
A DPLL-based Calculus for
Ground Satisfiability Modulo Theories

Cesare Tinelli

Department of Computer Science, University of Iowa, USA
tinelli@cs.uiowa.edu

Abstract. We describe and discuss DPLL(T), a parametric calculus for
proving the satisfiability of ground formulas in a logical theory T . The
calculus tightly integrates a decision procedure for the satisfiability in T
of sets of literals into a sequent calculus based on the well-known method
by Davis, Putman, Logemann and Loveland for proving the satisfiabil-
ity of propositional formulas. For being based on the DPLL method,
DPLL(T) can incorporate a number of very effective search heuristics
developed by the SAT community for that method. Hence, it can be
used as the formal basis for novel and efficient implementations of satis-
fiability checkers for theories with decidable ground consequences.

1 Introduction

Proving the satisfiability of ground formulas in a given first-order theory is an
important research problem with applications in many areas of computer science
and artificial intelligence, such as software/hardware verification, compiler opti-
mization, constraint-based planning, scheduling, and so on. Since this problem
is decidable for many theories of interest, a lot of research effort has gone into
trying to devise efficient decision procedures for such theories. Typically, the ef-
fort has concentrated on the simpler problem of devising procedures that decide
the satisfiability in a theory T of just conjunctions of ground literals over some
signature Σ. From a theoretical point of view, this is enough to decide the satis-
fiability in T of arbitrary ground formulas over Σ. One simply needs to convert
the formula into disjunctive normal form and then invoke the decision procedure
on each disjunct until a satisfiable disjunct is found. In practice, however, this
approach is extremely inefficient because of the exponential explosion caused
by the conversion into DNF. Existing checkers for ground satisfiability modulo
theories (e.g. SVC [3], STeP [5], Simplify [14]) have relied instead on alterna-
tive ways to deal with the Boolean structure of a formula. In most cases, the
approach followed was modeled more or less closely on the what is often called
the DPLL method, a method collectively due to Davis, Putnam, Logemann and
Loveland [7, 6].
In the last years, there has been much renewed interest in the DPLL method

in the propositional satisfiability (SAT) community. The method is now the basis
for the great majority of current state-of-the art SAT solvers. Several improve-
ments and variations on it have been developed which have lead to spectacular

2 Cesare Tinelli

increases in the performance of SAT solvers. Such successes have pushed several
researchers interested in satisfiability modulo theories to find ways to harness
the power of modern DPLL-based solvers by coupling them with decision pro-
cedures. Possibly the first work along these lines is that described in [1]. Very
recent, independent research on the same idea is reported in [2, 4, 8]. Very briefly,
the idea common to all these works is the following: given a set of ground clauses
to be checked for satisfiability in some theory T , use an off-the-shelf solver to
obtain a propositional model of the set; then pass the model (as a set of literals)
to a decision procedure for T and check its consistency with T before succeeding.
Oversimplifying a bit, the major difference among these works is the degree of
“laziness” with which the decision procedure is invoked. Some invoke the pro-
cedure after a complete propositional model has been found, others invoke it
incrementally, as the model is being built, in order to minimize backtracking on
wrong choices.

The approaches in [1, 2, 4, 8] are all described procedurally. In this paper, we
propose instead a general declarative framework, given as a sequent calculus,
for extending the DPLL method with decision procedures. While the calculus is
general enough that it can model (with minor changes) each of the approaches
above, it also allows a much tighter integration of decision procedures into the
DPLL method. This sort of integration is analogous to that achieved in constraint
logic programming (CLP) [11] between SLD-resolution and constraint solving.
As in CLP, in our calculus the decision procedure for the given theory can be used
to drive the search toward a solution, as opposed to validate a (partial) solution
after it has been found. In principle, this leads to a more efficient search than
with the other approaches, while still benefitting from the various optimizations
developed for the DPLL method.

