
Incremental Invariant Generation using
Logic-based Automatic Abstract Transformers∗

Pierre-Loı̈c Garoche1,2, Temesghen Kahsai2 and Cesare Tinelli2

1 Onera, the French Aerospace Lab, France
2 The University of Iowa

Abstract. Formal analysis tools for system models often require or benefit from
the availability of auxiliary system invariants. Abstract interpretation is currently
one of the best approaches for discovering useful invariants, in particular numer-
ical ones. However, its application is limited by two orthogonal issues: (i) de-
veloping an abstract interpretation is often non-trivial; each transfer function of
the system has to be represented at the abstract level, depending on the abstract
domain used; (ii) with precise but costly abstract domains, the information com-
puted by the abstract interpreter can be used only once a post fix point has been
reached; this may take a long time for large systems or when widening is delayed
to improve precision. We propose a new, completely automatic, method to build
abstract interpreters which, in addition, can provide sound invariants of the sys-
tem under analysis before reaching the end of the post fix point computation. In
effect, such interpreters act as on-the-fly invariant generators and can be used by
other tools such as logic-based model checkers. We present some experimental
results that provide initial evidence of the practical usefulness of our method.

1 Introduction and Motivation

Abstract interpretation and symbolic model checking have led independently over the
years to the creation of analysis tools that are starting to have a substantial impact on the
development of real world software, in particular for safety- or mission-critical systems.
Interestingly, the two exhibit complementary strengths and weaknesses [13]. Model
checking techniques so far have proved stronger on software that is mostly control-
driven and not heavily data-dependent. To be effective with data-dependent programs,
these techniques may require programs to be judiciously annotated with data invariants.
Also, model checking has been traditionally limited to finite-state systems although new
approaches, such as those based on solvers for Satisfiability Modulo Theories (SMT),
can lift that restriction in some cases.

Dually, abstract interpretation techniques are quite effective with data-dependent
programs, in particular numerical ones, requiring in principle no program annotations.
On the other hand, they have more difficulties in dealing with control aspects [13]. Also,
although abstract interpretation is a very general framework, most of its applications fo-
cus on the analysis of source code. Even tools, such as Nbac [16], that target software

∗Work supported by AFOSR grant #AF9550-09-1-0517, FNRAE Cavale project and ANR
INS Project CAFEIN, with the support of the Aerospace Space cluster.

2 Pierre-Loı̈c Garoche, Temesghen Kahsai and Cesare Tinelli

artifacts at a higher level of abstraction (e.g., software models expressed in dataflow
specification languages) do not analyze those artifacts directly and work instead with
their compilation into an intermediate imperative representation such as LLVM or byte
code. This is possibly a consequence of the fact that developing an abstract interpreter
for a complete language can be time consuming: even if a large set of abstract do-
mains, such as those provided by the APRON library [17], is readily available, defining
sound abstract transformers for every construct of the target language requires substan-
tial work. Another limitation of current abstract interpretation techniques is that they
typically depend on Kleene-style fix point algorithms to construct an abstract seman-
tics of the program under analysis. The properties of such semantics, characterized by
the concretization of a post fix point of an abstract transformer, can be obtained only
once the post fix point has been (completely) computed. Depending on the widening
strategies used or, in general, the complexity of the abstractions and the semantics con-
sidered, one may have to wait a long time before getting any interesting information
from the analysis of the program.

Contribution and significance In this work we try to address some of the issues above
by combining techniques from abstract interpretation and logic-based model checking.
Specifically, we propose a general method for the automatic definition of abstract inter-
preters that compute numerical invariants of transition systems. We rely on the possibil-
ity of encoding the transition system in a decidable logic to compute transformers for
an abstract interpreter completely automatically. Our method has the significant added
benefit that the abstract interpreter can be instrumented to generate system invariants on
the fly, during its iterative computation of a post fix point. A prototype implementation
of the method provides initial evidence of the feasibility of our approach.

While motivated by practical issues (namely, the generation of auxiliary invariants
for a k-induction model checker) the current work is more general and can be adapted
to a wide variety of contexts. It only requires that the transition system semantics be
expressible in a decidable logic with an efficient solver, such as SAT or SMT solvers,
and that the elements of the chosen abstract domain be effectively representable in that
logic, as discussed later in more detail. Such requirements are satisfied by a large num-
ber of abstract domains used in current practice. As a consequence, we believe that
our approach could help considerably in expanding the reach of abstract interpretation
techniques to a variety of target languages, as well as facilitate their integration with
complementary techniques from model checking.

Related work With the current efficiency of SMT solvers on the one hand and the
ability of abstract interpretation to compute numerical invariants on the other, the issue
of combining SMT and Abstract Interpretation is receiving increasing attention. In [7],
Cousot et al, draw a parallel between SMT-based reasoning and abstract interpretation.
They identify the Nelson-Oppen procedure as a reduced product over different interpre-
tations. While this work is more general, it allows one to understand ours as follows:
the concrete domain is an abstract logical domain, our concrete transformer—computed
with the aid of an SMT solver—can be seen as an over-approximation of the concrete
transition relation in this abstract logical domain. The abstraction we build amounts to
computing a reduction between a logical and an algebraic domain, as suggested in [7,
§6]. Comparable work in [30], gives an overview of techniques embedding logical pred-

Incremental Invariant Generation using Automatic Abstract Transformers 3

icates as elements of logical lattices. Some SMT theories are then formalized within
this abstract interpretation view of the analysis: uninterpreted function symbols, linear
arithmetic, and their combination.

