Ground Interpolation for Combined Theories

Amit Goell, Sava Krsti¢!, and Cesare Tinelli?

1 Strategic CAD Labs, Intel Corporation
2 Department of Computer Science, The University of Iowa

Abstract. We give a method for modular generation of ground in-
terpolants in modern SMT solvers supporting multiple theories. Our
method uses a novel algorithm to modify the proof tree obtained from
an unsatifiability run of the solver into a proof tree without occurrences
of troublesome “uncolorable” literals. An interpolant can then be read-
ily generated using existing procedures. The principal advantage of our
method is that it places few restrictions (none for convex theories) on
the search strategy of the solver. Consequently, it is straightforward to
implement and enables more efficient interpolating SMT solvers. In the
presence of non-convex theories our method is incomplete, but still more
general than previous methods.

1 Introduction

Given mutually inconsistent formulas F' and G in some logic, an interpolant I
is a formula such that: (i) F = I; (i) G,I [false; and (%ii) the non-logical
symbols in I occur in both F' and G. In [13], McMillan presented an algorithm
for propositional interpolation and described a complete procedure for model-
checking finite-state systems. In this method, interpolants are used to derive
property-driven overapproximations of reachable state sets from unsatisfiable
symbolic traces. This technique has proven to be efficient in practice, and the
recipe in [13] is used as a starting point in many finite-state model checkers.

A natural desire is to extend interpolation-based methods to decidable frag-
ments of richer logics, for use in applications such as software model checking.
Most solvers for satisfiability modulo theories (SMT) employ a propositional SAT
solver in cooperation with theory-specific decision procedures (theory solvers) to
solve queries in the combined language. The promise of interpolating SMT solvers
has been demonstrated by the use of FOCI [14] for model-checking C programs
[10, 15]. However, their development has not been nearly as widespread as for
the propositional case; we know of only two other interpolating SMT solvers [6,
3.

The quick adoption of propositional interpolation is in large part due to the
simplicity of the propositional interpolation algorithm. It requires a SAT solver
enhanced only with the capability to produce a resolution refutation for unsat-
isfiable formulas. The interpolant is computed by a simple recursive function on
resolution proofs. The published solutions for SMT interpolation, on the other
hand, either describe an ad hoc solver for a specific collection of theories, or

require significant modifications in more general SMT solvers to limit them suf-
ficiently for the described method to work. In this paper we present a simple
algorithm for interpolant generation from refutations produced by SMT solvers,
while placing minimal restrictions on the solvers’ search strategy.

Related Work. In the seminal work [14], McMillan produced a proof system for
the ground theory of linear arithmetic with uninterpreted functions and showed
how to generate interpolants from such proofs. Yorsh and Musuvathi [18] ex-
tended the approach to general combinations of theories that are individually
interpolant-generating. These authors were the first to isolate the important
requirement that the theories be equality-interpolating: if a theory solver can
derive x=y from F A G, where x occurs only in F' and y occurs only in G
(“uncolorable equality”), then it must be able to derive x=t and t=y for some
term ¢ in the language common to F' and G. There are two shortcomings to
their approach. Firstly, it requires the generation and propagation of equality-
interpolating terms on the fly, thus imposing an overhead during the search
procedure of the SMT solver. Secondly, it requires theory solvers to be equality-
propagating. As noted in [8], equality propagation can take the majority of time
in some decision procedures for little gain. Indeed, modern SMT solvers let the
SAT solver split on equalities and either forgo equality propagation completely
(delayed theory combination (DTC) [4]) or use it sparingly (model-based theory
combination [7]).

The MATHSAT [6] and CSISAT [3] tools avoid the problem of on-the-fly
creation of equality interpolants; they create only those equality interpolants
that are needed for a series of local proof transformations that modify refutations
produced by their solvers into the form suitable for deriving interpolants. The
authors of [6] identify the class of ie-local refutations which are amenable to such
transformations. However, the search strategy in both tools is restricted. CSISAT
requires equality-propagating decision procedures, while MATHSAT simulates
equality propagation with heuristics to restrict delayed theory combination.

The interpolation algorithms in all these methods and ours rely on theory-
specific interpolation procedures such as those in [14, 17,6, 9].

Contributions. We define almost-colorable refutations and present a two-phase
algorithm for the generation of interpolants from such refutations. In the first
phase, the almost-colorable refutation is transformed into a colorable refutation.
The interpolant is then derived from the colorable refutation in the second phase.

There are several advantages to our approach. The class of almost-colorable
refutations is more general than the class of ie-local refutations. We show that for
the case of convex theories, any search strategy for an SMT solver will produce
almost-colorable refutations as long as the theory solvers satisfy the reasonable
requirement of not generating lemmas with redundant equalities. In the more
general case with non-convex theories, we require the SAT solver not to split on
uncolorable equalities. This compromises the completeness of the SMT solver,
but enables us to interpolate for a larger set of formulas than [18] since we
do allow splitting on colorable equalities. We also show that for a subset of

almost-colorable refutations (including ie-local ones), our colorability algorithm
produces refutations whose size, measured by the number of nodes in a tree
representation, is at most twice the size of the input refutation.

