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Abstract. An increasing number of applications in verification and security rely
on or could benefit from automatic solvers that can check the satisfiability of con-
straints over a rich set of data types that includes character strings. Unfortunately,
most string solvers today are standalone tools that can reason only about (some
fragment) of the theory of strings and regular expressions, sometimes with strong
restrictions on the expressiveness of their input language. These solvers are based
on reductions to satisfiability problems over other data types, such as bit vectors,
or to automata decision problems. We present a set of algebraic techniques for
solving constraints over the theory of unbounded strings natively, without reduc-
tion to other problems. These techniques can be used to integrate string reasoning
into general, multi-theory SMT solvers based on the DPLL(T ) architecture. We
have implemented them in our SMT solver CVC4 to expand its already large set
of built-in theories to a theory of strings with concatenation, length, and member-
ship in regular languages. Our initial experimental results show that, in addition,
over pure string problems, CVC4 is highly competitive with specialized string
solvers with a comparable input language.

1 Introduction

In the last few years a number of techniques originally developed for verification pur-
poses have been adapted to support software security analyses as well. These techniques
have benefited from the rise of powerful specialized reasoning engines such as SMT
solvers. Security analyses are frequently required to reason about string values. One
reason is that program inputs, especially in web-based applications, are often provided
as strings which are then processed using operations such as matching against regular
expressions, concatenation, and substring extraction or replacement. In general, both
safety and security analyses could benefit from solvers that can check the satisfiability
of constraints over a rich set of data types that includes character strings. Despite their
power and success as back-end reasoning engines, however, general multi-theory SMT
solvers so far have provided minimal or no native support for reasoning over strings.

A major difficulty is that any reasonably comprehensive theory of character strings
is undecidable [3]. However, several more restricted, but still quite useful, theories of
strings do have a decidable satisfiability problem. These include any theories of fixed-
length strings, which are trivially decidable for having a finite domain, but also some
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fragments over unbounded strings (e.g., word equations [14]). Recent research has fo-
cused on identifying decidable fragments suitable for program analysis and, more cru-
cially, on developing efficient solvers for them. Unfortunately, most string solvers today
are standalone tools that can reason only about (some fragment of) the theory of strings
and regular expressions, sometimes with strong restrictions on the expressiveness of
their input language such as, for instance, the imposition of exact length bounds on all
string variables. These solvers are based on reductions to satisfiability problems over
other data types, such as bit vectors, or to decision problems over automata.

Contribution and significance We present an alternative approach, based on algebraic
techniques for solving (quantifier-free) constraints natively over a theory of unbounded
strings with length and regular language membership. Our techniques can be used to
construct solvers that can be integrated into general, multi-theory SMT solvers based
on the DPLL(T ) architecture [16]. We have implemented these techniques in our SMT
solver CVC4. As as result and to our knowledge, CVC4 is the first solver able to reason
about a language of mixed constraints that includes strings together with integers, reals,
arrays, and algebraic datatypes. Our experimental results show that, in addition, over
pure string problems CVC4 has superior performance and reliability over specialized
string solvers that can reason about the same fragment of the theory of strings.

We describe our approach here abstractly in terms of derivation rules. After dis-
cussing related work, we define in Section 2 the theory of strings and regular expres-
sions we work with, and present a calculus for this theory. Our string solver is essentially
a specific a proof strategy for this calculus. In Section 3, we present an experimental
evaluation of our implementation in CVC4 against other tools specializing in string con-
straints. We conclude in Section 4 mentioning several areas of future work.

1.1 Related work

A popular approach for solving string constraints, especially if they involve regular
expressions, is to encode them into automata problems. For example, Hooimeijer and
Weimer [9] present an automata-based solver, DPRLE, for matching problems of the
form e ⊆ r where, in essence, r is a regular expression over a given alphabet and e
is a concatenation of alphabet symbols and string variables. The solver has been used
to check programs against SQL injection vulnerabilities. This approach was improved
in later work by generating automata lazily from the input problem without requiring
a priori length bounds [10]. A comprehensive set of algorithms and data structures
for performing fast automata operations to support constraint solving over strings is
described by Hooimeijer and Veanes [8]. Generally speaking, there are two sorts of
automata-based approaches: one where each transition in the automaton represents a
single character (e.g., [5, 23]), and one where each transition represents a set of char-
acters (e.g., [10, 21, 22]). Most tools based on these approaches provide very limited
support for reasoning about constraints mixing strings and other data types. Also, au-
tomata refinement is typically the main bottleneck, although it is still very useful in
solving membership constraints. Further discussion can be found in [7, 12].

A different class of solvers is based on reducing string constraints to constraints in
other theories. A successful representative of this approach is the Hampi solver [11],
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used in a variety of static analysis systems. Hampi works only with string constraints
over fixed-size string variables. It extends the constraint language to membership in
fixed-size context-free languages but considers only problems over one string variable.
Input problems are reduced first to bit-vector problems and then to SAT. An alternative
approach, developed to support Pex [20], a white-box test generation tool, targets path
feasibility problems for programs using the .NET string library [3]. There, string con-
straints over a large set of string operators, but no language membership predicates, are
abstracted to linear integer arithmetic constraints and then sent to an SMT solver. Each
satisfying solution, if any, induces a fixed-length version of the original string problem
which is then solved using finite domain constraint satisfaction techniques. The Kaluza
solver [19] extends Hampi’s input language to multiple variables and string concatena-
tion by following an approach similar to one used in Pex, except that it simply feeds
fixed-length versions of the input problem to Hampi.