Another, more practical approach by Monniaux and Gonnord [23] uses bounded
reachability with an SMT solver to compute a chaotic iteration strategy. The solver iden-
tifies the equation that needs propagating in order to achieve a better widening. How-
ever, unlike ours, this solution does not use the actual models found by the SMT solver.
In [10], an SMT solver is used to choose among different strategies in an iteration-based
policy analysis. The solver identifies the next strategy that will improve the current ab-
stract property. While both works rely on SMT solvers to aid the fix point computation,
they do not encode, as we do, the concrete transition relation as a SMT formula in order
to compute the abstract property. Also related is Monniaux’s automatic modular ab-
straction for linear constraints [22]. A predicate transformer is defined using quantifier
elimination over the semantics of C statements, as in an axiomatic semantics (weakest
precondition or strongest postcondition). The transformer is exact for the linear tem-
plate abstractions considered. It is unclear, however, how this approach can scale to a
complete program analysis, since the use of quantifier elimination on a complete transi-
tion system is not usually feasible (the blocks analyzed in [22] are small functions used
in a symbol library for Lustre/Scade). King and Sondergaard [21] follow a similar ap-
proach but rely on reasoning in a concrete logic, as we do, and then abstract the result.
As in [22], they aim at computing a very precise transformer but restrict themselves to
a specific setting with finite domains, whereas we do not.

A line of work by Reps and various collaborators [24, 31, 28, 29] shares similar
foundations with our approach: relying on a decidable logic to construct abstract trans-
formers. The work in [24] over-approximates least fix points but is restricted to domains
admitting only finite height chains, while that in [31] adopts the dual approach—to
avoid the convergence issue in infinite height domains—by over-approximating greatest
fix points from above. Both works are based on manually defined abstract transformers.
Very recent work [28, 29], concurrent with ours, extends those approaches by synthesiz-
ing automatically the abstract transformer via a logic encoding, in a way similar to ours.
The first paper combines a least and a greatest fix point computation, while the second
only relies on a greatest fix point over-approximation. In case of infinite height domains
(e.g., intervals or polyhedra), the least fix point approximation will never converge and
only the greatest fix point may be used. In contrast, we target the over-approximation of
the least fix point, using widening to ensure convergence. Regarding the ability to pro-
duce safe abstract values before the end of the fix point computation, it is not clear how
a greatest fix point approach would compare in practice to our incremental invariant
generation mechanism (cf. Section 4). A comparative experimental evaluation would
require a substantial effort that is outside the scope of this paper.

Finally, the static analysis tools to which we compare ours experimentally in Sec-
tion 5 are based on sophisticated techniques to improve the precision of the fix point
computation, such as lookahead widening [12], or to accelerate convergence [11, 26].
These techniques, as well as others such as delayed widening could be integrated in
principle in our approach since they mainly focus on the iteration strategy for the fix
point computation rather than a specific abstract transformer.

4 Pierre-Loı̈c Garoche, Temesghen Kahsai and Cesare Tinelli

2 Formal Preliminaries

We use basic notions and results from abstract interpretation (e.g. [4, 5]). We introduce
below those that are most relevant to this work, to have a more self-contained presenta-
tion. Similarly, we also introduce relevant notions from symbolic logic and automated
reasoning. As customary, we model computational systems as transition systems. A
transition system S is a triple (Q, I,{) where Q is a set of states, the state space; I ⊆ Q
is the set of S ’s initial states; and{ ⊆ Q × Q is S ’s transition relation. A state q′ ∈ Q
is reachable if q′ ∈ I or q{ q′ for some reachable state q.

Abstract Interpretation Abstract interpretation allows one to analyze a transition sys-
tem S = (Q, I,{) by first defining a concrete domain for S , a partially ordered set
〈D,⊆〉, and a concrete transformer, a monotonic function f : D → D. In this paper we
will focus on the collecting semantics

S
def
= lfp⊆I (f)

of S where D = ℘(Q), the power set of Q; ⊆ is set inclusion; f (X) = X∪{x′ | x ∈ X, x{
x′}; and lfp⊆I (f) is the least-fix point of f greater than I, obtained as the stationary limit
of the ascending sequence X0 ⊆ X1 ⊆ . . . with X0 = I and Xn = f (Xn−1) for all n > 0.

An abstract representation of the concrete domain is provided by another partial
order 〈D#,v#〉 the abstract domain. The two are related by an abstraction function
α : D 7→ D# and a concretization function γ : D# 7→ D. An abstract transformer is any
monotonic function g : D# → D#. We will consider domains 〈D,⊆〉 and 〈D#,v〉 that
are lattices, and abstraction and concretization functions that form a Galois connection
(which we denote by α : 〈D,⊆〉 � 〈D#,v〉 : γ). In a Galois connection, both α and γ
are monotonic; α(γ(y)) v y for all y ∈ D#; and x ⊆ γ(α(x)) for all x ∈ D.

First-order logic Our method works with several logics (including propositional and
quantified Boolean logic) that can be more or less directly embedded in many-sorted
first-order logic with equality (e.g. [8]). For generality then, we present our work in
terms of the latter. We fix a set S of sort symbols and let X =

⋃
σ∈S Xσ where each Xσ

is an infinite set of variables (of sort σ). Given a many-sorted signature Σ of function
and predicate symbols, well-sorted terms and formulas (resp. Σ-terms and Σ-formulas)
are defined as usual. If F is a Σ-formula, and x = (x1, . . . , xn) a tuple of variables with
no repetitions, we write F[x] to denote that F’s free variables are from x; furthermore,
if t = (t1, . . . , tn) is a term tuple, we write F[t] to denote the formula obtained from F
by simultaneously replacing each occurrence of xi in F by ti for i = 1, . . . , n.

