
Ground Interpolation for the Theory of Equality

Alexander Fuchs1, Amit Goel2, Jim Grundy2, Sava Krstić2, and Cesare Tinelli1

1 Department of Computer Science, The University of Iowa
2 Strategic CAD Labs, Intel Corporation

Abstract. Given a theory T and two formulas A and B jointly unsat-
isfiable in T , a theory interpolant of A and B is a formula I such that
(i) its non-theory symbols are shared by A and B, (ii) it is entailed by
A in T , and (iii) it is unsatisfiable with B in T . Theory interpolants
are used in model checking to accelerate the computation of reachability
relations. We present a novel method for computing ground interpolants
for ground formulas in the theory of equality. Our algorithm computes
interpolants from colored congruence graphs representing derivations in
the theory of equality. These graphs can be produced by conventional
congruence closure algorithms in a straightforward manner. By working
with graphs, rather than at the level of individual proof steps, we are
able to derive interpolants that are pleasingly simple (conjunctions of
Horn clauses) and smaller than those generated by other tools.

1 Introduction

The Craig Interpolation Theorem [4] asserts—for every inconsistent pair of first-
order formulas A, B—the existence of a formula I that is implied by A, incon-
sistent with B, and written using only logical symbols and symbols that occur
in both A and B.

Analogues of this result hold for a variety of logics and logic fragments. Re-
cently, they have found practical use in symbolic model checking. Applications,
starting with the work by McMillan [7], involve computation of interpolants
in propositional logic or in quantifier-free logics with (combinations of) theories
such as the theory of equality, linear real arithmetic, arrays, and finite sets [8, 14,
6, 3]. There are now techniques that use interpolants to obtain property-driven
approximate reachability sets or transition relations, and also to compute refine-
ments for predicate abstraction. Experimental results show that interpolation-
based techniques are often superior to previous ones.

An important functionality in much of this work is the computation of ground
interpolants in the theory of equality, also known as the theory of uninterpreted
functions (EUF). The ground interpolation algorithm for this theory used in
existing interpolation-based model checkers was developed by McMillan [8]. It
derives interpolants from proofs in a formal system that contains rules for the
basic properties of equality.

In this paper, we present a novel method for ground EUF interpolation.
We compute interpolants from colored congruence graphs that compactly rep-
resent EUF derivations from two sets of equalities, and can be produced in a

straightforward manner by conventional congruence closure algorithms. Working
with graphs makes it possible to exploit the global structure of proofs in order
to streamline the interpolant generation. Our interpolants are conjunctions of
Horn clauses, the simplest conceivable form for this theory. In most cases, they
are smaller and logically simpler than those produced by McMillan’s method.

Our interpolation algorithm is described and proved correct in §5. In §4,
we give a series of examples to highlight important aspects of the algorithm.
Its inherent game-like structure is explained at a high level in §3. A detailed
comparison with McMillan’s method is given in §6, together with experimental
data on a set of benchmarks derived from the SMT-LIB suite.

2 Ground Theory Interpolation

Interpolation is a property of fragments of logical theories. To state it for a
fragment F , we need know only the following:

– a partition of symbols used to build formulas in F into logical and non-logical
– the entailment relation A |= B between formulas in F

Let F(X) be the set of all formulas in F whose non-logical symbols belong to
X . By definition, F has the interpolation property if for every A ∈ F(X)
and B ∈ F(Y) such that A, B |= false, there exists I ∈ F(X ∩ Y) such that
A |= I and B, I |= false. The formula I will be called the interpolant for the
pair A, B. Note the asymmetry: ¬I is an interpolant for the pair B, A.

The classic Craig’s theorem says that the set of first-order logic formulas has
the interpolation property. (The non-logical symbols are the predicate and func-
tion symbols, and variables.) It also implies a “modulo theory” generalization,
where, for a given first-order theory T over a signature Σ, F is the set of all
Σ-formulas, |= is the T -entailment, and the symbols of Σ are treated as logical.
The case where T and Σ are empty is Craig’s original theorem.

Of particular interest is the interpolation property for quantifier-free frag-
ments of theories. It may or may not hold, depending on the theory. Take, for
example, the quantifier-free fragment of integer arithmetic, and let A = {x =
2u}, B = {x = 2v +1}. A and B are inconsistent in this theory, and the formula
(∃u)(x = 2u) is an interpolant. However, there is no quantifier-free interpolant.

