contain constant
symbols not in €2, and of general E-unification if they may contain arbitrary function
symbols not in €. In either case, the theory of interest is not really E, but the union
of F and the empty theory over the extra symbols. A similar terminology is used for
E-disunification and E-matching.

Later, we will use the following.

Fact 114 The word problem in E is decidable whenever E-matching with constants
is decidable.

To see that it is enough to notice that for any terms s, in the signature of E,
s =g t iff there is an instantiation o of the variables of s and ¢ into distinct free
constants such that the (ground) E-matching problem so < to is solvable.

In the following, we fix a non-trivial equational theory E of (functional) signature
Q2 and denote by Ty the complete Q-theory of Fr,(F). Then, we investigate the
conditions under which the satisfiability in T of totally restricted formulae (cf.
Definition 17) is decidable. There, we will often implicitly appeal to the fact that,
by construction of Tg, a formula is satisfiable (valid) in T iff it is satisfiable (valid)
in F, (E).

9.1 Totally Restricted Formulae

First, notice that the satisfiability in Ty of equational (i.e. quantifier-free) formulae
is reducible to E-disunifiability. In fact, an equational formula ¢ is satisfiable in Tg
exactly when at least one disjunct ¢; of ¢’s disjunctive normal form is satisfiable in
Tr. But each of these disjuncts is satisfiable in T exactly when it is solvable as a
E-disunification problem.

Now, a non-deterministic decision algorithm for F-disunifiability can be con-
structed if the word problem in F is decidable and E-unification is finitary. In fact,
suppose we are interested in the satisfiability of a conjunction ¢ of equations and
disequations. Then we can do the following.

1. Let
E, be the set of ¢’s equations and
D, be the set of ¢’s disequations.

2. Compute the minimal complete set U of E-unifiers of E,.
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3. Succeed if there is a u € U such that sy #g tu for all (s #t) € D,,.
Fail otherwise.

Given the above, the following result is easy to prove.

Proposition 115 If the word problem in E is decidable and there exists a finitary
E-unification algorithm, then the satisfiability in Tx of formulae in Qff% is decidable.

Now suppose that some X C Q is a finite set of constructors for £. When
normal forms are computable for 3 and F in the sense of Definition 64, it is also
possible to decide the satisfiability in Tg of totally Y-restricted equational formulae,
i.e. formulae

(%) Ares®(%) € TRes(Qff%, %)

with res™ () := dif (¥) A iso™(?). In essence, it is enough to add to the procedure
seen above a check on the top symbols of the solutions computed by E-unification
to obtain the following result.

Proposition 116 Whenever

e Y. is a finite set of constructors for E,

normal forms are computable for ¥ and E,

the word problem in E is decidable,

there exists a finitary E-unification algorithm,

the satisfiability in Tx of formulae in TRes(Qff, %) is decidable.

Proof. Let NF% be the function that computes the normal form for E and % for
terms in T'(2, V). Recall that for a totally ¥-restricted formula to be satisfiable, the
free variables of its body must be assigned to distinct Y-isolated individuals. By the
previous result then, it is enough to verify that there is a substitution that satisfies
¢ and (a) maps no variable of ¢ to a term whose normal form starts with a symbol
in ¥, (b) maps no two variables to E-equivalent terms. More precisely, we can do
the following.

1. Let E, be the set of ¢’s equations and D, be the set of ¢’s disequations.
2. Compute the minimal complete set U of E-unifiers of E,.

3. Normalize the E-unifiers in U by replacing each g € U by a substitution '
such that vy’ = NF%(vu) for all v € Dom(u).

4. Succeed if there is a p in (the new) U such that

(a) sp #g tp for all (s #1t) € Dy,
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(b) vu(e) ¢ ¥ for all v € Var(p),
(c) up #g vp for all distinct u, v € Var(p).

Fail otherwise.

By the various computability assumptions, it is easy to see that the procedure
above is effective and terminates on all inputs (%) € Qff!. We leave it to the reader
to show that ¢ A res™(¥) is satisfiable in Fr,(E) iff the procedure succeeds on input
@, from which the claim easily follows. O

From the above, we can produce a first specialization of the combination result
in Theorem 113. In the following, we will let F;, Es be two equational theories with
countable signatures X1, 39 and ¥ := ¥ N Xo.

Proposition 117 Assume that for i = 1,2
o At(ET) = At(ES);
o GE,(%,V) is closed under instantiation into itself;
e X is a finite set of constructors for E;;
e normal forms are computable for 32 and FE;;
e the word problem for E; is decidable.

e there exists a finitary E;-unification algorithm.

Then, the satisfiability in Tr, U Tk, of formulae in TRes(Qf*'Y*2, %) is decidable.

Proof. Assume that all the assumptions above hold. To prove the claim then it
is enough to show that Theorem 113 is applicable. Now, T, and Tp, satisfy by
construction the first itemized condition in Theorem 113, while the assumptions
above correspond to the remaining itemized conditions in the theorem. Finally, by
Proposition 116, the satisfiability in T, of formulae in TRes(Qff>, %) is decidable
fori=1,2. O

9.2 Theories Generated by TRSs

It may be still not immediate to show that theories such as F1 and Ey above
satisfy all the requirements in Proposition 117. One possibility is to try to show that
each of them is generated by a term rewriting system S; = (R;, Ey) where Ej is a
collapse-free ¥-theory (cf. Section 7.4). The idea would be to assume that S; is a
semi-complete TRS and —g, is effectively computable. The effective computability
of =g, may be provided by a general Fy-matching algorithm. If S; is not just semi-
complete but complete, then Ej is not only collapse-free but also regular*’, and a
general Ey-matching algorithm can be constructed from a FEy-matching algorithm
with free constants.