The Java String Analyzer (JSA) [4] works with Java string constraints. It first trans-
lates them to a flow graph and then analyzes the graph by converting it into a context-
free grammar. That grammar is approximated to a regular one which is then encoded
as a multi-level automaton. PASS [12] combines ideas from automata and SMT. Simi-
larly to JSA, it handles almost all Java string operations, regular expressions, and string-
number conversions. However, it represents strings as arrays with symbolic length. This
leads to the generation of several quantified constraints over such arrays, which are then
solved with the aid of a specialized quantifier instantiation procedure.

The work most closely related to ours is Z3-STR [24], a recent string solver de-
veloped as an extension of the Z3 SMT solver through Z3’s user plug-in interface. It
considers unbounded strings with concatenation, substring, replace and length func-
tions and accepts equational constraints over strings as well as linear integer arithmetic
constraints. Its main idea is to have Z3 treat string function and predicate symbols as
uninterpreted but monitor the inferences of Z3’s equality solver and generate and pass to
Z3 selected string theory lemmas as needed. Roughly speaking, these lemmas are used
to force the identification of equivalent string terms (e.g., the lemma s · ε ≈ s where
· is concatenation and ε is the empty string), or the dis-identification of terms that Z3
has wrongly guessed to be equal (e.g., len(t) > 0 ⇒ s 6≈ s · t). The approach is refu-
tationally incomplete because it does not always generate enough axioms to recognize
an unsatisfiable problem. At a very high level, our approach is similar, and similarly
incomplete, except that it uses a different and more comprehensive set of rules to gen-
erate suitable axioms, and so is able to recognize more unsatisfiable cases. Another big
difference is that we have devised it with the goal of implementing it in an internal,
fully integrated theory solver for CVC4, as opposed to an external plug-in, which allows
us to leverage several features of the DPLL(T ) architecture.

1.2 Formal preliminaries

We work in the context of many-sorted first-order logic with equality. We assume the
reader is familiar with the notions of many-sorted signature, term, literal, formula, free
variable, interpretation, and satisfiability of a formula in an interpretation (see, e.g., [2]
for more details). A theory is a pair T = (Σ, I) where Σ is a signature and I is a class
of Σ-interpretations, the models of T , that is closed under variable reassignment (i.e.,
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every Σ-interpretation that differs from one in I only in how it interprets the variables
is also in I). If I is an interpretation and t is a term, we denote by I(t) the value of t
in I. A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. A set Γ of formulas entails in T a Σ-formula ϕ, written
Γ |=T ϕ, if every interpretation in I that satisfies all formulas in Γ satisfies ϕ as well.
The set Γ is satisfiable in T if Γ 6|=T ⊥ where ⊥ is the universally false atom. We will
write Γ |= ϕ to denote that Γ entails ϕ in the class of all Σ-interpretations. We will
use ≈ as the (infix) logical symbol for equality—which has type σ×σ for all sorts σ in
Σ and is always interpreted as the identity relation. We write s 6≈ t as an abbreviation
of ¬ s ≈ t. If e is a term or a formula, we denote by V(e) the set of e’s free variables,
extending the notation to tuples and sets of terms/formulas as expected.

2 A theory of strings and regular language membership

We consider a theory TSLRp of strings with length and positive regular language mem-
bership constraints over a signature ΣSLRp with three sorts, Str, Int, and Lan, and an
infinite set of variables of each sort. The interpretations of TSLRp differ only on the
variables. They all interpret Int as the set of integer numbers, Str as the language A∗
of all words over some fixed finite alphabet A of characters, and Lan as the power
set of A∗. The signature includes the following predicate and function symbols: the
usual symbols of linear integer arithmetic, interpreted as expected; a constant symbol,
or string constant, for each word of A∗, interpreted as that word; a variadic function
symbol con : Str × . . . × Str → Str, interpreted as word concatenation; a function
symbol len : Str → Int, interpreted as the word length function; a function symbol
set : Str → Lan, interpreted as the function mapping each word w ∈ A∗ to the lan-
guage {w}; a function symbol star : Lan → Lan, interpreted as the Kleene closure
operator; an infix predicate symbol in : Str × Lan, interpreted as the set membership
predicate; a suitable set of additional function symbols corresponding to regular expres-
sion operators such as language concatenation, conjunction, disjunction, and so on.

We call: string term any term of sort Str or of the form (len s); arithmetic term
any term of sort Int all of whose occurrences of len are applied to a variable; regular
expression any term of sort Lan (possibly with variables). A string term is atomic if
it is a variable or a string constant. A string constraint is a (dis)equality (¬)s ≈ t
with s and t string terms. What algebraists call word equations are, in our terminology,
positive string constraints s ≈ t with s and t of sort Str. An arithmetic constraint
is a (dis)equality (¬)s ≈ t or an inequality s > t where s and t are arithmetic terms.
Note that if x and y are string variables, lenx is both a string and an arithmetic term and
(¬)lenx ≈ len y is both a string and an arithmetic constraint. A (positive) RL constraint
is a literal of the form (s in r) where s is a string term and r is a regular expression. A
TSLRp-constraint is a string, arithmetic or RL constraint. We will denote entailment in
TSLRp (|=SLRp) more simply as |=SLRp.

2.1 The satisfiability problem in TSLRp

We are interested in checking the satisfiability in TSLRp of finite sets of TSLRp-constraints.
We are not aware of any results on the decidability of this problem. In fact, the decid-
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ability of a strict sublanguage of the above, just word equations with length constraints,
is classified as an open question by other authors (e.g., [6]). Some other sublanguages
do have a decidable satisfiability problem. For instance, the satisfiability of word equa-
tions was proven decidable by Makanin [14] and then given a PSPACE algorithm by
Plandowski [17]; that algorithm, however, is highly impractical.