Outline. In §2, we review and define the necessary material, including the con-
cepts of proof trees modulo a given collection of theories and a given set S of
input clauses. We also define colorability of proof trees with respect to a parti-
tion S = A U B of the input clause set and recall the algorithm that produces
an interpolant for A, B from a given colorable proof tree. In §3, we define the
class P(A, B) of almost-colorable proof trees and prove in Theorem 2 that each
proof tree from this class can be transformed into a colorable one. We also give
a detailed description of the coloring transformation algorithm. In §4, we define
NODPLLP!, a transition system for abstractly describing modern SMT solvers,
and prove in Theorem 4 that it produces almost-colorable proof trees when the
theories are convex, or if splitting on uncolorable equalities is disallowed.

2 Preliminaries

2.1 Syntax

We will use the standard terminology. A signature is a set of function symbols
plus a set of predicate symbols. Terms are built using variables and free constants
by recursive application of function symbols. Atoms are applications of predicate
symbols to terms. Atoms and their negations are literals. A (quantifier-free)
formula is a boolean combination of atoms. A term or a formula is ground if it
has no occurrences of variables. See [2] for more details.

A (ground) clause is a set of ground literals. Clause 7 is a resolvent of clauses
« and S if there is an atom p such that a = o’Wp, 8 = F'W-pand v = ' UF". We
call p the atom resolved upon. We say that v is a merge [1] of any common literal
in o/ and 3’. We use W to denote disjoint union and, to avoid clutter, we write [
for the singleton {l}. We will not distinguish between the clause {l1,...,[,} and
the disjunction Iy V- - V [,,.

2.2 Resolution Proof Trees

A tree is a finite directed graph with a root node that is reachable from every
other node, and every other node has exactly one outgoing edge. Leaves are
nodes with no incoming edges. In a binary tree every internal (i.e. non-leaf)
node n has exactly two incoming edges connecting n with its parents.

A resolution proof tree (or just proof tree) is a binary tree together with a
mapping that associates with each node n a ground clause [n] so that the clause
at each internal node of the tree is a resolvent of the clauses of the node’s parents.
The atom resolved upon at the node n is called the pivot at n. If P is a proof
tree, we will write [P] for the clause associated with the root of P. A refutation
is any proof tree P such that [P] is the empty clause.

We will write P = (Py,l, P,) when P; and P» are the subtrees of P rooted
at the parent nodes of the root of P, [is the literal resolved upon at the root of
P, and [€ [P1], -l € [P:]. Note that (P1,l, P») and (P, -l, P;) represent the
same proof tree. When using (P, 1, P») to define Py, P> we will assume, without
loss of generality, that [is an atom.

Lemma 1. If P = (Py,l, P2), then [P1] C [P] Ul and [P2] C [P]U L.

2.3 Theories

A signature X defines the class of X'-models. A X'-theory is a set 7 of X-models.
A ground XY-formula ¢ is 7 -satisfiable if there is a model of 7 and an assignment
of elements of the model to free constants that make ¢ true. We write S =1 ¢
when ¢ is true in all 7-models that satisfy each formula in the set S, for all
assignments to free constants (and abbreviate @ =7 ¢ with =7 ¢). If Xy, ..., X,
are disjoint signatures, and 7; is a X;-theory (i = 1,...,n), then there is a well-
defined (X + - - - + X),)-theory 77 + - - - + 7,,. For more details, see [2].

Let S be a finite set of input clauses and 77 + --- + 7,, be a fixed disjoint
union of theories. A clause v such that =7, v is called a theory lemma, or a
T;-lemma to be specific. We define a (71,...,7,)-proof tree from S to be any
proof tree in which the clause [n] for every leaf n is either an input clause or
a theory lemma. It is straightforward to show that S =z,4..47, [P], if Pis a
(71,...,7,)-proof tree from S.

When the input set of clauses is given as a union S = AU B, we will use
the following coloring terminology. A term or literal will be called A-colorable if
all non-logical symbols that occur in it also occur in A. We define B-colorable
similarly. A term or literal that is both A- and B-colorable will be called AB-
colored. A term or literal that is A-colorable (resp. B-colorable) but not AB-
colored is A-colored (resp. B-colored). A term or literal is colorable if it is A- or
B-colorable, and is uncolorable otherwise. A clause is colorable if every literal
occurring in it is colorable. Define the splitting v = y\ p W, of any colorable
clause v into subclauses v\ p and 7 p consisting of A-colored and B-colorable
literals in v respectively. A (7q,...,7,)-proof tree from A U B is colorable if
every literal occurring in it is colorable. A node in a proof tree is critical if it is
an internal node and its pivot is uncolorable.

A theory 7T is ground interpolating if for every pair of sets A, B of ground
clauses such that A, B =7 false, there exists an AB-colored ground formula
¢ (a ground T -interpolant for A, B) such that A 7 ¢ and B,¢ =7 false.
A computable function itp; (A, B) that computes a ground 7 -interpolant for
any given input sets A and B of literals® will be called a ground interpolation
procedure for 7. Such a procedure can be extended to a procedure that computes
ground interpolants for arbitrary sets A and B of ground clauses (not just sets
of literals); see [14,6] and the special case n = 1 of Theorem 1 below.

