
A Tale Of Two Solvers:
Eager and Lazy Approaches to Bit-vectors?

Liana Hadarean1, Kshitij Bansal1, Dejan Jovanović3,
Clark Barrett1, and Cesare Tinelli2

1 New York University
2 The University of Iowa

3 SRI International

Abstract. The standard method for deciding bit-vector constraints is via eager
reduction to propositional logic. This is usually done after first applying powerful
rewrite techniques. While often efficient in practice, this method does not scale on
problems for which top-level rewrites cannot reduce the problem size sufficiently.
A lazy solver can target such problems by doing many satisfiability checks, each
of which only reasons about a small subset of the problem. In addition, the lazy
approach enables a wide range of optimization techniques that are not available
to the eager approach. In this paper we describe the architecture and features
of our lazy solver (LBV). We provide a comparative analysis of the eager and
lazy approaches, and show how they are complementary in terms of the types
of problems they can efficiently solve. For this reason, we propose a portfolio
approach that runs a lazy and eager solver in parallel. Our empirical evaluation
shows that the lazy solver can solve problems none of the eager solvers can and
that the portfolio solver outperforms other solvers both in terms of total number
of problems solved and the time taken to solve them.

1 Introduction

Many software and hardware verification tasks require precise modeling of computer
arithmetic and bit-level operations. The verification conditions coming from such ap-
plications can be expressed as satisfiability problems in the theory of fixed-width bit-
vectors (Tbv). The standard technique for deciding the satisfiability in Tbv of a quantifier-
free formula, vividly called bit-blasting, reduces the problem to a Boolean satisfiability
(SAT) one, by replacing word-level operators with their bit-level circuit equivalents.
Current state-of-the-art decision procedures for Tbv build on bit-blasting by applying
powerful rewriting simplifications to the input formula before the final bit-blasting step.
While often efficient in practice, this eager approach has several limitations: (i) the
entire formula must be bit-blasted and solved at once, which may be difficult if the
problem is too large; (ii) word-level structure and information can only be leveraged
during preprocessing, not during solving; (iii) the complexity of the problem is a func-
tion of the bit-width; and (iv) eager solvers do not fit cleanly into theory combination
frameworks.
? Work supported in part by the Semiconductor Research Corporation (SRC), tasks 1850.001

and 1850.002, and the National Science Foundation (grants 0644299, 1049495, and 1228768).

2

A lazy solver can address these limitations, explicitly targeting problems that are
difficult for eager solvers and thus providing a complementary approach. The lazy ap-
proach for bit-vectors was first proposed in [8, 16]. In this paper, we revisit this ap-
proach, extending and improving it in several ways. Our lazy solver integrates alge-
braic, word-level reasoning with bit-blasting. Designed for easy plug-and-play com-
bination with solvers for other theories, the procedure integrates an on-line lazy Tbv
solver (LBV) into the DPLL(T) framework [20], separating theory-specific reasoning
from the search over the Boolean structure of the input problem. This separation offers
benefits orthogonal to those provided by eager bit-vector solvers but also poses inter-
esting trade-offs. On one hand, it has the potential of incurring additional overhead and
losing important connections between subproblems; on the other hand, depending on
the Boolean structure of the problem, it often allows the Tbv solver to reason about much
smaller problems at a time. We use a specialized decision heuristic to reduce the size
of these sub-problems even further by considering only literals relevant to the current
search context.

Our approach is particularly useful on problems whose subproblems fall into one
of the efficiently decidable fragment of the bit-vector theory (e.g., the core theory of
concatenation and extraction [11], the theory of bit-vector inequalities, or fragments
decidable using equational reasoning). To target such problems, our LBV solver is built
as the combination of several algebraic solvers specialized for some of these fragments
together with a complete bit-blasting solver. The bit-blasting solver uses a dedicated
SAT solver SATbb, distinct from the DPLL(T) Boolean engine driving the main search
(SATmain). The separation of the two SAT engines fits cleanly into the DPLL(T) frame-
work and allows the solvers to be tuned independently.

Experiments (described in Section 6) confirm our claim that the lazy approach is
complementary to the eager approach, as the lazy solver efficiently solves problems
that are either impossible or very difficult for eager solvers. At the same time, it is not
realistic to expect the lazy solver to do well on problems that are easy for eager solvers
(and indeed it is often slower on these problems). For this reason we propose a portfolio
approach that runs an eager solver and a lazy solver in parallel. Additional experiments
show that our portfolio solver outperforms eager solvers both in terms of the number of
problems solved and the time taken to solve them.

The rest of the paper is organized as follows. Section 2 frames our contributions
in terms of related work. Sections 3 and 4 provide technical preliminaries and a brief
overview of the DPLL(T) framework. Section 5 describes the components of our lazy
solver LBV including some optimizations enabled by the lazy framework. We present
an experimental evaluation of the solver followed by an in-depth analysis in Section 6.
Finally, we conclude with future work in Section 7.

2 Related work

The predominant approach to solving bit-vector constraints is via reduction to SAT.
Boolector, a specialized solver for bit-vectors and arrays, and the winner of the 2012
SMT-COMP for QF BV logic, employs preprocessing before encoding the bit-vector
formula into the AIG format [7]. Z3, a DPLL(T)-style SMT solver, applies bit-blasting

3

to all bit-vector operators, but has specialized equality reasoning [13]. STP2 does sim-
plifications and solving for linear modular arithmetic, and then uses an eager encoding
into CNF for bit-vector reasoning as well as an abstraction refinement loop for array
axiom instantiation [18].