In this work we focus on practical solvers for TSLRp that, although incomplete and
non-terminating in general, can be used to solve efficiently string constraints arising
from verification and security applications. In addition to efficiency, we also strive for
correctness. We want a solver that is both refutation sound: any problem the solver
classifies as unsatisfiable is indeed so; and solution sound: any variable assignment that
the solver claims to be a solution of the input constraints does indeed satisfy them.

Our solver is based on the modular combination of an off-the-shelf solver for linear
integer arithmetic and a novel solver for string and RL constraints, which we will call
just string solver, for brevity. The string solver is in turn obtained as a modular extension
of a congruence-closure-based solver for EUF, the theory of equality with uninterpreted
functions. The extension is obtained by means of theory-specific derivation rules that
assert additional string constraints and RL constraints to the congruence closure mod-
ule (which treats all functions symbols as uninterpreted). The combination between the
string solver and the arithmetic solver is achieved, Nelson-Oppen style, by exchanging
equalities over shared terms, which however are not variables, as in traditional combi-
nation procedures [15], but terms of the form (lenx) where x is a variable.3

In the following, we describe the essence of our combined solver for TSLRp ab-
stractly and declaratively, as a tableaux-style calculus. Because of the computational
complexity of solving even just word equations, this calculus is non-deterministic and
allows many possible proof strategies. Our solver can be understood then as a specific
proof procedure for the calculus. In our description below we focus only on the deriva-
tion rules that deal with string and arithmetic constraints. This is both because of space
constraints and because currently our treatment of RL constraints is fairly naive—and
so not very interesting. In particular, the Kleene star operator is processed by unrolling:
(s in star r) is reduced to s = ε or to s ≈ con(x, y) ∧ (x in r) ∧ (y in star r) where x
and y are fresh variables, which makes the solver non-terminating in general over such
constraints. A more sophisticated treatment of RL constraints is in the works and will
be presented in a later paper.

2.2 A calculus for TSLRp

Let S be a set of string constraints and let T (S) be the set of all terms (and subterms)
occurring in S. The congruence closure of S is the set

C(S) = {s ≈ t | s, t ∈ T (S), S |= s ≈ t} ∪ {l1 6≈ l2 | l1, l2 distinct string const.} ∪
{s 6≈ t | s, t ∈ T (S), s′ 6≈ t′ ∈ S, S |= s ≈ s′ ∧ t ≈ t′ for some s′, t′}

The set C(S) induces an equivalence relation ES over T (S) where two terms s, t are
equivalent iff s ≈ t ∈ C(S) (or, equivalently, iff S |= s ≈ t). For all t ∈ T (S), we
denote its equivalence class in ES by [t]S or just [t] when S is clear or not important.

3 This difference is not substantial if the arithmetic solver treats (lenx) like an integer variable.
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con(s, con(t),u) → con(s, t,u) con(s, c1 · · · ci, ci+1 · · · cn,u) → con(s, c1 · · · cn,u)
con(s, ε,u) → con(s,u) len(con(s1, . . . , sn)) → len s1 + · · ·+ len sn

con(s) → s len(c1 · · · cn) → n
con() → ε

Fig. 1. Normalization rewrite rules for terms.

We will denote characters (i.e., elements of the alphabetA) by the letter c and string
constants by l or the juxtaposition c1 · · · cn of their individual characters, with c1 · · · cn
denoting the empty string ε when n = 0. We will use x, y, z to denote string variables
and s, t, u, v, w to denote terms in general.

We will consider term tuples (s1, . . . , sn), with n ≥ 0, and denote them by letters
in bold font, with comma denoting tuple concatenation. For example, if s = (s1, s2)
and t = (t1, t2, t3) we will write (s, t) to denote the tuple (s1, s2, t1, t2, t3). Similarly,
if u is a term, (s, u, t) denotes the tuple (s1, s2, u, t1, t2, t3).

Configurations Our calculus operates over configurations consisting of the distin-
guished configuration unsat and of tuples of the form 〈S,A,R,F,N,C,B〉 where

– S, A, R are respectively a set of string, arithmetic, and RL constraints;
– F is a set of pairs s 7→ a where s ∈ T (S) and a is a tuple of atomic string terms;
– N is a set of pairs e 7→ a where e is an equivalence class of ES, the equivalence

relation induced by the constraints in S, and a is a tuple of atomic string terms;
– C is a set of terms of sort Str;
– B is a set of buckets where each bucket is a set of equivalence classes of ES.

Informally, the sets S, A, R initially store the input problem and grow with additional
constraints derived by the calculus; N stores a normal form for each equivalence class
in ES; F maps selected input terms to an intermediate form, which we call a flat form,
used to compute the normal forms in N; C stores terms whose flat form should not
be computed, to prevent loops in the computation of their equivalence class’ normal
form; B eventually becomes a partition of ES used to generate a satisfying assignment
that assigns string constants of different lengths to variables in different buckets, and
different string constants of the same length to different variables in the same bucket.

Derivation trees The calculus is defined by the derivation rules described below. A
derivation tree for the calculus is a tree where each node is a configuration and each
non-root node is obtained by applying one of the derivation rules to its parent node. We
call the root of a derivation tree an initial configuration. A branch of a derivation tree is
closed if it ends with unsat. A derivation tree is closed if all of its branches are closed.