4% An equational theory E is regular if Var(s) = Var(t) whenever s =g t.
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Lemma 118 Leti € {1,2}. If S; = (R;, Ey) is a complete TRS for E;, ¥ is a finite
set of TRS-constructors for R;, and Ey is a collapse-free equational Y-theory such
that Eg-matching with free constants is decidable, then

1. ¥ is a finite set of constructors for E;;
2. normal forms are computable for 3 and E;;

3. the word problem in E; is decidable.

Proof. 1) Immediately by Proposition 79.

2) Given that S; is terminating for being complete by assumption, it can be shown
using standard results in Term Rewriting that Ey is necessarily regular. Together
with the assumption that Ej is collapse-free and Ejy-matching with free constants is
decidable this entails that general Ey-matching is decidable (see [Rin96a]). Now, con-
sider any decision procedure for general Ey-matching. It can be shown (see [Rin96a]
again) that this procedure can be turned into a general Fy-matching procedure. It
follows that —g,, which is defined in terms of general Ey-matching (specifically Ey-
matching with free symbols in 2\ X)), is effectively computable. By Lemma 78 then,
we can simply define a normal form function NF%;Z, so that NFEZ’ (t) = tlg, for all
t € T(Zi, V)

3) Simply notice that, by the computability of —g,, the word problem in E; is
effectively reducible to the word problem in Fy, which is decidable by Fact 114. O

From this lemma we can then easily obtain the following corollary of Proposi-
tion 116.

Corollary 119 Leti € {1,2}. If there is a TRS R; modulo and equational ¥-theory
Ey such that

e S; = (R;, Ey) is complete for E;,

o Fy is collapse-free,

e Y. is a finite set of TRS-constructors,

o Fy-matching with free constants is decidable,

e there exists a finitary E;-unification algorithm,

then the satisfiability in Tg, of formulae in TRes(Qff*!, %) is decidable.

This corollary produces in turn the following combination result as a corollary
of Proposition 117, provided that each Gg,(X,V) is closed under instantiation into
itself.

Corollary 120 For i = 1,2, let R; be a TRS over T(%;,V) and Ey an equational
Y.-theory such that

e S; = (R;, Ey) is a complete TRS for FE;,
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FEy is collapse-free,

3 is a finite set of TRS-constructors for R;,

Ey-matching with free constants is decidable,

there exists a finitary E;-unification algorithm,

GE,;(2,V) is closed under instantiation into itself.

Then, the satisfiability in Tr, U Tk, of formulae in TRes(Qf¥'Y*2, %) is decidable.

Here is a simple example of pairs of theories that can be easily shown to satisfy
all the conditions in the above corollary.

Example 121 The equational X;-theories generated by the TRSs

(R, Eo) = ({m(z-y) = (@) -y} {z-y=y-z})
(Rz, Eo) = ({ha(z-y) = ha(z) - ha(y)},{z -y =y - 2})

where ¥; := {-,h;} fori=1,2, and ¥ := {-}.

We believe that more interesting examples can be found in the literature. In
fact, a lot of work has been already done to obtain unification algorithms for com-
plete TRSs modulo an equational theory by exploiting narrowing techniques [JK86,
Han94, MH94|. Therefore, it should be possible to use the existing narrowing-based
algorithms to decide the satisfiability of totally restricted equational formulae.

9.3 A Comparison with the Baader-Schulz Procedure

In Subsection 9.1, we have seen how to build decision procedures for the satisfiability
of totally restricted equational formulae in the complete theory Tg;, where E; is a
non-trivial equational theory of signature ;. Then, we have applied our combination
techniques to obtain a decision procedure for the satisfiability of totally Y-restricted
equational formulae in theories of the form T, U Tg,, where ¥ = ¥; N Xg.

In [BS95b], Baader and Schulz present a combination method to decide the solv-
ability of disunification problems in the union of signature-disjoint equational theo-
ries. Observing that when the shared signature ¥ is empty, the class of Y-restricted
disunification problems coincides with the class of disunification problems, one can
then be induced to conclude that the combination results in this section are a gener-
alization of Baader and Schulz’s to the combination of non-signature-disjoint equa-
tional theories.

This is not quite the case. The solvability of disunification problems in F; coin-
cides with the satisfiability of equational formulae in 7z, and so, by the same token,
the solvability of disunification problems in F; U Es coincides with the satisfiability
of equational formulae in Tg, yg,. Our combination approach, however, yields a pro-
cedure for deciding the satisfiability of equational formulae in the theory Tg, UTE,,
which is not equivalent to the theory Tg, uEg,.
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Nevertheless, the two theories are not unrelated: unsatisfiability answers in T, U
Tg, are meaningful for T, g, as well. To show this, we will assume again that
¥ = ¥1 N3y is a set of constructors for both Ky and F,, and F; and Fs entail
the same Y-equations, keeping in mind that these assumptions are always satisfied
whenever ¥ is empty. In [Tin99], it is shown that Fr,(F; U E») is embedded in a
fusion of Fr,(E7) and Fr,(Es). This fact entails the following.

