
Satisfiability Modulo Theories

Silvio Ranise∗ Cesare Tinelli†

Many applications of formal methods rely on generating formulas of
First-Order Logic (FOL) and proving or disproving their validity. Despite
the great progress in the last twenty years in automated theorem proving
(and disproving) in FOL, general-purpose theorem provers, such as for in-
stance provers based on the resolution calculus, are typically inadequate to
work with the sort of formulas generated by formal methods tools. The
main reason is that these tools are not interested in validity in general but
in validity with respect to some background theory, a logical theory that fixes
the interpretations of certain predicates and function symbols. For instance,
in formal methods involving the integers, one is only interested in showing
that the formula

∀x ∀y (x < y ⇒ x < y + y)

is true in those interpretations in which the symbol < denotes the usual or-
dering over the integers and + denotes the addition function. When proving
the (in)validity of a formula, general-purpose reasoning methods have only
one way to consider only the interpretations allowed by a background the-
ory: add as a premise to the formula a conjunction of the theory’s axioms.
When this is possible at all1 the performance of generic theorem provers is
usually unacceptable for realistic formal method applications. A more viable
alternative is the use of specialized reasoning methods for the background
theory of interest. This is particularly the case for ground formulas, FOL
formulas with no variables (and so also with no quantifiers), but possibly
with free constants—constant symbols not in the background theory.

For many theories, specialized methods actually yield decision procedures
for the validity of ground formulas or some subset of them. This is for
instance the case, thanks to classical results in mathematics, for the theory
of integer numbers (and formulas with no multiplication symbols) or the
theory of real numbers. In the last two decades however, specialized decision

∗LORIA & INRIA-Lorraine and Università degli Studi di Milano
†University of Iowa
1Some background theories cannot be captured by a finite set of FOL formulas.

1



procedures have also been discovered for a long, and still growing, list of
theories of other important data types such as certain theories of arrays
and of strings, several variants of the theory of finite sets, some theories
of lattices, the theories of finite, regular and infinite trees, of lists, tuples,
records, queues, hash tables, and bit vectors of a fixed or arbitrary finite
size.

The literature on these procedures often describes them in terms of sat-
isfiability in a theory—relying on the fact that a formula is valid in a theory
T exactly when no interpretation of T satisfies the formula’s negation. For
this reason we refer to the field as Satisfiability Modulo Theories or SMT,
for short, and call those procedures SMT solvers.

The use of SMT solvers in formal methods is not new. It was cham-
pioned in the early 1980s by Greg Nelson and Derek Oppen at Stanford
University, by Robert Shostak at SRI, and by Robert Boyer and J Moore at
the University of Texas at Austin. Building on this work, however, the last
ten years have seen an explosion of interest and research on the foundations
and practical aspects of SMT. Several SMT solvers have been developed in
academia and industry with continually increasing scope and performance.
Some of them have or are being integrated into: interactive theorem provers
for high-order logic (such as HOL and Isabelle); extended static checkers
(such as CAsCaDE, Boogie, and ESC/Java); verification systems (such as
ACL2, Caduceus, SAL, and UCLID); formal CASE environments (such as
KeY); model checkers (such as BLAST, MAGIC and SLAM); certifying
compilers (such as Touchstone); unit test generators (such as CUTE and
MUTT). In industry, there are currently SMT-related research projects at
Cadence, Intel, Microsoft, and NEC, just to name some.

Main SMT Approaches

The design, proof of correctness, and implementation of SMT methods poses
several challenges. First, formal methods naturally involve more than one
data type, each with its own background theory, so suitable combination
techniques are necessary. Second, satisfiability procedures must be proved
sound and complete. While soundness is usually easy, completeness requires
specific model construction arguments showing that, whenever the proce-
dure finds a formula satisfiable, a satisfying theory interpretation for it does
indeed exist. This means that each new procedure in principle requires a new
completeness proof. Third, data structures and algorithms for a new pro-
cedure, precisely for being specialized, are often implemented from scratch,

2



with little software reuse. There are currently three major approaches for
implementing SMT solvers, each addressing the challenges above differently
and with their own pros and cons.

The SAT Encodings Approach

This approach is based on ad-hoc translations that convert an input formula
and relevant consequences of its background theory into an equisatisfiable
propositional formula (see for instance [4]). The approach applies in prin-
ciple to all theories whose ground satisfiability problem is decidable, possi-
bly however at the cost of an exponential blow-up in the translation. The
approach is nevertheless appealing because SAT solvers today are able to
quickly process extremely large formulas. Proving soundness and complete-
ness is relatively simple because it reduces to proving that the translation is
satisfiability preserving. Also, the implementation effort is relatively small
for being limited to the translator—after that, one can use any off-the-shelf
SAT solver. Eager versions of the approach, which first generate the com-
plete translation and then pass it to a SAT solver, have produced in the
recent past very competitive solvers for the theory of equality and for cer-
tain fragments of the integers theory. The main disadvantage of the SAT
encodings developed so far is that they do not scale up as well as SMT
solvers based on the next approach because of the exponential blowup of
the eager translation and the difficulty of combining encodings for different
theories.