Some solvers encode the problem into a different domain such as (linear and non-
linear) modular arithmetic [1]. These solvers are efficient at dealing with large data-
paths and arithmetic operations. However some constructs, such as bit-wise operations,
cannot be encoded and have to be bit-blasted away, while others, such as selection and
concatenation, are very expensive for arithmetic solvers. Yet another approach [6, 11],
based on word-level reasoning, uses Shostak-style canonizers and solvers to compute
a canonical form for bit-vector expressions. However, it is limited to a restricted set of
operators: concatenation, extraction and linear equations over bit-vectors.

The framework for a lazy bit-vector solver was first introduced by Bruttomesso et
al. [8]. They describe an implementation of a DPLL(T)-style lazy layered solver for
Tbv in the SMT solver MathSAT [10]. Their approach lazily encodes the problem into
linear integer constraints and uses word-level inference rules during solving. Later work
by Franzen [16] moves from encoding the problem into linear integer arithmetic to bit-
blasting the formula to the main SAT solver instead.

Our work explores significant new ideas within this lazy framework, with the fol-
lowing contributions: (i) a dedicated SAT solver for Tbv that supports bit-blasting-based
propagation with lazy explanations; (ii) specialized Tbv sub-solvers that reason about
fragments of Tbv; (iii) inprocessing techniques to reduce the size of the bit-blasted for-
mula when possible; and (iv) decision heuristics to minimize the number of literals sent
to the bit-vector solver by the main SAT engine.

These new features greatly improve performance: our solver solves 450 more prob-
lems in roughly one third of the time compared to the only other lazy bit-vector solver.
This brings the lazy framework from a niche player to a serious contender.

3 Formal Preliminaries

We assume familiarity with standard notions from many-sorted first-order logic. A sig-
natureΣ is a non-empty set of sort symbols together with a set of function symbols and
a set of predicate symbols, each equipped with their respective arity and sorts. We call
0-arity function symbols constants.

A constraint is a conjunction of literals. We are concerned with the constraint satis-
fiability problem for a theory T with signature ΣT , which consists of deciding whether
a ΣT -constraint is T -satisfiable, that is, satisfiable in a model of T . We will use |= to
denote propositional satisfiability and vars(F) for the set of variables of a propositional
formula F .

A bit-vector is a finite vector over the set {0, 1} of binary digits. We consider the
theory Tbv of bit-vectors with signature Σbv = Σeq ∪ Σcon ∪ Σineq ∪ Σari ∪ Σbool ∪
Σshift, consisting of infinitely many sort symbols [n] with n > 0, and the function and
predicate symbols listed in Table 1 together with their type (given after the symbol ::).
Each sort [n] denotes the set of bit-vectors of width n.

4

Table 1: Tbv signature Σbv

Σeq sorts [n] n > 0 constants 0, 1 :: [1]

equal = :: [n]× [n] . . .
Σcon concat ◦ :: [m]× [n]→ [m+ n] extract [i : j] :: [m]→ [i− j + 1]

Σineq less < :: [n]× [n] less-eq ≤ :: [n]× [n]

Σari plus + :: [n]× [n]→ [n] neg − :: [n]→ [n]

times × :: [n]× [n]→ [n] div / :: [n]× [n]→ [n]

rem % :: [n]× [n]→ [n]

Σbool and & :: [n]× [n]→ [n] or | :: [n]× [n]→ [n]

not ∼ :: [n]→ [n] xor ⊕ :: [n]× [n]→ [n]

Σshift left shift << :: [n]× [n]→ [n] right shift >> :: [n]× [n]→ [n]

We will write t[n] for some fixed n to denote that t is aΣbv-term of sort [n]. Note that
except for the constants, the function and predicate symbols in Table 1 are overloaded;
for example, + stands for any of the symbols in the infinite family {+ :: [n], [n] →
[n]}n>0. For simplicity, we restrict our attention to a subset of the bit-vector operators
described in the SMT-LIB v2.0 standard [4]; the missing ones can easily be expressed
in terms of those given here.

The Tbv-satisfiability of conjunctions of equalities between terms over the core sub-
signature Σeq ∪ Σcon is decidable in polynomial time [9, 11]. However, adding almost
any of the additional operators, or allowing for arbitrary Boolean structure, makes the
Tbv-satisfiability problem NP-hard [6].

4 The DPLL(T) Framework

State-of-the-art SMT solvers efficiently decide the satisfiability of quantifier-free first-
order formulas with respect to a background theory T by using the DPLL(T) frame-
work [20]. The framework extends the Davis-Putnam-Logemann-Loveland (DPLL) de-
cision procedure for SAT to handle reasoning in a theory T by relying on a theory solver
(T -solver): a decision procedure for the T -satisfiability of ΣT -constraints. Algorithm
1 gives a simplified algorithmic view of the DPLL(T) framework with a generalized
theory interface. The algorithm takes as input a T -formula ψ and returns sat if ψ is
T -satisfiable and unsat otherwise. Variable C stores the set of working clauses and A
the current truth assignment for C as a sequence of T -literals.We use [] for the empty
assignment and ; for the concatenation of two assignments. Initially, A is empty and C is
simply the set of clauses obtained by converting ψ to Conjunctive Normal Form (CNF).
We say that a pair 〈A,C〉 is inconsistent if the assignment A falsifies some clause in C;
it is consistent otherwise. An assignment A propositionally satisfies ψ if ψ is satisfied
by every full assignment extending A.