Proposition 122 Every equational (X1 UX2)-formula satisfiable in Tr,uE, is satis-
fiable in Ty, UTE,.

Proof. Let ¢ be an equational (21 U Xs)-formula satisfiable in Tg,ug,. By construc-
tion of Tg,uE,, ¢ is satisfiable in Fr,(E; U E5). Since Fr,(F; U E5) is embedded in a
fusion F of Fr,(E1) and Fr,(F,), and ¢ is quantifier-free, ¢ is satisfiable in F. The
claim then follows from the fact that F is a model of Tg, U TE,. O

The converse of this proposition does not hold, as the following example shows.

Example 123 Assume that 31N Xy = 0 and fori = 1,2, 3; contains a constant a;.
Then, the formula = a1 Ax = ag is satisfiable in any model of Tg, UTE, interpreting
a1 and ay identically, but it is unsatisfiable in Tr, L E,, unless the sentence Vx x = a;
holds in Fr,(E1 U E5) contradicting the assumption that E; is non-trivial.

By the contrapositive of Proposition 122, no equational formula unsatisfiable in
Tg, UTE, is satisfiable in T, ug,. Therefore, in the disjoint case, we can still relate
our combination procedure for the satisfiability in Tg, U Tg, to that of Baader and
Schulz for the satisfiability in Tg,m,.>°

In fact, our approach may be viewed as a simplified form of the Baader-Schulz
approach, one that implements only the first two steps of their procedure: the
deterministic step transforming an impure formula ¢ into a conjunction of pure
formulae @1 A @2, and the non-deterministic step producing an identification £ of
Var(p1) N Var(ps).

If there are no identifications £ such that 1§ A&, and 2§ AL, are both satisfiable
in Tg, and TF,, respectively, then our procedure can already conclude that ¢; A @9,
and so ¢, is unsatisfiable in T, UE,, because it is already unsatisfiable in Tg, U Tg,.
Otherwise, ¢ will have a solution Tg, U Tg,, but may still have no solutions in
Tr,uE,- This explains why the Baader-Schulz procedure requires additional steps
(unfortunately, non-deterministic ones) to be able to decide the satisfiability of ¢ in
TE\UE,-

To conclude this section, we point out another connection between Ty, UTg, and

Tr,uE,: they have the same universal theory (whether they share function symbols
or not).

%0A similar argument, relating the Nelson-Oppen and the Baader-Schulz procedures, was also
presented in [Kep98].
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Proposition 124 For every universal sentence ¢ of signature 31 U ¥,
Tg, UTH, IZ Y ’Lﬁ Tr,UE, IZ p -

Proof. (=) If Tg, UTE, = ¢, then ¢ is true in every fusion of Fr,(E;) and Fy,(Es).
Since Fr,(E; U E5) is embedded in one of such fusions and ¢ is universal, we can
conclude that ¢ is true in Fr,(E; U Ey).

(<) If Fr,(Ehy UEy) = ¢, then E1 U Ey = ¢ (a consequence of Theorem 3.7
in [BS98]). Since Ty, UTg, = E1 U Ey, we obtain that Tg, UTE, = ¢ by transitivity
of logical entailment. O

If, as we conjecture, Fr,(E1 U Ey) was in fact a fusion of Fr,(E;) and Fy,(Es),
not just a substructure of one, it is possible to show by a slight variation of the proof
above that Ty, U Tg, and Tg,uE, have the same positive theory. For now, we can
only show is that the positive theory of T, UTE, includes that of T, ug,.

10 Fusions of Initial Models

As we have already seen, some combination methods consider the combination of
procedures that decide satisfiability with respect to fixed structures. This is typical
of constraint solvers, which not only say whether an input constraint is satisfiable in
a given structure, but also return a set of “solutions” for the constraint, if any.®! For
instance, a unification algorithm for a certain equational theory F decides the satis-
fiability of unification problems in the free model Fr,(E). The algorithm described
in [BS96] takes a unification algorithm for Fr,(E;) and one for a Fx,(E;), where E;
and FE5 are two disjoint equational theories, and produces a unification algorithm for
Fr,(Ey U E»).

An interesting question is whether our combination results can be used to combine
constraint solvers as well. In this section, we show one example in which this is indeed
the case. We will consider initial structures, that is, structures free over an empty
set of generators. Initial structures have a number of properties that make them
ideal as solution structures for certain domains of computation. The most important
use of initial structures is perhaps in algebraic specification, where they provide a
semantics for abstract data types.

Now, in that field since initial structures are often (initial) models of theories
obtained as the union of theories themselves admitting initial models. It would be
very useful then to be able to build constraint solvers for initial structures in a
modular way. As we show below, this is possible in some cases. Under the right
conditions, we can use our results to combine a constraint solver for the initial model
of a theory T} and one for the initial model of a theory T5, into a constraint solver
for the initial model of T7 U T5.

S1Gtrictly speaking, a constraint solver returns a simplified version of the input constraint from
which the solutions can be easily elicited.
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For the rest of the section, let us fix a finite signature ¥ and an initial ¥-structure
A*. We will denote by T(X) to denote T'(X, ), the set of ground (i.e. variable-free)
Y-terms.