A theory 7T is equality interpolating [18] if for every 7-lemma v W z=y such
that - is colorable and x=y is uncolorable, there exists an AB-colored term

3 More precisely, A and B are sets of one-literal clauses.

z such that =7 v U x=z and =7 7 U z=y. The term z is called an equality
interpolant for the clause v W z=y. It is shown in [18] that not all theories are
equality interpolating, but the commonly used ones are.

2.4 Deriving Interpolants from Colorable Proof Trees

It is possible to produce a ground interpolant for A, B from any colorable
(T1,...,7,)-refutation P from AU B, if each 7; has a ground interpolation pro-
cedure, itp;. Define Ip by:

itp;(~[P]\5, ~[P];5) if [P]isa 7;-lemma

IIP]]lB if [[PH S

Ip = { true if [PleB
Ip, Vv Ip, if P = (Py,1, P;) and [is A-colored
Ip, N Ip, if P=(Py,l,P;) and [is B-colorable

Theorem 1 ([14,6]). If P is a colorable (Ty,...,T,)-refutation from AU B,
then Ip is a ground interpolant for A, B.

Proof. By induction on the number of nodes in P, (i) A =r1,4..47, Ip V [P]\B,
(ZZ) B,Ip }27'1+...+7'n [[P]]lB7 and (ZZZ) Ip is AB-colored. O

Note that Ip as defined here is not unique because the conditions for the cases
are not mutually exclusive. For our purposes, this is inconsequential. Note also
that this definition is obtained from the propositional interpolation algorithm of
[13] by the addition of the first case (for theory lemmas).

2.5 Modifying Proof Trees

When [P'] C [P], we say that P’ is stronger than P, and that P is weaker than
P’. Clearly, any proof tree stronger than a refutation is also a refutation.

We will use a simple, typically unnamed, construction to strengthen a proof,
given strengthened subproofs [1]. Let P = stitch(Py, [, P2) be specified as follows:
ifl € [P1] and =l € [P;]], then P = (Py,1, P); if | ¢ [P1] then P = P;; otherwise
P = P,. Thus, stitch attempts to resolve two given proof trees over a specified
literal, returning one of the input trees when resolution is not possible.

Lemma 2. Let Py, Py be arbitrary proof trees, I be an arbitrary literal and a,
B be arbitrary clauses.

(i) If [PA] C a Ul and [P2] C S U, then [stitch(Py,1, Py)] C aUS.
(ii) If (P1,l, Po) is defined and the proof trees P{ and P} are stronger than Py
and Py respectively, then stitch(Py,1, Py) is stronger than (Py,1, Py).

Another way of strengthening proof trees is by changing the order of pivots.
IfP= <<P1, l1, P2>, ls, P3> and P’ = StitCh(StitCh(Pl, ls, 133)7 l1, StitCh(PQ, lo, Pg)),
we say then that P’ is obtained from P by a raising the pivot Iy over I3 [11]; see
also Exchange Lemma 4.1.3 of [5].

Lemma 3. Let P and P’ be as above. Then:

(i) P’ is stronger than P.
(’LZ) If 1 7’5 lo and Iy 75 =lg, then P = <StitCh(P1,lg, Pg), l1, Stitch(f)g7 lo, P3)>

Inductive proofs based on node counts will rely on the simple facts in the
following lemma. Here and in the sequel, |P| denotes the number of nodes in P
and | P|. denotes the number of critical nodes in P.

Lemma 4. Let P, and Py be arbitrary proof trees and | be an arbitrary literal.
Let € be 1 if I is uncolorable and 0 otherwise.

(1) If (P1,1, Py) is defined then |(P1,1, Py)| = |P1| + |P2| + 1 and [(P1,1, P2)|. =
|Pilc + |Palc + €;
(’LZ) |StitCh(P1,l7P2)| < |P1| + |P2| +1 and |StitCh(P1,l,P2)‘c < |P1|C + |P2|C + €.

3 Obtaining Colorable Refutations

Theorem 1 tells us how to derive ground interpolants from colorable refutations.
In this section, we show how and under what conditions it is possible to obtain
colorable refutations from those produced by an SMT solver.

3.1 Prelude

As argued in §4, the only literals occurring in proof trees produced by SMT
solvers, under standard assumptions, are (colorable) literals occurring in the
input set AU B or (dis)equalities between terms that occur in A U B. Thus,
the only uncolorable atoms are equalities x=y, where x is A-colored and y is
B-colored.

Figure 1 shows the basic transformation that removes one such equality from
a proof tree. It uses equality interpolation (§2.3) to replace a lemma a V z=y
containing the uncolorable equality x=y with two colorable lemmas oV x=z and
a V z=y. Occurrences of the corresponding disequality = # y are then split into
x # zV z # y. This transformation can be applied repeatedly, under appropriate
conditions discussed below, to eliminate all uncolorable equalities.

aVz=y c#zVz#yVvp
aVr=y TFyVvp AN e
\ / ~~> aVr=z r#zVaVvp
aV i \ /
aVp

Fig. 1. Basic transformation to eliminate an uncolorable equality z=y.