In Algorithm 1, the SAT and theory solver work together to augment A and C via
SatSolve and TheoryCheck, respectively. The input to SatSolve is an assignment
and a set of clauses 〈A,C〉. The return value is a new pair 〈A′,C′〉 derived from the

5

Algorithm 1: DPLL(T)
Input: ψ input formula
A← [];
C← toCNF(ψ);
while true do
〈A,C〉 ← SatSolve(A, C);
if ⊥ ∈ C then

return unsat;

final← Satisfies(A, ψ);
〈P, L〉 ← TheoryCheck(A, final) ;
if L = ∅ and final then

return sat;

〈A,C〉 ← 〈A;P,C ∪ L〉

input one such that either 〈A′,C′〉 is consistent or ⊥ ∈ C ′.4 If the input pair 〈A,C〉
is consistent, SatSolve can extend A with implied literals, deduced by Boolean Con-
straint Propagation (BCP), or with one decision literal, chosen non-deterministically
from the currently unassigned ones. On the other hand, suppose that 〈A,C〉 is incon-
sistent. If A contains no decision literals, then the search is complete (no satisfying
assignment can be found) and SatSolve indicates this by extending C with the empty
clause ⊥. Otherwise, it resolves the conflict in 〈A,C〉 by doing CDCL-style conflict
analysis [19], popping literals from A until 〈A,C〉 becomes consistent, and then adding
at least one new implied literal.

The function Satisfies checks whether A propositionally satisfies the input for-
mula ψ, setting final to true if so, and to false otherwise. An efficient implementation
of Satisfies is described in Section 5.2.

The function TheoryCheck implements a T -solver and returns a sequence P of
propagations and a set L of theory lemmas that are used to update 〈A,C〉 as follows:

1. If TheoryCheck finds A to be T -unsatisfiable it identifies a T -unsatisfiable subset
{l1, . . . , ln} of literals in A and returns 〈[], {¬l1 ∨ · · · ∨ ¬ln}〉. Adding this clause
to C forces SatSolve to backtrack and search for a different assignment.

2. If A is T -satisfiable, TheoryCheck computes a (possibly empty) sequence P of
theory-propagated literals (unassigned literals in C that are T -entailed by A), re-
turning 〈P, ∅〉. P is added to A, which helps guide the SAT search in the right
direction by avoiding unnecessary decisions.

3. TheoryCheck may not be able to efficiently determine the T -satisfiability of A
as this may require reasoning by cases. TheoryCheck can request case splits by
returning a set L of clauses encoding a T -valid formula. This effectively delegates
the case splitting to the main Boolean engine.5

4 SatSolve, which encapsulates the SAT solver, also manages the mapping between atoms and
their propositional abstractions and vice versa.

5 For Satisfies to work correctly, it is then necessary to update the current formula ψ to
ψ ∧

∧
ϕ∈L ϕ.

6

We say a call to TheoryCheck is final when the parameter final is set to true. Final calls
to TheoryCheck must either ensure that A is T -satisfiable, or return one or more theory
lemmas.

Two important aspects of theory solvers are not captured here. The first is that actual
implementations of TheoryCheck are stateful: they store a copy of the assignment A
internally and are instructed to push and pop literals from it as A is modified by the
main loop. In practice, it is crucial that the theory solver be able to backtrack efficiently
when A is shrunk, and reason incrementally when it is extended. The second aspect is
that a theory solver must be able to provide an explanation for each theory-propagated
literal p. This is a clause of the form ¬l1 ∨ · · · ∨ ¬ln ∨ l for some subset {l1, . . . , ln}
of A, explaining why the literal was entailed. Explanations are needed by SatSolve

during its conflict analysis. It is important for efficiency that the theory solver be able
to compute explanations lazily, only as needed by SatSolve.

5 A Lazy Bit-vector Solver

We now proceed to give the details of our lazy bit-vector solver LBV, designed to fulfill
the requirements of the TheoryCheck interface described above.

5.1 Subsolvers

The LBV solver consists of four sub-solvers: the equality solver LBVeq, the core solver
LBVcore, the inequality solver LBVineq and the bit-blasting solver LBVbb. Each sub-
solver is incremental and provides the theory solver functionalities described in Sec-
tion 4. The architecture of LBV was designed to be modular and extensible: all the
bit-vector reasoning is confined within the solver, and it is easy to enhance it by adding
more sub-solvers.

Algorithm 2: LBVCheck
Input: 〈A, final 〉
〈Peq, Leq, complete〉 ← LBVCheckeq(A, final) ;
if complete then

return 〈Peq, Leq〉 ;

〈Pineq, Lineq, complete〉 ← LBVCheckineq(A;Peq, final) ;
if complete then

return 〈Peq;Pineq, Leq ∪ Lineq〉 ;

〈Pbb, Lbb〉 ← LBVCheckbb(A;Peq;Pineq, final) ;
return 〈Peq;Pineq;Pbb, Leq ∪ Lineq ∪ Lbb〉

Algorithm 2 shows the implementation of LBVCheck, the TheoryCheck from Al-
gorithm 1 corresponding to the LBV solver. LBVCheck calls the subsolvers in increasing
order of computational cost. For each i ∈ {eq, ineq, bb}, LBVChecki returns a sequence

7

Pi of literals, a set Li of clauses, and a Boolean value indicating whether the solver is
complete or not. A solver i is complete if LBVChecki detects an inconsistency or if it
determines that A is consistent (which it can only do if all the literals in A fall into the
sub-solver’s fragment of Tbv). If none of the solvers detect an inconsistency, LBVCheck
returns the collection of all the propagated literals and lemmas generated by the indi-
vidual sub-solvers.