By definition, a theory has the ground interpolation property if its
quantifier-free fragment has the interpolation property. Aside from EUF , several
other theories of interest in model checking have this property [6].

If we want an efficient algorithm for ground T -interpolation, it suffices to have
one that works for inputs A and B that are conjunctions of ground literals. To
see this, refer to [8, 3] for a description of a general mechanism to combine such
a restricted interpolation procedure with a method for computing interpolants
in propositional logic [12, 7].

Example 1. The sets of inequalities A = {3x − z − 2 ≤ 0, −2x + z − 1 ≤ 0}
and B = {3y − 4z + 12 ≤ 0, −y + z − 1 ≤ 0} are mutually inconsistent, as

2

witnessed by the linear combination with positive coefficients 2 · (3x − z − 2 ≤
0)+3·(−2x+z−1 ≤ 0)+1·(3y−4z+12 ≤ 0)+3·(−y+z−1 ≤ 0) that simplifies to
2 ≤ 0. The A-part of this linear combination 2·(3x−z−2 ≤ 0)+3·(−2x+z−1 ≤ 0)
gives us the interpolant I = (z − 7 ≤ 0) for A, B. Generalizing what goes on
in this example, one can obtain a ground interpolation procedure for the linear
arithmetic with real coefficients. See, e.g., [3].

3 Interpolation as a Cooperative Game

There is a way to compute interpolants in a theory T as a cooperative game
between two deductive provers for T —possibly two copies of the same prover.
We give an informal description of the ground interpolation game. The same
idea applies with minor modifications to other interpolation problems, but the
success of the method is not guaranteed in general.

Let A and B be two sets of ground formulas such that A∪B is T -unsatisfiable.
We allow A and B to contain free symbols, i.e., predicate and function symbols
not in the signature Σ of T . Let ΣI be the shared signature, the expansion of Σ

with the free symbols occurring in both A and B.

The interpolation game. The participants are the A-prover and the B-prover.
The game starts with SA = SB = ∅ and proceeds so that at each turn one of
the following happens:

– the A-prover adds to SA a new ground ΣI -clause C such that A, SB |=T C

– the B-prover adds to SB a new ground ΣI -clause C such that B, SA |=T C

The game ends when the B-prover could add false to SB. An interpolant for A

and B can then be computed as follows.
Let C be a clause of SA and let C1, . . . , Cn be the clauses of SB actually

used by the A-prover to derive C. Let us call C1, . . . , Cn the B-premises of C

and call the formula C1 ∧ · · · ∧ Cn ⇒ C the A-justification of C. Similarly,
we can define the set A-premises of each clause C ∈ SB. For C ∈ SB, define
the cumulative set of premises P(C) recursively by

P(C) = {C} ∪
⋃

{P(D) |D is a B-premise of an A-premise of C}

It can be shown that the conjunction of A-justifications of A-premises of clauses
in P(false) is an interpolant for A, B.

For some theories with the ground interpolation property, the game admits
complete strategies, guaranteed to end the game when A and B are jointly un-
satisfiable in the theory. Depending on the theory, these strategies can be con-
siderably more restrictive in the choice of clauses to propagate from one prover
to the other. For instance, by results of [13], when the theory is Σ-convex,3 it is
enough to propagate just positive unit clauses in all rounds of the game except

3 A theory is convex if L |=T p1 ∨ · · · ∨ pk implies L |=T pi for some i, where L is
any set of ground literals and the pi are any positive literals.

3

possibly the last. In that case, all interpolants computed will be conjunctions of
Horn clauses.

The interpolation method we describe in §5.5 for the theory of equality can
be understood as an implementation of this interpolation game, with clause
propagation restricted to (positive) equalities. The method does not literally
use two provers; it rather takes a proof of unsatisfiability of A ∪ B, treats it
as if cooperatively generated by an A-prover and a B-prover, and extracts an
interpolant from it as sketched above.

