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Constraint Theories
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Abstract

In this paper, we present an extension of the Jaffar-Lassez constraint
logic programming scheme that operates with unions of constraint the-
ories with different signatures and decides the satisfiability of mixed
constraints by appropriately combining the constraint solvers of the
component theories. We describe the extended scheme, and provide
logical and operational semantics for it along the lines of those given
for the original scheme. We then show how the main soundness and
completeness results of constraint logic programming lift to our ex-
tension.

1 Introduction

The constraint logic programming (CLP) scheme was originally developed
by Jaffar and Lassez [JL86] as a principled way to combine the computa-
tional paradigms of logic programming and constraint solving. The scheme
extends conventional logic programming by replacing the notion of unifiabil-
ity with that of constraint solvability over an underlying constraint domain.
As originally proposed, the CLP scheme extends immediately to the case of
multiple constraint domains, as long as these domains do not share function
or predicate symbols. The scheme, however, does not deal with mized terms
(i.e., terms built with function symbols from different signatures) and corre-
sponding mixed constraints. The reason for this limitation is that although
the CLP scheme in principle allows multiple constraint theories, each with
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its own constraint solver, it is not designed to operate on their combination,
to which mixed constraints belong.

In general, we can always instantiate the CLP scheme with a suitable
constraint domain once we have a constraint solver for that domain, no mat-
ter whether the domain is simple or “composite.” For composite constraint
domains, however, it is desirable not to have to build a solver from scratch
if a constraint solver is already available for each component domain. Ide-
ally, we would like to build more complex solvers by combining simpler ones,
much the same way we build conventional programs by combining smaller
modules (see [GPT96] for a generalized approach). In recent years, consid-
erable research has focused on both domain and solver combinations (see,
for instance, [BS95a, BS95b, KS96, NO79, Sho84]) although most of the ef-
forts have been concentrated on unification problems and equational theories
([BS92, Bou93, DKR94, Her86, KR92, SS89, Yel87], among others).

The current results of these investigations are limited in scope, and a deep
understanding of many model- and proof-theoretic issues involved is still out
of reach. Despite that, in this paper we attempt to show the effectiveness
of combination techniques by adapting an existing combination method and
incorporating it into the CLP scheme, with few modifications to the scheme
itself. We present an extension of the scheme that can include constraint
domains built as the combination of a number of independent domains, such
as, for instance, the domains of finite trees, real numbers, lists, strings, partial

orders, and so on. An earlier, less detailed version of our extension appeared
in [TH96a].

1.1 Notation and Conventions

We adhere rather closely to the notation and definitions given in [Sho67] for
what concerns mathematical logic in general, and [JM94] for what concerns
constraint logic programming in particular. We report here the most notable
notational conventions followed. Further notation, which may appear in the
sequel, follows the common conventions of the two fields.

The letters v, x,y, z denote logical variables. Although these are meta-
symbols ranging over the set of logical variables, by a slight abuse of notation,
we will occasionally use them in our examples as the actual logical variables
of the given object language. The letters s,t denote first-order terms, p,q
predicate symbols, f, g function symbols, a, b, h atoms, A a multiset of atoms,
¢, d constraints, C, D multisets of constraints, ¢, first-order formulas, and
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¥ a value assignment, or valuation, to a set of variables. As usual, the letter
w denotes the first infinite ordinal number.

Some of the above symbols may be subscripted or have an over-tilde
which will represent a finite sequence. For instance, ¥ stands for a sequence
of the form (z1,zs,...,z,) for some natural number n. When convenient,
we will use the tilde notation to denote just sets of symbols (as opposed to
sequences). When § and ¢ both have length n, the equation § = ¢ stands for
the system of equations {s; =t; A... A s, =t,}.

The notation ¢(Z) is used to indicate that the free variables of ¢ are
exactly the ones in . In general, var(y) is the set of all the free variables of
¢. Analogously, if S'is a set of formulas, var(S) denotes the set J s var ().
The shorthand 3_; ¢ stands for the existential quantification of all the free
variables of ¢ that are not contained in %, while 3 ¢ and V ¢ stand for the
existential, respectively universal, closure of .

Where M is a structure in the sense of model theory and ¢ is a sentence,
that is, a closed formula, the notation M | ¢ means that M satisfies ¢
or, equivalently, that ¢ is true in M. For brevity, where 7 is a sequence of
variables, we will call M-valuation of Z a valuation of T into the universe
of M. If ¢ is a formula and ¥ is an M-valuation of ¢’s free variables, the
notation M = ¢ means that ¢ satisfies ¢ in M. Notice that, in analogy
with substitutions, we write a valuation application in postfix form.

Where S, 7 are sets of sentences, Mod(7) denotes the set of all models
of T, T |= ¢ means that 7 logically entails V ¢, while S, T = ¢ stands for
SUT = . We will often identify first-order theories with their deductive
closure. We will also identify the union of a finite multiset of formulas with
their logical conjunctions.

1.2  Organization of the Paper

In Section 2, we briefly describe the Jaffar-Lassez scheme, which we will sim-
ply refer to as the CLP scheme, and motivate the need for mixed constraints,
which the CLP scheme does not explicitly consider. In Section 3, we mention
a method for deriving a satisfiability procedure for a combination of theo-
ries admitting mixed terms from the satisfiability procedures of the single
theories. In Section 4, we explain how one can use the main idea of this com-
bination method to extend the CLP scheme and allow composite constraint
domains and mixed terms over them. In Section 5, we describe our proposed
extension more formally and provide logical and operational semantics for
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it. In Section 6, we prove some soundness and completeness properties of
the new scheme. In Section 7, we summarize the main contribution of this
paper, outlining directions for further development.

2 The Problem

In essence, constraint logic programming is logic programming over a com-
putation domain other than the Herbrand domain. This is often achieved
by retaining logic programming’s computational paradigm, goal reduction by
SLD resolution, and replacing term unification with constraint solving over
the new background domain, the constraint domain.

The CLP scheme formalizes this idea essentially by assuming (1) a com-
putation structure corresponding to the constraint domain; (2) a first-order
axiomatization of the main properties of the domain; and (3) a constraint
language for expressing constraints over the domain objects. The various
CLP languages are then seen as instances of the scheme CLP(X), with the
parameter X standing for the quadruple

X :=(S,D,L,T)

where Y is a signature containing the constraint predicate and function sym-
bols along with their arities, D is a YX-structure representing the constraint
domain over which computation is performed, £ is the constraint language,
that is, a class of Y-formulas used to express the constraints, and 7 is a
first-order 3-theory (with equality) describing the relevant properties of the
domain.

A number of assumptions are generally made about X. The most impor-
tant are:

e . contains the equality symbol, which D interprets as the identity
relation;

e [ contains an identically true predicate, an identically false predicate,
and at least all the primitive constraints (see later);

e [ is closed under variable renaming, conjunction, and existential quan-
tification; and

e D and 7T correspond on L, that is, D is a model of 7 and every formula
of L satisfiable in D is satisfiable in every model of 7.

4
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In some applications, 7 may also be satisfaction complete with respect
to L, that is, for every ¢ € L, either 7 = Jeor T = —Je.

The number of instances of CLP(X’) has grown so much in the last years
that it would be impractical to cite them all. Classical CLP(X) systems,
so to speak, are CLP(R) [JMSY92], which computes over the constraint
domain of linear arithmetic over the real numbers, CHIP [DVS*88], which
also computes over the domain of Boolean values and functions, and Prolog
IIT [Col87], which has a host of constraint domains. Prolog itself can be seen
as CLP(FT) where F7T is the constraint domain of finite trees represented
as terms in the Herbrand universe.

Actually, all the CLP(X) systems in which X is not F7 or an extension
of it! still retain the possibility of building uninterpreted terms, and so are at
least CLP(F7, X) systems. Furthermore, many systems support several con-
straint domains, as mentioned above. They can be seen as CLP(&X, ..., &,)
systems where the various domains are built over disjoint signatures and
their constraints are processed by different, specialized solvers. In these sys-
tems, predicate or function symbols in one signature are applicable, with
few exceptions, only to (nonvariable) terms entirely built with symbols from
the same signature. Variables are considered to be in all the signatures; in
programming language terminology, they are untyped, at least until the first
constraint containing them is processed. From that point on, they can only
be bound to terms of a particular domain.

Thus, although in one way or another all CLP systems use more than one
constraint domain, they do not freely allow mixed terms or constraints, that
is, constraint expressions containing nonvariable symbols from different sig-
natures. Notable exceptions are uninterpreted function symbols, which can
generally be applied to any term. In CLP(R), for instance, f(X + 1, g(3)) is a
legal term, while f(X) + 1 is not, because the first argument of the constraint
function symbol + is not an arithmetic term. Model-theoretically, this is jus-
tified by assuming that CLP(R)’s constraint domain is actually the (sorted)
domain of finite trees of real numbers, where uninterpreted symbols are tree
constructors and arithmetic terms are leaf names. A similar, many-sorted
approach is also used in Prolog III and its successors [Col90]. In particular,
Prolog III does allow more complex mixed constraints; for instance, it allows
constraints of the form length(s) = ¢, where s is a term of the list sort, ¢ is
a term of the integer sort, and length denotes the length function. However,

Prolog 11, for instance [JLMS87], works with infinite trees instead of finite trees.
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such constraints can be processed only if s and ¢ are ground terms or, more
generally, are equivalent in the respective constraint stores to some ground
term. Otherwise, they are suspended until both terms become equivalent to
ground terms thanks to the addition of further constraints to the stores.

In general, meaningful, and not necessarily ground, mixed constraints
arise naturally in many classes of applications such as program verification,
deductive program synthesis, completion procedures, theorem proving, arti-
ficial intelligence, and so on. In these applications, input problems do not
range simply over one constraint domain, but over some combination of a
number of them. For instance, in a domain that combines lists with natural
numbers, the constraint

v=cons(x+9,y) A firstly) > z+u

(where cons is the list constructor and first returns the first element of a list)
is a very natural one. Similar claims can be made about constraints such as

fU@)=fw) # f2) hy+z<z

(where +, — and < are arithmetic symbols, and f is an uninterpreted sym-
bol), which often appear in program verification [Nel84]. These types of con-
straints cannot be dealt with by the present CLP systems, simply because
their computational paradigm does not consider them.