The sub-solvers process all literals in A. However, except for LBVbb, they reason on
an abstraction of the literals. In particular, LBVeq treats all function and predicate sym-
bols other than = as uninterpreted, while LBVineq (as well as LBVcore) treats as fresh
variables any terms or predicates whose top symbol does not belong to its signature.

Equality Solver The equality solver LBVeq, corresponding to LBVCheckeq, uses a vari-
ant of well-known polynomial-time congruence-closure (CC) algorithms [14] to decide
the satisfiability of constraints inΣeq. Standard CC algorithms assume that sorts have an
unbounded cardinality. This makes them incomplete for reasoning about equality and
disequality constraints in Tbv. For example, the formula x[1] 6= y[1]∧x[1] 6= z[1]∧y[1] 6=
z[1] is not satisfiable: there are only two distinct bit-vectors of width 1.

We handle the finite cardinality of the bit-vector sorts by trying to build a satisfying
valuation for all the terms in a given Σeq-constraint. In final calls to check, once the
CC algorithm is done and has not detected any inconsistency, LBVeq attempts to assign
a distinct constant value to each congruence class c0[n], . . . , c

k
[n] for each sort [n] in the

input problem. If this is not possible (because k > 2n), it returns a lemma of the form:∨
0≤i<j≤2n

ri[n] = rj[n]

where ri is a representative for class ci[n], stating that at least two of the first 2n + 1
congruence classes must be merged.

This process continues until either the splits lead to an inconsistency or the sub-
solver finds a satisfying valuation. The cardinality lemmas are currently generated only
if the congruence classes consist just of bit-vector constants and variables (otherwise
the solver reports that it is incomplete).

Core Solver The core solver is based on the slicing algorithms presented in [9, 11].
It decides conjunctions of equalities over Σeq ∪ Σcon in polynomial time, by reducing
the problem to just equality reasoning. The key idea of the algorithm is expressing each
variable as a concatenation of disjoint slices. The coarsest such decomposition that
guarantees that none of the slices overlap given the input set of equalities, is called the
coarsest base. In our experience, the core solver is most efficient on problems involving
only core theory terms, and thus it is heuristically turned on for such instances.

Inequality Solver The inequality solver LBVineq can decide the satisfiability of (Σeq∪
Σineq)-constraints by using an incremental special-purpose algorithm.6 LBVineq only

6 This problem is a special case of modular difference logic that can be reduced to integer
difference logic, as there is no wrap-around behavior due to overflows.

8

needs to reason about < and ≤ since equality can be expressed in terms of ≤, and
disequalities can be reasoned about by requesting a splitting lemma. For the rest of this
section we assume all inequalities are unsigned (the signed case is analogous). We will
use C to denote either < or ≤, and C∗ for the transitive closure of C. A valuation M
is a mapping from bit-vector variables v[n] to constant values in [n]. For convenience,
we extend M to map constants to themselves, and to map other bit-vector terms and
formulas to the constants obtained by mapping their sub-expressions and simplifying.
A valuation M satisfies a bit-vector constraint φ if M(φ) = true .

Definition 1. Let I be a conjunction of inequality constraints over variables and con-
stants of the same sort [n]. A valuation M is the least model of I if M satisfies I and for
all valuations M′ satisfying I and all terms t in I , M(t) ≤ M′(t).

It can be shown that every such satisfiable constraint I has a least model. Given I ,
LBVineq builds the least model by incrementally processing the inequalities. We will
use I to refer to the already processed inequalities, and define the starting model M as:

M(t[n]) :=

{
t[n] if t[n] is a constant,
0[n] otherwise

where 0[n] is the binary representation of 0 in n bits. We maintain the invariant that M is
the least model of I. Given a new inequality a C b, we want to extend M to a least model
of I ∪ {a C b}, or discover that the problem is unsatisfiable. If M(a) C M(b) already
holds, we are done. Otherwise, the least model property guarantees that terms a and b
have the least possible values. Therefore, to satisfy a C b we must increase b’s value, if
possible, to match that of a. The update cannot violate previously satisfied inequalities
of the form {t1 C t2 | t2 C∗ b}. The only terms whose values may need to be updated
further are terms t such that b C∗ t. We reach a conflict when: (i) we try to update
the model value of a constant, (ii) increasing the model value leads to an overflow or
(iii) we detect an inequality cycle. The algorithm can be efficiently implemented using
a priority queue that prioritizes updating the value of terms with lower model values.

22 aa cc

bb

3 3

0

< 33≤

<

≤

22 aa cc

bb

3 4

3

< 33≤

<

≤

≤

(a) (b)

Fig. 1: The nodes are bit-vector terms; gray nodes are constants and white ones variables. Each
node has an associated constant, its M value. The continuous edges represent inequalities. The
dotted edges are reason edges: they point to the node that forced the last update to the current
node’s value.

9

Example 1. Consider the following set of inequalities over bit-vector terms of bit-width
8 where, for brevity, we use decimal numerals to denote bit-vector constants: I = {2 <
a, a ≤ c, b < c, c ≤ 3}. Figure 1a shows the least satisfying model for I. To process
the new inequality a ≤ b, we add the corresponding inequality edge, and update the
value of b to M(a). This in turn requires increasing the value of c to M(b) + 1. We
identify a conflict while revisiting c ≤ 3: 3 is a constant and M(c) ≤ 3 does not hold
(Figure 1b). Because c has the lowest possible value, I must be unsatisfiable. We build
the following conflict by including c ≤ 3 and traversing back along the constraints that
force the value of c to be 4: {2 < a, a ≤ b, b < c, c ≤ 3}.