Remark 1. Nelson and Oppen’s method for combining decision procedures [9] is
similar to the interpolation game. The main differences are that for the Nelson-
Oppen procedure (i) the input sets of formulas A1 and A2 need not be jointly
T -unsatisfiable; (ii) the goal is not to produce interpolants for A1 and A2 but just
to witness the T -unsatisfiability of A1∪A2; (iii) T is the union of two signature-
disjoint theories T1 and T2; (iv) each formula Ai is built from the symbols of Ti

and free constants; (v) each Ai-prover works just over Ti instead of the whole T ;
(vi) additional restrictions on T1 and T2 guarantee termination when A1 ∪A2 is
T -satisfiable. A description of a Nelson-Oppen combination framework in terms
similar to our interpolation game can be found in [5].

4 EUF Interpolation Examples

Let us fix the terminology first. A ground EUF term is either a free constant or
(inductively) an application f(t1, . . . , tn) of an n-ary function symbol f to terms
t1, . . . , tn. An EUF literal is an equality s = t between terms, or the negation
s 6= t of it (a disequality). We use = also to write equalities at the meta-level,
relying on the context to disambiguate. For convenience, we treat all equalities
modulo symmetry: an equality s = t will stand indifferently for s = t or t = s.

Example 2. The picture in Figure 1(a) demonstrates the inconsistency of A =
{z1 = x1, x1 = z2, z2 = x2, x2 = f(z3), f(z3) = x3, x3 = z4} and B = {z1 =
y1, y1 = f(z2), f(z2) = y2, y2 = z3, z3 = y3, y2 6= z4} that follows by tran-
sitivity of equality. The interpolant is the equality z1 = z4 that summarizes
the A-chain. For the variation in Figure 1(b), the interpolant is the conjunction
z1 = z2 ∧ f(z3) = z4 ∧ f(z2) = z3 of summaries of A-chains. For yet another
variation, modify Figure 1(b) by moving the disequality sign to the edge 〈x3, z4〉.
The interpolant changes to z1 = z2 ∧ f(z3) 6= z4 ∧ f(z2) = z3. In light of the in-
terpolation game (§3) where the A-prover and the B-prover alternate in deriving
sets of equalities, we can see that in all these example the game can end after
the second round: A generates some implied literals in the shared language, and
B is inconsistent with their conjunction. (Here and elsewhere in this section, a
round of the game is a sequence of steps done by the same prover.)

Example 3. When the inconsistency of A ∪ B requires congruence reasoning,
an interpolant in the form of a conjunction of equalities need not exist. Let

4

f()3z

z1

z2

z3

z4

x1 x2 x3

y1 2y 3y
=/

f()2z

f()3z

z1

z2

z3

z4

x1 x3

y1 3y
=/

2y

x2f()2z

(b)(a)

Fig. 1: Transitivity chains with dark (light) edges representing A-literals (B-literals).
For the vertex coloring convention, see Example 9.

A = {u1 = x · u0, v1 = x · v0} and B = {u0 = v0, u1 6= v1}. (The dot is an infix
function symbol.) There are no equalities implied by A that do not contain x.
The transitivity chain u1 = x · u0 = x · v0 = v1 contradicts u1 6= v1 ∈ B, but its
middle equality is not implied by A. However, A does imply it under the condition
u0 = v0 that B provides. That gives us the interpolant u0 = v0 ⇒ u1 = v1. The
game can take 3 rounds in which u0 = v0 is derived first (by B), then u1 = v1

(by A), then false (by B).

Example 4. Generalizing the previous example, consider this matrix-organized
set of literals:

u0 = v0

x1 · u0 = u1

x1 · v0 = v1

x2 · u1 = u2

x2 · v1 = v2

. . . xn · un−1 = un

xn · vn−1 = vn

un 6= vn

Let A be the set of equalities occurring in the odd-numbered columns (count
columns starting from one!) of this matrix, and B be the set of the remaining
equalities; see Figure 2. The shared symbols are u0, v0, . . . , un, vn, the symbols
local to A are x2, x4, . . ., and the symbols local to B are x1, x3,

The game takes n + 2 rounds. It begins with the A-prover adding u0 = v0 to
SA. Then, using the equalities from the second column, the B-prover can derive
u1 = v1, and add it to SB. Now, the A-prover can use this equality together with
equalities from the third column to derive u2 = v2 and add it to SA. Assuming
n is even, the last equality un = vn will be derived by the A-prover, after which
B derives false. Collecting justifications of all equalities derived by A, we obtain
the interpolant