We say “in principle” for two reasons. The first is of course that there always
a risk that the speed-up obtained by a more focused search is actually offset by
the cost of frequently calling the decision procedure. Only experimental work
and fine tuning can make sure that that is not the case. The second reason is
that, contrary to what seems to be a common belief, the optimization strategies
used in DPLL-based SAT solvers do not immediately lift to satisfiability modulo
theories.1 Our current research is aimed at establishing which heuristics do lift
and how, and how effective they are in practice. For that we find it more useful
to work with a declarative description of the DPLL method which separates
control and optimization issues (including the calls to the decision procedure)
from the essence of the method. The control aspects of the DPLL method and of
modern DPLL-based systems can be conveniently modeled as search strategies
for our calculus, instead of being more of less hidden in the details of the various
implementations. This paper provides an initianl, incomplete account of our
theoretical work in this direction.

To simplify the exposition, we start in Section 2 with a description of the
basic DPLL method in terms of a simple sequent calculus. Given the simplicity

1 This is a concern not only for our approach but also for the ones mentioned above,
even more so given that they use existing SAT solvers more or less as they are.

A DPLL-based Calculus for Ground Satisfiability Modulo Theories 3

of the original method, this results in a clean calculus that is easy to reason
about and extend. Then, in Section 3 we show how to extend the calculus with
decision procedures to obtain a sound, complete and terminating calculus for
deciding the satisfiability of ground formulas in certain logical theories. Finally,
in Section 4 we discuss the lifting to the extended calculus of some of the general
optimization strategies developed for the DPLL method. For space constraints,
we must omit the proofs of the results given here. All proofs, together with a
more detailed discussion of the issues and the results presented in this paper and
some initial experimental results, can be found in [15].

1.1 Formal Preliminaries

We assume that the reader is familiar with basic theorem proving concepts and
terminology. Some specific notions and notation we use are defined below.
We will consider propositional logic as a special case of first-order logic, one

in which all atomic formulas consist of predicates of zero arity. We call an atomic
formula—whether propositional or first-order—an atom. A (ground) literal is an
atom or a negated atom (with no variables). We denote the complement of a
literal l by l. A ground clause (henceforth, a clause, as we consider only ground
clauses here) is a disjunction of zero or more ground literals. We denote by l∨C
a clause D such that l is a literal of D and C is the (possibly empty) clause
obtained by removing one occurrence of l from D. If Φ is a clause set, Ats(Φ) is
the set of all atoms occurring in the clauses of Φ.
A sentence is a closed first-order formula. Let Φ be a set of sentences. A

first-order structure A satisfies Φ or is a model of Φ if every sentence of Φ is
true in A; otherwise, A falsifies Φ. The set Φ is satisfiable if it has a model,
and is unsatisfiable otherwise. A theory is a satisfiable set of sentences. The set
Φ is (un)satisfiable in a theory T if there is a (no) model of T that satisfies
Φ; equivalently, if T ∪ Φ is (un)satisfiable. If ψ is a sentence, Φ entails ψ in T ,
written Φ |=T ψ, if every model of T that satisfies Φ satisfies ψ as well.

2 A Sequent Calculus for the DPLL Method

The DPLL method can be used to decide the satisfiability of propositional for-
mulas in conjunctive normal form, or, more precisely but equivalently, the satisfi-
ability of finite sets of propositional clauses. The three essential operations of the
DPLL method are unit resolution with backward subsumption, unit subsump-
tion, and recursive reduction to smaller problems. The method can be roughly
described as follows.2

Given an input clause set Φ, apply unit propagation (aka Boolean constraint
propagation) to it, that is, close Φ under unit resolution with backward subsump-
tion, and eliminate in the process (a) all non-unit clauses subsumed by a unit
clause in the set and (b) all unit clauses whose (only) atom occurs only once in

2 See the original papers [7, 6], among others, for a more complete description.

4 Cesare Tinelli

(subsume)
Λ ` Φ, l ∨ C
Λ ` Φ

if l ∈ Λ (resolve)
Λ ` Φ, l ∨ C
Λ ` Φ, C

if l ∈ Λ

(assert)
Λ ` Φ, l
Λ, l ` Φ, l

if l 6∈ Λ and l 6∈ Λ (empty)
Λ ` Φ, ¤
Λ ` ¤

if Φ 6= ∅

(split)
Λ ` Φ

Λ, p ` Φ Λ,¬p ` Φ
if p ∈ Ats(Φ), p 6∈ Λ and ¬p 6∈ Λ

Fig. 1. The rules of the DPLL calculus

the set. If the closure Φ∗ of Φ contains the empty clause, then fail. If Φ∗ is the
empty set, then succeed. Otherwise, choose an arbitrary literal l from Φ∗ and
check recursively, and separately, the satisfiability of Φ∗ ∪ {l} and of Φ∗ ∪ {l},
succeeding if and only if one of the two subsets is satisfiable.