Clearly, we have to assume that all theories be equality interpolating. Ad-
ditionally, the use of equality interpolation imposes a hard constraint on the

proof trees modifiable by the basic transformation above: there must be at most
one uncolorable equality in each leaf clause (see Figure 2). This restriction will
define the class of almost-colorable refutations. Note that if all the theories are
convex then the restriction causes no loss of generality. In a convex theory, if
aV o=y V r'=y is a lemma, then either oV z=y or a V 2’=y’ must be a lemma
as well.

avVr=yVa =y ' £y Va3
aVpBVe=y z#yVey
aVpBVy

Fig. 2. Equality interpolation cannot be applied to the theory lemma oV z=y V z'=y’
with two uncolorable equalities.

The method of [6] employs the basic transformation to eliminate all uncol-
orable equalities from ie-local refutations—those in which all uncolorable equal-
ities are resolved before other literals. However, as witnessed by the example in
Figure 3, ie-locality is not a necessary condition for the applicability of the basic
transformation.

cF#2zVz#YVEVIL alVe#zVzFyVy

zA£yVvVpVvl SIVz#yVey N v
\ / aVz=y r#zVz£yVEVy
aVa=y rEYyVBVy > \ /
\ / aVir=z r#zVaVpBVy
aVpBVvy \ /
aVpBVvy

Fig. 3. Basic transformation applied to remove the uncolorable equality x=y from a
non-ie-local proof. The literal [is assumed colorable.

The real difficulty with producing colorable refutations from uncolorable ones
is not the lack of ie-locality, but merges of uncolorable equalities. The example
on the left in Figure 4 merges the equality z=y from two leaves. If we perform
equality interpolation on only one of the two occurrences of this equality in
a leaf, we get a strictly weaker proof with the uncolorable equality x=y still
in the derived clause. If we perform equality interpolation on both occurrences
and obtain distinct equality interpolants, then also the modified proof is strictly
weaker than the original, irrespective of how we split the disequality x # y.

It can be shown that refutations that are almost-colorable and ie-local contain
no merges of uncolorable equalities. For this reason, the approach of [6] insists on
ie-locality. We place no such restriction, prefering to eliminate the problematic
merges by changing the order of pivots as shown in Figure 4.

aVz=yVl =LV BV =y aVzr=yVl r#yVy SlVBVz=y zc#yVry

aVpVar=y THEYVY > aVyVli =LV BV ey
aVpVy aVpBVy

Fig. 4. Raising the merged pivot x=y eliminates the merge.

3.2 The Colorability Theorem

Let P(A, B) be the set of all (73, ...,7,)-proof trees from AU B which use only
theory lemmas satisfying the following conditions:

(coly) every uncolorable literal in the lemma is an equality or a disequality

(colz) at most one literal in the lemma is an uncolorable equality

We will call proofs in P(A, B) almost-colorable. Clearly, all colorable proof trees
from A U B are also almost-colorable.

Theorem 2. Let the theories Ty,..., 7T, be equality-interpolating. If P(A, B)
contains a refutation, then it contains a colorable refutation.

Proof. Since every literal that occurs in a refutation must be resolved upon at
some node, the existence of an uncolorable (dis)equality in a refutation implies
the existence of a critical node in it. Thus, to prove the theorem, it suffices
to show that there exists a refutation with no critical nodes. We will estab-
lish this by proving the following more general statement: If P € P(A, B) has
no uncolorable disequalities in its clause [P], then there exists a stronger proof
tree P' € P(A, B) with no critical nodes. We prove this claim by well-founded
induction over the relation < defined by:

P=<Q iff [Plc<|Qlc or |Plc=]Ql and |P| <|Q].

The proof breaks down into five cases. In all cases, it is easily verified that
the offered proof tree P’ belongs to P(A, B), either directly or using the simple
fact that (Py,1, P») € P(A, B) if and only if P;, P, € P(A, B). So, we will focus
only on verifying that P’ is stronger than P and has no critical nodes.

Case 1: P is a single node. We can take P’ to be P, which has no internal nodes
and, hence, no critical nodes.

Case 2: P = (Py,l, P;). We assume, without loss of generality, that [is an atom.
Lemma 1 implies that there are no uncolorable disequalities in [P;] and by
Lemma 4 we infer that P; < P. Thus, the induction hypothesis applies to P;
ensuring the existence of a proof tree P; that is stronger than P; and has no
critical nodes. If there are no critical nodes in P;, then we will let P| be P;.

Case 2.1: 1 ¢ [P{]. We can take P’ to be P{, which has no critical nodes. Since
P is stronger than Py and [¢ [P/], it follows by Lemma 1 that Pj is stronger
than P.

Case 2.2: 1 € [P]].

Case 2.2.1: 1 is colorable. Lemma 1 then implies that there are no uncolorable
disequalities in [P;]. Since P, < P by Lemma 4, from the induction hypothesis
we obtain a proof tree Py that is stronger than P, and contains no critical nodes.
Let P’ = stitch(Py,1, P5). Since [is colorable, it follows from Lemma 4 that P’
does not contain any critical nodes, either. It also follows, by Lemma 2, that P’
is stronger than P.

Case 2.2.2: 1 is uncolorable. By property (col;), we have that [is an uncolorable
equality z=y. We can infer from the absence of uncolorable disequalities in [P]
and Lemma 1 that z # y is the only uncolorable disequality in Ps.