Definition 125 Where A” is an initial S-structure, we denote by IT(A*) the class
of theories T such that

o 3 CYrp;
e T admits an initial model whose S-reduct is isomorphic to A*.

The theories presented in the examples of Section 7, for instance, are all of the
type defined above. The theories in IT(A¥) are all sufficiently complete (cf. [DJ90]).

Definition 126 (Sufficiently Complete Theory) Let T be a theory of signature
Q with ¥ C Q. T is sufficiently complete w.r.t X if for all terms t € T(Q) there is a
term s € T(X) such that t =7 s.

Proposition 127 For all T; € IT(A%), T; is sufficiently complete w.r.t. .

Proof. Let ¥; be T;’s signature and let A; be an initial model of T;. Since A* is
initial, we know that it is generated by (). From the assumption that 4;> and A
are isomorphic it follows that A; is actually X-generated by (). This entails that for
every ground Y;-term ¢, there is a ground Y-term s such that A; =t = s. Given
that A; is free in T;, the claim then follows by Proposition 43. O

Since any ground term ¢ of signature ¥; is equivalent in 7; to a ground X-term s,
we will call s a X-normal form of t. Again, a term may have several normal forms in
T;, but they are all equivalent in T;. We will say that 3-normal forms are computable
for T;, if there is a computable function that maps every term in T'(%;) to one of its
normal forms.

By a fairly standard induction argument, we can show that the union of two
theories in the same IT(A*) class admits ¥-normal forms as well.

Proposition 128 Fori = 1,2, let T; be a 3;-theory in IT(A®). Then, for all terms
t € T(X; UZXy) there is a term s € T(X) such that t =1,ur, S.

In the situation of the above proposition, we can use the same inductive argu-
ment to show that X-normal forms are computable for 77 U T whenever they are
computable for 77 and for T5.

Proposition 128 is actually a consequence of the stronger result below.

Proposition 129 For i = 1,2, let T; be a X;-theory in IT(A*) with initial model
A;. If X1 N3 =3, then Ay and Ay are X-fusible. Moreover, for all isomorphisms
h of A1¥ onto As®, the canonical fusion of Ay and Ay w.r.t. h is an initial model
of Ty UTs.
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Proof. Tt is immediate from the definition of IT(A%) that A;* and A3” are initial
in the same class of X-structures. By Proposition 48, this trivially implies that A;
and A, are Y-fusible.

Let h be an isomorphisms of A;> onto As> and F the canonical fusion of A; and
As w.r.t. h. Observing that F>? coincides with As by construction, it is immediate
that F is X-generated by the empty set. Since we already know that F is a model of
T1 UT5, by Proposition 43, all we need to show is that every ground atomic formula
@ of signature ¥ U ¥ true in F is entailed by 77 U T5.

Hence, let ¢ be such a formula. By Proposition 128, we can assume with no loss
of generality that all the arguments of ¢ are ground X-terms. It follows that ¢ is a
¥i-formula for i = 1 or 4 = 2. But then, since F> is isomorphic to .A; which is free in
T;, we can conclude, using again Proposition 43, that T; = ¢. It follows immediately
that T7 U Ts |= . O

Corollary 130 The class of theories IT(A¥) is closed under union.

We will consider component theories T; and constraint languages such that the
satisfiability problem in the initial model A; of T; is finitary, that is, each constraint
¢ has at most a finite number of A;-solutions, denoted by Sol 4, (¢). Since A; will be
3-generated by the empty set, this is the same as saying that for each constraint ¢,
there are at most a finite number of instantiations p of Var(y) into ground X-terms
such that p is true in A;.

In this setting it is possible to compute in a modular way the solutions of mixed
formulae in the initial model of T7 U T, by using a slight modification of the combi-
nation algorithm described in Section 5.

Here is the main idea. Once the mixed input formula has been converted into a
pair of the form (1, ¢2), the combination algorithm first asks the constraint solver
of Ty, say, for all the solutions for ¢;. Since the returned set of solutions will be a
(finite) set S1 of mappings of ¢1’s variables to ground X-terms, instead of guessing as
in the original formulation, the algorithm can then “deduce” from S; an instantiation
p into ground Y-terms of all the variables shared by ¢; and ¢o. At this point, no
identification step is necessary; the algorithm can simply pass the formula pop to the
other contraint solver and ask for the set S of all its solutions.

It is clear that this combination algorithm will converge for all inputs, as S1 and
Sy are both guaranteed to be finite. It is also clear how to modify the algorithm
so that it becomes a constraint solver for the initial model of 77 U T, not just a
satifiability procedure: it is enough for the algorithm to pair every solution in S
with the corresponding solutions in S; and return them.

In the following, we assume that 3-normal forms are computable for component
theories. As a direct consequence, the equality of ground 31 U Xo-terms is decidable
provided that the equality of ground Y-terms is decidable.
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Definition 131 Given a X;-theory T; € TT(A*) with initial model A;, let Cr, be a
language made of quantifier-free 3;-formulae of the form

Qﬁi = /\goj-/\ /\:EkEtk (2)

jeJ keK
where
o forall j € J, ¢; is an atomic X;-formula such that Sol 4,(p;) is finite;

o for all k € K, =z occurs only once in ¥ and t, is a %;-term such that
Sol 4, (ty = s) is finite for all s € T(X).