Initial configurations encode a satisfiability problem by storing it in the compo-
nents S, A and R. By standard transformations, one can convert any finite set of TSLRp-
constraints into an equisatisfiable set S∪A∪R where S is a set of string constraints, A
is a set of arithmetic constraints, and R is a set of RL constraints. We consider only ini-
tial configurations where the other components are empty. For convenience, we assume
that the S component of the initial configuration contains an equation x ≈ t for each
non-variable term t ∈ T (S), where x is a variable of the same sort as t.4 We also assume

4 Such equations can always be added as needed using fresh variables.
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A-Prop
S |= lenx ≈ len y

A := A, lenx ≈ len y
S-Prop

A |=LIA lenx ≈ len y

S := S, lenx ≈ len y

Len
x ≈ t ∈ C(S) x ∈ V(S)
A := A, lenx ≈ (len t)↓

Len-Split
x ∈ V(S ∪ A) x : Str

S := S, x ≈ ε ‖ A := A, lenx > 0

A-Conflict
A |=LIA ⊥
unsat

R-Star
s in star(set t) ∈ R s 6≈ ε ∈ C(S)

S := S, s ≈ con(t, z) R := R, z in star(set t)

Fig. 2. Rules for theory combination, arithmetic and RL constraints. The letter z denotes a fresh
Skolem variable.

that all terms in the initial configuration are reduced with respect to the rewrite rules in
Figure 1, which can be shown to be terminating and confluent modulo the axioms of
arithmetic.

We say that a configuration is derivable if it occurs in a derivation tree whose initial
configuration satisfies the restrictions above.

We denote by t↓ the normal form of a term t with respect to the rewrite rules in
Figure 1. It is not difficult to see that if t is of sort Str, then t ↓ is either an atomic
string term or has the form con(a1, . . . , an) where n > 1 and a1, . . . , an are atomic;
if t is of integer sort, then t ↓ is an arithmetic term. In a similar vein, we consider
normalized tuples a↓ of atomic terms obtained from an atomic term tuple a by dropping
its empty string components and replacing adjacent string constants by the constant
corresponding to their concatenation. For example, (x, ε, c1, c2c3, y)↓ = (x, c1c2c3, y).

Invariant 1 We are interested in proof procedures that maintain these invariants on the
derivable configurations of the form 〈S,A,R,F,N,C,B〉:

1. All terms are reduced with respect to the rewrite system in Figure 1.
2. F is a partial map from T (S) to normalized tuples of atomic terms.
3. N is a partial map from ES to normalized tuples of atomic terms.
4. For all terms s where [s] 7→ (a1, . . . , an) ∈ N or s 7→ (a1, . . . , an) ∈ F, we have

S |=SLRp s ≈ con(a1, . . . , an) and S |= ai 6≈ ε for i = 1, . . . , n.
5. For all B1, B2 ∈ B, [s] ∈ B1 and [t] ∈ B2, S |= len s ≈ len t iff B1 = B2.
6. C contains only reduced terms of the form con(a).

We denote by D(N) the domain of the partial map N, i.e., the set {e | e 7→ a ∈
N for some a}. For all e ∈ D(N), we will write N e to denote the (unique) tuple asso-
ciated to e by N. We will use a similar notation for F.

Derivation rules The rules of the calculus are provided in Figures 2 through 6 in
guarded assignment form. A derivation rule applies to a configuration K if all of the
rule’s premises hold for K. A rule’s conclusion describes how each component of K is
changed, if at all. We write S, t as an abbreviation for S ∪ {t}. Rules with two conclu-
sions, separated by the symbol ‖, are non-deterministic branching rules.

In the rules of the calculus, we treat a string constant l in a tuple of terms indif-
ferently as term or a tuple l1, . . . , ln of string constants whose concatenation equals l.
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S-Cycle

t = con(t1, . . . , ti, . . . , tn) t ∈ T (S) \ C
tk ≈ ε ∈ C(S) for all k ∈ {1, . . . , n} \ {i}

S := S, t ≈ ti C := (C, t) \ {ti}
Reset

F := ∅ N := ∅ B := ∅

S-Split
x, y ∈ V(S) x ≈ y, x 6≈ y /∈ C(S)
S := S, x ≈ y ‖ S := S, x 6≈ y

S-Conflict
s ≈ t ∈ C(S) s 6≈ t ∈ C(S)

unsat

L-Split
x, y ∈ V(S) x, y : Str S 6|= lenx ≈ len y S 6|= lenx 6≈ len y

S := S, lenx ≈ len y ‖ S := S, lenx 6≈ len y

Fig. 3. Basic string derivation rules.

For example, a tuple (x, c1c2c3, y) with the three-character constant c1c2c3 will be seen
also as the tuple (x, c1, c2c3, y), (x, c1c2, c3, y), or (x, c1, c2, c3, y). All equalities and
disequalities in the rules are treated modulo symmetry of≈. We assume the availability
of a procedure for checking entailment in the theory of linear integer arithmetic (|=LIA)
and one for computing congruence closures and checking entailment in EUF (|=).

The first four rules in Figure 2 describe the interaction between arithmetic reasoning
and string reasoning, achieved via the propagation of entailed constraints in the shared
language. R-Star is the only rule for handling RL constraints that we provide here. We
chose it because the constraints matching its premise can be generated, by rule F-Loop in
Figure 5, even if the initial configuration contains no RL constraints. The basic rules for
string constraints are shown in Figure 3. The functionality and rationale of the last three
should be straightforward. Reset is meant to be applied after the set S changes since in
that case normal and flat forms may need updating. S-Cycle identifies a concatenation
of terms with one them when the remaining ones are all equivalent to ε.