Case 2.2.2.1: P| is a single node. Let [P{] = v (z=y). We know that there are
no uncolorable disequalities in [P;]. This, together with uncolorability of x=y
and the fact P| € P(A4, B), implies that all the literals in + are colorable. Now,
[P{] must be a theory lemma because x=y is not colorable. Since our theories
are assumed to be equality-interpolating, there exists an equality interpolant z
for the clause [P]]. Let @ be the single-node proof tree with [Q*] = v U (z=2)
and let QY be the single-node proof tree with [QY] = v U (2=y). Note that Q*
and QY are colorable and, since they have no internal nodes, they have no critical
nodes either.

Let [P;] = d W (x #y). From Lemma 5 below, we obtain a proof tree Py €
P(A, B) such that |PS|. < |P2|. and [P5] C dU{z# 2, 2#y}. Since x #y is
the only uncolorable disequality in [P»], and the disequalities x # z and z £y
are colorable, there can be no uncolorable disequalities in [P5]. Since the root is
a critical node in P, we have by Lemma 4 that |P2|. < |P|.. Thus, the induction
hypothesis applies to P5, yielding a proof tree Py stronger than Py and without
critical nodes. We take P’ to be stitch(Q7, z=z, stitch(QY, 2=y, P})). By Lemma 4
there are no critical nodes in P’. Since [P'] C vUd, P’ is stronger than P.

Case 2.2.2.2: P = (P11,l', P12). Since there are no critical nodes in P; and no
uncolorable disequalities in [P[], it follows that the literal I’ is colorable and,
from Lemma 1, that there are no uncolorable disequalities in [Pi1] and [Pi2].
Let Pt = (P{,x=y, P,). Note that P' is well-defined (since x=y € [P]]) and
stronger than P (by Lemma 2). Note also that =y differs from !’ and —I" since
I’ is colorable and z=y is uncolorable. We raise the pivot =y over I in P’ to get
Pt = stitch(Q1,1', Q2), where Q; = stitch(Py;, 2=y, P») (i = 1,2). By Lemma 3,
we have P* = (Q1,1',Q5).

We now show that the induction hypothesis applies to @; (i = 1,2). Since
x #y € [P2], we have that Q; is either Py; or (Py;,x=y, Py). Since x # y is the
only uncolorable disequality in [P,] and there are no uncolorable disequalities
in [Py;], we can infer using Lemma 2 that there are no uncolorable disequalities
in [@;]. We also have (by Lemma 4) that |Q;|lc < 1+ |P{|c + |Po]c = 1+ |P2|c
and |P|l. =14 |Pi|c + |Ps|c. Thus, |Q;|c < |P|e. Moreover, if |Q;|. = |P|. then
we must have |P;|. = 0, in which case Pj is P; (see Case 2.2) and by Lemma 4,
we have |Q;| < |P|. It follows that Q; < P.

Thus, we have proof trees @; that have no critical nodes and are stronger
than @;. We take P’ to be stitch(Q/,!’, Q%). There are no critical nodes in P’
(Lemma 4) and P’ is stronger than P* (Lemma 2), which in turn is stronger
than PT (Lemma 3), which, as we have already noticed, is stronger than P. O

Lemma 5. Let P be a proof in P(A,B), © # y be an uncolorable disequality
and z be an arbitrary term. Then, there exists P* € P(A, B) such that:

(1) [Pl CPlufz#22#yt ~{z Ay}
(ii) |P*|e < |Ple.

Proof. We argue by induction on the number of nodes in P.
Case 1: x # y does not occur in [P]. Take P* to be P.
Case 2: [P] =0W (z #y).

Case 2.1: P is a single node. The uncolorability of x # y implies that [P] is a
theory lemma. Take P* be the single node with [P*] = 6 U {z # 2,z # y}. By
the transitivity of equality, [P*] is also a theory lemma.

Case 2.2: P = (Py,1, P;). We know from Lemma 1 that [P] C 6 U {z#y,l}
and [P2] € 6 U {x #y,~l}. By the induction hypothesis, there exist P;* and Py
such that [Pf] CdU{x # z,z #y,l}, [Ps] CodU{x # 2,z # y,~l} and Py, Pj
have no more critical nodes than Py, P respectively. Let P* = stitch(Py, [, Py).
It follows from Lemma 2 that [P*] C § U {z # 2, 2z # y}. Finally, by Lemma 4,
|P*|. < e+ |Pflec + |P5|ec < €+ |Pi|ec + | P2le = |Ple, for suitable e € {0,1}. O

3.3 The Colorability Algorithm

The proofs of Theorem 2 and Lemma 5 are constructive and directly lead
to Algorithm 1 and Algorithm 2. The algorithms use the following functions:
is_lit_colorable tests if a literal is colorable; eq_interp computes an equality inter-
polant for the input clause; node creates a single-node proof annotated with the
given clause.

Merges of uncolorable equalities have the potential to exponentially blow-up
the size of mk_colorable(P) because raising an uncolorable-equality pivot doubles
the right subproof, as in Figure 4. The following result guarantees linear growth
in the absence of these problematic merges.

Theorem 3. If P is a refutation in P(A, B) such that there are no merges of
uncolorable equalities in P, then |mk_colorable(P)| < 2-|P]|.