(u0 = v0) ∧ (u1 = v1 ⇒ u2 = v2) ∧ · · · ∧ (un−1 = vn−1 ⇒ un = vn)

Example 5. With A = {x = z1, x · z2 = z3} and B = {y = z2, z1 · y 6= z3},
pictured in Figure 3, we can derive inconsistency from the chain z3 = x · z2 =
z1 · y 6= z3, where the congruence reasoning that produces the middle equality
uses an equality from A and an equality from B (x = z1 and z2 = y), and cannot
be derived by either A or B alone. A simple split of the problematic equality
into two produces a chain in which every literal follows from either A or B:
z3 = x · z2 = z1 · z2 = z1 · y 6= z3. The summary z3 = z1 · z2 of the A-chain is
our interpolant. The upshot is that creating an interpolant may require terms
(in this case z1 · z2) that do not occur in either A or B. See Lemma 1 below.

5

0u

0v

1u 2u

0u1x
1x 0v 2x 1v

n−1unx

nx n−1v

nv

nu

=/1u2x

v21v

.

. .
.
.

.

Fig. 2: A long derivation. (Example 4)

1z y

2zx

3z

=/

1z

2z

x

y

.

.

Fig. 3: Who derives x · x2 = z1 · y?
(Example 5)

5 Interpolants From Congruence Closure

5.1 Congruence Closure

Satisfiability of sets of EUF literals can be determined by the congruence

closure algorithm. The algorithm takes as inputs a finite subterm-closed
set T of ground terms and a finite set E of ground equalities. Its state is an
undirected graph Γ , initialized so that its vertex set is T and its edge set is
empty. We write u ∼ v to mean that u and v are connected by a path in Γ . The
algorithm proceeds as follows.

(cc1) Choose s, t ∈ T such that s 6∼ t and either
(a) (s = t) ∈ E; or
(b) s is f(s1, . . . , sk), t is f(t1, . . . , tk), and s1 ∼ t1, . . . , sk ∼ tk.
Then add the edge 〈s, t〉 to Γ .

(cc2) Repeat (cc1) for as long as possible.

Theorem 1. [10, 11] Let ∼ be the equivalence relation obtained by running the
congruence closure algorithm above. For every s, t ∈ T , one has E |= s = t if
and only if s ∼ t. Moreover, the set E ∪ {s 6= t | s 6∼ t} is satisfiable. �

Let L be an arbitrary set of ground EUF literals. We have L = L= ∪ L 6=,
where the literals in L= and L 6= are equalities and disequalities respectively. To
check whether L is satisfiable, it suffices to run the congruence closure algorithm
with E = L= and T being the set of all terms occurring in L. By Theorem 1, L is
satisfiable if and only if s 6∼ t holds for every disequality s 6= t in L 6=. Note that
L is unsatisfiable if and only if L= ∪ {δ} is unsatisfiable for some δ ∈ L 6=—the
convexity property of EUF .

5.2 Congruence Graphs

Define a congruence graph over E to be any intermediate graph Γ obtainable
by the congruence closure algorithm above. The assumption s 6∼ t in (cc1)
ensures that every congruence graph is acyclic. Thus, if u ∼ v in a congruence
graph Γ , then there is a unique path connecting them. This path is denoted uv.
Empty paths are those of the form uu.

6

The edges of Γ introduced by step (cc1-a) will be called basic; those intro-
duced in step (cc1-b) are derived. A derived edge 〈f(u1, . . . , uk), f(v1, . . . , vk)〉
has k parent paths u1v1,. . . ,ukvk, some (but not all) of which may be empty.

Example 6. Each of the graphs in Figures 1–3, when we delete from it the edge
marked with the 6= symbol, is a congruence graph over the appropriate set of
equalities (A ∪ B)=. All edges in these graphs are basic; the arrows indicate
where derived edged can be added.