The essence of this method can be captured by a sequent calculus, whose
rules are described in Figure 1. The calculus manipulates sequents of the form
Λ ` Φ, where Λ, the context of the sequent, is a finite multiset of ground literals
and Φ is a finite multiset of ground clauses.3 The intended use of the calculus is
to derive a sequent of the form Λ ` ∅ from an initial sequent ∅ ` Φ0, where
Φ0 is a clause set to be checked for satisfiability. If that is possible, then Φ0 is
satisfiable; otherwise, Φ0 is unsatisfiable. Informally, the purpose of the context
Λ is to store incrementally a set of asserted literals, i.e., a set of literals in Φ0

that must or can be true for Φ0 to be satisfiable. When Λ ` ∅ is derivable from
∅ ` Φ0, the context Λ is indeed a witness of Φ0’s satisfiability as it describes a
(Herbrand) model of Φ0: one that satisfies an atom p in Φ0 iff p occurs positively
in Λ.

The context is grown by the assert and the split rules. The assert rule mod-
els the fact that every literal occurring as a unit clause in the the current clause
set must be satisfied for the whole clause set to be satisfied. The split rule corre-
sponds to the decomposition in smaller subproblems of the DPLL method. This
rule is the only don’t-know non-deterministic rule of the calculus. Its intended
use is to guess the truth value of an undetermined atom p in the clause set of the
current sequent Λ ` Φ, where by undetermined we mean not already asserted
either positively or negatively in the context Λ. The guess allows the continu-
ation of the derivation with either the sequent Λ, p ` Φ or with the sequent
Λ, ¬p ` Φ. The other two main operations of the DPLL method, unit resolution
with backward subsumption and unit subsumption, are modeled respectively by
the resolve and the subsume rule. The resolve rule removes from a clause all
literals whose complement has been asserted (which corresponds to generating
the simplified clause by unit resolution and then discarding the old clause by
backward subsumption). The subsume rule removes all clauses that contain
an asserted literal (because all of these clauses will be satisfied in any model in

3 As customary, we write Λ, l ` Φ,C, say, to denote the sequent Λ ∪ {l} ` Φ ∪ {C}.

A DPLL-based Calculus for Ground Satisfiability Modulo Theories 5

which the asserted literal is true). The empty rule is in the calculus just for con-
venience and could be removed with no loss of completeness. It models the fact
that a derivation can be terminated as soon as the empty clause (¤) is derived.
Note that the assert rule as well could be removed without loss of completeness
since it is really an optimization of the split rule. This optimization is crucial
for practical purposes, if not theoretical ones. It is well known that in the DPLL
method, unit propagation—achieved in our calculus through the combined use
of assert, subsume and resolve—is possibly the single most important factor
in the speed of DPLL-based systems [9, 13].
As it is the DPLL calculus is not strong enough for producing practical SAT

solvers because, if implemented naively, it basically enumerates all possible Her-
brand interpretations of the initial set of clauses. In retrospect, all implementa-
tions of the DPLL method can be seen as procedures for exploring systematically,
but efficiently, the search space generated by this calculus. Modern implemen-
tations follow a number of optimization strategies in the way they perform unit
propagation and interleave it with the guessing of undetermined literals. These
strategies can be modeled at a more abstract level as derivation strategies for
the DPLL calculus. The optimizations found in modern DPLL-based systems go
well beyond the choice of the next derivation rule to apply. But these optimiza-
tions too can be modeled as (additional) search strategies for the calculus. For
instance, a heuristics that chooses the next atom on which to split the search
can be modeled in the calculus by adding a selection function to the split rule.
Similarly, the way and the extent to which unit resolution is applied to any one
clause can be modeled with the addition of a proper clause/literal selection func-
tion to the resolve rule. Finally, modern systems also have sophisticated ways of
pruning the search space by intelligent backjumping (to previous decision points
created by the split rule), and by learning lemmas from failed derivations (see
later). All these techniques can be recast as search heuristics for the DPLL cal-
culus. Perhaps more importantly, especially for the extension of the calculus
described later, their correctness can be proved formally using established proof
techniques from the automated deduction research.
In the following, we will give a sense of how various optimizations can be

described in terms of the calculus. We will do that, however, not for DPLL
itself but for a strictly more powerful extension of it that encapsulates decision
procedures for certain first-order theories.