Proof. We will prove the following more general statement: Let P be a proof in
P(A, B) such that there are no uncolorable equalities in [P] and no merges of
uncolorable equalities in P. Let P’ = mk_colorable(P). Then:

(i) |P'| <2-|P|;
(ii) If P = (Py,l, Py) and Py has no critical nodes, then |P’| < |Py|+2-|P2|+ 3.

10

Algorithm 1 mk_colorable(P)

1:

NN N NN KN N KN H = e e e e e

28:
29:

© 0N wn

if |[P| =1 then (xCase 1x)
P —P
else (xCase 2x)
let P be (P11, P)
P| «— mk_colorable(P;)
if [¢ [P{] then (xCase 2.1%)
P — P
else (xCase 2.2 %)
if is_lit_colorable(l) then (x Case 2.2.1 %)
P «— mk_colorable(P)
P’ stitch(P},1, P})
else (xCase 2.2.2x)
let [be z=y
if |P[| =1 then (xCase 2.2.2.1x)
let [P{] be yWz=y
z « eq.interp(y W z=y)
QT «— node(y U z=2)
QY — node(y U z=y)
Py — split(Pa,x £y, 2)
P; — mk_colorable(Py)
P’ stitch(Q®, x=2z, stitch(QY, 2=y, P3))
else (xCase 2.2.2.2x)
let P{ be (Pi1,l', Pi2)
Q1 — StitCh(Pll7 =Y, Pz)
QQ — StitCh(]DlQ7 r=y, PQ)
Q1 < mk_colorable(Q1)
Q% — mk_colorable(Q2)
P’ stitch(Q1,1',Q5)
return P’

Algorithm 2 split(P,z # y, 2)

1:

_.
e

11:
12:

© 0NN TF e

if z #y ¢ [P] then (xCase 1%)
P*— P
else (xCase 2x)
let [P] be dW(z#y)
if |P| =1 then (xCase 2.1%)
P* «—node(0 U {x # z,z #y})
else (xCase 2.2x)
let P be (Pl P)
P — split(P1,x £y, 2)
Py — split(Pe,z # vy, 2)
P* « stitch(Py, 1, PY)
return P*

11

We will use the easily proven facts that |split(P,x # v, z)| < |P| and that if
there are no critical nodes in P, then mk_colorable(P) = P. The proof will follow
the structure of the proof of Theorem 2.

Case 1: Trivial.
Case 2.1: We have |P'| = |P{|.

(i) By the induction hypothesis, |Pj| < 2-|Py|. But |P1| < |P].
(#1) If Py has no critical nodes, then P] = P;.

Case 2.2.1:

(i) |P'| <|P/|+|Pj| +1<2-|Pi|+2|Ps| +1=2-(|Pi]| +|P2|) + 1. We have
|P| = |Py| + |Py| + 1. Thus, |P'| <2-(|[P|—1)+1<2-|P|.

(11) If Py has no critical nodes, then P{ = P;. Thus, |P'| < |Pi|+ |P3| +1 <
P +2-|Py] + 1.

Case 2.2.2.1:

(i) [P < |Q%| +|Q¥| + |Py| + 2. We have |Q%| = |Q¥| = 1, and by induction
hypothesis, |Pj| < 2-|Py| < 2-|Pz|. Thus |P'| <2-|P| + 4. We also know
that |Ps| < |P| — 2. Thus |P'| <2-|P].

(i) If P; has no critical nodes, then P| = P;. The assumption for this case is
that |Pj| = 1. Thus, |P'| < |Pj| +4 < |Pi|+2- |P| + 3.

Case 2.2.2.2: Without loss of generality, assume z=y ¢ [Pi1] and =y € [P12].
Thus, Ql = P11 and QQ = <P12,Z,P2>.

(i) |P'| < |Q)| + |Q%] + 1. Note that there are no critical nodes in either Py
or in Pjp. Thus, Q] = Pi; and |Q5] < |Pio| + 2 - |Py| + 3. Thus, |P'| <
|Pi|+ [Pro| + 2+ |P2[+3 = [P[[+2- || +2 <2 (|| + ||+ 1) =2-|P]

(#1) Assume no critical nodes in P;. Then P} = P; = (Py1,1, Pi2). Also, P;; and
P15 have no critical nodes and Q) = P11, |Q4] < |Pi2| +2 - |Py| + 3. Thus,
[P < 1@ +1Qa +1 < [Pra| 4 [Pra| + 2+ [P +3+ 1 =[P1| +2- ||+ 3.0

More substantial complexity analysis is left for future work. Our algorithms
can be easily modified (by memoization) to operate on proof DAGs instead on
proof trees. It would be particularly interesting to understand the complexity
of these optimized versions.

4 Almost-Colorable Refutations from SMT Solvers

Modern SMT solvers integrate a SAT solver and several solvers for specific the-
ories. An abstract model of an SMT solver that covers the essentials of the
cooperation algorithm is given in [12] in the form of a transition system called
NODPLL (Nelson-Oppen with DPLL), which in turn is an elaboration of the
abstract system DPLL(7) of [16].

In this section, starting with a simplified (more abstract) version of the sys-
tem NODPLL described in [12], we obtain the system NODPLLP! which tracks

12

the derivations of all conflict clauses and thus produces (7q, ..., 7,)-refutations
when it finds that the input set of clauses is inconsistent.