The bulk of the work is done by the rules in Figures 4 and 5. Those in Figure 4
compute an equivalent flat form (consisting of a sequence of atomic terms) for all non-
variable terms that are not in the set C. Flat forms are used in turn to compute normal
forms as follows. When all terms of an equivalence class e except for variables and
terms in C have the same flat form, that form is chosen by N-Form1 as the normal form
of e. When an equivalence class e consists only of variables and terms in C, one of them
is chosen by N-Form2 as the normal form of e. The first two rules of Figure 5 use flat
forms to add to S new equations entailed by S in the theory of strings. F-Loop is used to
recognize and break certain occurrences of reasoning loops that lead to infinite paths in
a derivation tree (see [13] for more details).

The rules in Figure 6 are used to put equivalence classes of terms of sort Str into
buckets based on the expected length of the value they will be given eventually by
a satisfying assignment. The main idea is that different equivalence classes go into
different buckets (using D-Base) unless they have the same length. In the latter case,
they go into the same bucket only if we can tell they cannot have the same value (using
D-Add). D-Split is used to reduce the problem to one of the two previous cases. The
goal is that, on saturation, each bucket B can be assigned a unique length nB , and each
equivalence class in B can evaluate to a unique string constant of that length. Card
makes sure that nB is big enough to have enough string constants of length nB .
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F-Form1

t = con(t1, . . . , tn) t ∈ T (S) \ (D(F) ∪ C)
N [t1] = s1 · · · N [tn] = sn

F := F, t 7→ (s1, . . . , sn)↓
F-Form2

l ∈ T (S) \ D(F)
F := F, l 7→ (l)

N-Form1

[x] /∈ D(N) s ∈ [x] \ (C ∪ V(S))
F t = F s for all t ∈ [x] \ (C ∪ V(S))

N := N, [x] 7→ F s
N-Form2

[x] /∈ D(N) [x] ⊆ C ∪ V(S)
N := N, [x] 7→ (x)

Fig. 4. Normalization derivation rules. The letter l denotes a string constant.

F-Unify
F s = (w, u,u1) F t = (w, v,v1) s ≈ t ∈ C(S) S |= lenu ≈ len v

S := S, u ≈ v

F-Split

F s = (w, u,u1) F t = (w, v,v1) s ≈ t ∈ C(S) S |= lenu 6≈ len v
u /∈ V(v1) v /∈ V(u1)

S := S, u ≈ con(v, z) ‖ S := S, v ≈ con(u, z)

F-Loop
F s = (w, x,u1) F t = (w, v,v1, x,v2) s ≈ t ∈ C(S) x /∈ V((v,v1))

S := S, x ≈ con(z2, z), con(v,v1) ≈ con(z2, z1), con(u1) ≈ con(z1, z2,v2)
R := R, z in star(set con(z1, z2)) C := C, t

Fig. 5. Equality reduction rules. The letters z, z1, z2 denote fresh Skolem variables.

Correctness We now formalize the main correctness properties of our calculus. For
space constraints we must refer the interested reader to a longer version of this pa-
per [13] for their proof. Since our solver can be seen as a specific proof procedure,
it immediately inherits those properties. This means in particular that when our solver
terminates with a sat or unsat answer, that answer is correct. We describe here only the
more restricted case of input problems with no RL constraints, as those constraints are
not the focus of this work. Also, we consider only derivation trees satisfying Invariant 1.

Proposition 1 (Refutation Soundness). For all closed derivation trees with initial
configuration 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉, the set S0 ∪A0 is unsatisfiable in TSLRp.

A derivable configuration 〈S,A,R,F,N,C,B〉 is saturated if (i) N is a total map
over ES, (ii) B is a partition of ES, and (iii) any derivation rule that applies to it except
for Reset leaves the configuration unchanged modulo renaming of Skolem variables.

Proposition 2 (Solution Soundness). If a derivation tree with root 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉
contains a saturated configuration then S0 ∪A0 is satisfiable in TSLRp.

The proof of Proposition 2 is constructive since it shows how to build systematically
from a saturated configuration a satisfying assignment for the (string and arithmetic)
variables in the input problem S0 ∪A0. Our implementation follows that construction.

Proof procedure A possible proof procedure, a highly simplified version of the one we
have implemented, is defined by the repeated application of the calculus rules according
to the six steps below. When applying a branching rule the procedure tries the left-
branch configuration first. It interrupts a step and restarts with Step 0 as soon as a
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D-Base

s ∈ T (S) s : Str
S |= len s ≈ lenB for no B ∈ B

B := B, {[s]}
Card

B ∈ B |B| > 1

A := A, lenB > blog|A| (|B| − 1)c

D-Add

s ∈ T (S) s : Str B = B′, B S |= len s ≈ lenB [s] 6∈ B
for all e ∈ B there are w, u,u1, v,v1 such that

(N [s] = (w, u,u1), N e = (w, v,v1), S |= lenu ≈ len v, u 6≈ v ∈ C(S))
B := B′, (B ∪ {[s]})

D-Split

s ∈ T (S) s : Str B = B′, B S |= len s ≈ lenB [s] 6∈ B e ∈ B
N [s] = (w, u,u1) N e = (w, v,v1) S |= lenu 6≈ len v

S := S, u ≈ con(z1, z2), len z1 ≈ len v ‖ S := S, v ≈ con(z1, z2), len z1 ≈ lenu

Fig. 6. Disequality reduction rules. Letters z1, z2 denote fresh Skolem variables. For each bucket
B ∈ B, lenB denotes a unique term (lenx) where [x] ∈ B. | | denotes the cardinality operator.

constraint is added to S. The procedure keeps cycling through the steps until it derives
a saturated configuration or the unsat one. In the latter case, it continues with another
configuration in the derivation tree, if any.

Step 0: Reset: Apply Reset to reset buckets, and flat and normal forms.

Step 1: Check for conflicts, propagate: Apply S-Conflict or A-Conflict if the con-
figuration is unsatisfiable due to the current string or arithmetic constraints; otherwise,
propagate entailed equalities between S and A using S-Prop and A-Prop.