3 The DPLL(T) Calculus

In this section we describe the DPLL(T) calculus, an extension of the calculus
in the previous section obtained by replacing propositional satisfiability with
ground satisfiability with respect to a first-order background theory T . The cal-
culus, which is parametric in the background theory T , can be used to verify
the satisfiability in T of ground CNF formulas.
The extended calculus works again with ground sequents of the form Λ ` Φ,

where the literals in Λ and the clauses in Φ are now over some fixed signature Σ.

6 Cesare Tinelli

(subsume)
Λ ` Φ, l ∨ C
Λ ` Φ

if Λ |=T l (resolve)
Λ ` Φ, l ∨ C
Λ ` Φ, C

if Λ |=T l

(assert)
Λ ` Φ, l
Λ, l ` Φ, l

if
Λ 6|=T l and

Λ 6|=T l
(empty)

Λ ` Φ, ¤
Λ ` ¤

if Φ 6= ∅

(split)
Λ ` Φ

Λ, p ` Φ Λ,¬p ` Φ
if p ∈ Ats(Φ) and Λ 6|=T p and Λ 6|=T ¬p

Fig. 2. The rules of the DPLL(T) calculus

Its rules, given in Figure 2, are exactly the same as in the DPLL calculus. The
only difference lies in their side conditions. Whereas in DPLL these conditions
involve membership of certain literals in the context Λ of the rule’s premise, in
DPLL(T) they involve entailment by Λ in T . We point out that, in general, the
tests in the side conditions of DPLL(T)’s rules may not be computable for a given
theory T and signature Σ, which means that DPLL(T) does not always yield
a decision procedure. For decidability purposes it is necessary, and sufficient, to
assume that the satisfiability in T of finite sets of ground Σ-literals is decidable.
The DPLL(T) calculus includes the DPLL calculus as one of its instances: the

one in which T is empty and Σ is a set of propositional variables. To see that, it
is enough to notice that in that instance the side conditions of the corresponding
rules of DPLL and DPLL(T) become equivalent.
For the rest of the paper, T will be a fixed background theory in which the

satisfiability of finite sets of ground Σ-literals is decidable. We will implicitly
assume the availability of a corresponding decision procedure for T . We will say
that a sequent Λ ` Φ is satisfiable in T iff the set Λ ∪ Φ is satisfiable in T .
We describe the salient properties of the DPLL(T) calculus in the following.

For that, we need an appropriate notion of derivation and proof. As in other
sequent calculi, derivations in DPLL(T) involve the construction of derivation
trees.

Definition 1. A derivation tree (in DPLL(T)) is a labeled tree each of whose
nodes is labeled by a sequent and such that, for each non-leaf node N , the sequents
labeling its successor(s) node(s) can be obtained by applying a rule of DPLL(T)
to the sequent labeling N .

Definition 2. A branch in a derivation tree is (a) successful if its leaf is labeled
by a sequent of the form Λ ` ∅, (b) failed if its leaf is labeled by a sequent of
the form Λ ` ¤, and (c) incomplete otherwise.

We say that a derivation tree is a derivation tree of Λ ` Φ iff its root is
labeled by Λ ` Φ; we say that it is a proof tree of Λ ` Φ iff the tree has
either a successful branch or only failed branches. In the latter case, we call it a
refutation tree. Derivation trees in DPLL(T) satisfy the following invariant.

A DPLL-based Calculus for Ground Satisfiability Modulo Theories 7

Lemma 3. Let N,N ′ be two nodes in a derivation tree with respective labels
Λ ` Φ, Λ′ ` Φ′. Whenever N ′ is a descendant of N the following holds:

1. Λ′ ∪ Φ′ |=T Λ ∪ Φ;
2. Λ′ is satisfiable in T iff Λ is satisfiable in T .