Bit-blasting Solver Finally, the bit-blasting solver LBVbb can decide the satisfiability
of bit-vector constraints over the entire Σbv signature. At its heart is a second SAT
solver SATbb distinct from the DPLL(T) Boolean engine. Our implementation uses the
open source MiniSAT solver [15]. We instrumented MiniSAT to efficiently implement
the main requirements on a T -solver: incrementality, conflict detection and propagation
of entailed literals.

Incrementality. Most SAT solvers do not have full support for incremental solv-
ing.7 Incrementality can be simulated through a feature known as solve with assump-
tions [15]: given a fixed set C of input clauses, the SAT solver can check their satis-
fiability with respect to the assumption that some of the variables appearing in C are
assigned to be true or false. We exploit this feature by creating a marker variable aBB

for each atom a in the formula being checked. When a appears in an assertion, instead
of bit-blasting a, we bit-blast aBB ⇔ a. We can then call solve with assumptions with
the set of literals ABB := {aBB | a ∈ A} ∪ {¬aBB | ¬a ∈ A}.

Conflict generation. IfA is unsatisfiable, we use SATbb to determine an inconsistent
subset of ABB via resolution and return the corresponding subset of A as a conflict.

Propagation. On a non-final call to LBVCheckbb, we want to be able to determine
whether any theory literals can be propagated without doing a full SAT check. To do
this, we again use solve with assumptions but only allow the SAT solver to do Boolean
Constraint Propagation (BCP), stopping it before any decisions are made. If BCP suc-
ceeds in deducing the value of a marker variable aBB , the corresponding atom a can be
propagated to have the same value that BCP assigned to aBB . The explanation for the
propagation can be computed using the SAT solver’s conflict resolution infrastructure.
As mentioned in Section 4, it is important to compute propagation explanations lazily
as not all propagated literals may need to be explained. Unfortunately, the interaction
between the SAT solver’s solve-with-assumptions feature and non-chronological back-
tracking can cause the solver to lose the explanation for a propagated literal. To over-
come this problem, we implemented a simple check that detects when backtracking can
lead to the loss of explanations, and in such cases backtrack to a more conservative level
instead. Algorithm 3 shows the implementation of LBVCheckbb. BvSatBCP implements
the call to SATbb limited to BCP, while BvSatSolve is a normal full call to SATbb.

7 More input clauses can be added during solving, but the main challenge of removing problem
clauses remains.

10

Algorithm 3: LBVCheckbb
Input: 〈A, final 〉
〈P, L〉 ← BvSatBCP(A) ;
if final and L = ∅ then

L← BvSatSolve(A) ;

return 〈P, L〉 ;

5.2 Lazy Techniques

The lazy DPLL(T) framework enables several techniques that are difficult or impossible
to use with eager solvers. In this section we discuss two of these techniques: applying
word-level rewrites during solving (inprocessing) and reducing the problem size by only
reasoning about atoms relevant in the current search context (relevancy-based decision
heuristics).

Inprocessing Techniques Before engaging in potentially expensive SAT reasoning,
LBVbb relies on the inprocessing module to check if the problem can be solved or sig-
nificantly simplified by word-level simplification techniques. This is done by a process,
described in Algorithm 4, that has the flavor of Gaussian elimination. It works by iter-
ating over a worklist of theory literals W while maintaining a substitution map σ.

Initially, W is initialized to the set of literals A assigned to true in the current search
context. For each worklist assertion w ∈ W , we first apply the substitution map, and
then rewrite it using word-level simplification techniques (Simplify). The SolveEq

procedure then attempts to solve the updated assertion w to obtain a new substitution.
Alternatively, it can also learn new equalities entailed by w and add these to the work-
ing list.8 The working list W and the substitution map σ are updated with this new
information, and the process is repeated to a fixpoint.9

If any of the assertions in W reduces to false , we have a conflict. If there are no
such obvious inconsistencies we can run the LBVCheckbb routine on the simplified set
of assertions W . We do this heuristically, if the problem has been reduced enough in
terms of the circuit size. We found checking the simplified assertions when they are less
than 50% of the size of the original assertions to be a good heuristic.

Relevancy-Aware Decision Heuristics The idea of relevancy is best understood with
a simple example. Let ψ = ¬a ∧ (b ∨ ϕ) with assignment A = [¬a; b]. Note that A
propositionally satisfies ψ regardless of how many unassigned literals are in ϕ. The
literals in ϕ are irrelevant.

The DPLL(T) framework makes it easy to add a decision heuristic that avoids split-
ting on irrelevant literals. In particular, we can (i) detect when an assignment A be-
comes propositionally satisfying and stop early in order to reduce the number of literals

8 In our implementation, we solve xor equations and slice equations between concatenation
expressions to get new equalities.

9 The data-structures are enhanced with extra book-keeping information to keep track of expla-
nations. We omit these details for simplicity.

11

Algorithm 4: IN-PROCESSING

Input: A
〈W, σ〉 ← 〈A, []〉;
changed← true;
while changed do

changed← false;
for w ∈ W do

w← Simplify(σ(w)) ;
〈W’, σ′〉 ← SolveEq(w);
if W’ 6= ∅ or σ 6= [] then

changed← true ;

〈W, σ〉 ← 〈W ∪W’, σ;σ′〉;

if false ∈ W then
return Conflict;

return BvSatSolve(W);

sent to theory solvers and (ii) employ decision heuristics that allow the SAT solver
to decide only on literals relevant in the current search context. We use circuit-based
techniques of maintaining justification frontiers [2, 17] to track which literals are rele-
vant in each context.10 The call to Satisfies in Algorithm 1 examines the Boolean
structure of ψ and determines whether the current assignment A is sufficient to propo-
sitionally satisfy it. It does so by incrementally computing the justification frontier as
the assignment A changes.