For a perhaps more poignant example of this shortcoming of the CLP
scheme, consider a CLP(AX},...,&),) solver with two constraint domains,
X and X5 and respective solvers S; and S,. Suppose that S5 is a solver
for systems of equations and disequations over the real numbers, while S is
a simple scheduler which, given a number of activities classified by type, re-
turns one or more possible orderings, if any, of these activities. The language
of S includes atomic constraints such as x : y, stating that the activity =
is of type y; x < y, stating that the time point x strictly precedes the time
point y; constants such as aq, as, as, . . ., denoting activities; constants such as
t1,ta,ts, ..., denoting activity types; and terms such as begin(z) and end(x),
denoting the start and end times of activity x, respectively. Depending on
their type, some activities can overlap, or must end before some others, or can
overlap with others but must start before, and so on. In particular, suppose
that activities have nonzero duration (in formulas, Vz begin(x) # end(x)),
an activity of type to can start only after an activity of type t; has ended
(that is, Vr,y x : t1 Ay : to — end(x) < begin(y)), and an activity of type ¢3

6
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x1 yl

al [« >
x2 y2
a2 < >
x3 3
a3 | y=

1 2 3 4 5 6 7 8 9 10 11
(days)

Figure 1: A simple scheduling problem

can overlap with activities of type t; or t5. A typical conjunctive constraint
for this solver could be something like:

( ai : ty
as : toy
as - t2
begin(ay) < begin(as)
begin(a,) = begin(as)

L

Notice that it is entirely possible to have a solver like this that possesses
no arithmetic notion whatsoever. The constraint domain is essentially a set
of (typed) intervals that can be partially ordered, and input problems are
solved using standard arc-consistency techniques.

Now assume that we need to schedule three activities, ai, as, and ag, of
type t1,ts, and t3, respectively, subject to these requirements: a; starts the
day as starts and lasts 4 days; ay ends the day as ends and lasts 7 days; and
az lasts 10 days. As one can immediately verify by looking at Figure 1, there
is no possible schedule for these activities, because the problem requirements
force as to start the very day that a; ends, which we saw is not allowed in the
given scheduling domain. Can we use our CLP(X},..., X)) system to detect
that our scheduling problem is overconstrained? First observe that despite
its simplicity, this problem cannot be expressed in the language of S; alone,
because S; does not know about numbers that we have used to define the
duration of each activity. But Sy does, so we can think of formalizing the

7
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problem by using both the languages of S; and S;. A simple and intuitive
formalization of the problem is given by the following conjunctive constraint:

( a1:t1

a9 tz

as : i3

begin(ay) = begin(as)
end(az) = end(as)

end(ay) — begin(a;) = 3
end(az) — begin(az) = 6
| end(as) — begin(as) =9

Since the constraint above combines the languages of the two solvers by
using the mixed terms end(a;)—begin(a;) for i = 1,2, 3, it cannot be processed
by either of them. However, as we will see later, it is easily transformable
into an equivalent constraint without mixed terms. As a matter of fact, it is
possible to assume that the system itself is able to carry this transformation
and convert c¢ into the conjunction of the constraints ¢; and ¢y below:

( aq . tl

a9 tg

as . tg

begin(ay) = begin(as)

end(az) = end(a3) Yy —x =3

c) = x1 = begin(ay) Cy 1= Yo — Ty =6
xo = begin(az) ys — 3 =9
x3 = begin(as)
y1 = end(ay)
Yo = end(az)

L Y3 = end(a?))

where x1, 9, T3, Y1, Y2, and y3 are free variables. Now each ¢; is a constraint
entirely in the language of S;, and so it can be readily processed by S;.
Furthermore, both ¢; and ¢y are solvable in their respective domains. A
closer look at likely solved forms for ¢; and co, as given below, will convince

8
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the reader that this is indeed so:

end(ay) < begin(as)

begin(ay) = begin(as) =x1+3
d = end(ag) = end(as) chy = Yo = T2+ 6
x1 = begin(ay) Y3 = x3+9

The problem is that our CLP(&7, ..., &,) system has no way to realize that
the original constraint is nevertheless unsolvable. This is because Sy’s store is
actually underconstrained. It is not difficult to see that all the solutions ¢ of
c1 are such that 2,9 = 230, 129 = y39, and 1,09 # x29,% but this information
is not known to S;. If we passed it to Sy in the form of the constraint
x1 = x3 A Yys = ys3 A y1 # T2, which is indeed a legal input constraint for S5,
its store would become equivalent to something like:

[z = a3
Y2 = Y3
Ty #
ZL‘QZIE3+3
y1 =x3+3
yz =x3+9

\

which is clearly unsatisfiable. Now, although 1 = 3 Ay = y3 A y1 # X2
is a constraint that S, understands, it is unknown to S, because it is only
entailed by S;’s constraint store and the system has no way of communicat-
ing it to S;. What is missing in the system, therefore, is a mechanism for
propagating constraints of this kind from one solver to another. Ideally, such
a mechanism would propagate just enough information for each solver to
return compatible—that is, globally consistent—solutions. In the example
above, this mechanism would effectively provide the CLP(X}, ..., &,) sys-
tem with a virtual solver for a combination of its scheduling and arithmetic
domains.

When attempting to achieve intersolver constraint propagation, one is
faced with serious model-theoretic questions about the nature of the con-
straint domains at hand and the type of information that can and must be
propagated. Again, recall that a mixed constraint is not a query over any

2The last one because end(ay) < begin(as).
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particular domain of a CLP(A}, ..., X,) system, but over some combination
of them. Defining an adequate (class of) combined constraint domain(s) out
of a number of component domains is already a hard task [BS95a, KS96];
but even when that is done, finding sound and complete solver-combination
algorithms can still prove extremely difficult. As a matter of fact, most
combination problems have no possible solutions. It is relatively easy to
find domains or theories such that a certain satisfiability problem is decid-
able in each of them and undecidable in their combination; for instance,
see [DKR94, BT97]. As a result, all the existing combination methods pose
more or less serious restrictions on the classes of constraint domains and lan-
guages they can combine. Furthermore, essentially all of them require the
component constraint languages to have pairwise-disjoint signatures.?

A relatively general method has been proposed by Nelson and Oppen in
INOT9] for combining decision procedures for the satifiability of quantifier-
free formulas with respect to first-order theories with equality. In this paper,
we will show how the main idea of the Nelson-Oppen method can be incorpo-
rated into the CLP scheme to provide a systematic and consistent treatment
of a large class of mixed constraints and combined domains. In essence, we
will show how to convert a system of type CLP (X7, ..., &) into a system of
type CLP(X), where X is the constraint structure generated by a suitable
combination of all the Xs.

3 Combining Satisfiability Procedures

We start with a brief review of the model-theoretic properties of the Nelson-
Oppen combination method. For a description of the original combination
procedure, refer to [NO79] or [Nel84]. These properties have been used to
prove that the Nelson-Oppen method is sound and complete for a certain
class of component theories.

A formula is in simple conjunctive normal form if it is a conjunction of
literals, that is, a conjunction of atomic and negated atomic formulas. Given
a signature X, we denote by sCNF (%) the set of all the ¥-formulas in simple
conjunctive normal form. We consider the following notion of satisfiability.

3But see [Rin96] for a first attempt to lift this restriction. A more general approach is
proposed in [TR98].

10
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Definition 1 A formula ¢ is satisfiable in a theory T if and only if it is
satisfiable in some model of T, that is, if and only if there erists a model
M € Mod(T) such that M = J .

Now, let 7; and 75 be two theories with equality and respective signatures
Y1, ¥, such that ¥, Ny = 0.* The simplest combination of 7; and 75 is the
(31 U Xy) theory 77 U 75, defined as (the deductive closure of) the union of
T, and 7.

If for each ¢ = 1,2 we have a procedure Sat; that decides the satisfiability
in 7; of the formulas of sSCNF(X;), we can generate a procedure that decides
the satisfiability in 7; U 75 of any formula ¢ € sCNF (3, UX,) by using Sat;
and Saty modularly. Clearly, because of the expanded signature, ¢ cannot
in general be processed directly by either satisfiability procedure, unless it is
of the form 1 A po—call it separate form—where ¢; is a (possibly empty)
formula of sCNF(%;). If ¢ is not already in separate form, we can apply a
conversion procedure that, given ¢, returns an equivalent separate form of
. To describe such a procedure, we need to introduce some definitions and
notation that we have adapted from those in [BS92], among others.

Consider the signatures introduced above. For i = 1,2, a member of ¥; is
an i-symbol. A term t is an i-term if it is a variable or if its root symbol is an
i-symbol. An i-atomic formula (i-atom for short) is defined analogously. A
subterm of an ¢-term ¢ is an alien subterm of ¢ if it is a j-term, with j # ¢, and
all of its superterms in ¢ are i-terms. An i-term is pure (i-pure for short) if it
only contains i-symbols. Alien predicate arguments are defined analogously.
An i-atom is pure if all of its arguments are i-pure. Pure formulas are thus
defined in the obvious way. Observe that, given our assumption on the
various signatures, a variable is an i-term for any ¢ and an equation is always
a pure atom if at least one of its arguments is a variable. Furthermore, an
equation between two variables is both a 1-atom and a 2-atom.

3.1 The Separation Procedure
Let ¢ be a formula of sCNF (3, U X,), seen as a multiset of literals:

o We first perform variable abstraction on ¢ by recursively replacing each
alien subterm ¢ with a newly generated variable z and adding the equa-
tion z =t to . In case of equations between nonvariable terms, the
choice of the term to replace with a new variable is made arbitrarily.

”

as a logical constant.

11
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{f(f(2) = f() # f(2), y + 2 < x}
{{f(@1) # f(2), 22 = f(2), 25 = f(y)}, {m1 =22 — w5, y+2<12}}

Figure 2: A multiset of mixed constraints and its separate form

e We then partition the new multiset in m < 2 sets containing only -
pure literals, respectively. In analogy with the step above, equations
between variables are partitioned arbitrarily.

The resulting partition can be seen as an sSCNF formula of the form ¢ A @a,
where each ¢; is an i-pure sCNF formula. An example of the result of the
separation procedure, where ¥; := {f} and ¥y := {+,—, <}, is given in
Figure 2. Although a formula may have many separate forms, these forms
are all equivalent modulo variable renaming and the logical properties of
conjunction and equality. Hence, it is appropriate to speak of the separate
form of a formula. We indicate the separate form of a formula ¢ € sCNF(X)
with ¢. For notational convenience, we can always think of ¢ as a conjunction
of the form ¢ A o, where each ¢; is an i-pure sCNF formula, even if ¢ does
not contain any i-symbol for some ¢ = 1,2. In that case, y; is defined as
the identically true formula—which can be thought of as belonging to all
sCNF (3;)s.

It is easy to show that any ¢ € sCNF(X) is logically equivalent to 32 ¢,
where Z is the set of fresh variables introduced by the separation procedure.
According to our notion of satisfiability, this entails the following:

Proposition 1 An sCNF formula is satisfiable in a theory T if and only if
its separate form is satisfiable in T .