An algorithm that computes all A;-solutions for each ¢; occurring in a formula
;i € Cr,, and all A;-solutions for each equation tp, = s with s € T(X) is called a
finitary solver over Cr; in the initial model of Tj.

Where Ty,T, are two theories as in the definition above, we will denote by
Cr, ® Cr, the class of quantifier-free 3; U Yo-formulae that can be reduced via
the purification procedure described in Subsection 5.1 to a conjunction 1 A2 with
1/11 S CTl and 1/12 € CT2.

According to this definition, we have that (Cr, ® Cr,)* = Cr., but notice that
Cr, © CT, is only included in Cr,ur, In fact, although every formula in Cr,ur, is
purifiable into a formula v A 1o with each 1); having the form given in (2), the
solutions of 1; need not satisfy the restrictions stated in Definition 131.

From our previous observations on how to use our combination algorithm and
the results above it is easy to prove the following.

Theorem 132 Let T; € IT(A%) for i = 1,2. If there exists a finitary solver over
Cr, in the initial model of T; for i = 1,2, then there exists a finitary solver over
Cr, © Cr, in the initial model of Ty U T5.

As a specific application of the results above, we consider the case in which each
atomic formula ¢; in (2) in the definition of Cr; is a X;-match-equation, that is, a
Y.;-equation of the form s = t where t is a ground X;-term. When Y-normal forms
are computable, we can assume without loss of generality that the right-hand side of
each Y;-match-equation is in fact a ground X-term. Let us call a conjunction of ;-
match-equations, a X;-matching problem. If the T;-matching problem is finitary for
i = 1,2, each (31 UX5)-matching problem is reducible by purification to a conjunction
11 A 19 of pure formulae where each ; verifies the requirements of Definition 131.
Thus, we get another modular result for the matching problem case.

Corollary 133 For i = 1,2, let T; € IT(A*) and assume that S-normal-forms are
computable for T;. If there exists a finitary matching algorithm over 3;-matching
problems in the initial model of T; for i = 1,2, then there exists a finitary matching
algorithm over 31 U Xo-matching problems in the initial model of T1 U T5.
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We show in the example below how to obtain in practice a finitary matching
algorithm for 77 U 75 by combining those for 77 and for 7T5. The combined solving
process is very simple, but it shows that our combination methods leads to concrete
applications not only in constraint satisfiability but also in constraint solving.

Example 134 Let T be the theory aziomatized by the sentences:5?

Vz. Oxz = 0,

V. zx0 = =z,

Vz. 0+z = =,

Vz,y. s(z)+y = s(z+v),

Vo,y.  s(z) xs(y) = sly+zxsy)),
square(0) = 0

Vz. square(s(z)) = s(square(z) + 2 X x).

and Ty the theory aziomatized by the sentences:

double(0) = 0,
Vz.  double(s(z)) = s(s(double(x))).

Where ¥ = {0,s} is the set of symbols shared by the two theories, it is easy to see
that the respective initial models of T1 and Ty have the same X-reduct, which is initial
in the empty S-theory. Also, it is possible to show, using a general method described
in [DM99], that T;-matching is finitary in the initial model of T; for i = 1,2. Now,
consider for instance the (X1 U Xo)-matching-problem

square(z) + double(y) = 5

in the initial model of T1 UT,. We start by purifying the equation into the equisat-
isfiable conjunction of two pure equations:

square(z) + z = 5 A z = double(y)

The first equation is a %1-matching-problem in the initial model of Ty and has the
following (%-)solutions:

z=0A2z=05, z=1ANz=4, z=2Nz=1.

After computing these solutions, we can successively propagate the shared instanti-
ations of z in the other equation z = double(y), turning the equation into a -
matching-problem in the initial model of Ty. For the instantiations {z < 5} and
{z < 1}, the problem has no solutions in that model. For {z < 4}, we get the
solution y = 2.

We can conclude that the original equation has only one solution in the initial
model of T1 UT,, namely z =1 Ay = 2.

52For notational convenience, we will use the numeral n as an abbreviation for the term s...s 0.

n times
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11 Conclusions and Further Research

In this paper we have proposed some general conditions for the combination of satis-
fiability procedures for constraint theories and languages that may have symbols in
common. Building on the main ideas behind the combination method by Nelson and
Oppen, we have developed a general non-deterministic procedure for reducing con-
straint satisfiability in a combined theory to constraint satisfiability in its component
theories. To achieve this, we have started by investigating the main model-theoretic
issues involved in theory combination.

We have defined the concept of fusion of two structures and shown in what sense
it is a viable notion of model combination. We have also defined the concept of
fusibility and shown how the local satisfiability of arbitrary first-order constraints
with respect to two fusible structures relates to the satisfiability of conjunctive con-
straints in a fusion of the structures. We have then shown that, thanks to the close
relation between fusion of structures and union of theories, it is also possible to
obtain combination results for constraint satisfiability with respect to theories and
their unions.

The model-theoretic conditions on the component theories that make the com-
bination results possible are collected in the concept of N-O-combinability. We have
shown that our generalization of the Nelson-Oppen procedure can be applied in a
sound and complete way to N-O-combinable theories and produce a constraint sat-
isfiability procedure for the union of the theories.