This heuristic, which we also call the justification heuristic, has a significant perfor-
mance impact on bit-vector benchmarks, as shown in Section 6.

6 Experimental Results

In this section we present a comparative experimental evaluation of the eager and lazy
approaches11. To this end we implemented both the lazy theory solver LBV as well as
an eager theory solver within the SMT solver CVC4. After applying the same prepro-
cessing steps as the lazy solver, the eager solver uses standard bit-blasting techniques
to assert the formula to its MiniSAT backend. To gauge the complementarity of the
two approaches we used CVC4’s portfolio infrastructure which allows us to run the
two solvers in different parallel threads. In this setup, CVC4 waits for the first thread
that finishes with an answer and then kills the other, thus getting the best performance
between the two theory solvers each time (modulo memory usage).

All experiments were performed on AMD Opteron 250 2.4GHz machines with a
time limit of 5 minutes and memory limit of 3GB. We evaluate our solvers’ perfor-
mance on a large selection of SMT-LIB v2.0 benchmarks from the QF BV logic [5].
Because of time constraints, we could not include all 31K QF BV benchmarks from
10 A different technique to reduce the number of literals sent to theory solvers is proposed in [12].
11 Source code and binaries at http://cvc4.cs.nyu.edu/papers/CAV2014-bitvectors/

http://cvc4.cs.nyu.edu/papers/CAV2014-bitvectors/

12

(a) cvcLz vs cvcLz-J (b) cvcLz vs cvcLz-P (c) cvcLz vs cvcLz-Alg

Fig. 2: Impact of various features of the lazy solver. All plots are on a logarithmic scale.

SMT-LIB v2.0. Instead, we selected 3786 of them by focusing on examples coming
from verification applications: we excluded the answer-set programming asp family as
well as the check2 and crafted families that contain toy examples. To prevent very large
families such as sage (26K) and spear (1694) from dominating the results, we used a
randomized process to select a representative fraction of the benchmarks from them.
Because many of the sage problems are very easy, we considered only benchmarks
that take more than 10 seconds to solve. From the spear family we included all small
sub-families, and randomly selected a fraction of the largest subfamily. For brevity, we
merge here the four families with a brummayerbiere prefix into brummayerbiere*, uclid
and uclid-contrib-smtcomp09 into uclid*, and stp and stp-samples into stp*.

We use cvcE to refer to the implementation of the eager solver in CVC4, cvcLz
for the lazy LBV solver and cvcPll for the parallel solver. The letters preceeded by a
minus sign represent which feature of cvcLz has been turned off : J for the justification
heuristic, P for LBVbb propagation, Alg for all of the algebraic sub-solvers (LBVeq,
LBVcore, LBVineq) plus the word-level in-processing techniques.

The scatter plots in Figure 2 compare the runtime performance of the full featured
lazy solver with a version without one of the features above. Figure 2a shows the impact
of the justification heuristic. While overall the justification heuristic improves perfor-
mance, it has a negative impact on benchmarks in the mcm family. These problems
consist of conjunctions of large disjunctions. On such problems the justification heuris-
tic forces SATmain to choose a naive pattern of decisions by always initially deciding on
the first disjunct of each conjunct. Figure 2b shows that LBVbb propagation is essen-
tial to solving difficult benchmarks, although it adds some overhead to the easier ones.
Figure 2c shows the impact of all the word-level techniques enabled by the lazy ap-
proach. The plot shows a relatively small overhead when these techniques do not help,
but dramatic improvements when they do apply.

Table 2 compares the performance of cvcE, cvcLz and that of the only other bit-
vector solver that supports lazy bit-blasting: mathsatL (smtcomp2012 version with lazy
solving enabled). The eager solver cvcE performs better on families that involve bit-
level manipulations, such as the brummayerebiere* families. The lazy solver cvcLz ex-

13

Table 2: Eager vs Lazy
cvcE cvcLz mathsatL

set solved time (s) solved time (s) solved time (s)

vs (VS3,11) 0 0.0 0 0.0 0 0.0
be (bench-ab,285) 285 57.5 285 2.4 285 2.4
br (brummayerbiere*,206) 138 3732.3 112 2923.2 100 3937.5
co (core,672) 132 3208.4 672 596.4 509 22345.5
lf (lfsr,240) 186 9451.9 240 2286.3 177 12412.2
si (simple-processor,64) 33 1566.4 64 48.7 18 845.6
ca (calypto,23) 10 9.2 15 100.7 11 233.4
dw (dwp-formulas,332) 332 68.2 332 5.5 332 5.9
ga (galois,4) 1 0.4 1 0.4 1 2.5
gu (gulwani-pldi08,6) 6 49.1 6 63.9 6 73.8
mc (mcm,185) 64 3937.7 13 392.9 2 278.9
pi (pipe,1) 0 0.0 0 0.0 0 0.0
ru (rubik,7) 5 157.9 2 110.6 6 313.4
sa (sage,189) 188 205.0 188 174.9 189 51.2
sp (spear,680) 675 24057.0 648 9347.0 478 14579.5
st (stp*,427) 424 170.3 424 108.6 425 70.5
ta (tacas07,5) 3 19.3 5 294.4 5 136.8
uc (uclid*,423) 414 2651.5 420 3148.9 420 1132.5
uu (uum,8) 2 33.9 1 1.5 1 0.3
wi (wienand-cav2008,18) 14 32.2 14 34.7 14 37.5