As we saw in the previous section, the problem with deciding the sat-
isfiability of a formula ¢ by analyzing its separate form is that, in general,
each subformula ¢; of ¢ could be singly satisfiable without its conjunction
being satisfiable. Hence, to be able to apply distinct satisfiability procedures
to each ¢; and correctly decide the satisfiability of ¢, we need to establish
some sort of communication between the various procedures. In Nelson and
Oppen’s method, such communication is achieved by propagating from one

12
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procedure to the other any implied equalities between the variables of ¢.
The correctness of this approach is ensured by Theorem 1 below [TH96b],
provided that the component theories are stably infinite [Opp80].

Definition 2 A consistent, universal theory T of signature 3 is called stably
infinite if every quantifier-free -formula satisfiable in T is satisfiable in an
infinite model of T .

Definition 3 If P is any partition on a set of variables V, and R is the
corresponding equivalence relation, we call the arrangement of V' (determined

by P) the set:
w(V) = {w=y|eyeVieRy} Ule £y |2y €V, not zRy)

In practice, ar(V') is made of all the equations between any two equiva-
lent variables of V' and all the disequations between any two nonequivalent
variables.

Theorem 1 Let 7; and T3 be two stably infinite theories with disjoint sig-
natures X1 and Xo. Let ¢ € sCNF (X1 U Xs) and assume that ¢ is o1 A @2
with p; € sCNF(X;) for i = 1,2. Then, where T := var(yp;y) N var(ps), the
following are equivalent:

1. ¢ is satisfiable in Ty U Ts.

2. There is an arrangement ar(Z) such that ; A ar(Z) is satisfiable in T,
fori=1,2.

The essence of this result is that given the right conditions on the compo-
nent theories, we can test the satisfiability of ¢ above in the combined theory
by testing the satisfiability of each ¢; in the corresponding component theory,
provided that we add a global consistency restriction to both (1 and 5. The
original contribution by Nelson and Oppen was to show that this restriction
must only be a certain (dis)equality constraint on the variables shared by ¢,
and @s.

The theorem above can be actually lifted to the combination of n > 2
stably infinite theories with pairwise disjoint signatures by extending the
definition of the separate form of a formula as obvious, and letting Z be the
union of all the shared variables.® An immediate proof of the general case can

SWhere by “shared variable” we now mean a variable occurring in at least two distinct
pure formulas ¢; and ¢; of the separate form ¢ A ... A @,,.

13
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be given by using the following modularity result and applying Theorem 1
iteratively.

Proposition 2 ([Rin96]) The union of two stably infinite theories with dis-
joint signatures is stably infinite.

To better understand the scope of the combination results above, recall
that they require the component theories to be stably infinite. Now, although
several interesting constraint theories are indeed stably infinite [Nel84], many
others are not; as an example, just consider the universal theory of a finite
structure, all of whose models are finite.® Luckily, the class of stably infi-
nite theories can be considerably expanded without compromising any of the
combination results: it is enough to simply lift the restriction in Definition 2
that the theory be universal. With the new definition, then every complete
theory admitting an infinite model, for instance, becomes stably infinite.
Since a proof of the correctness of such lifting is beyond the scope of this
paper, we refer the interested reader to [TR98|, where the claim is actually a
mere consequence of more general combination results. There, one can also
see that stable infiniteness is a sufficient but not a necessary condition for
Theorem 1 to hold, which means that in principle the combination results
above may apply even to some nonstably infinite theories.

4 Extending CLP(X)

Recall that our main goal is to extend the CLP scheme to go from a language
of type CLP(AX,...,X,), where {X},...,X,} is a set of signature-disjoint
constraint structures, to a language of type CLP(X), where X is a combina-
tion of these structures in the sense that it allows any computation performed
in CLP(&, ..., &,) and, furthermore, poses no signature restriction on term
construction. To avoid confusion, we will refer to the extended language and
scheme as MCLP(X).

The reason we are interested in combinations of satisfiability procedures
is that CLP systems already utilize separate satisfiability procedures (the
constraint solvers) to deal with the various constraint theories they support,
and so already have a main module to drive the goal-reduction process and
control the communication with the solvers. For instance, CLP(R) uses a

6Tt is rather easy to write a universal formula stating that there exist at most n indi-
viduals [CK90].
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standard unification algorithm for equalities between uninterpreted terms
(unification constraints) and a constraint solver, based on linear program-
ming techniques, for arithmetic constraints. A main module, which is a
Prolog-like SLD-resolution engine, takes care of the goal-reduction process
and the communication between the unification module and the constraint
solver. Observe that communication is needed because CLP(R) admits uni-
fication constraints such as f(X + Z) = f(3), which generate arithmetic con-
straints as well, in this case X + Z = 3. Other systems are analogous and
possibly more complex, because they support many constraint domains, as
mentioned earlier.

Intuitively, if we rewrite MCLP(X) statements into a separate form sim-
ilar to the one mentioned in Section 3, we may be able to use the various
constraint solvers much the same way the Nelson-Oppen method uses the
various satisfiability procedures. Moreover, the machinery we will need for
an MCLP(X) system will be essentially the same we would need for a cor-
responding CLP (&, ..., X,) system. The only necessary addition, to realize
the solvers combination, will be a mechanism for generating equations and
disequations between variables shared by the different solvers and propagat-
ing them to the solvers themselves. More precisely, we will need a procedure
that, each time a new constraint is given to one solver, (1) identifies the vari-
ables that the constraint shares with those in the other solvers, (2) creates
a backtrack point in the computation and chooses a (novel) arrangement of
those variables, and (3) passes the arrangement to all the solvers.

We formalize this idea in the following sections, starting with a brief
review of the logical and operational model of the original CLP scheme.

4.1 The Semantics of CLP(X)

Two of the main semantics of CLP are the logical semantics and the top-down
operational semantics. In describing them below, we follow almost literally
[JM94]’s more recent notation and definitions.

4.1.1 Logical Semantics

Where X := (X,D,L,7T) is defined as in Section 2, we will call an atom
an expression of the form p(t), where p is a user-defined predicate and ¢ is
a sequence of Y-terms. We will call a primitive constraint any atomic -
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formula,” and simply a constraint any formula in £. The standard format
for a statement, or rule, of a CLP(X’) program is:

p() — bi(t),...,bu(tn)

while that of a query, or goal, to the program is

bl(t1)7 e 7bn(£ﬂ)

where n > 0, p(t) is an atom, and each b;(t;) is either an atom or a constraint.
A rule whose body is composed only of (zero or more) constraints is called a
fact. A goal must contain at least one atom or constraint. Simple goals are
goals that contain exactly one atom or constraint.

Analogously to the logic programming paradigm, the logical semantics of
CLP interprets a rule and a goal of the above form as the universal formula

and the existential formula
F (b () A Abp(ty))

If P is a CLP program, when it is convenient we will also denote by P
the set of sentences of the above kind that are associated with the rules of
P. The logical semantics above allows us to rewrite every CLP rule into the
equivalent normal form:

p(Z) — T=t,3 =1t1,..., 00 =1y, b1(T1),...,bn(Tn)

Similarly, we can rewrite goals into an equivalent normal form as well. For
simplicity, we will assume such normal form from now on. Moreover, since
the constraint language is assumed to be closed under conjunction, with no
loss of generality, we will sometimes represent a rule concisely as p(z) « ¢, A
where ¢ is a possibly composite constraint and A is a possibly empty multiset
of atoms. Sometimes we will regard the body of a rule generically as a
multiset of atoms and constraints, and therefore represent the rule simply as
p(Z) < B. Similarly, we will represent a goal as the multiset of atoms and
constraints G.

"This also includes the equation between two X-terms.
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A more appropriate logical semantics for CLP programs takes into ac-
count the fact that CLP systems implement predicate completion. In that
case, if the set of all the rules in the program that have the same predicate
symbol as their head is (possibly, after some variable renaming)

{p(Z) < By, ..., p(Z) < B}

then that set is associated with the formula:

Moreover, each of the infinitely many atoms p(Z) not occurring in the pro-
gram as the head of a rule is associated with the formula:

Vi —p(2) (2)

We will denote by P* the completion of P, that is, the set of all formulas
of the forms (1) and (2) that are associated with a program P.

4.1.2 Operational Semantics

Here we consider only a top-down model of execution. Although this is not
the only way to describe the functioning of a CLP system, we can adopt
this goal-reduction-based view of computation to formalize the operational
semantics of most CLP systems. We also assume that the system is composed
of a main module that performs goal reduction and a specialized module, the
constraint solver, that processes the constraints.

With these assumptions, the computation of a CLP(X) system can be
illustrated formally as a sequence of state transitions. FEach state of the
computation is completely described by either the symbol fail or the pair
(A, C), where A is a multiset of atoms and constraints and C' is a multiset of
constraints. Intuitively, A is the current set of subgoals yet to be considered,
and C, the constraint store, is the set of constraints already passed to the
constraint solver.

8Mainly to allow incomplete solvers into the CLP scheme, [JM94] defines a transition as
the triple (A, C, S) where S is a multiset of delayed constraints. For the sake of simplicity,
we have decided to ignore the issue of delayed constraints in this paper. We would like
to point out, however, that our extension could be easily applied to an operational model
including delayed constraints with comparable results.
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Transitions between states are defined by three different operators, and
are represented as —,., —., and —,. The transition system utilizes a selection
function, select, defined over multisets of atoms and constraints, and a total
Boolean function, Sat, defined over multisets of constraints. The operators
are defined as follows where P is the CLP program in execution:’

r: (A,C) =, (AUB —p(2), CUZ =7)

where p(Z) = select(A) is an atom in A and p(y) < B is a renaming to fresh
variables of a rule of P;

ro: (A, C) —, fail

where p(Z) = select(A) is an atom, and P contains no rule whose head’s
predicate symbol is p;

¢ (A,C) -, (A—c¢,CUc)

where ¢ = select(A) is a constraint in A;
s1: (4,0) =5 (A,C)

when Sat(C') succeeds; and
so: (A, C) — fail

when Sat(C) fails.

The function Satis implemented by means of a constraint solver for £ with
respect to the theory 7. Sat decides the 7 -satisfiability of the conjunction
of the constraints in the constraint store: where C' = {c1,...,¢,}, Sat(C)
succeeds if and only if 7 = 3(c1A. . .Ac,). Alternatively and more commonly,
Sat performs a satisfiability test just in the particular structure D, and so
succeeds on C' if and only if D = 3 C. Observe that the two approaches are
equivalent whenever 7 and D correspond on L.

An actual CLP system also has to implement an appropriate computation
rule that resolves the nondeterminism of the above transition system by
choosing at each state the next-state operator and, in case of —,. transitions,
by also choosing one of the possible matching rules.

9To make the transitions more readable, we will identify a singleton set with its unique
element whenever this does not generate confusion.
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In CLP(X), a derivation (in a given program P) of a set A of atoms and
constraints is any sequence of applicable transitions that starts with a state
of the form (A, C') and contains no consecutive — transitions.!’