The Small Engines Approach

This approach is currently the most popular and consists in building pro-
cedures implementing an inference systems specialized on a theory T . The
lure of these “small engines” is that one can use whatever algorithms and
data structures are best for T , which typically leads to better performance.
A disadvantage is that proving the correctness of an ad-hoc procedure may
be non-trivial. A possibly bigger disadvantage is that one has to write an
entire solver for each new theory of interest, possibly duplicating internal
functionalities and implementation effort.

One way to address the latter problem is to reduce a theory solver to
its essence by separating generic Boolean reasoning from theory reasoning
proper. The common practice is to write theory solvers just for conjunc-
tions of ground literals—atomic formulas and negation. These pared down
solvers are then embedded as separate submodules into an efficient SAT

3



solver, allowing the joint system to accept arbitrary ground formulas. Such
a scheme (formulated generally and abstractly in [2]) allows one to plug-in a
new theory solver into the same SAT engine as long as the solver conforms
to a simple common interface.

Another way to reduce development costs is to decompose, when possi-
ble, a background theory into two or more component theories, write a solver
for each of the smaller theories, and then use the solvers cooperatively. A
general and highly influential method for doing this is due to Nelson and Op-
pen. Several enhancements and variations on this methods are used today
in all major SMT solvers based of the small engines approach.

The Big Engines Approach

This is a rather recent approach that can be applied to theories T that ad-
mit a finite FOL axiomatization, capitalizing on the power and flexibility of
current automated theorem provers for FOL—in particular, provers based
on the superposition calculus, a modern version of resolution with a built-in
treatment of the equality predicate and powerful techniques for reducing
the search space. The approach consists in instrumenting a superposition
prover with specialized control strategies which, together with the axioms
of T , effectively turn this “big engine” into a decision procedure for ground
satisfiability in T . A big plus of the approach is a simplified proof of correct-
ness, which reduces down to a routine termination proof for the rules of the
superposition calculus (see, e.g., [1] for details). Another advantage is that,
when the approach applies to two theories, obtaining a decision procedure
for their union is, under reasonable assumptions, as simple as feeding the
union of the axioms to the prover. A further advantage is the reuse of effi-
cient data structures and algorithms for automated deduction implemented
in state-of-the-art provers. The main disadvantage is that to get additional
functionalities (such as incrementality, proof production, or model building),
one may need to modify the prover in ways that the original implementors
did not foresee, which may require a considerable (re)implementation effort.

Standardization Efforts

Because of their specialized nature, it is very common for different SMT
solvers to be based on different variants of FOL, work with different theories,
deal with different classes of formulas, and have different interfaces and input
formats. Until a few years ago this made it arduous to assess the relative

4



merits of existing SMT solvers and techniques theoretically or in practice.
In fact, it was difficult even to test and evaluate a single solver in isolation
because of the dearth of available benchmarks.

To mitigate these problems the SMT community launched in 2002 the
SMT-LIB initiative, a standardization effort co-led by these authors and
currently backed by the vast majority of research groups in SMT. The ini-
tiative’s main goals are to define standard input/output formats and inter-
faces for SMT solvers, and build a large on-line repository of benchmarks for
several theories. The current version of the input format is now supported
by several SMT solvers worldwide and is being adopted by a number of for-
mal methods applications. The repository, which is still growing, presently
includes about 40,000 benchmarks from academia and industry. (See [3] for
more details on SMT-LIB and on SMT-COMP, the affiliated solver compe-
tition.)

Future Directions

While SMT tools are proving increasingly useful in formal methods applica-
tions, more work is needed to improve the trade-off between their efficiency
and their expressiveness. For example, software verification problems of-
ten require the handling of formulas with quantifiers, something that SMT
solvers do not do satisfactorily yet. Finding good heuristics for lifting cur-
rent SMT techniques from ground to quantified formulas is a key challenge
for the future.

Other lines of further work come from the need to enhance further the
interface functionalities of SMT solvers. For instance, to validate the results
of a solver or integrate it within interactive provers, it is necessary to have
solvers that can produce a machine-checkable proof every time they declare
a formula to be unsatisfiable. Similarly, to be useful to larger tools like
static checker, model checkers and test set generators, an SMT solver must
be able to produce, for formula it finds satisfiable, a concrete and finite
representation of the interpretation that satisfies it. Other potentially very
useful functionalities are the generation of unsatisfiable cores of unsatisfiable
formulas, or of interpolants for pairs of jointly unsatisfiable formulas. More
research on efficiently realizing all these functionalities is currently under
way.

5



References

[1] Alessandro Armando, Silvio Ranise, and Michäel Rusinowitch. A Rewrit-
ing Approach to Satisfiability Procedures. Information and Computa-
tion, 183(2):140–164, June 2003.

[2] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract
DPLL and Abstract DPLL Modulo Theories. In F. Baader and
A. Voronkov, editors, Proceedings of the 11th International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’04), volume 3452 of Lecture Notes in Computer Science, pages
36–50. Springer, 2005.

[3] Silvio Ranise and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2006.

[4] Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. Deciding sep-
aration formulas with SAT. In Proceedings of the 14th International
Conference on Computer Aided Verification (CAV’02), Lecture Notes in
Computer Science, pages 209–222. Springer, 2002.

6