2912 49408.4 3442 19641.2 2979 56459.6
us (unique-solve) 4 6 0

Table 3: Comparison with other solvers
cvcPll yices2 stp2 z3 boolector sonolar mathsat

set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

vs (11) 0 0.0 0 0.0 1 270.3 3 341.7 2 258.7 0 0.0 0 0.0
be (285) 285 39.1 285 0.0 285 0.2 285 8.5 285 3.0 285 0.1 285 2.5
br (206) 137 3024.0 113 1718.1 143 3188.5 115 4005.1 155 4060.8 125 1858.9 123 3741.9
co (672) 672 726.6 326 5717.9 191 3126.4 672 798.4 656 32176.8 266 2796.8 587 21791.1
lf (240) 240 2481.3 181 8394.7 196 8896.3 232 12183.3 213 15939.2 219 3385.1 139 7644.1
si (64) 64 57.8 35 824.3 54 1911.1 60 1134.6 60 2377.2 37 1038.4 25 1283.3
ca (23) 15 349.1 9 6.1 11 3.5 11 50.8 9 45.0 9 20.4 11 56.2
dw (332) 332 47.4 332 0.0 332 0.9 332 10.0 332 0.0 332 0.2 332 4.2
ga (4) 1 0.5 1 0.1 1 0.1 1 0.2 1 0.3 1 0.1 1 0.6
gu (6) 6 44.8 6 25.5 6 26.7 6 31.2 6 42.1 6 39.3 6 56.5
mc (185) 63 6152.2 54 5308.3 44 3616.9 55 4302.8 45 3452.2 50 3592.0 42 3429.4
pi (1) 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
ru (7) 5 142.7 5 99.5 7 323.4 6 148.2 7 343.5 7 190.1 6 342.8
sa (189) 188 215.5 189 9.9 189 35.2 189 49.5 189 706.9 189 39.9 189 49.1
sp (680) 677 11028.4 680 400.5 679 1756.6 675 7546.6 676 5360.9 677 6910.1 676 13175.0
st (427) 424 168.0 425 5.1 425 41.9 425 58.8 425 22.9 425 46.7 425 47.1
ta (5) 5 249.8 3 1.5 5 348.4 3 7.2 5 465.6 5 410.4 5 54.9
uc (423) 419 3315.6 416 58.6 422 902.0 421 1856.4 422 1368.0 423 1207.7 423 1226.6
uu (8) 2 605.9 2 30.4 2 29.1 2 11.1 2 11.5 2 17.7 2 64.5
wi (18) 14 30.8 14 68.6 14 64.6 14 41.4 14 23.3 9 36.1 14 36.6

3549 28679.7 3076 22669.3 3007 24542.1 3507 32585.9 3504 66658.1 3067 21590.1 3291 53006.6
us * 3 1 2 10 0 1

14

cels on families calypto, tacas07, lfsr, core and simple processors that benefit from al-
gebraic reasoning. Furthermore, cvcLz solves 6 problems that none of the other solvers
we considered could solve in the given time limit. The unique-solve row at the bottom
of Table 2 and Table 3 shows this figure for all other solvers.

Finally, in Table 3 we compare cvcPll with other state-of-the-art bit-vector solvers:
yices (2.1.1), stp2 (r1673), z3 (r0e74362), boolector (1.6), sonolar (smtcomp2012) and
mathsat (smtcomp2012 with eager solver). For the parallel solver cvcPll we report wall
clock time. The portfolio solver cvcPll solves the largest number of problems. We at-
tribute this increase in performance to the complementary nature of the two approaches.
To illustrate that the lazy cvcLz approach complements eager solvers, we also simulated
running cvcLz in parallel with two of the most efficent eager bit-vector solvers: boolec-
tor and z3. We did this by chosing the best result from either solver for each problem.
Even for these solvers, cvcLz greatly improves on their performance: the combined
boolector+cvc4L solves 57 more problems in a quarter of the original boolector total
time and z3+cvcL solves 42 more problems in just over half the total time.

Discussion We now provide a more detailed analysis of the tradeoffs between the two
approaches, based on our experimental results.

The eager solver cvcE is particularly efficient on hardware equivalence checking
benchmarks that verify the equivalence of a bit-level implementation to its word-level
specification. In such cases the correctness of the proof often depends on bit-level prop-
erties that benefit from efficient propositional analysis more than the kind of algebraic
reasoning done in the lazy solver. This is especially obvious in the difference in the per-
formance of cvcE and cvcLz on the brummayerbiere* family, as can be seen in Table 2.

Maintaining the word-level structure during the computation in LBV requires es-
tablishing a common language between SATmain, the SAT solver driving the main
DPLL(T) search, and SATbb. In our approach, this language consists of the Tbv-atoms
and represents a frontier that partitions the problem between the two solvers. LBV con-
flicts can be seen as interpolants between the part of the problem describing the control
flow (the Boolean abstraction) and the datapath. Restricting the conflict language to
Tbv-atoms limits the granularity of the conflicts: we cannot express bit-level conflicts.
In some cases this can prove inefficient. Consider the following example.

Example 2. The following assertions are unsatisfiable. All paths through the disjunction
force the last bit of the xi variables to be 0[1]. Therefore their disjunction must also have
the least significant bit equal to 0[i] which makes the equality false.

n∨
i=0

xi = y ◦ 1[1] ∧
n∧

i=0

(xi = ti ◦ 0[1] ∨ xi = si ◦ 0[1])

In Example 2, an eager solver may potentially learn that the last bit of xi has to be
0. The lazy solver on the other hand, will have to try all possible paths through the
disjunction and learn a conflict for each one of them.