The last state of a finite derivation is a final state if no transitions apply
to it. A derivation with a final state is failed if the final state is fail; it
is successful if the final state has the form (@, C). Observe that by this
definition, the final constraint store of a successful derivation is satisfiable
in D. If an initial goal G with variables Z has a successful derivation with
final state (@), C), the formula 3_; C' is called the answer constraint of the
derivation. Observe that by definition, all the free variables of an answer
constraint are also free variables of the corresponding initial goal.

A derivation is fair if it is failed or such that, for every state (A,C) in
the derivation, every a € A is processed in a later transition. A computation
rule is fair if it only generates fair derivations. We will call derivations D-
deriwations whenever we want to stress the fact that constraint satisfiability
is tested on the distinguished structure D.

We can see a derivation as an oriented path in which nodes are represented
by the computation states and edges are represented by the state transitions.
Then, a computation tree of a state s in a program P is the tree rooted at s
and containing all the possible derivations from s in P. The computation tree
of a goal G is defined as the computation tree of the state (G, (). Observe that
while computation trees can be infinite, they are always finitely branching.

5 MCLP(X): The Extended Scheme

The first issue to deal with in extending the CLP scheme is the impossibility
of fixing a single domain of computation. Recall that the CLP scheme puts
primacy on a particular structure that represents the intended constraint
domain. The combination method we are considering, however, combines
theories, not structures: it succeeds when the input formula is satisfiable in
some model of the combined theory. For this reason, our extension will use
as its “constraint domain” a whole class of structures instead of a single one.

In this respect, our scheme is actually a restriction of the Hohfeld-Smolka
constraint logic programming framework [HS88] (see also [Smo89]). The re-

10T his last condition is not present in [JM94], but is necessary to guarantee the existence
of final states (see later). It also eliminates the need for the concept of a progressive system,
that is, a system that never infinitely avoids —, and — transitions in a derivation.
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striction is achieved along two dimensions: the constraint language and the
set of solution structures. We use sCNF formulas as constraints, and axiom-
atizable classes'! as the class of structures over which constraint satisfiability
is tested. In particular, the class associated with a given MCLP(X) language
is the set of models of the union of the component theories.

Formally, the parameter X in the MCLP(X) scheme is defined as the

tuple:
X = (E, LT, (Sn, Lo, Tn))
where
e >, ..., %, are pairwise-disjoint signatures,
o L;:=sCNF(%;) forallie {1,...,n}, and
e 7; is a stably infinite ¥;-theory for all ¢ € {1,...,n}.

The combined constraint theory for MCLP(X) is 7 := 7T, U ... U7, the
combined constraint language is £ := sCNF(X) with ¥ := ¥, U...UY,, and
the set of solution structures is Mod (7).

We can now describe the logical and operational models of MCLP(X).
Again, we will consider a top-down model of execution.

5.1 Logical Semantics

The format of MCLP(X) statements is identical to that of CLP statements,
except that mixed constraints are allowed with no restrictions. As a conse-
quence, MCLP(X) adopts CLP(X)’s logical semantics for both its programs
and their completion. The only difference concerns the notation used to
describe MCLP(X) programs.

Since we want to apply the available solvers modularly, it is convenient
to look at each MCLP(X) statement as if it had first been converted into an
appropriate separate form. That is, instead of MCLP(X), a rule of the form:

p() < B

LA class of structures is aziomatizable if it coincides with the set of models of some
first-order theory.
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Assumptions: p, ¢ user-defined, {g, f} C ¥, {1,+, <} C 3.
p(9(@) +9(y),2) «— alf(z+1),2), f(z)+ fly) <=
p(v1, 2) — v =vg+ 3, va=g(T), v

5 =
q(vs, 2), va = f(vs), v5 =v+1,
ve +v7 < z, v = f(x), v7 = f(y)

Figure 3: An MCLP(X) rule and its separate form

as defined in Section 4.1.1, we consider its separate form:
p(t) — B

obtained by applying to the body of the rule a separation procedure similar
to the one described in Section 3.!2 It should be clear that, under the CLP
logical semantics, an MCLP(X) rule and its separate form are equivalent.
An example of an MCLP(X) rule and a possible separate form for it is given
in Figure 3.

After we define the computation transitions, the careful reader will ob-
serve that it is not necessary to actually write MCLP(X) programs in sepa-
rate form, because a separation procedure can be applied “on the fly” during

subgoal expansion.

5.2  Operational Semantics

We assume that for each component theory 7; and corresponding constraint
language £; := sCNF (%;), we have a decision procedure, Sat;, for the satisfia-
bility in 7; of formulas of £;. We will only consider the case of two component
theories here, as the n-component case is a straightforward generalization.
As with CLP(X), computation in MCLP(X) can be described as a se-
quence of state transitions. Each state in turn is described by either the
symbol fail or a tuple of the form (A,Cy,Cs), where A is a set of pure
atoms and constraints, (' is a set of Y;-constraints, and (5 is a set of -
constraints. A represents the current set of subgoals yet to be considered,

12Qbserve that the body of a rule is in fact an sCNF formula.
21

The Journal of Functional and Logic Programming 1998-6



Tinell and Harand: Constraint Logic Programming §5.2

while each C; represents the constraint store of the solver implementing Sat;.
State transitions are defined as follows, where P is the MCLP(X’) program
in execution:

ry: <A701702> —r <AUB _p(jf% LC&)

where p(Z) := select(A) is an atom, p(g) < B is a renaming to fresh variables
of arule of P,and C] :=C; Uz =g fori=1,2;

ro: <A7 C, 02> —, fail

where p(Z) = select(A) is an atom, and P contains no rule whose head’s
predicate symbol is p;

C: <A, Cl, 02> ¢ <A — G 017 Cé)

where ¢ := select(A) is a constraint literal and, for i = 1,2, C! .= C; Ucif ¢
is a ¥;-constraint, and C! := C; otherwise;

81 <A701702> s <A,Ci,0£>

where ar(?) is an arrangement of the variables shared by C) and Cy, C! :=
C; Uar(v), and Sat;(C}) succeeds for i = 1,2; and

So. <A, Cl, C2> —s f(lll

where ar(?) is an arrangement of the variables shared by Cy and Cy, C! :=
C; Uar(v) for i = 1,2, and either of Sat;(C7) or Saty(CY) fails.

The concepts of derivation, final state, failed derivation, successful deriva-
tion, and computation tree in MCLP(X) can be defined the same way they
are defined in CLP(X).

Similarly to CLP(X'), transitions of type —,. are just goal-reduction steps.
The difference is that the variable equalities produced by matching the se-
lected predicate with the head of some rule go to both constraint solvers as,
by definition, an equality predicate with variable arguments belongs to both
El and LQ.

Transitions of type —. feed the constraint solvers with a new constraint,
where each constraint goes to the corresponding solver (with variable equal-
ities going to both solvers).

Transitions of type —, differ more significantly from the corresponding
transitions in CLP(X'), as they actually implement, in an incremental fashion,
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the combination method mentioned in Section 3. In the method’s terms, for
every —, transition, we consider the constraint stores C; and Cs as the 1-pure
and 2-pure halves of an sCNF formula whose satisfiability must be checked.
For each constraint store, we use the constraint solver “as is,” but we make
sure that global consistency information is shared by the two solvers. By
Theorem 1, all we need to do to enforce the global consistency of the stores
is guess an arrangement of their shared variables and then add it to each of
them.

For a better feeling of how an MCLP(X) system works, let us go back
to the scenario presented in Section 2, where we had a CLP system with a

scheduler S; and an arithmetic solver Sy. Assume an MCLP(X) system with

the same solvers, and consider the following simple MCLP(X') program in
separate form:

P = {d(z,y) « ze=¢€(x), 2, =b(x), 2. — 2, =y — 1}

which defines the duration of an activity.!® Now consider as input goal the
constraint ¢ seen in Section 2, rewritten to use the user-defined predicate d:

aj - tl,CZQ . tg,ag . t3
G = b(ai) = b(as), e(az) = e(as)
d(al, 4), d(CL27 7), d(ag, 10)

For simplicity, also assume that the system represents goals internally as
lists, that the selection function always chooses the first element of the current
goal, and that goal expansion is done in place. Modulo some unimportant
details, a possible derivation of GG is then the one given below, where we have
omitted the results of —, transitions, which are essentially the same as in
CLP, and renamed the variables in the constraint stores for better readability:

al tl,ag : t2,a3 : t3
b(ar) = bag), e(az) = e(az) ¢,0,0
d(al, 4), d(ag, 7), d(ag, 10)

le

le

13Where z,v, z¢, and 2, are variables, e(x) abbreviates end(x), and b(x) abbreviates
begin(x).
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({ d(a1,4), d(as, ), d(as, 10) },{ Z(la‘jl’:“&;f)’,i?c{f: e(as) }(b)
Lr
L.

aj - tl,ag : tg,ag 113

b(a1) = b(as),e(az) = e(a3) Y1 — 1 =3
{d(a?,alo) }7 xlzb(al),xgzb(ag) ’{y2—$2:6}
y1 = e(a1),y2 = e(az)
Ls
CL1:t1,CL2:t2,CL3:t3 )
b(a1) = b(as),e(az) = e(a3) y1—x1 =3
r1 = b(al),l'z = b(ag) Yo — T2 = 6
dles10) 00— o(ar).n = ela) o A an £

Y1 # T1,Y1 F# T2 Y2 # T1,Y2 # T2
Y2 # T1,Y2 F T2

br
le
ai:ti,a9 :to, a3 : t3 ) — 1 =3
blar) = blaz), e(az) — e(as) R
z1 = b(ar),x2 = b(az), z3 = b(as) ve S
(b, ) Y3 — T3 = 9

y1 = e(a1),y2 = e(az),y3 = e(as)
Y1 # T1,Y1 # T2
Y2 # T1,Y2 £ T2

Y1 # T1,Y1 # T2
Y2 75 T1,Y2 75 x2

ls
fail

The last transition moves to the fail state by generating an arrangement
of x1,...,23,y1,...,y3 that in addition to including the old one,

{yl 7é T, Y1 F T2, Y2 7& L1, Y2 7é 952}
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also contains the equations 1 = w3 and y, = y3. All the other derivations of
G differ in the order and number of — transitions and in the arrangement
they choose for the shared variables. We leave it to the reader to verify
that they too are failed, which shows that, contrary to the CLP system
we considered in Section 2, the MCLP(X) system above does succeed in
determining the (un)solvability of G.