Example 7. Let A = {x1 = z1, z2 = x2, z3 = f(x1), f(x2) = z4, x3 = z5, z6 =
x4, z7 = f(x3), f(x4) = z8}, B = {z1 = z2, z5 = f(z3), f(z4) = z6, y1 = z7, z8 =
y2, y1 6= y2}, and E = (A ∪ B)=. Figure 4(b) depicts a congruence graph over
E. The basic edges are shown in Figure 4(a); each corresponds to an equality in
E. Since f is unary, each of the three derived edges has one parent path.

5.3 Colorable Congruence Graphs

Let A and B be sets of literals and let ΣA and ΣB be the sets of symbols that
occur in A and B respectively. Terms, literals, and formulas over ΣA will be
called A-colorable. Define B-colorable analogously, and then define AB-

colorable to mean both A-colorable and B-colorable. Colorable entities are
those that are either A-colorable or B-colorable.

Example 8. In Example 5, ΣA = {x, z1, z2, z3, ·} and ΣB = {y, z1, z2, z3, ·}.
Terms and equalities without occurrences of either x or y are AB-colorable.
The term x · y and the equality x · z2 = z1 · y are not colorable.

Extend the above definitions to edges of congruence graphs over A∪B so that
an edge 〈s, t〉 has the same colorability attributes as the equality s = t. Finally,
define a congruence graph to be colorable if all its edges are colorable. Note
that basic edges are always colorable.

Example 9. The congruence graphs derived from graphs in Figures 1–3 by re-
moving their disequality edges are colorable. Half-filled vertices are AB-colorable,
the dark ones are A-colorable but not B-colorable, and the light ones are B- but
not A-colorable. If we add the derived edges 〈xi · ui−1, xi · vi−1〉 to the graph in
Figure 2, they will be colorable; but if we add the derived edge 〈x · z2, z1 · y〉 to
the graph in Figure 3, it will not be colorable.

Lemma 1. If s and t are colorable terms and if A, B |= s = t, then there exists
a colorable congruence graph over (A ∪ B)= in which s ∼ t.

Proof. (Sketch) This is essentially Lemma 2 of [14], and the proof is construc-
tive. Start with any congruence graph Γ with colorable vertices in which s ∼ t

holds. If there are uncolorable edges, let e = 〈f(u1, . . . , uk), f(v1, . . . , vk)〉 be a
minimal such edge in the derivation order. Thus, the parent paths uivi are all
colorable, and each of them connects an A-colorable vertex with a B-colorable
one. It follows that there exists an AB-colorable vertex wi on each path uivi

7

(which may be one of its endpoints). The term f(w1, . . . , wk) is AB-colorable,
so we can replace e in Γ with two edges 〈f(u1, . . . , uk), f(w1, . . . , wk)〉 and
〈f(w1, . . . , wk), f(v1, . . . , vk)〉, both of which are colorable. Now repeat the pro-
cess until all uncolorable edges of Γ are eliminated. �

5.4 Colored Congruence Graphs

Assume (without loss of generality) that the literal sets A, B are disjoint. A
coloring of a colorable congruence graph over (A ∪ B)= is an assignment of a
unique color A or B to each edge of the graph, such that

– basic edges are assigned the color of the set they belong to
– every edge colored X has both endpoints X-colorable (X ∈ {A, B})

Thus, to color a colorable congruence graph, the only choice we have is with
AB-colorable derived edges, and each of them can be colored arbitrarily. In the
terminology of the interpolation game of §3, this means choosing which prover
derives an AB-equality in a situation when either of them could do it. In Fig-
ure 4(b,c) we have two colored congruence graphs. They differ only in the coloring
of 〈f(z3), f(z4)〉—the only derived edge with AB-colorable endpoints.

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf() f()2x
z5 z6x3 x4

1x x2
z1 z2

z3 z4

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf()
z5 z6x3 x4

1x x2
z1 z2

z3 z4

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf() f()2x
z5 z6x3 x4

1x x2
z1 z2

z3 z4

f()2x

(a) (b) (c)

Fig. 4: Congruence graphs over (A∪B)=, with A and B from Example 7. The connection
between a derived edge and its parent is indicated by a pair of arrows.

In a colored graph, we can speak of A-paths (whose edges are all colored
A), and B-paths. There is also a color-induced factorization of arbitrary paths,
where a factor of a path is a maximal subpath consisting of equally colored
edges. Clearly, every path can be uniquely represented as a concatenation of its
factors, the consecutive factors having distinct colors.