Step 2: Add length constraints: Apply Len and then Len-Split to completion.

Step 3: Compute Normal Forms for Equivalence Classes. Apply S-Cycle to com-
pletion and then the rules in Figure 4 to completion. If this does not produce a total map
N, there must be some s ≈ t ∈ C(S) such that F s and F t have respectively the form
(w, u,u1) and (w, v,v1) with u and v distinct terms. Let x, y be variables with x ∈ [u]
and y ∈ [v]. If S entails neither lenx ≈ len y nor lenx ≈ len y, apply L-Split to them;
otherwise, apply any applicable rules from Figure 5, giving preference to F-Unify.

Step 4: Partition equivalence classes into buckets. First apply D-Base and D-Add
to completion. If this does not make B a partition of ES, there must be an equivalence
class [x] contained in no bucket but such that S |= lenx ≈ lenB for some bucket B
(otherwise D-Base would apply). If there is a [y] ∈ B such that x 6≈ y /∈ C(S), split on
x ≈ y and x 6≈ y using S-Split. Otherwise, let [y] ∈ B such that x 6≈ y ∈ C(S). It must
be that N [x] and N [y] share a prefix followed by two distinct terms u and v. Let xu, xv
be variables with xu ∈ [u] and xv ∈ [v]. If S |= lenxu 6≈ lenxv , apply the rule D-Split
to u and v. If S |= lenxu ≈ lenxv , since it is also the case that neither xu ≈ xv nor
xu 6≈ xv is in C(S), apply S-Split to xu and xv . If S entails neither lenxu ≈ lenxv nor
lenxu 6≈ lenxv , split on them using L-Split.

Step 5: Add length constraint for cardinality. Apply Card to completion.

One can show that all derivation trees generated with this proof procedure satisfy
Invariant 1. We illustrate the procedure’s workings with a couple of examples.
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Example 1. Suppose we start with A = ∅ and S = {lenx ≈ len y, x 6≈ ε, z 6≈
ε, con(x, l1, z) ≈ con(y, l2, z)} where l1, l2 are distinct constants of the same length.
After checking for conflicts, the procedure applies Len and Len-Split to completion. All
resulting derivation tree branches except one can be closed with S-Conflict. In the leaf of
the non-closed branch every string variable is in a disequality with ε. In that configura-
tion, the string equivalence classes are {x}, {y}, {z}, {l1}, {l2}, {ε}, and {con(x, l1, z),
con(y, l2, z)}. The normal form for the first three classes is computed with N-Form2;
the normal form for the other three with F-Form2 and N-Form1. For the last equivalence
class, the procedure uses F-Form1 to construct the flat forms F con(x, l1, z) = (x, l1, z)
and F con(y, l2, z) = (y, l2, z), and F-Unify to add the equality x ≈ y to S. The proce-
dure then restarts but now with the string equivalence classes {x, y}, {z}, {l1}, {l2},
{ε}, and {con(x, l1, z), con(y, l2, z)}. After similar steps as before, the terms in the last
equivalence class get the flat form (x, l1, z) and (x, l2, z) respectively (assuming x is
chosen as the representative term for {x, y}). Using F-Unify, the procedure adds the
equality l1 ≈ l2 to S and then derives unsat with S-Conflict. This closes the derivation
tree, showing that the input constraints are unsatisfiable. ut

Example 2. Suppose now the input constraints are A = ∅ and S = {lenx ≈ len y, x 6≈
ε, z 6≈ ε, con(x, l1, z) 6≈ con(y, l2, z)} with l1, l2 as in Example 1. After similar steps
as in that example, the procedure can derive a configuration where the string equiva-
lence classes are {x}, {y}, {z}, {l1}, {l2}, {ε}, {con(x, l1, z)}, and {con(y, l2, z)}.
After computing normal forms for these classes, it attempts to construct a partition B
of them into buckets. However, notice that if it adds {[x]}, say, to B using D-Base,
then neither D-Base (since S |= lenx ≈ len y) nor D-Add (since x 6≈ y 6∈ C(S))
is applicable to [y]. So it applies S-Split to x and y. In the branch where x ≈ y, the
proof procedure subsequently restarts, and computes normal forms as before. At that
point it succeeds in making B a partition of the string equivalence classes, by placing
[con(x, l1, z)] and [con(y, l2, z)] into the same bucket using D-Add, which applies be-
cause their corresponding normal forms are (x, l1, z) and (x, l2, z) respectively. Any
further rule applications lead to branches with a saturated configuration, each of which
indicates that the input constraints are satisfiable. ut

Implementation in DPLL(T ) Theory solvers based on the calculus we have described
can be integrated into the DPLL(T ) framework used by modern SMT solvers, which
combines a SAT solver with multiple specialized theory solvers for conjunctions of con-
straints in a certain theory. These SMT solvers maintain an evolving set F of quantifier-
free clauses and a set M of literals representing a (partial) Boolean assignment for F .
Periodically, a theory solver is asked whether M is satisfiable in its theory.

In terms of our calculus, we assume that the literals of an assignment M are par-
titioned into string constraints (corresponding to the set S), arithmetic constraints (the
set A) and RL constraints (the set R). These sets are subsequently given to three in-
dependent solvers, which we will call the string solver, the arithmetic solver, and the
RL solver, respectively. The rules A-Prop and S-Prop model the standard mechanism
for Nelson-Oppen theory combination, where entailed equalities are communicated be-
tween these solvers. The satisfiability check performed by the arithmetic solver is mod-
eled by the rule A-Conflict. Note that there is no additional requirement on the arithmetic
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solver, and thus a standard DPLL(T ) theory solver for linear integer arithmetic can be
used. The behavior of the RL solver is described by the rule R-Star and others we have
omitted here. The remaining rules model the behavior of the string solver.