For problems with expensive arithmetic operators, the benefits of maintaining the
word-level structure outweigh this limitation. While eager solvers have sophisticated

15

rewrite techniques, such techniques are usually only applicable at the top level. Equiva-
lence checking problems between higher level designs can require proving the equiva-
lence of results obtained by taking different control-flow paths. These can be encoded as
large ite (if-then-else) term trees with a similar structure, as in the following example.

Example 3. The formula below is unsatisfiable. The conditions on all paths through the
ite trees force the leaves to be equal.

ite(x0 = y0, x0 ∗ (ite(x1 = y1, 2 ∗ x1, 2)), 2) 6=
2∗ ite(x0 = y0, y0 ∗ (ite(x1 = y1, y1, 1)), 1)

Collecting the assertions down any ite path in the example, and applying simple
equality substitutions renders each such path trivially unsatisfiable. No multiplication
reasoning is required. However, bitblasting this expression results in a difficult SAT
problem as the large circuits required to model the products obscure the trivial incon-
sistency. The calypto, lfsr and simple processors (Table 2) exhibit this type of struc-
ture. On these families, our LBV in-processing module can often simplify each call to
TheoryCheck to false or a significantly simpler circuit. Other verification problems,
such as checking the correctness of sorting algorithms, rely on the arithmetic properties
of a total order. The equality, core and inequality subsolvers can decide such problems,
often without any bit-level reasoning at all.

7 Future Work

For future work, we plan to both improve the performance of the lazy solver and in-
vestigate heuristics for automatically selecting between the eager and lazy solvers. In
Section 6 we gave some intuition for which of the two approaches is best suited for
which problem structure. It would be interesting to see if it is possible to statically
determine which solver is likely to perform better.

The lazy solver can be improved by adding more sub-theory solvers, such as a sub-
solver complete for some fragment of modular arithmetic. The inprocessing module
currently only handles equality reasoning, xor solving and slicing. Although it is al-
ready remarkably efficient, the SolveEq routine could be generalized to other types of
equation solving.

Another way to improve the performance of the lazy solver is to minimize the con-
flicts obtained from the bit-blasting subsolver. The conflicts returned by that subsolver
with assumptions infrastructure are not guaranteed to be minimal. Indeed, in our expe-
rience they are often non-minimal, in some cases larger than minimal ones by a factor
of 10. The challenge here is to minimize the conflict in an efficiently since satisfiability
queries in Tbv are potentially very expensive.

One way to expand the scope of the lazy bit-vector solver, and overcome some of
its limitation, would be to increase the kind of conflicts it can return. Currently, the
solver can only return conflicts in terms of bit-vector atoms. It would be interesting to
experiment with expanding this vocabulary dynamically, by adding conflicts that refer
to individual bits of the terms. This could potentially be supported by using the splitting
on demand framework [3].

16

References

1. D. Babić and M. Musuvathi. Modular arithmetic decision procedure. Microsoft Research
Redmond, Tech. Rep. TR-2005-114, 2005.

2. C. Barrett and J. Donham. Combining SAT methods with non-clausal decision heuristics.
Electronic Notes in Theoretical Computer Science, 125(3):3–12, 2005.

3. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in SAT modulo
theories. In M. Hermann and A. Voronkov, editors, LPAR ’06, volume 4246 of Lecture Notes
in Computer Science, pages 512–526. Springer-Verlag, Nov. 2006.

4. C. Barrett, A. Stump, and C. Tinelli. The smt-lib standard: Version 2.0. In SMT, volume 13,
2010.

5. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2010.

6. C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-vector arithmetic. In
DAC, pages 522–527, 1998.

7. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors and arrays.
In TACAS, pages 174–177. 2009.

8. R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. Hanna, A. Nadel, A. Palti, and R. Se-
bastiani. A lazy and layered SMT BV solver for hard industrial verification problems. In
CAV, pages 547–560, 2007.

9. R. Bruttomesso and N. Sharygina. A scalable decision procedure for fixed-width bit-vectors.
In ICCAD 2009, pages 13–20, 2009.

10. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT solver. In
TACAS, pages 93–107. 2013.

11. D. Cyrluk, O. Möller, and H. Rueß. An efficient decision procedure for the theory of fixed-
sized bit-vectors. In CAV, pages 60–71, 1997.

12. L. de Moura and N. Bjørner. Relevancy propagation. Technical Report MSR-TR-2007-140,
Microsoft Research, 2007.

13. L. De Moura and N. Bjrner. Z3: An efficient SMT solver. TACAS, page 337340, 2008.
14. D. Detlefs, G. Nelson, and J. Saxe. Simplify: a theorem prover for program checking. JACM,

52(3):365–473, 2005.
15. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and applications of satisfia-

bility testing, pages 502–518. Springer, 2004.
16. A. Franzén. Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and Some

Extensions to SMT. PhD thesis, University of Trento, 2010.
17. H. Fujiwara, S. Member, T. Shimono, and S. Member. On the acceleration of test generation

algorithms. IEEE Transactions on Computers, 32:1137–1144, 1983.
18. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In CAV, pages

519–531, 2007.
19. J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In

A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 4, pages 131–
153. IOS Press, February 2009.

20. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From
an abstract DPLL procedure to DPLL(T). JACM, 53(6):937–977, 2006.

	A Tale Of Two Solvers: Eager and Lazy Approaches to Bit-vectors
	Introduction
	Related work
	Formal Preliminaries
	The DPLL(T) Framework
	A Lazy Bit-vector Solver
	Subsolvers
	Lazy Techniques

	Experimental Results
	Future Work