Then, we have provided some sufficient conditions for N-O-combinability by using
the concept of stable X-freeness, a natural extension of Nelson and Oppen’s stable-
infiniteness requirement to theories with non-disjoint signatures. Finally, we have
illustrated a number of applications of our combination results and related those
results to some of the previous work in the combination literature.

We believe the work described in this paper provides a better understanding of
the principles of combining constraint reasoners in the case of non-disjoint signatures.
Undoubtedly, more work needs to be done to improve the scope of our theoretical
results as well as identify concrete cases from the constraint-based reasoning practice
to which such results can be applied.

In particular, we think that an improved definition of N-O-combinability is needed.
The current one basically states that two theories are N-O-combinable if whenever
a constraint ¢ is satisfiable in one of them and a constraint (g is satisfiable in the
other, the only way for ¢ and @5 to be inconsistent in the union theory is to entail
“incompatible” Y-restrictions for their shared variables. On the one hand, it appears
that this condition is strong enough to rule out many examples of constraint theo-
ries used in constraint-based reasoning. On the other hand, it also appears that a
less restrictive definition of N-O-combinability would correspondingly require a more
general definition of ¥-restriction; and at the moment—other than making every
Y-formula a possible X-restriction—it is not clear just what this definition would be.

If the definition of N-O-combinability cannot be reasonably modified, the prob-
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lem of finding good sufficient conditions for it still remains. The stable ¥-freeness
property, which we have identified for this purpose, is not completely satisfactory for
the reasons we have explained in Subsection 6.2. More work in this direction is also
needed. For practical purposes, an alternative to finding general sufficient conditions
for N-O-combinability may be to look at concrete cases of theories one would be
interested in combining and try to show directly that they are N-O-combinable. For
some of these theories it might even be possible to show that there is a finite bound
on the number of Y-restrictions that need to be considered for completeness sake. In
that case, the combination procedure might be turned into one that converges on all
inputs.

Finally, we think it might be beneficial to recast our results in terms of many-
sorted (or better order-sorted [GM92]) logic. In a sense, the language of classical
first-order logic is too permissive for constraint-based reasoning because it allows
constraints one would consider ill-typed in the intended domain of application. The
case for a sorted logic is possibly even more pressing in a combination context: even if
two theories T7 and T5 are adequately described with no sorts, their combination may
not be.?® Reformulating our model-theoretic results and definitions into many-sorted
logic might make it easier for two given theories to be N-O-combinable. The intuition
is that N-O-combinability is easier to achieve if one reduces both the constraint
language (by disallowing ill-sorted constraints) and the number of possible models
of the combined theory (by disallowing models not conforming to the sort structure
of the theory).

Adopting a sorted framework would also have the practical advantage of reducing
the non-determinism of the procedure’s instantiation and identification steps because
shared variables would only be replaceable by terms or variables of a compatible sort.
Furthermore, it would make Y-restrictions more natural. In fact, similarly to what we
have seen in Example 18, under reasonable assumptions on 3 and the sort structure,
including the assumption that 3 consists of the constructors of a certain sort S,
declaring a free variable to be of a sort other than S would make it automatically
3-restricted.

Acknowledgments

This work was partially supported by the National Science Foundation under grant
no. 9972311.

References

[AR98] Alessandro Armando and Silvio Ranise. Constraint contextual rewriting.
In R. Caferra and G. Salzer, editors, Proceedings of the 2nd International

%3For instance, one could think of obtaining the theory of lists of real numbers as the union of the
theory of lists and the theory of real numbers. Now, while each theory has an adequate unsorted
axiomatization, their combination gives rise to pointless formulae such as [1,2] + [1] = 0.

85



[B94]

[BFPY2]

[BN9S]
[Bou93]

[BS94]

[BS95a]

[BS95b)]

[BS95c¢]

[BSY6]

(BS9S]

[BT97]

Workshop on First Order Theorem Proving, FTP’98, Vienna (Austria),
pages 65—75, November 1998.

Hans-Jiirgen Biirckert. A resolution principle for constraint logics. Artifi-
cial Intelligence, 66:235-271, 1994.

Peter Baumgartner, Ulrich Furbach, and Uwe Petermann. A unified ap-
proach to theory reasoning. Research Report 15-92, Universitit Koblenz-
Landau, Koblenz, Germany, 1992. Fachberichte Informatik.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, United Kingdom, 1998.

Alexandre Boudet. Combining unification algorithms. Journal of Symbolic
Computation, 16(6):597-626, December 1993.

F. Baader and J.H. Siekmann. Unification theory. In D.M. Gabbay, C.J.
Hogger, and J.A. Robinson, editors, Handbook of Logic in Artificial Intel-

ligence and Logic Programming, pages 41-125. Oxford University Press,
Oxford, UK, 1994.

Franz Baader and Klaus U. Schulz. Combination of constraint solving tech-
niques: An algebraic point of view. In Proceedings of the 6th International
Conference on Rewriting Techniques and Applications, RTA’95, volume
914 of Lecture Notes in Computer Science, pages 50-65. Springer-Verlag,
1995.

Franz Baader and Klaus U. Schulz. Combination techniques and decision
problems for disunification. Theoretical Computer Science, 142:229-255,
1995.

Franz Baader and Klaus U. Schulz. On the combination of symbolic con-
straints, solution domains, and constraint solvers. In Proceedings of the
First International Conference on Principles and Practice of Constraint
Programming, Cassis (France), volume 976 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, September 1995.