The case splitting done by the string solver (with rules S-Split and L-Split) is achieved
by means of the splitting on demand paradigm [1], in which a solver may add theory
lemmas to F consisting of clauses possibly with literals not occurring in M . The case
splitting in rules F-Split and D-Split can be implemented by adding a lemma of the form
ψ ⇒ (l1 ∨ l2) to F , where l1 and l2 are new literals. For instance, in the case of F-Split,
we add the lemma ψ ⇒ (u ≈ con(v, z) ∨ v ≈ con(u, z)), where ψ is a conjunction of
literals in M entailing s ≈ t ∧ s ≈ F s ∧ t ≈ F t ∧ lenu 6≈ len v in the overall theory.

The rules Len, Len-Split, and Card involve adding constraints to A. This is done by
the string solver by adding lemmas to F containing arithmetic constraints. For instance,
if x ≈ con(y, z) ∈ C(S), the solver may add a lemma of the form ψ ⇒ lenx ≈
len y+ len z to F , where ψ is a conjunction of literals from M entailing x ≈ con(y, z),
after which the conclusion of this lemma is added to M (and hence to A).

In DPLL(T ), when a theory solver determines thatM is unsatisfiable (in the solver’s
theory) it generates a conflict clause, the negation of an unsatisfiable subset of M . The
string solver maintains a compact representation of C(S) at all times. To construct con-
flict clauses it also maintains an explanation ψs,t for each equality s ≈ t it adds to S by
applying S-Cycle, F-Unify or standard congruence closure rules. The explanation ψs,t

is a conjunction of string constraints in M such that ψs,t |=SLRp s ≈ t. For F-Unify,
the string solver maintains an explanation ψ for the flat form of each term t ∈ D(F)
where ψ |=SLRp t ≈ con(F t). When a configuration is determined to be unsatisfiable
by S-Conflict, that is, when s ≈ t, s 6≈ t ∈ C(S) for some s, t, it replaces the occurrence
of s ≈ t with its corresponding explanation ψ, and then replaces the equalities in ψ
with their corresponding explanation, and so on, until ψ contains only equalities from
M . Then it reports as a conflict clause (the clause form of) ψ ⇒ s ≈ t.

All other rules (such as those that modify N, F and B) model the internal behavior
of the string solver.

3 Experimental Results

We have implemented a theory solver based on the calculus and proof procedure de-
scribed in the previous section within the latest version of our SMT solver CVC4. The
string alphabet A for this implementation is the set of all 256 ASCII characters. To
evaluate our solver we did an experimental comparison with two of the string solvers
mentioned in Section 1.1: Z3-STR (version 20140120) and Kaluza (latest version from
its website). These solvers, which have been widely used in security analysis, were
chosen because they are publicly available and have an input language that largely in-
tersects with that of our solver. All results in this section were collected on a 2.53 GHz
Intel Xeon E5540 with 8 MB cache and 12 GB main memory.5

Modulo superficial differences in the concrete input syntax, all three tools accept
as input a set of TSLRp constraints and report on its satisfiability with a sat, unsat or

5 Detailed results and binaries can be found at http://cvc4.cs.nyu.edu/papers/
CAV2014-strings/.
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CVC4 Z3-str Kaluza Kaluza-orig
Result × X × X × X

unsat 11,625 317 11,769 7,154 13,435 27,450 805
sat 33,271 1,583 31,372 n/a 25,468 n/a 3

unknown 0 0 3 0
timeout 2,388 2,123 84 84
error 0 120 1,140 18,942

Table 1. Comparative results.

unknown answer. In the first case, CVC4 and Z3-STR can also provide a solution, i.e., a
satisfying assignment for the variables in the input set. Kaluza can do that for at most
one query variable which must be specified before-hand in the input file.

An initial series of regression tests on all three tools revealed several usability and
correctness issues with Kaluza and a few with Z3-STR. In Kaluza, they were caused
by bugs in its top level script which communicates with different tools, e.g. the solvers
Yices and Hampi, via the file system. They range from failure to clean up temporary files
to an incorrect use of the Unix grep tool to extract information from the output of those
tools. Since Kaluza is not in active development anymore, we made an earnest, best
effort attempt to fix these bugs ourselves. However, there seem to be more serious flaws
in Kaluza’s interface or algorithm. Specifically, often Kaluza incorrectly reports unsat
for problems that are satisfiable only if some of their input variables are assigned the
empty string. Moreover, in several cases, Kaluza’s sat/unsat answer for the same input
problem changes depending on the query variable chosen. Because of this arbitrariness,
in our experiments we removed all query variables in Kaluza’s input.

We found that in several cases Z3-STR returns spurious solutions, assignments to
the input variables that do not in fact satisfy the input problem. Also, it classifies some
satisfiable problems as unsat. Prompted by our inquiries, the Z3-STR developers have
produced a new version of Z3-STR that fixes the spurious solutions problem. Unfortu-
nately, that version was not ready in time for us to redo the experiments. As for Z3-STR’s
unsoundness, it looks like it is caused by an internal restriction that, for efficiency but
without loss of generality, limits the possible values of “free” string variables to a fixed
finite set of string constants. The authors define a variable as free in an input problem if
its values are completely unconstrained by the problem. For instance, in the constraint
set {x ≈ con(y, z)} variables y and z would be free according to this definition, while
x would not. It appears that the criterion used by Z3-STR to recognize free variables
sometimes misclassifies a variable as free when in fact it is not, causing the system to
miss solutions that are outside the finite domain imposed on free variables.