We adopt a standard notion of Σ-interpretation M for each signature Σ. A satisfi-
ability relation |= between such interpretations and Σ-formulas with variables in X is
defined inductively as usual. A Σ-interpretationM satisfies a Σ-formula F ifM |= F.
We are normally interested in specific classes of Σ-formulas and Σ-interpretations. We
collect these restrictions in the notion of a (sub)logic (of many-sorted logic): a triple
L = (Σ,F,M) where Σ is a signature; F, the language of L, is a set of Σ-formulas; and
M is a class of Σ-interpretations, the models ofL, that is closed under variable reassign-
ment, (i.e., every Σ-interpretation that differs from one in M only for how it interprets
the variables is also in M). A formula F[x] of L is satisfiable (resp., unsatisfiable) in L

Incremental Invariant Generation using Automatic Abstract Transformers 5

if it is satisfied by some (resp., no) interpretation in M. A set Γ of formulas entails in
L a Σ-formula F, written Γ |=L F, if Γ ∪ {F} ∈ F and every interpretation in M that
satisfies all formulas in Γ satisfies F as well. The set Γ is satisfiable in L if Γ 6|=L false.

3 Computable abstract transformer via logic encodings

For the rest of the paper we fix a transition system S = (Q, I,{) and its collecting
semantics S = lfp⊆I (f) introduced earlier, which coincides with the set of reachable
states of S . Our main concern will be how to define a sound abstract counterpart fA of
f in a suitable abstract domain 〈A,vA〉 with abstraction function α : ℘(Q) → A and
concretization function γ : A→ ℘(Q) so that we can define S ’s abstract semantics as

S# def
= lfpvA

IA
(fA)

where IA is in turn a suitable abstraction of I. By well-known results [4, 5], the fix point
S# above can be computed or over-approximated so that its concretization by γ is a
sound approximation (i.e., an over-approximation) of the concrete fix point S.

A major issue when using abstract interpretation in general is how to define fA.
In practice, when the transition system is induced by a program, as is often the case,
the concrete transformer f is defined constructively in terms of the programming lan-
guage’s idioms (e.g., assignment, loop and conditional statements for imperative lan-
guages) and memory model (e.g., heap, stack, etc.). The corresponding abstract trans-
former must then handle all those constructs as well, and reflect their respective actions
in the abstract domain DA. When the abstraction function α is defined from γ by the
unique adjoint property of Galois connections the definition of fA is usually a manual,
laborious chore. One has to design the transformer in detail and then prove it sound, by
showing that f (X) ⊆ γ(fA(a)) for all a ∈ A and X ⊆ γ(a).

We present a method that can instead compute a sound abstraction of f completely
automatically. The method is applicable when the transition system and the concrete
and abstract domains can be encoded as we explain below in a logic L satisfying the
requirements listed in the next subsection. For generality, we will describe our method
in terms of an arbitrary logic L satisfying those requirements. To have an intuition,
however, depending on the concrete domain, possible examples of L would be propo-
sitional logic or several of the many logics used in SMT: linear real arithmetic, linear
integer arithmetic with arrays, and so on.

The basic idea of our method for computing the abstract transformer is fairly simple.
It depends on the availability of a L-formula T encoding S ’s transition relation and a
computable function γF mapping each abstract element a to a formula γF(a) satisfied by
the states abstracted by a. Given an a ∈ A, the transformer uses T, γF(a) and a solver for
L to look for a state v′ that is not abstracted by a but is the successor of a state abstracted
by a. If such a state does not exist then a is a fix point and is returned. Otherwise, the
transformer computes an abstraction a′ of state v′ and returns the join of a and a′.

The main appeal of this approach is that logic solvers enumerating satisfying as-
signments are readily available, and abstracting single states is straightforward for most
abstract domains used in practice. In principle, a better approach would be to compute

6 Pierre-Loı̈c Garoche, Temesghen Kahsai and Cesare Tinelli

not a single state like v′ above but a formula G denoting a whole set of them. The re-
sulting abstract transformer would then require a smaller number of iterations to reach a
fix point. This would both accelerate convergence and, since we use widening, improve
precision by possibly needing fewer widening steps. However, computing the formula
G and mapping it to a corresponding abstract element is considerably more challenging
and expensive, if possible at all for a chosen logic and abstract domain. So we leave the
investigation of this approach to further work. The rest of this section formalizes our
current approach and describes it in more detail.

Logic requirements. We assume a logic L = (Σ,F,M) with a decidable entailment
relation |=L and a language F closed under all the Boolean operators.3 For each sort σ
in L, we distinguish a set Vσ of variable-free terms, which we call values, such that
|=L ¬(v1 = v2) for each distinct v1, v2 ∈ Vσ. Examples of values would be Boolean,
integer or rational constants. We assume that the satisfiable formulas of L are satisfied
by values, that is, for every formula F[y] (with free variables from y) satisfied by a
modelM of L there is a value tuple v such that F[v] is satisfied byM.

We assume a total surjective encoding of S ’s state space Q to n-tuples of values,
for some fixed n, where each n-tuple encodes a state. Depending on L, states may be
encoded, for instance, as tuples of Boolean constants, or integer constants, or mixed
tuples of Boolean, integer and rational constants, and so on. From now on then we will
identify states with tuples of values. Note that, thanks to our various assumptions, each
formula F[y1, . . . , yk] in k · n variables denotes a subset of Qk, namely the set of all k-
tuples of states that satisfy F. We call that set the extension of F and define it formally
as follows: ~F� def

= {(v1, . . . , vk) ∈ Qk | F[v1, . . . , vk] is satisfiable in L}. We refer to
formulas like F above as state formulas and say they are satisfied by the state tuples
in ~F�. For each state v = (v1, . . . , vn) ∈ Q and distinct variables x = (x1, . . . , xn) of
corresponding sort, we denote by Av the assignment formula x1 = v1 ∧ · · · ∧ xn = vn,
which is satisfied exactly by v. Finally, we assume the existence of an encoding of S in
L, i.e., a pair (I[x], T [x, x′]) of formulas of L with x and x′ both of size n, where I[x]
is a formula satisfied exactly by the initial states of S , and T [x, x′] is a formula satisfied
by two reachable states v, v′ iff v{ v′.