The main parameters of the system NODPLLPf are theories 71,...,7, with
disjoint signatures X,...,Y,. The union signature and the union theory will
be denoted X and T respectively. Additional parameters of NODPLLP! are a set
L of XY-literals and a set E of equalities between X-terms. Intuitively, the set L
consists of literals that the SAT solver can decide on, and E is the set of equalities
that theory solvers may share without sharing them with the SAT solver. It is
not required that L and E be disjoint. (In extensions of the system, one can
also promote L and E from parameters to system variables, adding rules to grow
them dynamically.)

NODPLLP! is a transition system over states of the form (P, M, C) where (3)
P is a set of proof trees over X-clauses; (i) M is a checkpointed sequence, any
element of which is either the special symbol O, or a literal from L U E; (%ii) C,
the state’s conflict proof tree, is either a proof tree for a clause that is a subset
of LU E, or the special symbol none, denoting the absence of conflict.

As before, we use the notation node(y) for the proof tree with a single node
whose associated clause is 7.

The input to NODPLLP! is a set S of ground 7-clauses. With a given S,
the initialization procedure specifies the sets L and E, and an initial state of
NoDPLLPf. The initial state naturally has P = {node(y)|vy € S}, M equal to
the empty sequence, and C = none. As for the parameter literal sets L and E,
there are two main options. To define them, let Lg denote the set of all literals
that occur in S, and let Eg be the set of all equalities between distinct terms
that occur in S. For Nelson-Oppen initialization, we take L = L? and E = Fg.
For DTC initialization, we take L = LT' U EZ! and E = @. (The notation X*!
stands for the set that contains the literals of X and their negations.) To be
general, we will assume only that L C L? U E§1 and E C FEg.

The transition rules of NODPLLP! are given in Figure 5. The index i ranges
over {0,...,n}. The symbol |=; stands for the theory entailment =z, in the
case when i > 0. For i = 0, the symbol stands for the propositional entailment
from a single clause of P. More precisely, the condition M |=¢ I in the rule Infer
stands for “there exist a proof tree P € P such that [P] = {=l1,..., -, 1}
and l,...,lp € M”. Similarly, ly,...,lx o false and ly,...,lx o ! in the
rules Conflicty and Explaing stand for the existence of P € P satisfying [P] =
{=ly,...,~l} and [P] = {=l1, ..., ~lg, 1} respectively.

When 4 > 0, the notation pf,7y is synonymous with node(vy). As for pfyv, it
is used only in rules Conflicty and Explaing, and it stands for a proof tree P € P
such that [P] = 7. In view of the definitions in the previous paragraph, such a
proof tree P always exists.

The number of occurrences of [1 in M is the current decision level. Thus, we
can write M = MO O MM O...0 M@ where d is the current decision level,
and O does not occur in any M), It is an invariant that for every k > 0, M
is non-empty. The first element of M*) (k > 0) is the k" decision literal of M.
By M where 0 < k < d, we denote the prefix M@ O...0 M*) of M.

13

Decide lel LolgM
M:=M0OI
leLUE M I,-l¢ M
Infer;
M:=MI
= M ol e fal
Conflict; C = none byl e li,..., Ik =i false k>0
Ci=pfi{-l,...,~l}
Explain; e [d] byl <ml .l il
C:= <pfi{—\l1’ e ,_‘lk,l},l7c>
C
Learn [[C]] clL cé¢p
P:=PU{C}
Backjump CeP [Cl={Lb,. . I} levell1,...,level [y < m < levell
C := none M = Mmlm —f

Fig. 5. Rules of NODPLLP'. Above each line is the rule’s guard, below is its action.

The rule Explain; uses the notation I <y I’; by definition, this means that both
literals are in M and the (unique) occurrence of [precedes in M the (unique)
occurrence of I’. For correctness of this definition, we need to know that any
literal can occur at most once in M, which is another easily verified invariant of
NODPLLP!. Finally, the function level used in the Backjump rule is defined only
for literals that occur in M; for these literals level] = k holds if [occurs in M%),

A NODPLLP! ezecution is a finite or infinite sequence so, s1, ... such that sg
is an initial state and each state s;41 is obtained from s; by the application of
one of the transition rules of the system. We can prove the following lemma by
induction on the length of execution sequences.

Lemma 6. If NODPLLP! is given a clause set S as input, then, in any state, C
is either none or a (7Ty,...,7T,)-proof tree from S.

The results of [12] for the original NODPLL system apply to NODPLLP! as well,
with straightforward modifications of the proofs. Specifically, one can prove that
the system NODPLLP! is terminating: every execution is finite and ends in a
state in which C = none or [C] = @. The soundness of NODPLLP! is actually a
consequence of Lemma 6: if the system reaches a state in which C is a refutation
([C] = @), then S is T-unsatisfiable. There are two completeness results: # if
on an input S the system terminates in a state in which C = none, then S is
T -satisfiable, provided (i) the system is given the Nelson-Oppen initialization,
and all the 7; are convex; or (i) the system is given the DTC initialization.

4 In the context of [12], we assume that the theories are parametric; for the classical
first-order combination, we need to assume that the theories are stably-infinite [2].