Looking back at Figure 1, it is obvious that our scheduling problem would
be solvable in the union of S;’s and S5’s theories if a3 lasted 11 days instead
of 10, because then as’s theory could be scheduled to start on day 5. A goal
expressing the new problem by replacing the subgoal d(as, 10) with d(as, 11)
in G has, as expected, a successful derivation in the MCLP(X) system. In
fact, modulo the replacement of d(ag, 10) by d(ag, 11), one such derivation is
identical to the one shown above, except for the final state, which is instead
of the (simplified) form

r1 = I3
alitl,agitQ,agitg, — +3
b(as) = bla1), e(ar) < blea), e(az) = e(as), gL
@, , To =23+ 4
Ty = b(al)a T2 = b(&g),l’g = b(a3)7 _
u = e(ar), v = e(az), ys = e(as) vz =25 +9
’ ’ ys=23+9

5.3 On the Combined Constraint Language

As mentioned, the constraint language for MCLP(X) is sCNF(X). Although
we will not show it here, it is possible to modify our framework slightly to
allow a constraint language at least as large as the class of quantifier-free
Y-formulas. Sometimes, however, we may need to actually restrict the con-
straint language to a subclass of sCNF(3). This will happen any time the
constraint solver at our disposal for a certain component theory 7; is able
to decide satisfiability in 7; only for a proper subset of sCNF(X;). Many
constraint solvers, for instance, do not accept negative literals, because of
efficiency or decidability concerns. In such cases, sCNF(X) is too power-
ful a combined language, as it includes the whole sCNF(3;).1* The ques-
tion then is: how much can we restrict the combined constraint language of
MCLP(X) without compromising its operations? Looking at the definitions
of —. and — transitions, it should be easy to see that, in general, any sub-
set of sCNF(X) can be chosen as a combined constraint language as long as

14This is because ¥; C ¥ for all 4.
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this subset includes equations and disequations of variables—and continues
to satisfy the closure conditions mentioned in Section 2. In constraint-solver
terms, this means that a CLP solver can be plugged into an MCLP(X) sys-
tem only if it also accepts disequations of variables. Alternatively, the solver
must be able to tell for any two variables z and y whether or not its store
entails x = y in the solver’s constraint theory. Notice that the two alterna-
tives are basically the same, because a constraint of the form ¢ A x # y is
satisfiable in a theory 7 if and only if 7 £ c — z = y.

5.4 Implementation Issues

Like the transitions of type —,, transitions of type —, are nondeterministic.
With —, transitions, the choice is among the possible reductions of the
selected subgoal; with — transitions, it is among the possible arrangements
of the shared variables. This means that in actual implementations of the
MCLP(X) scheme, backtracking mechanisms similar to those used for —,
transitions must be used.

It should be noted, however, that the kind of don’t know nondetermin-
ism introduced in —; transitions poses greater computational complexity
concerns than in the original CLP scheme. In fact, the number of possible
arrangements of a set V' of variables, and hence the number of choice points
in correspondence of a —, transition, grows extremely quickly in the car-
dinality of V. To contain the number of generated arrangements, several
optimization techniques can be used when implementing — transitions in
an actual MCLP(X) system.

The most obvious optimization is suggested by the observation that, since
the constraint stores are built incrementally, it is not necessary to recompute
a totally new variable arrangement for each —, transition in a derivation.
To exemplify, consider a given MCLP(X') implementation which, again just
for simplicity, has only two solvers, say S; and S;. Assume that the main
module of the system, the engine, is provided with data structures of its own
containing, for ¢ = 1,2, the set V; of variables currently occurring in the
store of S; and a partition P of V; N V5, which corresponds to the current
arrangement of shared variables in the stores. After a new constraint is added
to one of the stores because of a — transition, the set V; NV, may increase,
and so a new arrangement will eventually have to be generated and passed to
the solvers. It is clear, however, that the only meaningful new arrangements
will be those that extend the current one to include the new shared variables.
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Selecting only among these arrangements drastically reduces the number of
choice points for each —; transition. In performing a —, transition, all
the engine has to do to extend the current arrangement is guess in which
block of the partition P to insert each new shared variable. For example,
if P ={{x1,24},{22},{x3,25}} and x¢ is a new shared variable, the engine
guesses whether to insert xg in x1’s or x5’s or x3’s block, or in none of them
and add the singleton block {zs} to P. After that, it updates the arrangement
in the solvers’ stores just by adding the minimal set of (dis)equalities that
completely identifies the partition block of the newly inserted variable. In
this example, the set will be {xg # x1, 6 # X2, Tg # T2} if the engine inserts
xg in its own block, {xs = =1, # X2, 76 # T} if the engine inserts xg in
x1’s block, and so on.

Another obvious optimization comes from the consideration that after a
— . transition, one of the constraint stores can already become locally unsat-
isfiable. In that case, testing for global consistency through variable equality
propagation is pointless, because the stores are already globally inconsistent.
When performing a — transition then, the engine can first check the consis-
tency of each store that has been modified by a — transition since the last
check. If the stores are fine, it can then go ahead and guess a new variable
arrangement as seen above; otherwise, it can fail immediately and backtrack
instead of hopelessly generating all the possible variable arrangements at that
point.

Yet another optimization can be achieved by modifying the current vari-
able partition P according to more informed guesses. For instance, each time
a —. transition adds an equality constraint in the variables x,y to (neces-
sarily both of) the stores, the engine can insert them into P taking their
equality relation into account. If the constraint is x = y and z is already
in P, y must be inserted in z’s block. If neither z or y is in P, they can
be inserted in any block, but this block must be the same for both. The
situation is analogous when the constraint is x # y. More informed guesses
on how to insert new shared variables in P can be made, depending on the
particular constraint theories and solvers in the system. Sometimes, asking
a solver what equalities between a given number of variables are entailed by
its constraint store is a rather inexpensive operation.!® In that case, before

15This typically happens when equality constraints are kept in the store in a solved form
such as x = t, where z is a variable and ¢ is a term, and the data structures representing
these constraints share common subexpressions.
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inserting a variable x in the partition, the engine can ask one or more solvers
whether # must be equal to any of the variables already there. If so, the
engine will deterministically insert x in P where appropriate; otherwise, it
will need to make a guess, as already discussed.

Further improvements can be obtained by providing the engine itself with
some meta-knowledge on the various constraint theories. Using this knowl-
edge, the engine can perform simple, inexpensive tests on the constraints
chosen during —, transitions, and acquire more information on their vari-
ables. For instance, if the engine successfully adds a constraint of the form
x =t to a solver for the theory of finite trees, it can conclude immediately
that o cannot be equated to any variable occurring in ¢.1% Similar conclusions
can be drawn for other simple constraints, such as x < y, where < denotes a
strict order in the given constraint theory; x = f(7), where f denotes a pro-
jection function; ¢(Z) = g(y), where g denotes an injective function; and so
on. It is clear, however, that the frequency of such constraints in the applica-
tion domain in question will mostly determine the real computational impact
and usefulness of these tests. An approach of this sort is followed in [Ric96]
to improve the performance of an algorithm implementing the Baader-Schulz
method [BS92| for combining unification procedures.

6 Computational Properties of MCLP(X)

To discuss the main computational properties of MCLP(X), it is necessary
to specify a more detailed operational semantics than the one given in the
previous section. Since any implementation of MCLP(X) is a deterministic
system, a particular computation rule has to be defined. For us, this amounts
to specifying the behavior of the select function and the order in which the
various types of transitions are applied. We will need to further restrict our
attention to specific classes of MCLP(X) systems to prove some properties

of MCLP(X).

Definition 4 Let —., denote the two-transition sequence —.—,. We say
that an MCLP(X ) system is quick checking if all of its derivations are se-
quences of —, and — ., transitions only.

A quick-checking CLP(X) system verifies the consistency of the con-
straint store immediately after modifying it. Analogously, a quick-checking

6Because this would violate the occurs check.
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MCLP(X) system verifies the consistency of the union of all the constraint
stores (by means of equality sharing among the solvers) immediately after it
modifies at least one of them.

Definition 5 An MCLP(X ) system is ideal if it is quick checking and uses
a fair computation rule.r”

In both CLP(X') and MCLP(X), we can define the concept of finite failure
if we restrict ourselves to the class of ideal systems. We say that a goal G is
finitely failed for a program P if, in any ideal system, every derivation of G
in P is failed.

6.1 Comparing CLP(X) with MCLP(X)

To show that the main soundness and completeness properties of the CLP
scheme lift to our extension, we will consider, together with the given MCLP(X)
system, a corresponding CLP(X) system that, while accepting the very same
programs, supports the combined constraint theory directly (i.e., with a sin-
gle solver), and show that the two systems have the same computational
properties.

Actually, MCLP(X) systems cannot have a corresponding CLP(X) sys-
tem, since the original scheme defines constraint satisfiability in a different
manner from our scheme. In CLP(&X'), the satisfiability test for the con-
straint store is successful if the store is satisfiable in the fixed structure D.
Instead, in MCLP(X) the satisfiability test is successful if the (union of all)
constraint store(s) is satisfiable in any structure among those modeling the
constraint theory. However, correspondence becomes possible if we relax,
so to speak, the CLP(X) system by testing satisfiability within the class of
structures Mod(7), where 7 is the chosen constraint theory, instead of the
single structure D.

The impact of going from the CLP scheme, which is based on a distin-
guished structure D, to a relared CLP scheme, which is based on a distin-
guished class IC of structures, is perhaps best understood with the following
observation. In the relaxed case, we can associate with each state of a deriva-
tion the set of all the structures of I that satisfy the constraint store of that
state. The set associated with the initial state is obviously the whole IC,

17This definition differs from that given in [JM94], because we adopt a slightly different
definition of “derivation,” but it refers to the same class of systems.
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since the constraint store is empty and therefore satisfiable in any structure.
As new constraints are added to the store, the set is restricted to only those
structures that also satisfy the new constraints. That is to say, for each non-
initial state ¢ of the derivation, the set KC; of structures associated to i is a
subset of the set K;_; associated to the previous state. The structures left
at the end, if any, are all structures in which the initial goal is satisfiable,
as we will see. In the original case, that of the CLP scheme, the situation is
analogous, but each K; contains at most one element: the distinguished struc-
ture D. An immediate but important consequence of the above argument is
that every successful derivation in a relaxed CLP system is also a success-
ful M-derivation, in the sense given in Section 4.1.2, for any M € Mod(7T)
satisfying the answer constraint.

Now, it so happens that the main CLP soundness and completeness re-
sults hold, in analogous form, even when we move to relaxed CLP. As far
as we know, this point seems to have been overlooked in the CLP litera-
ture, perhaps because of the initial interest in a single interpretation for the
constraints, which paralleled the exclusive interest of logic programming in
the Herbrand interpretation of unification constraints and, more importantly,
permitted the development of a solid algebraic semantics for the CLP scheme.

With [HS88|, Hohfeld and Smolka were probably the first to recognize
that the focus on a single structure was too restrictive for constraint logic
programming, and unnecessary. That led them to the development of a more
general scheme, which included the original scheme as a special case. With
the increase in generality, however, they obtained somewhat weaker results.
Generality-wise, the relaxed CLP scheme is between the two schemes, and in
fact its soundness is derivable as a consequence of the soundness of Hohfeld
and Smolka’s scheme. Its completeness, however, cannot be derived from that
scheme because it is essentially a consequence of the choice of a first-order
constraint language and theory, which Hohfeld and Smolka do not require.