First abstraction—from sets of states to formulas For theoretical convenience, we
start with an intermediate abstraction that maps sets of states to possibly infinitary for-
mulas representing those states precisely. To do that, we extend the language of L by
closing it under a disjunction operator

∨
that applies to (possibly infinite) sets of for-

mulas of L. We then extend the notions of satisfiability, entailment and equivalence
in L to the new language as expected—e.g., for every set Γ of formulas of L,

∨
Γ is

satisfied by an interpretationM if some F ∈ Γ is satisfied byM, and so on.4

Let Fx be the set of all formulas in the extended language above whose free variables
are from the same n-tuple x. One can show that mutual entailment between two formulas
in Fx is an equivalence relation. Let [F] denote the equivalence class of a formula F
with respect to this relation, and let E denote the set of all those equivalence classes.
Let ~[F]� def

= ~F� for each [F] ∈ E. The poset 〈E,vE〉 where

3The latter is to simplify the exposition. Weaker assumptions are possible.
4In practice, our method will never need to work with formulas

∨
Γ where Γ is infinite.

Incremental Invariant Generation using Automatic Abstract Transformers 7

[F] vE [G] iff F |=L G

has a lattice structure with the following join and meet operators: [F]tE [G] def
= [F∨G]

and [F] uE [G] def
= [F ∧G]. It can be shown that the two functions5

αE : ℘(Q)→ E def
= λV. [

∨
{Av | v ∈ V}] and γE : E→ ℘(Q) def

= λE. ~E�

form a Galois connection. By standard results [5], the best sound abstract transformer
of f with respect to this connection is

fE : E→ E def
= αE ◦ f ◦ γE = λE. [

∨
{Av | v ∈ ~E� ∪ {u′ | u ∈ ~E�, u{ u′}}]

By our logic requirements, the most precise abstraction of the set I of S ’s initial states is
αE(I) = [I] where, recall, I is the formula denoting I in L. It follows that in the abstract
domain 〈E,vE〉 we can define the following semantics for S : SE def

= lfpvE
[I] (fE).

Second abstraction—changing fix point computation For our later needs, we would
like to have a fix point computation that actually enumerates the additional states dis-
covered by the collecting semantics. The abstraction αE above, over-approximating sets
of states by disjunctions of assignment formulas, is not well suited for that because these
disjunctions can be infinitary. Hence, we introduce another abstract transformer, on the
same lattice 〈E,vE〉:

gE : E→ E def
= λE. E tE choose({[Av′] | T [v, v′] is sat. in L, v ∈ ~E�, v′ < ~E�})

where choose is some choice function over subsets of E, returning one element of
its input set if the set is non-empty, and [false] otherwise. This function maps each
equivalence class E to a class E′ such that ~E′� \ ~E� contains just one state, chosen
among the successors of the states in ~E� according to the transition formula T . We can
use gE instead of fE in the fix point computation thanks to the following result.6

Proposition 1 (Soundness). The transformers fE and gE have the same least fix point
above [I], i.e., lfpvE

[I] (fE) = lfpvE
[I] (gE) where lfpvE is defined using transfinite iterations.

Main abstraction—abstracting formulas in Fx We now introduce our last abstrac-
tion, mapping formulas in Fx to elements of an abstract domain 〈A,vA〉 like those
typically used in abstract interpretation tools (intervals, polyhedra, and so on). We as-
sume that A is fitted with a lattice structure with meet uA and join tA. We also assume
the existence of a computable monotonic function γF : A → Fx that associates a for-
mula of Fx to each element of A. Intuitively, we are requiring that each element of A
be effectively representable as a formula denoting a set of states. This requirement is
easily satisfied for many numerical abstract domains and the sort of logics used in SMT.
For instance, intervals can be mapped to conjunctions of inequalities between variables

5We borrow λ-calculus’ notation to denote mathematical functions.
6All proofs of our results can be found in a companion technical report available at

http://www.cs.uiowa.edu/˜tinelli/html/publications.html.

8 Pierre-Loı̈c Garoche, Temesghen Kahsai and Cesare Tinelli

Sets of states
〈℘(Q),⊆〉

Equivalence
classes of
formulas
〈E,vE〉

(Numerical)
Abstract
domain
〈A,vA〉

γE

αE

γ

αγ

f fE

gE gA

Fig. 1: Global framework: combination of abstractions.

Input: a ∈ A
F[x, x′] := γF(a)[x] ∧ T [x, x′] ∧ ¬γF(a)[x′]
if F is satisfiable in L then

let v, v′ be two states that satisfy F[x, x′]
return a tA αQ(v′)

return a

Fig. 2: Basic version of the automatic abstract transformer gA.

and values; similarly, any linear-based abstraction can be mapped to a conjunction of
linear arithmetic constraints. As concretization function we use the monotonic function
γ : A 7→ E def

= (λF.[F])◦γF which maps each abstract element to an equivalence class in
E. Since E and A are lattices, γ induces a Galois connection αγ : 〈E,vE〉� 〈A,vA〉 : γ
where αγ is uniquely determined by γ.