Franz Baader and Klaus U. Schulz. Unification in the union of disjoint
equational theories: Combining decision procedures. Journal of Symbolic
Computation, 21(2):211-243, February 1996.

Franz Baader and Klaus U. Schulz. Combination of constraint solvers for
free and quasi-free structures. Theoretical Computer Science, 192:107-161,
1998.

Franz Baader and Cesare Tinelli. A new approach for combining deci-
sion procedures for the word problem, and its connection to the Nelson-
Oppen combination method. In W. McCune, editor, Proceedings of the

86



[BT98]

[BTO1]

[DJYO]

[DKR94]

[DM99)

[EM85]

[EM90]

[FGO1]

[GM92]

[Gra96]

14th International Conference on Automated Deduction (Townsville, Aus-
tralia), volume 1249 of Lecture Notes in Artificial Intelligence, pages 19-33.
Springer-Verlag, 1997.

Franz Baader and Cesare Tinelli. Deciding the word problem in the union
of equational theories. Technical Report UIUCDCS-R-98-2073, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign,
October 1998.

Franz Baader and Cesare Tinelli. Deciding the word problem in the union
of equational theories. Information and Computation, 2001. (to appear).

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewriting systems. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages
243-320. Elsevier Publishers, Amsterdam, 1990.

Eric Domenjoud, Francis Klay, and Christophe Ringeissen. Combination
techniques for non-disjoint equational theories. In A. Bundy, editor, Pro-
ceedings of the 12th International Conference on Automated Deduction,
Nancy (France), volume 814 of Lecture Notes in Artificial Intelligence,
pages 267-281. Springer-Verlag, 1994.

Nachum Dershowitz and Subrata Mitra. Jeopardy. In P. Narendran and
M. Rusinowitch, editors, Proceedings of the 10th International Conference
on Rewriting Techniques and Applications, volume 1631 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification
1: Equations and Initial Semantics, volume 6 of EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, New York, N.Y., 1985.

Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification
2: Module Specifications and Constraints, volume 21 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, New York, N.Y.,
1990.

Camillo Fiorentini and Silvio Ghilardi. Combining word problems through
rewriting in categories with products. Theoretical Computer Science, 2001.
(to appear).

Joseph A. Goguen and José Meseguer. Order sorted algebra 1. Equational
deduction for multiple inheritance, overloading, exceptions and partial op-
erations. Theoretical Computer Science, 105(2):217-273, November 1992.

Bernhard Gramlich. On termination and confluence properties of disjoint
and constructor-sharing conditional rewrite systems. Theoretical Computer

Science, 165(1):97-131, 1996.

87



[Han94]

[Her86]

[Hod93]

[Hol95]

[HS88]

[TKS6]

[TK91]

[TM94]

[Kep98]

[KKRY0]

[KR94a]

[KR94b]

Michael Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19,20:583-628, 1994.

Alexander Herold. Combination of unification algorithms. In J. Siekmann,
editor, Proceedings 8th International Conference on Automated Deduction,
Ozford (UK), volume 230 of Lecture Notes in Artificial Intelligence, pages
450-469. Springer-Verlag, 1986.

Wilfrid Hodges. Model Theory, volume 42 of Enclyclopedia of mathematics
and its applications. Cambridge University Press, 1993.

Kitty L. Holland. An introduction to fusions of strongly minimal sets: The
geometry of fusions. Archive for Mathematical Logic, 34:395-413, 1995.

Markus Hohfeld and Gert Smolka. Definite relations over constraint lan-
guages. LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80,
7000 Stuttgart 80, Germany, October 1988.

Jean-Pierre Jouannaud and Héléne Kirchner. Completion of a set of rules
modulo a set of equations. SIAM Journal on Computing, 15(4):1155—
1194, 1986. Preliminary version in Proceedings 11th ACM Symposium on
Principles of Programming Languages, Salt Lake City (USA), 1984.

Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract
algebras: a rule-based survey of unification. In J.-L.. Lassez and G. Plotkin,
editors, Computational Logic. Essays in honor of Alan Robinson, chapter 8,
pages 257-321. MIT Press, Cambridge, MA (USA), 1991.

Joxan Jaffar and Michael Maher. Constraint Logic Programming: A Sur-
vey. Journal of Logic Programming, 19/20:503-581, 1994.

Stephan Kepser. Combination of Constraint Systems. PhD dissertation,
Centre for Information and Language Processing, University of Munich,
Munich, Germany, 1998.

Claude Kirchner, Héléne Kirchner, and Michael Rusinowitch. Deduc-
tion with symbolic constraints. Revue Francaise d’Intelligence Artificielle,
4(3):9-52, 1990. Special issue on Automatic Deduction.

Hélene Kirchner and Christophe Ringeissen. Combining symbolic con-
straint solvers on algebraic domains. Journal of Symbolic Computation,
18(2):113-155, 1994.

Hélene Kirchner and Christophe Ringeissen. Constraint solving by narrow-
ing in combined algebraic domains. In P. Van Hentenryck, editor, Proceed-
ings of the 11th International Conference on Logic Programming, pages
617-631. The MIT press, 1994.