In the following, we prove that, for axiomatizable classes of structures,
not only is the relaxed CLP scheme correct and complete, but also and
more importantly, it exhibits logical properties no weaker than those of the
CLP scheme. From that, similar soundness and completeness results for
MCLP(X) will easily follow, as we show in Section 6.3.
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6.2 Relaxed CLP(X)

Some notation and definitions are necessary before we go further. If M is a
structure for a constraint language £, we will implicitly expand £, and hence
M, to include a constant for each individual of M’s universe, which we will
call the name of the individual. By a common abuse of notation then, when
a is either an atom or a primitive constraint and 1 is an M-valuation of a’s
variables, we will use a?) to univocally denote the ground predicate obtained
by applying to a the substitution that assigns to each variable z of a the
name of x1.*®

In the following, £ will be a constraint language, 7 the associated con-
straint theory, M a model of 7, and P a CLP program with constraint from
L.

Definition 6 (M-Solution) Let ¢ € L. We call the M-solution of ¢ any
M-valuation ¥ such that M |= c. We will denote the set of M-solutions of
¢ with Solam(c).

Definition 7 (M-Interpretations, M-Models) An M-interpretation of
P s a structure that expands M to include an interpretation of the set 11

of predicate symbols occurring in P. An M-interpretation I of P is an M-
model of P (P*) if every sentence of P (P*) is true in I. The set

By, = {p(@)9|pel, 9 M-valuation of &}
15 called the M-base of P.

Where @ is either P or P*, we will denote by (@, M) the set of all the
M-models of Q. Observe that (J, . (Q, M) = Mod(QUT).

It is easy to see that there is a bijection h from M-interpretations onto
the power set of the M-base of P where h(I) := {a¥ € BY, | I = ad}. As
is customary in the field, we will often identify M-interpretations with their
images under h. Under such identification and in analogy with the set of all
Herbrand models of a logic program, (@, M) is a poset with respect to set
inclusion, and has a minimal element, the least M-model of (), which we will
denote by Im(Q, M). 1t is possible to show (see [JM94]) that

Im(P,M) =im(P*,M)={ad | PPMEc— a,M = cv}

18Tn other words, given a structure, we will identify valuations with substitution from
variables into names.
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Finally, observe that if A is a finite set of atoms, an M-interpretation I is a
model of 3 A if and only if there is an M-valuation ¥ such that Av C I.

6.2.1 Soundness and Completeness

We will now consider CLP(X') systems that are instances of the relaxed
CLP scheme introduced earlier. For these systems, the tuple X is defined
as in Section 2, with the difference that D is replaced by Mod(7), and the
satisfiability test succeeds if and only if the input constraint is satisfiable in
some element of Mod(T).

We have formulated the following results after those given in [JM94] for
the CLP scheme.

Proposition 3 (Soundness) Given a program P and a goal G:

1. if G has a successful derivation with answer constraint ¢, then P,T |=

c— Gy

2. when T s satisfaction complete with respect to L, if G has a finite
computation tree with answer constraints ci, . .., ¢y, then P*, T = G <
ciV...Ve,.

Proof of Proposition 3

1. The proof is essentially identical to that for the original CLP scheme.
First, we show that in general, if (A, C) is a state in a derivation and (A", C")
is its successor state, then

PTEAUC — AUC

When (A’,C") is generated by a —. or — transition, the claim is trivial
because A’ UC" = AU C (see Section 4.1.2). When (A’, C") is generated by
an —, transition, it has the form (AU B — p(z),C U Z = g), where p(Z) is
an atom of A, and p(y) < B is a renaming of a rule of P. By elementary
logical reasoning, one can see that if AU B — p(Z) UC U = g is satisfied
in PU7 by some valuation 9, then AU BUC UZ = g is also satisfied by
9. In particular, A U C' is also satisfied by 1, from which the claim follows
immediately.

Now, let (Go, Co), (G1,C4),...{(G,,C,) be the sequence of all the states
in a successful derivation of G with answer constraint ¢. We then know
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that (Go,Co) = (G,0), (G,,Cpn) = (0,Cy), and ¢ = I_ 4 ) Cn. By a
repeated application of the argument above, we can conclude that P, 7 |=
G, UC, — GoUCy; that is, P,7 | C, — G, which then entails that
P, T ’: ELWT(G) Cn — G.

2. Immediately follows by the corresponding CLP result in [JM94] since,
if 7 is satisfaction complete with respect to £, a constraint is satisfiable in
7T if and only if it is satisfiable in every model of 7; and so the given system
behaves exactly as a CLP system in the original sense.’

Proof of Proposition 3 O

Lemma 1 Given a program P and a simple goal G, let M € Mod(7T) and
Y be an M-valuation of var(G). If GO is true in every M-model of P,
then G has a successful M-derivation with an answer constraint d such that

M = do.

Proof of Lemma 1 If G¥ is true in every M-model of P, then GV €
Im(P, M). It follows from an earlier observation that there exists a con-
straint ¢ € £ such that M = ¢ and (P*, M) = ¢ — a. By Theorem 6.1(1)
of [JM94], then, G has a successful M-derivation with answer constraint d
such that M |= ¢ < d, from which the claim follows immediately by logical
reasoning.

Proof of Lemma 1l O

Given G, M, ¥ such that G¥ is true in every M-model of P, we will
denote by Ans(G, M, V) the set of all the answer constraints d that satisfy
the lemma above.

Theorem 2 (Completeness) Given a program P, a simple goal G, and a
constraint c:

1. if P,T = ¢ — G and c is satisfiable in T, then there are n > 0
deriwations of G with respective answer constraint cq, ..., c, such that
TEc—a V...V,

2. when T 1is satisfaction complete with respect to L, if P*,T = G «
c1 V...V, then G has a computation tree with answer constraints
Ay dysuch that T = V... Ve, < V...V,

rm

Incidentally, observe that any model of 7 can be seen as the intended constraint
domain D, as they all correspond to 7 on L.
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Proof of Theorem 2 What follows is essentially Maher’s argument (see
[Mah87]) with minor variations. We reproduce it here to stress the fact that
satisfiability in a set of structures suffices for this result.

1. Let ¢ be a constraint satisfiable in 7 such that P, 7 E ¢ — G.
Let ¥ := war(G), and assume for now that var(c) C 0. Then let Ng :=
{—d | d € Cg}, where C¢ is the union of all the Ans(G, M, ¥) such that M
is model of 7 and ¥ is an M-valuation of G’s variables that makes G¥ true
in every M-model of P. Observe that var(Ng U {c}) is exactly 0, because
every d € C¢ is an answer constraint for G and var(c) C ¢ by assumption.
We prove by contradiction that Ng U {c} is not satisfiable in 7'; that is, for
no M € Mod(T) is there a valuation of ¥ that is an M-solution for each
element of the set.

Suppose there is an M € Mod(7) and an M-valuation 9 of © that satisfy
NgU{c}. Then, c¥ is true in M, and hence, since P,7 | ¢ — G, GV is true
in every M-model of P. But then, by Lemma 1, there is a constraint d € Cg
such that dv is true, against the fact that 9 must falsify every element of Cg
as, by assumption, it satisfies their negations.

Then, by the compactness of first-order logic and the assumption that
c is satisfiable in 7, we can conclude that there is a finite, nonempty set
{=c1,...,7c,} € Ng of negated answer constraints such that {c, —cy, ..., ¢, }
is unsatisfiable in 7. It follows that the formula ¢ A —cl A ... A —¢, is unsat-
isfiable in 7 or, equivalently, that 7 F=c— ¢, V...V ¢,.

To complete the proof, we must consider the case in which var(c) € .
Now, since P,7 = 3_; ¢ — G as well, we know by the above that G has
n > 0 answer constraints such that 7 = 3 ;¢ — ¢ V...V ¢,. That
T Ec—c V...V, then follows from the fact that var(c; V...V ¢,) C 0.

2. By the same argument at point 2 of Proposition 3.

Proof of Theorem 2 O

6.2.2 Negation as Failure

We have seen some of the nice properties of the CLP scheme that lift to its
relaxed version. A perhaps more surprising lifting, however, concerns the
properties of the negation-as-failure rule of computation.

Negation as failure is widely used in logic programming, and is a prov-
ably correct and complete inference rule. Jaffar and Lassez have showed that
it can also be used in their scheme, provided that the constraint theory is
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strong enough: it must be satisfaction complete with respect to the con-
straint language. Despite the fact that many typical constraint theories are
indeed satisfaction complete, this requirement is a potential problem for our
MCLP(X) systems, because the union of two satisfaction-complete theories
is not necessarily satisfaction complete. Here is a simple counterexample.

Example 1 Consider the first-order theory 7; whose signature X is com-
posed of a countably infinite set {a, as, ... } of constant symbols and a count-
ably infinite set {fi, f2,...} of unary function symbols. 7; is axiomatized
by the set consisting of all the following (implicitly universally quantified)
formulas:

(1.1) for alli < w, filz) = fily) —z =y

(1.2) foralli<j<w, filx) # fi(y)
(1.3) for all nonvariable ¥;-terms ¢, = #t

where z, and y are variables. Then consider the first-order theory 75 whose
signature Y, is composed of a countably infinite set {by,bs, ...} of constant
symbols and a countably infinite set {gi, go, ... } of unary function symbols.
7, is axiomatized by the set consisting of all the following (implicitly univer-
sally quantified) formulas:

(2.1) foralli < w, 9i(x) =gi(y) —x =y

(2.2) foralli< j<w, gi(x) # g;(v)
(2.3) for all nonvariable ¥o-terms ¢, = #t¢

where x, and y are variables. Then assume that X; N Xy = 0.

Essentially, 7; and 75 are two signature-disjoint versions of the theory of
finite unary trees. Each 7; is satisfaction complete with respect to the class
of equational problems over ¥;-terms (see [Mah88]). Now, let T := 7, U 75,
which is provably consistent, and £ be the class of equational problems over
(X1 U Xy)-terms. Then, consider a formula of the form:

fi(x) = gj() (3)

for some 7,7 < w. The existential closure of Equation 3 is not entailed by
7T, nor is its negation: it is straightforward to construct models of 7 in
which Equation 3 is satisfiable, or even valid, and others where Equation 3 is
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unsatisfiable.?? This entails that 7 is not satisfaction complete with respect
to £.2!

Given the nonmodularity of satisfaction completeness with respect to the-
ory union, it is not clear whether negation as failure can be used correctly in
the MCLP(X) scheme, which works exactly with union of theories. Hohfeld
and Smolka’s work does not help us here, since they decide to ignore the
whole issue after concluding, maybe a little too hastily, that negation by fail-
ure is unnecessary in their framework because negation is supported directly
by the constraint language.??