In summary, we obtain the combination of abstractions illustrated in Figure 1. How-
ever, we do not use αγ at all by assuming instead the existence of a state abstraction
function αQ : Q 7→ A which directly associates states to their abstract counterparts in
A. For our approach to be sound, it is enough for αQ to be such that a vA αQ(v) for each
v ∈ Q and a ∈ A where a is v’s best abstraction—i.e., the smallest element of A with
[Av] vE γ(a). In the actual domains we have considered in our implementation, the def-
inition of αQ is straightforward and such that a = αQ(v). For instance, let v = (4,−2, 5)
Then αQ(v) is ([4; 4], [−2;−2], [5; 5]) if A is the integer interval domain, and is the ab-
stract element described by the system {4 ≤ x1 ≤ 4, −2 ≤ x2 ≤ −2, 5 ≤ x3 ≤ 5} if A is
a relational domain such as octagons or polyhedra.

The abstract transformer Recall that our main goal was to generate a computable
sound abstract transformer gA for gE automatically. We can do that by relying solely on
(i) the function γF, (ii) the state abstraction αQ, and (iii) a sound, complete and termi-
nating satisfiability solver for the logic L that is also able to return for each satisfiable
state formula F[x1, . . . , xk] a tuple v1, . . . , vk of states that satisfies it.

A basic procedure for computing gA is given in Figure 2. The satisfiability tests
and the choice of the states v and v′ in the figure are performed by the solver for L,
which effectively plays for gA the role of the choice function in the definition of gE. We
note that, while fix points are traditionally computed in the abstract domain, with our
approach it is not necessary to transfer back the element gA(a) to detect that a is a fix
point: it is enough to detect that the formula F in Figure 2 is unsatisfiable.

Incremental Invariant Generation using Automatic Abstract Transformers 9

Theorem 1 (Soundess). The transformer gA is a sound approximation of gE: for all
a ∈ A, (gE ◦ γ)(a) vE (γ ◦ gA)(a).

Our eventual goal is to over-approximate the fix point lfpvA
IA

(gA) where IA is a sound
approximation of the initial state formula I; more precisely, where [I] vE γ(IA). When
I is satisfied by a single state v, the abstract element IA is just αQ(v). In general, we can
use the logic solver again to compute an IA iteratively. A basic procedure for that (also
used in [24]) is the following, starting with IA equal to the bottom element of A:

while (there is a state v satisfying I[x] ∧ ¬γF(IA)[x]) do
IA := IA tA αQ(v)

Proposition 2 (Soundness). When the loop above terminates, the computed element
IA is a sound approximation of [I].

In practice, we are mostly interested in abstract domains that do not satisfy the ascend-
ing chain condition [4]. In those cases, a widening operator ∇ is needed in addition to
the join tA, in the computation of IA and of lfpvA

IA
(gA) to ensure convergence. Although

any of the widening operators and strategies developed in the field could be used for
that, we have been able to obtain pretty good experimental results already with rather
unsophisticated widening strategies, as we discuss in Section 5.

4 On-the-fly invariant generation

A one-state formula F[x] is an invariant for S if ~F� includes the set RS of all reach-
able states of S . Invariants have many useful applications in static analysis, logic-based
model checking, and deductive verification in general. In our abstract domain E from
the previous section, any formula F such that lfpvE

[I] (fE) vE [F] is an invariant, since
RS = ~lfpvE

[I] (fE)� ⊆ ~F�.7 By the construction of our abstraction in the domain A, any
fix point computation for the transformer gA : A→ A starting with the element IA from
Proposition 2 produces a value a such that γF(a) is an invariant for S .

A distinguishing feature of our approach is that, in practice, we can modify the
fix point computation for gA to generate intermediate invariants as it goes and before
reaching the fix point. We capitalize on the fact that γF(a) is typically a conjunction
of formulas, or state properties, P1[x], . . . , Pm[x]. For any intermediate value a ∈ A
constructed during the fix point computation for gA, if γF(a) = P1 ∧ · · · ∧ Pm we can
check whether any of the Pi’s is already invariant.

Since the fix point computation using gA starts with an over-approximation of the
initial states, we know that the whole γF(a) is inductive, and hence invariant, if the
satisfiability test on the formula F in Figure 2 fails. However, it is possible to do better
by turning that test into one that checks the k-inductiveness [27] of the individual Pi’s
simultaneously. We discuss an efficient mechanism for doing that in previous work [18].
We refer the reader to that work for more details, but the important point here is that,

7Of course, obtaining a formula from the equivalence class lfpvE
[I] (fE) would be enough for all

analysis purposes since that class consists of the strongest invariant for S . However, in general,
such formulas may be infinitary or impractical to compute.

10 Pierre-Loı̈c Garoche, Temesghen Kahsai and Cesare Tinelli

given a bound on k, we can identify fairly quickly, for each i = 0, . . . , k, which subsets
of {P1, . . . , Pm} are conjunctively i-inductive.8 If the whole {P1, . . . , Pm} is proven k-
inductive, which is equivalent to proving that the formula

G[x0, . . . , xk+1] def
= γF(a)[x0] ∧ T [x0, x1] ∧ · · · ∧ γF(a)[xk] ∧ T [xk, xk+1] ∧ ¬γF(a)[xk+1]

is unsatisfiable, then gA can return a because in that case it is a fix point. Otherwise, the
state vk+1 from a state tuple (v0, . . . , vk+1) that satisfies G can be used to generalize a as
done with v′ in Figure 2. In either case, any subset of {P1, . . . , Pn} that has been proven
k-inductive can be output as a set of (intermediate) invariants.

This in effect turns an abstract interpreter for A using gA into an on-the-fly invariant
generator. The invariants generated in the earlier iterations of the interpreter are usually,
but not necessarily, the simplest ones (e.g., interval bounds on a variable, equalities be-
tween variables, and so on) and become increasingly more elaborate as the computation
proceeds. The main point is that one does not need to wait until the end of a possibly
complex fix point computation using a wide set of costly abstractions to obtain poten-
tially useful invariants. Our experimental results confirm this conjecture.