14

Consider now the colorability of proof trees C of our system. The initialization
assumption L C L§1 U Egl and colorability of all literals in Lg (each of them
occurs in A or in B) imply that the only uncolorable literals in LUE are equalities
from Eg or their negations. Thus, proof trees C always satisfy the property (coly).

One way to satisfy (colz) is to ensure that all literals in L are colorable;
for instance, by initializing the system with L being the union of L§1 and all
colorable (dis)equalities from EZ'. To see that (coly) holds in this case, note
first that (by induction) all uncolorable literals in M are equalities from E \ L.
This ensures the clause of C introduced by Conflict; contains no uncolorable
equalities, and clauses introduced by Explain; contain at most one uncolorable
equality. Thus, (coly) is satisfied, but note that the restriction we put on L makes
NODPLLP! potentially incomplete.

Another way to guarantee proof trees C satisfying (cols) is to run the system
NODPLLP! with the following convezity restriction: allow rule Conflict; to fire
only when at most one of the literals lq,...,l; is a disequality and allow rule
Explain; to fire only when none of the literals Iy, ..., [; is a disequality. It is easy
to see that if all theories 7; are convex, then the convexity restriction does not
jeopardize the completeness of NODPLLPE.

Theorem 4. Suppose S = AU B is given as input to NODPLLPL. Suppose, in
addition, that either (a) the system is run with the convexity restriction; or
(b) the system is initialized so that all literals in L are colorable. Then, in all
reachable states, the proof tree C is in P(A, B).

Proof. Sketched in the preceding paragraphs. O

5 Conclusion

We have presented a simple approach for the generation of ground interpolants by
SMT solvers supporting multiple theories. Our main contribution is an algorithm
that transforms any almost-colorable refutation into one that is colorable and
thus suitable for straigthforward interpolant extraction using known algorithms.

The definition of almost-colorable refutations is minimally demanding. We
show that modern SMT solvers can produce such refutations with the slightest
restrictions on their search strategy. What constitutes a good search strategy for
interpolation remains an open question, but by being more general than previous
approaches, we enable the design of more efficient interpolating SMT solvers.

The colorability algorithm uses a sequence of elementary proof transforma-
tions to convert an almost-colorable refutation into a colorable one. There is some
flexibility in the order in which these transformations are applied. Our particular
choice of the colorability algorithm ensures that for a subset of almost-colorable
refutations—including the class of ie-local refutations that could be used with
previous methods for ground interpolation—we at most double the size of the in-
put tree. In practice, however, proofs are represented compactly as DAGs. More
work is required to understand the effect of various transformation choices on
DAG size.

15

Acknowledgment. We thank Alexander Fuchs, Jim Grundy and anonymous re-
viewers for suggestions that helped improve the paper.

References

1.

2

10.

11.

12.

13.

14.

15.

16.

17.

18.

P. B. Andrews. Resolution with merging. J. ACM, 15(3):367-381, 1968.

C. Barrett et al. Satisfiability Modulo Theories. In A. Biere et al., editors, Handbook
of Satisfiability, pp. 825-885. I0S Press, 2009.

D. Beyer, D. Zufferey, and R. Majumdar. CSISAT: Interpolation for LA+EUF. In
CAV, vol. 5123 of LNCS, pp. 304-308. Springer, 2008.

M. Bozzano et al. Efficient theory combination via Boolean search. Information
and Computation, 204(10):1493-1525, 2006.

H. K. Biining and T. Lettmann. Propositional Logic: Deduction and Algorithms.
Cambridge University Press, New York, NY, USA, 1999.

A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in Sat-
isfiability Modulo Theories. In TACAS, vol. 4963 of LNCS, pp. 397-412. Springer,
2008.

L. de Moura and N. Bjgrner. Model-based theory combination. ENTCS, 198:37-49,
2008.

. B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In

CAV, vol. 4144 of LNCS, pp. 81-94. Springer, 2006.

A. Fuchs et al. Ground interpolation for the theory of equality. In TACAS, volume
5505 of LNCS, pp. 413—427. Springer, 2009.

T. A. Henzinger et al. Abstractions from proofs. In POPL, pp. 232-244. ACM,
2004.

R. Jhala and K. L. McMillan. Interpolant-based transition relation approximation.
In CAV, vol. 3576 of LNCS, pp. 39-51. Springer, 2005.

S. Krsti¢ and A. Goel. Architecting solvers for SAT Modulo Theories: Nelson-
Oppen with DPLL. In FroCoS, vol. 4720 of LNCS, pp. 1-27. Springer, 2007.

K. L. McMillan. Interpolation and SAT-based model checking. In CAV, vol. 2725
of LNCS, pp. 1-13. Springer, 2003.

K. L. McMillan. An interpolating theorem prover. Theoretical Computer Science,
345(1):101-121, 2005.

K. L. McMillan. Lazy abstraction with interpolants. In CAV, vol. 4144 of LNCS,
pp- 123-136. Springer, 2006.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract DPLL
modulo theories. In LPAR, vol. 3452 of LNCS, pp. 36-50. Springer, 2005.

A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.
In VMCAI vol. 4349 of LNCS, pp. 346-362. Springer, 2007.

G. Yorsh and M. Musuvathi. A combination method for generating interpolants.
In CADE, vol. 3632 of LNCS, pp. 353-368. Springer, 2005.

16