What we discovered, however, is that not only can we still use negation as
failure properly in MCLP(X), but we do not need satisfaction completeness
of the component theories at all. As before, a sufficient condition for our
results is that we use a first-order language for the constraints. In light of
this, it seems that such results can be easily extended to all the instances of
the Hohfeld-Smolka framework that use a first-order constraint language. A
proof of that, however, is out of the scope of this work.

To prove our claims, we will first show that negation-as-failure is sound
and complete for the relaxed CLP scheme. We will start with a lemma that
characterizes the models of complete programs in terms of the standard one-
step consequence function T3 (see [JM94]), whose definition is given below.

Definition 8 Given a structure M € Mod(T), and a program P, the func-
tion T mapping from and into the M-base of P is defined as

TM(I) = {p(@)0 | (p(z) — ¢, A) € P, 9 € Solp(c), AV C I}

It is not difficult to prove that Th* is monotonic. The following lemma is
often cited without proof in the CLP literature with the implicit claim that
it is an easy lifting of a corresponding lemma for logic programming. We
provide a proof here for completeness.

20We stress that Equation 3 is not consistent with either points (1.2) or (2.2).

2lObserve that since the theories chosen above are also complete in the standard sense,
the very same example shows—when we consider the universal closure of Equation 3—
that completeness as well is not modular with respect to the union of theories. But this
is not all. The example shows that in general the union of complete theories is not even
satisfaction complete—which is a weaker property than being complete.

22 Apart from the fact that the CLP scheme itself does not exclude this possibility, it is
not clear how negation of atoms would be dealt with in the Hohfeld-Smolka framework.
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Lemma 2 (Fix-Point Lemma [JL86]) Let P be a program, and I an M-
interpretation of P for some M € Mod(T). Then, I is a model of P* if and
only if it is a fiz-point of TH'(I).

Proof of Lemma 2 (=) Assume that I € Mod(P), and let p be the pred-
icate symbol of an atom occurring in P*. Then we know that P* contains
the universal closure of exactly one of the following formulas:

Vp(z) - 3z (aaNA)V...VI;(ca ANA)) (4)
v —p(E) (5)

where each ¢; is a constraint and each A; is a set of atoms. Assume that
Equation 4 is in P*, and let ¥ be an M-valuation of . Then, p(z)9 € I if
and only if there is an i € {1,...,n} such that I = 3_; (¢; A 4, )19 if and only
if there is an extension ¢ of ¥, and an ¢ € {1,...,n} such that 9" € Soly(c;)
and A;v C I. Since, by construction of P*, there is a rule in P of the form
p(Z) « ¢, A; for every disjunct of Equation 4, we can conclude that for
every M-valuation ¢, p(z)v¥ € I if and only if p( )9 € TH(I). Now assume
that Equation 5 is in P*. Then, I is a model of —p(Z) if and only if for no
M-valuation 9, p(Z)9¥ € I. Since by construction of P* there is no rule or
fact headed by p(Z) in P, it is immediate from the definition of T%' that
p(z)9 € TH'(I) for no M-valuation . In conclusion, we have shown that
for all atoms p(Z) and valuations 9, p(Z)9 € I if and only if p(Z)9 € TH'(I),
which entails that I = TH(I).

(«<=) Suppose that I & Mod(P*). Then, there is a sentence ¥V ¢ € P* and
an M-valuation ¥ such that:

I = =yl (6)

If ¢ is an equivalence like Equation 4 above, we can conclude by Equation 6
that I and 1 satisfy one side of the equivalence and falsify the other. Assume
that I = 3_; (¢; A A;)0 for some i € {1,...,n}. Then, I = p(Z)v, that is,

p(z)9 & I. As before, however, we can show that p(Z)9 € TA'(I). Now
assume that I | p(Z)dY, and so p(Z)9 € I. Then I | 3_; (¢; A A;)Y for
no i € {1,...,n}, which entails that p(z)9 ¢ TH(I). If ¢ has the form of
Equation 5, 1t is easy to show that, again, p(Z)9 € I but p(z)9 ¢ TH'(I). In
conclusion, in all cases we obtain that I # TH(I).

Proof of Lemma 2 0O
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The proofs of the propositions below are closely modeled after those given
in [JL86]. As in the CLP scheme, we only consider ideal systems here.

Proposition 4 If the goal G is finitely failed for a program P, then
P T E —G.

Proof of Proposition 4 We prove the claim by contradiction, showing that
if P*, T [~ =G, the computation tree of G contains either a successful deriva-
tion or an infinite one. Therefore, assume that P*,7 [~ —G. We first build
by induction a family {(G;, C;) | i < w} of computation states such that, for
every i < w, G; U C; is finite and satisfiable in P* U 7.

For (i = 0), let (G, Cp) := (G, D). Clearly, GoUCy is satisfiable in P*U7T
by the assumption that P*, 7 £~ —G.

For (i > 0), if G; is empty, simply let (G411, Ciy1) := (G, C;). Otherwise,
apply select to G;. If select(G;) is a constraint ¢, it is easy to see that, since
G; U C; is satisfiable in P* U7 by assumption, C; U ¢ is satisfiable in 7. It
follows that applying a —s transition to (G;, C;) leads to the nonfail state
(G; —¢,C;Uc). Then, let (G;11,Ci11) be such a state. In both cases above,
then the set G;;1 UC;4 is finite and satisfiable in P*U7 as it coincides with
G; U C;. If select(G;) is a predicate p(Z), we know that P* must contain a
sentence of the form:

otherwise, it would contain a sentence of the form gﬁp(ﬂ), which is impossible
because p(Z) is satisfiable in P*U7T for being a subgoal of G. Let G; = p(Z)U
G’, and choose an I € Mod(P*UT) in which G; UC; is satisfiable. Assuming
with no loss of generality that no variable in Equation 7 is also a variable of
G;, we can conclude by logical reasoning that there is an i € {1,...,m} such
that

B;U(z=9)UG;UC;

is satisfiable in /. By construction of P*, there is a rule of the form p(7) < B;
in P; therefore, define (G;11,C;11) to be the result of applying to (G;, C;)
the —, transition that picks that rule to expand p(Z). It is easy to see then
that (G;y1,Ciy1) is finite and satisfiable in P* U 7.

Now, let § := {(G;,C;) | i <n+ 1} if there is a smallest n such that
G, =0, and let 0 := {(G;,C;) | i < w} otherwise. In each case, § describes
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a possible derivation of G in the system. In the first case, the derivation is
finite and clearly successful; in the second case, the derivation is infinite.

Proof of Proposition 4 O

Proposition 5 If P*, 7T = =G for some goal G and program P, then G is
finitely failed.

Proof of Proposition 5 Assume G is not finitely failed. We prove that G
is satisfiable in P* U7, against the hypothesis.

If G has a successful derivation, we know from Proposition 3 that P*, 7 =
¢ — G, where c is the answer constraint of the derivation. By definition, ¢ is
satisfiable in 7 and so G is satisfiable in P* U 7.

If G only has infinite derivations, we choose any of them and indicate
with (Gy, C;) its it state, where (Go, Co) = (G, D) is the initial state. In
addition, we denote by ¢; the union of all the constraints contained in G;.
Given that the system is quick checking, it is easy to see that C; must be
satisfiable in 7 for all 1 < w; otherwise, the derivation would be finite. Now
let

CI:UC,L'UC@'

<w

and consider any finite subset C” of C'. Since every derivation in the system is
fair by assumption, we know that each constraint of each G; in the derivation
chosen gets added to the constraint store eventually. This means that C’ is a
subset of C), for some n < w, and so is satisfiable in 7. By the compactness
of first-order logic, then, we can conclude that C' itself is satisfiable in 7.
Therefore, let M be a model of 7 that satisfies C, and consider the set:

I = {p(@)Y ]| p(z) atom of G; for i < w, ¥ € Solp(C)} (8)

Observe that [ is well defined as & C var(C') for every i < w and atom p(Z)
of GG;. In fact, because the derivation is both fair and not failed, every such
p(Z) will be certainly selected by an —, transition at some state n > ¢ and
replaced by the body of a rule of the form p(y) < B.?*> At the same time,
the constraint & = g will be added to store. But this means that C),; will
include £ among its variables, and so will C.

23Such a rule exists because otherwise the derivation would fail.
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The set I, seen as an M-interpretation, is a model of 3G, because Gy = G,
Cy C C, and av € I for every atom a of Gy and M-solution v of C. We
prove below that I C T#*(I), which implies by the Knaster-Tarski fixed-point
lemma (see [Tar55]) that there is an Me-interpretation J such that I C J
and J = TAY(J). Now, J is an M-model of 3G, because it includes I, and of
P*, because of Lemma 2. This means that G is satisfiable in P* U7, against
the hypothesis.

To see that I C TH'(I), consider any a € I. By definition of I, there
are a ¥ € Soly(C), an i < w, and a p(Z) € G; such that a = p(z)Y. If
(e, Up(Z) U Ay, C,) is the state at which p(z) is selected for expansion, we
know that:

(Gpy1,Cry1) = (CLUcUBUA,, C,UZ=7)

where (p(g) < ¢, B) is the renaming of some rule in P. Since ¢ € ¢,41,
T =19 C Chy1, and ¢, U Chy € C, we can immediately conclude that ¢ is
also an M-solution of ¢ and a = p(Z)¥ = p(g)Y. Moreover, b € I for each
atom b € B, because b € G,41 and ¥ € Solp(C). It follows that there exists
arule (p(y) < ¢,B) € P and a v € Solp(c) such that By C I. By definition
of T, then, p(Z)9 € TH(I); that is, a € TH'(I).

Proof of Proposition 5 O

In conclusion, we obtain the following soundness and completeness result
for the negation-as-failure rule in the relaxed CLP scheme.

Corollary 1 In an ideal system, a goal G is finitely failed for a program P
if and only if P*,T E —G.

6.3 Main Results

We are now ready to prove the main computational properties of MCLP(X)
using the results given above for the relaxed CLP scheme. We will consider
an MCLP(X) system with X := ((£1,71), ..., (3,, 7)), as in Section 5. For
simplicity, we will assume that n = 2 and that, while the system satisfies
the general implementation requirements given earlier, its computation rule
is flexible enough with respect to the order of application of the various
transitions. Such assumptions are not necessary for our results, but make
their proofs easier and more intuitive.

First, we prove that MCLP(X) is sound. In the following, —, /. will
denote either an —, or a — transition.
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Lemma 3 If goal G has a successful derivation in an MCLP(X ) program P,
then it has a successful derivation with the same answer constraint and such
that all of its transitions are —, . transitions, except the last one, which is a
— 4 transition.