The DPLL(T) calculus is easily proven terminating, in the sense that every
sequent Λ ` Φ has a (finite) proof tree in DPLL(T). Using termination and
Lemma 3, we prove in [15] that it is also sound and complete.

Proposition 4 (Soundness and Completeness). A clause set Φ is unsatis-
fiable in T iff the sequent ∅ ` Φ has a refutation tree in DPLL(T).

We also prove that DPLL(T) is confluent in the following sense.

Proposition 5 (Confluence). If Φ is unsatisfiable in T , then every proof tree
of ∅ ` Φ in DPLL(T) is a refutation tree.

Let us say that a derivation strategy for DPLL(T) is fair iff it produces a
proof tree from every initial sequent ∅ ` Φ0. Proposition 5 entails that any fair
derivation strategy in DPLL(T) is complete.
As in the DPLL calculus, the final context of a successful branch in a deriva-

tion tree in DPLL(T) of a sequent ∅ ` Φ0 describes a “partial model” of Φ0.
More precisely, and more generally, we have the following.

Proposition 6. Let Λ0 ` Φ0 be a sequent such that Λ0 is satisfiable in T and
Λ0 ` Φ0 has a derivation tree in DPLL(T) with a successful branch Λ0 `
Φ0, . . . , Λn ` ∅. Let

Λ := {p | p ∈ Ats(Φ0) and Λn |=T p} ∪ {¬p | p ∈ Ats(Φ0) and Λn |=T ¬p}

Then, (i) Λ is satisfiable in T and (ii) Λ |=T Φ0, i.e., every model of T that
satisfies Λ is also a model of Φ0.

We call Λ above a partial model of Φ0 because in general it may contain only
a subset of the atoms in Φ0. When this is the case, nothing can be said without
further computation about the truth value of the atoms in Ats(Φ0) \Ats(Λ).
In particular, and contrarily to the DPLL calculus, one cannot always take the
atoms not in Λ to be false. To do that more assumptions on the theory T are
needed. As we show in [15], a sufficient assumption is that the background theory
T is convex (see Definition 7 in the next section).

4 Strategies for DPLL(T)

In spite of the simplicity of the DPLL method and its extension with decision
procedures, one should be careful in assuming that the very same optimization
that work for DPLL in the propositional case also work in the modulo theories

8 Cesare Tinelli

case. Some optimizations simply become incorrect in the general case;4 some
others, although still correct, may lose their competitiveness with respect to
other techniques. A survey of which of the optimization strategies used in current
DPLL-based system remain correct or effective when applied to the DPLL(T)
calculus is beyond the scope of this paper. In this section, we provide just a
sample of them, concentrating on the changes they need to remain correct.

Literal Selection. The choice of the literal to which to apply the split rule
is a critical one in DPLL-based systems. The SAT literature provides ample
experimental evidence that on many problem classes a change in the literal
selection strategy can improve (or degrade) performance by orders of magnitude.
Now, not all literal selection strategies from the SAT literature lift imme-

diately to DPLL(T). In general, the reason is that some of these strategies are
based on specific properties of propositional logic. An example would be, in terms
of our calculi, the property that a literal’s truth value gets determined only after
it or its complement has been added to the current context. This property holds
in DPLL but not in DPLL(T) typically.5 This means that strategies based on
the number of (positive/negative) occurrences of a literal in the current clause
set are not necessarily as effective as in the propositional case. When there is a
background theory, this number is a much less accurate measure of the impact
a literal can have in unit propagation: in extreme cases, a literal may occur only
once but entail in the theory all the other literals in the set.
In the following we discuss a general strategy, specializable in a number of

ways, that is just as effective in the general case as in the propositional one. The
strategy is interesting also because its correctness for DPLL(T) is not immediate.
As a matter of fact, the strategy is incorrect unless the theory T is convex.

Definition 7. A theory T is convex iff for every set Λ of literals and every finite
non-empty set P of positive literals, Λ |=T

∨
p∈P p iff Λ |=T p for some p ∈ P .