In contrast, on our full set of benchmarks, we did not find any evidence of erroneous
behavior in CVC4 when compared with the other two solvers. Every solution produced
by CVC4 was confirmed by both CVC4 and Z3-STR by adding the solution as a set
of constraints to the input problem and checking that the strengthened problem was
satisfiable. Furthermore, no unsat answers from CVC4 were contradicted by a confirmed
solution from Z3-STR.

13



Comparative Evaluation For our evaluation we selected 47,284 benchmark problems
from a set of about 50K benchmarks generated by Kudzu, a symbolic execution frame-
work for Javascript, and available on the Kaluza website [18]. The discarded problems
either had syntax errors or included a macro function (CapturedBrack) whose mean-
ing is not fully documented. We translated those benchmarks into CVC4’s extension of
the SMT-LIB 2 format to the language of TSLRp6 and into the Z3-STR format. Some
benchmarks contain regular membership constraints (s in r), which Z3-STR does not
support. However, in all of these constraints the regular language denoted by r is finite
and small, so we were able to translate them into equivalent string constraints.

We ran CVC4, Z3-STR and two versions of Kaluza, the original one and the one with
our debugged main script, on each benchmark with a 20-second CPU time limit. The
results are summarized in Table 1. There, the column Kaluza-orig refers to the original
version of Kaluza while the error line counts the total number of runtime errors. The
results for Z3-STR and the two versions of Kaluza are separated in two columns: the ×
column contains the number of provably incorrect answers while the X column contains
the rest. By provably incorrect here we mean an unsat answer for a problem that has a
verified solution or a sat answer but with a spurious solution. Note that the figures for
the two versions of Kaluza are unfairly skewed in their favor because neither version
returns solutions, which means that their sat answers are unverifiable unless one of the
other solvers produces a solution for the same problem. For a more detailed discussion,
we look at the benchmark problem set broken down by the CVC4 results. For brevity
we discuss only our amended version of Kaluza below.

None of the 11,625 unsat answers provided by CVC4 were provably incorrect. Z3-
STR also answered sat on 11,568 of them and returned an error for the remaining 57;
Kaluza agreed on 11,394 and returned an error for the rest. All of CVC4’s 33,271 sat
answers were corroborated by a confirmed solution. Z3-STR agreed on 31,616 of those
problems although it returned a spurious solution for 244 of them. Also, it incorrectly
found 317 problems unsatisfiable and produced an error on 29 problems, timing out on
the remaining 1,304. Kaluza agreed on 25,468 problems (unverifiable because of the
absence of solutions), erroneously classified 7,154 as unsatisfiable, reported unknown
for 3, produced an error for 562, and timed out on 84.

CVC4 timed out on 2,388 problems, but produced no errors and no unknown an-
swers. For the problems that CVC4 timed out on, Z3-STR classified 201 as unsatisfiable,
returned an error for 34 and produced solutions for the remaining 1,339, all of which
were spurious. Kaluza classified 2,041 as unsatisfiable and returned an error on the rest.

These results provide strong evidence that CVC4’s string solver is sound. They also
provide evidence that unsat answers from Z3-STR and Kaluza for problems on which
CVC4 times out cannot be trusted. They also show that CVC4’s string solver answers
sat more often than both Z3-STR and Kaluza, providing a correct solution in each case.
Thus, it is overall the best tool for both satisfiable and unsatisfiable problems.

Moving to run time performance, a comparison with Kaluza is not very meaningful
because of its high unreliability and the unverifiability of its sat answers. In principle,

6 The SMT-LIB 2 standard does not include a theory of strings yet although there are plans to do
so. CVC4’s extension is documented at http://cvc4.cs.nyu.edu/wiki/Strings .
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Fig. 7. Runtime comparison of CVC4, Z3-STR and the amended Kaluza. Times are in seconds.

the same could be said of Z3-STR due to its refutation unsoundness.7 However, an anal-
ysis of our detailed results shows that CVC4 has nonetheless better runtime performance
overall. This can be easily seen from the cactus plot in Figure 7, which shows for each of
the three systems how many non-provably incorrect benchmarks it cumulatively solves
within a certain amount of time.

4 Conclusion and Further Work

We have presented a new approach for solving quantifier-free constraints over a theory
of unbounded strings with length and regular language membership. Our approach inte-
grates a specialized theory solver for such constraints within the DPLL(T ) framework.
We have given experimental evidence that our implementation in the SMT solver CVC4
is highly competitive with existing tools.

In our ongoing work, we plan to extend the scope of our string solver to support a
richer language of string constraints that occur often in practice, especially in security
applications. In preliminary implementation work in CVC4, we have found that com-
monly used predicates (such as the predicate contains for string containment) can be
handled in an efficient manner by extending the calculus mentioned in this paper. We are
also working on a more sophisticated approach for dealing with RL constraints, using a
separate dedicated solver that is similarly integrated into the DPLL(T ) framework.

At the theoretical level, we would like to devise a proof strategy that is solution-
complete, that is, guaranteed to eventually produce a solution for every satisfiable input.
Note that a fair proof strategy can be trivially obtained by incrementally setting an
upper bound on the total length of all strings in a problem solution. The challenge is
to devise a more efficient fair strategy than that one. Additionally, we would like to
identify fragments where our calculus is terminating, and thus refutation complete.

Acknowledgments We would like to thank Nestan Tsiskaridze for her insightful com-
ments, and the developers of Z3-STR for their technical support in using their tool and
several clarifications on it.

7 Z3-STR could be faster and time out less often simply because it unduly prunes search space.
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