5.5 The Interpolation Algorithm

A path uv in a congruence graph represents the equality u = v between its
endpoints. We will write JπK to denote the equality represented by the path π.
More generally, if P is a set of paths, JP K is the corresponding set of equalities.

8

For every path π in a colored congruence graph, define the associated B-

premise set B(π), the A-justification J(π), and the interpolant I(π):

B(π) =

⋃

{B(σ) |σ is a factor of π} if π has ≥ 2 factors
{π} if π is a B-path
⋃

{B(σ) |σ is a parent of an edge of π} if π is an A-path
(1)

J(π) = (
∧

JB(π)K) ⇒ JπK

I(π) =

∧

{I(σ) |σ is a factor of π} if π has ≥ 2 factors
∧

{I(σ) |σ is a parent of an edge of π} if π is a B-path
J(π) ∧

∧

{I(σ) |σ ∈ B(π)} if π is an A-path

Empty parent paths σ in the definitions of B(π) and I(π) can be ignored
because JσK = J(σ) = I(σ) = true when σ is empty.

We also need a modified interpolant function I ′, expressed in terms of I as
follows. The argument path π is first decomposed as π = π1θπ2, where θ is the
largest subpath with B-colorable endpoints, or an empty path if there are no
B-colorable vertices on π; then we define

I ′(π) = I(θ) ∧
∧

{I(τ) | τ ∈ B(π1) ∪ B(π2)} ∧
(
∧

JB(π1) ∪ B(π2)K ⇒ ¬JθK
)

This is well defined because π1, θ, π2 are uniquely determined by π if θ is not
empty, and if θ is empty, the way we write π as π1π2 is irrelevant. Note that
when π = θ, we have I ′(π) = I(π) ∧ ¬JπK.

The EUF ground interpolation algorithm, given as inputs jointly in-
consistent (disjoint) sets A, B of literals, proceeds as follows.

(i1) Run the congruence closure algorithm to find a congruence graph Γ

over (A ∪ B)= and a disequality (s 6= t) ∈ A ∪ B such that s ∼ t in
Γ [§§5.1,5.2].

(i2) Modify Γ if necessary so that it is colorable [§5.3], then color it [§5.4].
(i3) If (s 6= t) ∈ B, return I(st); if (s 6= t) ∈ A, return I ′(st).

Example 10. Let us run the algorithm for A, B in Example 7, using the colored
congruence graph in Figure 4(b). Since y1 6= y2 ∈ B, the interpolant is I(y1y2) =
I(y1z7) ∧ I(z7z8) ∧ I(z8y2), and the first and third conjuncts are true. Thus,
I(y1y2) = I(z7z8) = J(z7z8) ∧

∧

{I(σ) |σ ∈ B(z7z8)}, so we need to compute
B(z7z8). We have B(z7z8) = B(x3x4) = B(x3z5) ∪ B(z5z6) ∪ B(z6x4) = ∅ ∪
{z5z6} ∪ ∅ = {z5z6}. Thus, J(z7z8) = (z5 = z6 ⇒ z7 = z8), which we denote
φ1. Continue the main computation: I(y1y2) = φ1 ∧ I(z5z6) = φ1 ∧ I(z3z4) =
J(z3z4)∧

∧

{I(σ) |σ ∈ B(z3z4)}. Now, B(z3z4) = B(x1x2) = B(x1z1)∪B(z1z2)∪
B(z2x2) = ∅∪{z1z2}∪∅ = {z1z2}. Thus, J(z3z4) = (z1 = z2 ⇒ z3 = z4), which
we denote φ2. Back to the main computation, I(y1y2) = φ1 ∧ φ2 ∧ I(z1z2) =
φ1 ∧ φ2 ∧ true = φ1 ∧ φ2. Exercise: Using the graph in Figure 4(c) results in a
different interpolant: I(y1y2) = (z5 = f(z3) ∧ z6 = f(z4) ∧ z1 = z2 ⇒ z7 = z8).

9

5.6 Correctness

Theorem 2. With any jointly inconsistent sets A,B of EUF literals as inputs,
the EUF ground interpolation algorithm (§5.5) terminates, returning an inter-
polant for A,B that is a conjunction of Horn clauses.