By well known results about Horn logic (see, e.g. [10]), one can show that
the class of convex theories (properly) includes all Horn theories.
The general strategy we propose is motivated by the following result.

Proposition 8. Let Λ be a set of ground literals satisfiable in a convex theory T ,
and let Φ be a set of non-positive ground clauses. If Λ 6|=T p for all p ∈ Ats(Φ),
then Λ ∪ Φ is satisfiable in T .

Proposition 8 entails that for any fair derivation strategy in DPLL(T) with
T convex, one can restrict the application of the split rule to literals that occur
in positive clauses in the current set. In fact, suppose a branch in the derivation
tree of some initial sequent ∅ ` Φ0 contains a sequent Λ ` Φ with no positive
clauses and such that no atom p is entailed by Λ in T . By Lemma 3, Λ is clearly

4 This is also recognized in [4], which discusses as an example the incompleteness of
the “pure literal” rule in the modulo theories case.

5 Consider, for instance, the derivation trees in DPLL(T) of the sequent ∅ `
{p(a), ¬q(a) ∨ r(b)} where T := { ∀x p(x) ⇒ q(x) }.

A DPLL-based Calculus for Ground Satisfiability Modulo Theories 9

satisfiable in T , which implies by Proposition 8 that Λ ∪ Φ is also satisfiable in
T . But then, by Lemma 3 again, ∅ ` Φ0 is satisfiable in T . In practice this
means that one can stop a derivation of ∅ ` Φ0 above as soon as a sequent
like Λ ` Φ is generated. This optimization applies with no loss of completeness
to any literal selection strategy for the DPLL calculus—and is in fact applied,
for instance, in the DPLL-based system described in [12]. In terms of the result
above this is justified by the fact that the empty theory is trivially convex. But
the optimization is not correct for arbitrary theories.6

Another consequence of the previous result concerns clauses with undeter-
mined literals, that is, literals l in a sequent Λ ` Φ, such that neither Λ |=T l

nor Λ |=T l. As long as a clause C has one undetermined negative literal ¬p
in the current sequent of a derivation, it is not necessary to apply the resolve
rule to the other literals of C. Delaying the application of resolve to C until ¬p
becomes determined (if ever) causes no loss of completeness. In the worst case
one ends up with a sequent Λ ` Φ all of whose clauses have an undetermined
negative literal. But then, as one can easily show by an application of Propo-
sition 8, the sequent is guaranteed to be satisfiable in T . In practice, one may
want to try to further simplify a clause like C above anyway because that may
lead to more unit propagation. See [15] for a more detailed discussion on this.

Lemma Generation. Modern SAT solvers exhibit a primitive but highly ef-
fective form of learning. When their sequence of split choices leads them to the
generation of the empty clause, they perform some kind of conflict analysis on
the failure and then generate a clause that records, in a sense, the decisive wrong
choices. This clause is then used to avoid repeating those wrong choices later in
the search. This sort of process can applied to the DPLL(T) calculus as well. Its
logical underpinning is provided by the following result.

Proposition 9. Let B be a branch in a derivation tree of the sequent ∅ ` Φ0

and let Λm ` Φm be the sequent labeling B’s leaf. If B is failed, then there is a
subset S of Λm such that Φ0 |=T

∨
l∈S l.

The proposition implies that from the literals asserted along a failed branch
of a derivation tree it is possible to generate a clause that is a logical consequence
in T of the initial clause set—hence the name lemma. One can use a lemma to
refine the search for a successful derivation in implementations of the calculus
by adding it to the current clause set as soon as it is discovered. Since the
lemma is a consequence (in T) of the initial clause set, its addition preserves the
satisfiability of the set. However, as in the case of DPLL solvers, together with a
proper derivation strategy, the lemma’s presence makes sure that certain portions
of the search space leading to unsuccessful derivations are never explored.
We prove in [15] a stronger result of which the above proposition is an im-

mediate corollary. This result shows that for any given failed branch B, the set
S in Proposition 9, often called the conflict set in the SAT literature, can be