An additional, if secondary, benefit of identifying intermediate invariants is that they
can be used to improve the preciseness of later iterations of the very fix point computa-
tion that generated them. This can be done by maintaining at all times a conjunction J[x]
of all the intermediate invariants generated until then, and using at each call of gA the
formula TJ[x, x′] def

= T [x, x′]∧J[x] in place of the original transition relation formula T .
Using the strengthened transition formula TJ helps counterbalance the loss of precision
caused by widening while maintaining the soundness of gA—since the strengthening
discards only states that are definitely unreachable for not satisfying the invariant J[x].

Application: invariant generation for Lustre programs

This work was originally motivated by the problem of proving invariant properties of
Lustre programs. Lustre [15] is a synchronous data-flow specification/programming
language with infinite streams of values of three basic types: Booleans, integers, and
reals. It is used to model control software in embedded devices. Properties to be proven
are typically introduced within Lustre programs as observer Boolean streams so that
checking that a property is invariant amounts to checking that its corresponding stream
is constantly true. In previous work, we developed a k-induction-based parallel model
checker for Lustre programs, called Kind [20], which uses SMT solvers as its main rea-
soning engine. Kind benefits from the use of auxiliary invariant generators to strengthen
its basic k-induction procedure [19]. We implemented the fix point computation method
described here as an additional on-line invariant generator for Kind.

Kind works with an idealized version of Lustre with infinite-precision numerical
types. Idealized Lustre programs can be readily recast as transition systems in a three-
sorted concrete domain with Booleans and (mathematical) integers and reals. Such

8For the reader unfamiliar with k-induction, it is enough to know that every k-inductive for-
mula is invariant, and is k′-inductive for every k′ > k. Also, 0-inductive formulas are inductive in
the traditional sense.

Incremental Invariant Generation using Automatic Abstract Transformers 11

1 node p count (a, b, c : bool) returns (x, y : i n t ; obs : bool) ;
2 var n1, n2 : i n t ;
3 l e t
4 n1 = 10000; n2 = 5000;
5 x = 0 −> i f b or c then 0 else i f a and (pre x) < n1 then (pre x) + 1 else pre x ;
6 y = 0 −> i f c then 0 else i f a and (pre y) < n2 then (pre y) + 1 else pre y ;
7 obs = (x != n1) or (y = n2) ;
8 t e l

Fig. 3: Double counter example in Lustre.

systems can be almost directly encoded and reasoned about in a quantifier-free logic
of mixed integer and real arithmetic with uninterpreted function symbols. The linear
fragment of that logic, which we could call QF UFLIRA in the nomenclature of SMT-
LIB [3], can be efficiently decided by the SMT solvers used by Kind. This means that
Lustre programs limited to linear arithmetic are amenable to analysis with our method.

We have built an abstract interpreter, called Kind-AI, for such Lustre programs that
computes the abstract transformer automatically as explained earlier, and generates a
stream of invariants (for Kind’s benefit) during its fix point computation.9 As abstract
domain we use one defined, as usual, as a reduced product of a variety of abstract
domains, including relational and non-relational ones. Our implementation of the func-
tion γF converts abstract elements into formulas of QF UFLIRA as one would expect:
an interval [a; b] for a variable x is converted into the formula a ≤ x ∧ x ≤ b; a linear
constraint Σi ai ·xi ≥ c is mapped directly to the corresponding formula of QF UFLIRA.
The translation is extended homomorphically to more complex elements. For instance,
elements that are the meet of other ones (such as polyhedra, etc.) are converted to the
conjunction of the translation of the components.

Kind-AI is written in OCaml and relies on the APRON abstract domain library [17].
It shares with Kind, also written in OCaml, modules to encode Lustre programs as tran-
sition systems in the QF UFLIRA logic, and to interact with an SMT solver. A ba-
sic partitioning mechanism allows Kind-AI to express certain conditional properties.
Specifically, it is possible to specify any Boolean term or finite range term t from the
Lustre program as a partitioning variable. Then the premises of the conditional prop-
erties are conjunctions of predicates of the form t = v, where v is one of the possible
values of t. We illustrate the use of Kind-AI here with a typical example: counters,
which are used widely within safety mechanisms for critical systems.

Example 1. In the Lustre program shown in Figure 3, two counters x and y are incre-
mented up to their respective maximum value whenever the input value a is true; both
are reset to 0 when the input c is true. The counter x is reset also when the input b
is true. Suppose we would like to prove that whenever x reaches its maximum value,
so does y. This property is expressed by the synchronous observer obs. It is enough to
show then that the Boolean stream obs is equal to the constant stream true.

With a partitioning using the Boolean terms x < n1 and y < n2, chosen for being
if-then-else guards in the program that involve stateful variables, Kind-AI behaves as

9Kind-AI and the input problems used in the experiments described in the next section can
be found at http://clc.cs.uiowa.edu/Kind/NFM13.

12 Pierre-Loı̈c Garoche, Temesghen Kahsai and Cesare Tinelli

follows with respect to the state variable tuple (x, y). Its fix point algorithm finds and
injects, in order, into the abstract domain the states (0, 0), (0, 1), (1, 1) and (2, 2). After
the injection of (1, 1), the computed abstract element contains the sub-properties
0 ≤ x, x ≤ 1, 0 ≤ y, y ≤ 1 and x ≤ y. After the injection of (2, 2), Kind-AI identifies
three sub-properties as invariants: 0 ≤ x, 0 ≤ y and y < n2 ⇒ x ≤ y.10 Using the
same widening heuristics described in the next section, a fix point that also includes the
invariants x ≤ 10000 and y ≤ 5000 is reached in 3.95 seconds after 31 iterations.