A similar version of this easily proven lemma actually holds for every
CLP scheme we have considered so far. Essentially, the lemma states that a
successful derivation can be always rearranged into a derivation of the form
(G,0,0) =,/ (0,C1,C) —4 (B,C,Ch) by first reducing the goal to the
empty set and then testing the consistency of the collected constraints. The
lemma also entails that a successful derivation in MCLP(X) is not just a
finite derivation not ending with fail, but one whose answer constraint is
satisfiable in 7; U7Z5. In fact, according to the MCLP(X') operational model,
a necessary condition for the above derivation to be successful is that C!
be satisfiable in 7; for ¢+ = 1,2. From Theorem 1 then, we can infer that

I_var(@) (C] A C3), the answer constraint of the derivation, is satisfiable in
TLUTs.

Lemma 4 Let P be an MCLP(X ) program, and G be a goal. Then, for all
paths (G, 0,0) =, . (0,Cy, Cy) in the derivation tree of G,

P,T ): vaar(G) (Cl A Cz) -G

Proof of Lemma 4 Assume that P is in separate form. In a relaxed CLP
system supporting X directly with a single solver and having the same com-
putation rule, we would have the mirror derivation (G, 0,0) =, . (0, C) with
C equal to C7; U Cs. The claim follows then immediately by the soundness of
the relaxed CLP scheme.

Proof of Lemma 4 0O

Proposition 6 (Soundness of MCLP (X)) Given a program P and a goal
G:

1. if G has a successful derivation with answer constraint ¢, then P,T |=
c— G; and

2. when T s satisfaction complete with respect to sSCNF (3, U X9), if G
has a finite computation tree with answer constraints ci,...,c,, then
P TEG— V...V,

41

The Journal of Functional and Logic Programming 1998-6



Tinell and Harand: Constraint Logic Programming §6.3

Proof of Proposition 6 Let 7 := var(G).

1. By Lemma 3, we can assume that the derivation of G is of the form
(G,0,0) =,/ (0,C1,Cs) — (0,04, Ch), where ¢ is then 3_; (CjACh). Recall-
ing the definition of — transitions, it is immediate that = ¢ — 3_; (C1ACY).
The claim is then a direct consequence of Lemma 4.

2. Let us call the MCLP(X) system S, and assume a corresponding
relaxed CLP system S,;. With no loss of generality, we assume that for
each i € {1,...,n}, the derivation J; in S, having answer constraint ¢;, is of
the form (G, 0,0) =, . (0, C1;, Ca;) —5 (0, C1,, Ch,). Since Sy has the same
computational rule as S, for each 9; there is a corresponding derivation h(d;)
in S of the form (G, 0,0) =, . (0, D;) —, (0, D;), where D; = Cy; U Oy,

Let ~ be an equivalence relation over {1,...,n} such that ¢ ~ j if and
only if ¢; and ¢§; coincide up to the last transition. Notice that h(d;) = h(0;)
if 2 ~ j. Recalling the definition of —; transitions, it should not be difficult
to see that for each j € {1,...,n}, if [j] is the equivalence class of j with
respect to ~, the following chain of logical equivalences holds:

Ve o V3s(Cun0) —35(CynCy) <3 3D (9)
i€j] i€[j]

By an analog of Lemma 3 for the relaxed CLP scheme, it is possible to show
that the tree made by all the h(d;)s above is indeed the finite-computation
tree of G in S, By the soundness of the relaxed CLP scheme, we then have
that:

PPTEG- \/ 35D, (10)

The claim follows then immediately, combining Equations 9 and 10 above.

Proof of Proposition 6 0O

We now prove that MCLP(X) is complete.

Lemma 5 Consider a program P, an MCLP(X) system S, and a corre-
sponding relaxed CLP system Syq. Then, for any transition t in S.q of
the form (A,C) —,. (A',C"), there is a transition t' in S of the form
(A, C1,Cy) =y (A,CL,CY) such that T = C « Cy AN Cy implies T |=
¢’ — C] N .
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Proof of Lemma 5 If ¢ is a —, transition, ¢ is the —, transition that
chooses from A the same constraint chosen by ¢ and adds it to the appropriate
constraint store.?* If t is an —, transition, ¢’ is the —, transition that chooses
from A the same atom and from P the same rule chosen by ¢ and adds the
generated unification constraints to both the constraint stores.

Proof of Lemma 5 0O

Proposition 7 (Completeness of MCLP (X)) Consider an MCLP(X ) sys-
tem, a program P, a simple goal G, and a constraint c:

1. if P,T = ¢ — G and c is satisfiable in T, then there are n > 0
derivations of G with respective answer constraint ci, ..., c, such that
TEc—aV...Vc,;

2. when T s satisfaction complete with respect to sCNF (X U 3,), if
P*TEG < V...V, then G has a computation tree with answer

constraints cy, ..., ch, such that T Ec1 V...V, V...V,

Proof of Proposition 7

1. Let us call the MCLP(X) system S, and assume a corresponding
relaxed CLP system S,q. Let Z := var(G). To simplify the notation, if § is
a successful derivation, we will denote its answer constraint by ans(d).

By the completeness of the relaxed CLP scheme, there exists a set D of
successful derivations of G in S;e such that 7 f= ¢ — \/;., ans(0). We show
that for each § € D, there is a set Dy of successful derivations of G in S such
that 7 = ans(6) < /., cp, ans(y). Then, the claim follows immediately by
taking 1 V... V ey as Visep(Vep, ans(7)).

Consider any € D. We generate a derivation ¢’ in S with initial state
(G, 0,0) such that ¢’ has an —, /. transition for each —, /. transition of ¢ in the
way given in Lemma 5, and an empty transition for each — transition of .
Using Lemma 5 and the fact that — transitions in S, preserve equivalence
of the constraint stores, it is easy to show that if ({), C') is the final state of
9, then the last state of ¢’ has the form (0, Cy, Cs) with T = C' — C; A Cs.

We obtain the set Ds mentioned above by completing ¢’ with one —,
transition from (@, C;, Cy) for each possible arrangement of ¢ := var(Cy) N
var(Cy) that is consistent with both stores. Notice that since C; U Cs is

24Recall that all constraints are pure, as we assume both the program and the goal in
separate form.
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satisfiable, for being equivalent to the final constraint store of a successful
derivation, we are guaranteed by Theorem 1 that at least one arrangement of
¥ is consistent with both C; and C5 and, consequently, that Dy is nonempty.
It follows that for every v € Dj; there is an arrangement ar(v) such that
T E ans(y) <> 3-;z (C1 A Cy A ar(v)). Observing that the disjunction of
all the arrangements of v is a valid formula, it is then easy to deduce the
following chain of equivalences in 7:

350 = 35 (CLAG) < T (CLANC2 AV ) ar(D))
— \/a’r(ﬁ) El_i (Cl A 02 N ClT(lN))) «— V’yEDa (M’ZS(’)/)

which concludes our proof.
2. The result follows as a consequence of the corresponding result for
relaxed CLP and the construction in the proof of case 1 above.

Proof of Proposition 7 O

Notice that considering multiple derivations of an input goal to achieve
completeness is already necessary in the CLP scheme itself—and in its relaxed
version. Our scheme, however, may increase the number of derivations to
consider, because — transitions can generate multiple successful derivations,
instead of just one, whenever more than one arrangement of variables is
consistent with both constraint stores.

By essentially the same arguments given for the relaxed CLP scheme, it is
also possible to prove the soundness and completeness of negation as failure

in MCLP(X).

Proposition 8 In an ideal MCLP(X ) system, a goal G is finitely failed for
a program P if and only if P*,T = —G.

7 Conclusions and Further Developments

In this paper, we described a way of extending the CLP(X') scheme to admit
constraint theories generated as the union of several stably infinite theories
with pairwise-disjoint signatures. The main idea of the extension is to in-
corporate in the scheme a well-known method for obtaining a satisfiability
procedure for a union theory as the combination, by means of variable equal-
ity sharing, of the satisfiability procedures of each component theory.
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By adopting a nondeterministic equality-sharing mechanism, we have
been able to prove that the main properties of our extension directly compare
to those of the original scheme, provided that the CLP(&X’) consistency test
on the constraint store is relaxed from satisfiability in a single structure to
satisfiability in an axiomatizable class of structures.

Specifically, we have shown that the relaxation of the satisfiability test
(which gives rise to what we called a relazed CLP scheme) does not modify
the original soundness and completeness properties, even in the case of the
negation-as-failure inference rule. Such a result, which is important in its
own right, seems to have been overlooked in the CLP literature so far. Then,
we have shown how the properties of the relaxed CLP scheme lift to our
extension.

We would like to point out the advantages of adopting a nondeterminis-
tic version of the original equality-sharing mechanism by Nelson and Oppen
INOT9]. On the theoretical side, our version fits rather nicely into the CLP
scheme, as it simply adds another level of don’t know nondeterminism (cor-
responding to the choice of a variable arrangement) into the computational
paradigm. On the practical side, where incremental solvers are already avail-
able for each constraint theory, not only does this scheme preserve their in-
crementality, a key computational feature for the implementation of any CLP
system, but also allows one to use them as they are, with no modification
whatsoever to their code or interface.

There are two issues, among others, that we believe are very significant
and deserve further investigation and development. Both of them involve the
combination method used in our extension.

The first issue concerns the requirements on the signatures of the com-
ponent theories. The combination results we appeal to do not allow theories
that share function or predicate symbols. An extension of the results to cases
in which the theories share (a finite number of) constant symbols is almost
trivial and could be used, in principle, to further extend MCLP(X). For the
more interesting case of component theories sharing predicate and function
symbols of nonzero arity, some initial combination results have been recently
published by Christophe Ringeissen in [Rin96]. Although promising, these
results are somewhat limited on model-theoretic and computational grounds.
In [TR98], Tinelli (first author of this paper) and Ringeissen reconsider the
problem with a different model-theoretic approach, trying to get more satis-
factory results.

The second issue has a much wider scope and is, in fact, not addressed
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by most of the methods found in the literature related to combination meth-
ods. The main assumption of MCLP(X) is that the combined constraint
structure X uses exclusively the symbols and the axioms of the component
theories. Composite-domain theories, however, often contain functions that
are not definable within the theory of any component domains. Immediate
examples can be found in several abstract-data-type theories with standard
functions, such as length, size, ..., whose inductive definitions can be given
only if the theory already includes that of the natural numbers. This means,
for instance, that if we have a constraint solver for the theory of lists, say, and
another for the theory of natural numbers under addition, our scheme will
still be unable to reason about a length function over lists because neither
of the individual theories defines it. An interesting approach for enriching
constraint domains with new function or predicate symbols and extending
their solvers accordingly is given in [MR96]. The focus of that work is on a
single domain and solver. It would be interesting to see how the approach
described there applies to the combination of multiple domains, so that it
can fit into our extension.
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