6 Consider for instance the non-convex theory T := {p ∨ q} and the T -unsatisfiable
input set {¬p ∨ ¬q, p ∨ ¬q,¬p ∨ q}.

10 Cesare Tinelli

always chosen so that it includes none of the literals asserted by the assert
rule—we call such a set a split conflict set induced by B. Intuitively, the reason
for this possibility is that the contribution of such literals to a failed branch
can be always traced back to literals asserted previously by the split rule. This
property is well-known in the SAT world and is exploited in all systems with
lemma learning. These systems use techniques aimed not only at finding con-
flict sets like S above, but also at minimizing their size. The idea is that the
smaller the conflict set, the less assertions it takes for the corresponding lemma
to drive the search away from dead ends in the search space. The challenge in
the DPLL(T) case is again that current conflict set discovery and minimization
techniques are based on specific properties of propositional logic, and so they do
not immediately lift to DPLL(T). Now, there is a general, if naive, algorithm for
producing minimal conflict sets from a failed branch in DPLL(T): once a branch
∅0 ` Φ0, . . . , Λn ` ¤ is generated by a system implementing the calculus,

1. collect in a set Ψ the clause in Φ0 that has reduced to ¤ in the last sequent,
plus all the clauses of Φ0 that became unit at some point in the branch;

2. where Sn is the set of literals in Λn asserted by the split rule, consider every
subset S of Sn and run the system recursively on S ` Ψ ;

3. return any minimal S among the above for which the system fails.

Considering all possible subsets of Sn above to discover and select conflict sets
is clearly impractical because its worst-case time complexity is exponential in the
size of Sn. We describe in [15] a greedy algorithm whose complexity is instead
quadratic. The down-side of this algorithm is that it returns only one minimal
conflict set per failed branch. Furthermore, although minimal, the returned set
may not be optimal, in the sense of having the smallest cardinality among all
minimal conflict sets induced by the branch. However, our initial experimental
evidence seems to indicate that this is not a problem in practice because failed
branches rarely generate more than one minimal conflict set.

Pruning. Additional optimizations in SAT solvers involve explicit pruning
strategies, as opposed or in addition to the implicit pruning caused by lemmas.
In systems that traverse the search space in a depth-first manner—basically all
the DPLL-based systems we know of—this is often achieved as some form of
non-chronological backtracking (aka, intelligent backjumping) that skips entire
areas of the search space. In the context of DPLL(T), a simple and complete
heuristic for non-chronological backtracking is suggested by the following result.

Proposition 10. Let T be a derivation tree containing a node N with label
Λ ` Φ and successors N1 and N2 with respective labels Λ, l ` Φ and Λ, l ` Φ.
Suppose all branches of the subtree of T rooted at N1 are failed. Let Φf be the set
of clauses in Φ that reduce to the empty clause in one of those failed branches.
If Λ, l ` Φf is unsatisfiable in T then Λ, l ` Φ is also unsatisfiable in T .

Operationally, this result should be interpreted as follows. If one has verified
that the branches of one of the two subtrees of a “split node” Λ ` Φ are all

A DPLL-based Calculus for Ground Satisfiability Modulo Theories 11

failed, one can sometimes avoid exploring the other subtree altogether by doing
the following. First build the set Φf defined in the proposition and then verify
separately the unsatisfiability of Φf under the context Λ ∪ {l} (by exploring
the derivation tree of Λ, l ` Φf). If Λ, l ` Φf is unsatisfiable in T , do not
bother exploring the subtree rooted at Λ, l ` Φ because all of its branches are
guaranteed to be failed. If the derivation tree of Λ, l ` Φf has a successful
branch, nothing can be said in general on the satisfiability of Λ, l ` Φ, therefore
do explore the subtree rooted at Λ, l ` Φ.

In [15], we describe and prove complete a smarter, but also more expensive,
pruning strategy that can be used in conjunction with lemma generation. To
decide whether to prune or not, the strategy performs an analysis of the split
conflict sets induced by each failed branch passing through a node like N in
the proposition above. The analysis of the lemmas and the correctness of the
strategy depend on the following general result.

Proposition 11. Let T be a derivation tree containing a node N with label
Λ ` Φ and successors N1 and N2 with respective labels Λ, l ` Φ and Λ, l ` Φ.
Suppose that all branches B1, . . . ,Bn of T that end in the subtree of T rooted at
N1 are failed. For j ∈ {1, . . . , n}, let Sj be a split conflict set induced by branch
Bi. If l does not occur in any of the Sj’s, then Λ ` Φ is unsatisfiable in T .