88



[KS96]

[L1087]

[Mah88]

[Mal71]

[MH94]

[Nel84]

[Nip91]

[NOT79]

[Oh195]

[Opp80]

[PTY7]

[Rin92]

Stephan Kepser and Klaus U. Schulz. Combination of constraint systems
II: Rational amalgamation. In E. C. Freuder, editor, Proceedings of the
2nd International Conference on Principles and Practice of Constraint
Programming, Cambridge, MA, USA, volume 1118 of Lecture Notes in
Computer Science, pages 282-296. Springer-Verlag, August 1996.

John W. Lloyd. Foundations of Logic Programming. Spinger-Verlag, Berlin,
second edition, 1987.

M. J. Maher. Complete axiomatizations of finite, rational and infinite trees.
In LICS’88: Proceedings 3rd Symposium on Logic in Computer Science,
pages 348-357, Edinburgh, UK, June 1988.

Anatolii I. Mal’cev. The metamathematics of algebraic systems, volume 66
of Studies in logic and the foundations of mathematics. North-Holland,
Amsterdam-New York-Oxford-Tokyo, 1971.

Aart Middeldorp and Erik Hamoen. Completeness results for basic narrow-
ing. Applicable Algebra in Engineering, Communication, and Computing,
5:213-253, 1994.

Greg Nelson. Combining satisfiability procedures by equality-sharing. In
W. W. Bledsoe and D. W. Loveland, editors, Automated Theorem Proving:
After 25 Years, volume 29 of Contemporary Mathematics, pages 201-211.
American Mathematical Society, Providence, RI, 1984.

Tobias Nipkow. Combining matching algorithms: The regular case. Jour-
nal of Symbolic Computation, 12:633-653, 1991.

Greg Nelson and Derek C. Oppen. Simplification by cooperating deci-
sion procedures. ACM Trans. on Programming Languages and Systems,
1(2):245-257, October 1979.

Enno Ohlebusch. Modular properties of composable term rewriting sys-
tems. Journal of Symbolic Computation, 20(1):1-41, 1995.

Derek C. Oppen. Complexity, convexity and combinations of theories.
Theoretical Computer Science, 12, 1980.

Anand Pillay and Akito Tsuboi. Amalgamations preserving Ng-
categoricity. The Journal of Symbolic Logic, 62(4):1070-1074, December
1997.

Christophe Ringeissen. Unification in a combination of equational the-
ories with shared constants and its application to primal algebras. In
A. Voronkov, editor, Proceedings of the 1st International Conference on
Logic Programming and Automated Reasoning, volume 624 of Lecture Notes
in Artificial Intelligence, pages 261-272. Springer-Verlag, 1992.

89



[Rin93]

[Rin96a]

[Rin96b]

[Sch00]

[Sho79]

[Sho84]

[Sie89]

[SS89]

[TH96]

[Tin99)

[TRO8]

Christophe Ringeissen. Combinaison de Résolutions de Contraines. These
de Doctorat d’ Université, Université de Nancy 1, Nancy, France, De-
cember 1993.

Christophe Ringeissen. Combining decision algorithms for matching in
the union of disjoint equational theories. Information and Computation,

126(2):144-160, May 1996.

Christophe Ringeissen. Cooperation of decision procedures for the satisfi-
ability problem. In F. Baader and K.U. Schulz, editors, Frontiers of Com-
bining Systems: Proceedings of the 1st International Workshop, Munich
(Germany), Applied Logic, pages 121-140. Kluwer Academic Publishers,
March 1996.

Klaus U. Schulz. Why combined decision problems are often intractable.
In H. Kirchner and Ch. Ringeissen, editors, Proceedings of the 3rd In-
ternational Workshop on Frontiers of Combining Systems, FroCoS’2000,
Nancy (France), volume 1794 of Lecture Notes in Artificial Intelligence,
pages 217-244. Springer-Verlag, March 2000.

Robert E. Shostak. A practical decision procedure for arithmetic with
function symbols. Journal of the ACM, 26(2):351-360, April 1979.

Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31:1-12, 1984.

Jorg H. Siekmann. Unification theory. Journal of Symbolic Computation,
7(3-4):207-274, March—April 1989.

Manfred Schmidt-Schau8. Unification in a combination of arbitrary dis-
joint equational theories. Journal of Symbolic Computation, 8(1-2):51-100,
July/August 1989. Special issue on unification. Part II.

Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the
Nelson-Oppen combination procedure. In F. Baader and K.U. Schulz,
editors, Frontiers of Combining Systems: Proceedings of the 1st Inter-
national Workshop (Munich, Germany), Applied Logic, pages 103-120.
Kluwer Academic Publishers, March 1996.

Cesare Tinelli. Combination of Decidability Procedures for Automated De-
duction and Constraint-Based Reasoning. PhD dissertation, Department
of Computer Science, University of Illinois at Urbana-Champaign, Urbana-
Champaign, Illinois, May 1999.

Cesare Tinelli and Christophe Ringeissen. Non-disjoint unions of theories
and combinations of satisfiability procedures: First results. Technical Re-
port UIUCDCS-R-98-2044, Department of Computer Science, University

90



[Wec92]

[Wol98]

of Ilinois at Urbana-Champaign, April 1998. (also available as INRIA
research report no. RR-3402).

Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Berlin-Heidelberg-New York, 1992.

Frank Wolter. Fusions of modal logics revisited. In M. Kracht, M. de Rijke,
H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic.
CSLI, Stanford, CA, 1998.

91