With this program, using k-induction alone Kind is not able to prove in reasonable
time the property expressed by obs. However, when run concurrently with Kind-AI,
Kind is able to prove the target property as soon as it receives the intermediate invariants
0 ≤ x, x ≤ 10000, 0 ≤ y, y ≤ 5000 and y < n2 ⇒ x ≤ y. ut

5 Experimental evaluation

Our approach relies heavily on widening in practice to ensure convergence. As a con-
sequence, one might wonder about the logical strength of the invariants produced by
our invariant generator. To evaluate that we did an initial experimental comparison with
a couple of other static analysis tools, ASPIC and SMT-AI, that can generate linear
numerical invariants for (finite and) infinite-state systems. The first is a tool combin-
ing linear relation analysis with widening and acceleration techniques [11]. The second
tool is an abstract interpreter that targets specifically Lustre programs and employs a
number of AI techniques to produce program invariants [25].11

We looked at the set of infinite-state transition systems collected by Gonnord on
the ASPIC website [1]. These are mostly toy numerical systems, specified in the FAST
language [9], which however admit interesting conditional and unconditional numer-
ical invariants. FAST expresses transition systems essentially as unbounded counter
automata, with a finite control structure and transitions that have linear integer arith-
metic guards, and effects described by affine functions. We translated each automaton
to a Lustre program by encoding the automaton’s states by means of a mode variable, a
finite range variable with each value representing one of the states.

We ran four different configurations of ASPIC on the FAST systems. We also ran
Kind-AI and SMT-AI on the corresponding Lustre programs, with partitioning over
the mode variable above and with the full packs option, which builds a relational ab-
straction (using polyhedra and octagons in Kind-AI, and just polyhedra in SMT-AI)
on all the stateful variables of the program. In Kind-AI, we used a very simple widen-
ing heuristics, which applies widening every two join operations and uses as widening
thresholds the numerical constants in the input program. We set an upper bound of 4 for
the k-induction loop used in the computation of the abstract transformer gA described
in Section 4. All tests were executed with a 60 second timeout on a Linux machine with
a quad-core 2.80 GHz Xeon processor with 12 GB of RAM.

Finally, we compared for each problem the invariants generated by ASPIC and
SMT-AI at the end of their analysis with the conjunction of the intermediate invariants

10Note that fast pre-analyses used in abstract interpretation tools, such as constant propagation,
will not produce implications like the one above.

11The “SMT” in the name is just because it works with formulas in the SMT-LIB format [3].

Incremental Invariant Generation using Automatic Abstract Transformers 13

Benchmarks ASPIC SMT-AI Kind-AI SMT-AI
Ch79 Ch79V2 Lookahead Native runtime runtime

apache1 = 004 = 004 = 004 = 004 + 004 005 005
car7 || − || − || 12,120 083
dummy1 = 003 = 003 − − + 003 005 003
dummy4 + 014 = 014 = 014 = 014 + 006 014 005
dummy6 + 004 + 028 + 028 − + 002 028 timeout
gb + 783 + 783 = 783 || + 009 7,830 026
goubault1b + 011 = 011 = 011 = 011 + 011 026 025
goubault2b + 057 + 072 + 072 + 072 + 057 102 018
hal79a || − − − + 047 1,430 024
hal79b + 101 + 101 − − + 101 1,020 021
simplecar + 066 − = 066 − + 005 066 006
sp || − || || + 035 12,300 timeout
subway || − || || || 19,130 05,330
swap || − − − + 022 022 006
t4x0 + 014 + 014 + 014 + 014 + 014 067 027
train1 || − || || || 19,040 05,330
wcet1 || || || − || 5,530 027
wcet2 || || || || || 38,870 2,270

Fig. 4: Comparison of final invariants computed by Kind-AI vs. those computed by the
other tools. The symbol + means Kind-AI’s invariant is stronger; − weaker; = equiva-
lent; and || incomparable. All runtimes are in milliseconds.

progressively generated by Kind-AI. Figure 4 summarizes the results of this compari-
son. The various configuration of ASPIC are explained in [1]. The first three implement
earlier methods developed by others [14, 2, 12]; the last one corresponds to ASPIC’s
own method. The last two columns in the figure show the time SMT-AI and Kind-AI
respectively took to compute their fix point. The corresponding runtimes for ASPIC
are not reported because they were 3ms in almost all cases, with a maximum of 7ms.
The numbers in the ASPIC and SMT-AI columns indicate at what time during Kind-
AI’s computation the conjunction of its intermediate invariants became equivalent or
stronger than the final invariant generated by the other tools.

We stress that Kind-AI was designed to quickly compute auxiliary invariants for
Kind, not to produce comprehensive analyses. So it incorporates none of the sophisti-
cated techniques used by ASPIC to increase the precision of its analysis [11]. In spite
of that, in many cases it computed stronger or equivalent invariants. This suggests that
the sound abstract transformers generated automatically with our method can produce
fairly accurate analyses out of the box. The results also confirm that while convergence
to a fix point may take considerably longer in Kind-AI than in the other tools, good
invariants (i.e., stronger or equivalent to those from the other tools) are produced a lot
sooner.

6 Conclusion and further work

The framework we presented offers two main contributions: (i) a systematic and auto-
matic generation of abstract transformers based on a combination of logic solvers and
abstract domain libraries; (ii) the gradual generation of invariants during the computa-
tion of post fix points. Our approach is truly automatic whenever the target system can
be encoded in a suitable decidable logic and abstract domain elements are representable

14 Pierre-Loı̈c Garoche, Temesghen Kahsai and Cesare Tinelli

in that logic. Such conditions are often easy to satisfy for systems already analyzable
with SMT solvers, and for numerous abstract domains. Thanks to continuous advances
in SMT, we expect that more and more domains, such as those for finite precision inte-
gers and floating point numbers, will be supported by SMT solvers. Our approach will
then immediately provide for free abstract interpreters/invariant generators for them.
Although our current implementation works with Lustre programs, our general method
is language independent. Also, it imposes no restrictions on the abstract domains that
can be used as long as, in essence, the domains admit a concretization in a decidable
logic with an available solver. Furthermore, our framework facilitates the expression
of big-step semantics (on the logical side) and therefore avoids the loss of precision
obtained when applying abstract transfer functions at a small-step semantics level.