5 Conclusion

We have presented DPLL(T), a calculus based on the DPLL method that can
be used to prove the satisfiability of ground formulas in theories with decidable
ground consequences. The main attractiveness of this calculus is that it can
incorporate, with proper changes, various types of optimization developed by
the SAT community for the DPLL method. The calculus represents at least in
principle an improvement over other approaches with the same goal because
it allows a tighter integration of theory-specific satisfiability procedures into a
DPLL-based engine. In fact, and differently from other approaches, in DPLL(T)
the decision procedure is used for driving the engine’s search at each derivation
step, instead of just checking the viability of a possible solution after it has been
computed by the engine.

An additional contribution of the work presented here is that it frames the
problem of integrating decision procedures into the DPLL method in a declar-
ative setting. The essence of the integration is captured by a simple calculus,
DPLL(T), that abstracts away control aspects and optimization issues. These
aspects can then be better described as search strategies for the calculus. We
believe that such an approach makes it easier to describe, compare, and prove
correct present and future optimizations and variants of the method.

We are currently working on an implementation of a DPLL(T)-based system
with the goal of verifying experimentally the extent of the calculus’ strengths in
practical applications.

12 Cesare Tinelli

References

1. Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based pro-
cedures for temporal reasoning. In S. Biundo and M. Fox, editors, Proceedings of
the 5th European Conference on Planning (Durham, UK), volume 1809 of Lecture
Notes in Computer Science, pages 97–108. Springer, 2000.

2. Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilowicz, and
Roberto Sebastiani. A SAT-based approach for solving formulas over boolean
and linear mathematical propositions. In Reiner Hähnle, editor, Proceedings of the
18th International Conference on Automated Deduction, Lecture Notes in Artificial
Intelligence. Springer, 2002. (to appear).

3. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity checking for
combinations of theories with equality. In M. K. Srivas and A. Camilleri, editors,
Proceedings of the First International Conference on Formal Methods in Computer-
Aided Design (Palo Alto, CA), volume 1166 of Lecture Notes in Computer Science,
pages 187–201. Springer, 1996.

4. Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In J. C. Godskesen, edi-
tor, Proceedings of the International Conference on Computer-Aided Verification,
Lecture Notes in Computer Science, 2002. (to appear).

5. Nikolaj S. Bjørner, Mark. E. Stickel, and Tomás E. Uribe. A practical integration of
first-order reasoning and decision procedures. In W. McCune, editor, Proceedings of
the 14th International Conference on Automated Deduction, CADE-14 (Townsville,
Australia), volume 1249 of Lecture Notes in Artificial Intelligence, pages 101–115,
1997.

6. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

7. Martin Davis and Hilary Putnam. A computing procedure for quantification the-
ory. Journal of the ACM, 7(3):201–215, July 1960.

8. Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers.
Presented at the Fifth International Symposium on the Theory and Applications
of Satisfiability Testing (SAT’02), Cincinnati, USA, May 2002.

9. Jon W. Freeman. Improvements to Propositional Satisfiability Search Algorithms.
PhD thesis, Departement of computer and Information science, University of Penn-
sylvania, Philadelphia, 1995.

10. Wilfrid Hodges. Logical features of Horn clauses. In D.M. Gabbay, C.J. Hogger,
and J.A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1, pages 449–503. Oxford University Press, 1993.

11. Joxan Jaffar and Michael Maher. Constraint Logic Programming: A Survey. Jour-
nal of Logic Programming, 19/20:503–581, 1994.

12. Shie-Jue Lee and David A. Plaisted. Eliminating duplication with the hyper-linking
strategy. Journal of Automated Reasoning, 9(1):25–42, August 1992.

13. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), June 2001.

14. Greg Nelson and Dave Detlefs. The Simplify user’s manual. Compaq Systems
Research Center. (http://research.compaq.com/SRC/esc/Simplify.html).

15. Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo theories.
Technical report, Department of Computer Science, University of Iowa, 2002.