About the second contribution, to our knowledge, our initial implementation of the
framework is the only available tool based on abstract interpretation and Kleene-style
fix point computation that provides invariants before the post fix point is reached. Even
if reduced domains share knowledge about their current state, this information is not
a guaranteed fix point and cannot be soundly communicated to other tools. In a multi-
analyzer setting, the ability to share invariants before the end of the computation can
drastically increase performance. But that sort of intermediate but guaranteed informa-
tion can be extremely valuable even in standalone use. For example, when statically
analyzing a 200k-loc critical embedded software for the absence of run time errors [6],
one could start looking at sections of the code that are already proven to be error free
while the automatic analysis continues. This contrasts with the current general practice
for least-fix point approximations where one gets at most alarms during the computa-
tion and has to wait, possibly for hours, for that computation to end before interpreting
the results, and realizing perhaps that certain parameters need further tuning.

We have implemented our method and verified the general quality of its generated
invariants with a comparative evaluation on some benchmarks admitting interesting nu-
merical invariants. Further work will involve a more extensive experimental evaluation
of the method to assess the effects of its generated invariants on the performance of
our Kind model checker, which already relies on auxiliary invariants generated by other
means. One source of imprecision in our method, leading to weaker invariants, is the
generalization of the current abstract value to include successor states that may in fact
be unreachable. Additional work will focus on developing enhancements for mitigating
this problem.

References

1. Aspic website. http://laure.gonnord.org/pro/aspic/benchmarks.html.
2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex

polyhedra. In SAS, volume 2694 of LNCS, pages 337–354, 2003.
3. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In SMT, 2010.
4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.
5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL,

pages 269–282, 1979.

Incremental Invariant Generation using Automatic Abstract Transformers 15

6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE Analyser. In ESOP, volume 3444 of LNCS, pages 21–30, 2005.

7. P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of abstract domains and the
combination of decision procedures. In FOSSACS, volume 6604 of LNCS, pages 456–472,
2011.

8. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2nd edition, 2001.
9. Fast website. http://www.lsv.ens-cachan.fr/fast/.

10. T. M. Gawlitza and D. Monniaux. Improving strategies via SMT solving. In ESOP, volume
6602 of LNCS, pages 236–255, 2011.

11. L. Gonnord and N. Halbwachs. Combining widening and acceleration in linear relation
analysis. In SAS, volume 4134 of LNCS, pages 144–160, 2006.

12. D. Gopan and T. W. Reps. Lookahead widening. In CAV, volume 4144 of LNCS, pages
452–466, 2006.

13. A. Gurfinkel and S. Chaki. Combining predicate and numeric abstraction for software model
checking. STTT, 12(6):409–427, 2010.

14. N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. PhD thesis, University of Grenoble, 1979.

15. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September 1991.

16. B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses of numerical
properties. In SAS, volume 1694 of LNCS, pages 39–50, 1999.

17. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis.
In CAV, volume 5643 of LNCS, pages 661–667, 2009.

18. T. Kahsai, P.-L. Garoche, C. Tinelli, and M. Whalen. Incremental verification with mode
variable invariants in state machines. In NFM, volume 7226 of LNCS, pages 388–402, 2012.

19. T. Kahsai, Y. Ge, and C. Tinelli. Instantiation-based invariant discovery. In NFM, volume
6617 of LNCS, pages 192–207, 2011.

20. T. Kahsai and C. Tinelli. PKIND: a parallel k-induction based model checker. In PDMC,
volume 72 of EPTCS, pages 55–62, 2011.

21. A. King and H. Søndergaard. Automatic abstraction for congruences. In VMCAI, volume
5944 of LNCS, pages 197–213, 2010.

22. D. Monniaux. Automatic modular abstractions for linear constraints. In POPL, pages 140–
151. ACM, 2009.

23. D. Monniaux and L. Gonnord. Using bounded model checking to focus fixpoint iterations.
In SAS, volume 6887 of LNCS, pages 369–385, 2011.

24. T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer. In
VMCAI, volume 2937 of LNCS, pages 252–266, 2004.

25. P. Roux, R. Delmas, and P.-L. Garoche. SMT-AI: an abstract interpreter as oracle for k-
induction. Electr. Notes Theor. Comput. Sci., 267(2):55–68, 2010.

26. P. Schrammel and B. Jeannet. Extending abstract acceleration methods to data-flow programs
with numerical inputs. Electr. Notes Theor. Comput. Sci., 267(1):101–114, 2010.

27. M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction and a
SAT-solver. In FMCAD, volume 1954 of LNCS, pages 127–144, 2000.

28. A. V. Thakur, M. Elder, and T. W. Reps. Bilateral algorithms for symbolic abstraction. In
SAS, volume 7460 of LNCS, pages 111–128, 2012.

29. A. V. Thakur and T. W. Reps. A method for symbolic computation of abstract operations. In
CAV, volume 7358 of LNCS, pages 174–192, 2012.

30. A. Tiwari and S. Gulwani. Logical interpretation: Static program analysis using theorem
proving. In CADE, volume 4603 of LNCS, pages 147–166, 2007.

31. G. Yorsh, T. W. Reps, and S. Sagiv. Symbolically computing most-precise abstract operations
for shape analysis. In TACAS, volume 2988 of LNCS, pages 530–545, 2004.