Termination of our recursive definitions and other inductive arguments are
proved using a well-founded relation ≺ over paths. Define σ ≺′ π to hold when
one of the following holds:

– π has more than one factor, and σ is one of them
– σ is a parent path of an edge of π

Define ≺ as the transitive closure of ≺′. It is not difficult to see that the relation
≺ is well-founded. Note that minimal elements under ≺ are the paths all of
whose edges are basic and of the same color.

The following equations redefine the set B(π) of B-premises and introduce
the analogous set A(π) of A-premises.

A(π) = {A-factors of π} ∪ A({parent paths of B-edges of π}) (2)

B(π) = {B-factors of π} ∪ B({parent paths of A-edges of π}) (3)

Here and in the sequel, we use the convention f(P) =
⋃

{f(σ) |σ ∈ P} for
extending a set-valued function f defined on paths to a function defined on sets
of paths. Observe that (3) is just a restatement of (1). Also, the arguments in
the recursive calls are smaller than π under the relation ≺, so termination is
guaranteed. The basic properties of A are collected in the following lemma. The
analogous properties of B follow by symmetry.

Lemma 2. Let π be an arbitrary non-empty path in a congruence graph Γ .

(i) If π is an A-path, then A(π) = {π}; otherwise, σ ≺ π for every σ ∈ A(π).
(ii) If σ ∈ A(π), then A(σ) ⊆ A(π).
(iii) If the endpoints of π are B-colorable, then the endpoints of all paths in A(π)

are AB-colorable.

Proof. All three parts are proved by well-founded induction.
(i) If π is an A-colored path, then π is the only element of A(π) (by defini-

tion). If π is not an A-colored path and τ is an element of A(π), then τ is either
an A-factor of π and so τ ≺ π holds, or τ ∈ A(σ) for some parent σ of a B-edge
of π. In the latter case, τ ≺ π holds because of σ ≺ π and the consequence τ � σ

of the induction hypothesis.
(ii) If σ is an A-factor of π, then A(σ) = {σ} ⊆ A(π). If σ ∈ A(τ) where τ

is a parent path of a B-edge of π, then A(σ) ⊆ A(τ) ⊆ A(π), the first inclusion
by induction hypohesis, the second from the definition of A.

(iii) Since parent paths of any B-edge must have B-colorable endpoints, for
the inductive argument we only need to check that every A-factor of a path π

with B-colorable endpoints has AB-colorable endpoints. Indeed, A-colorability
of endpoints of A-factors is obvious. For B-colorability, observe that an endpoint
of an A-factor of π is either also an endpoint of a B-factor of π, or an endpoint
of π itself. �

10

The following lemma justifies the names A-premises and B-premises. In ac-
cordance with the notation of §3, B-premises are the B-paths whose summaries,
if added to A, make the derivation of JπK possible.

Lemma 3. A, JB(π)K |= JπK and B, JA(π)K |= JπK, for every path π in Γ .

Proof. We prove the first claim only, by well-founded induction based on ≺.
Viewing π as the concatenation of its B-factors and A-edges, we have by tran-
sitivity

JB-factors of πK, JA-edges of πK |= JπK

and then, since A |= JeK for every basic A-edge e (by definition of edge coloring),

A, JB-factors of πK, Jderived A-edges of πK |= JπK.

For every derived edge e we have Jparents of eK |= JeK. Thus,

A, JB-factors of πK, Jparents of A-edges of πK |= JπK,

so it suffices to prove A, JB(π)K |= JσK for every σ that is either a B-factor of
π or a parent of an A-edge of π. In the first case, the claim clearly holds since
σ ∈ B(π). In the second case, we have σ ≺ π, so the induction hypothesis gives
us A, JB(σ)K |= JσK. To finish the proof, just use B(σ) ⊆ B(π), which is true by
Lemma 2(ii). �

Define the cumulative set of premises (cf. §3)

P(π) = {π} ∪ P(B(A(π))) (4)

Termination of this recursive definition follows from Lemma 2(i).

Lemma 4. I(π) =
∧

{J(σ) |σ ∈ A(P(π))}.

Proof. Let P ′(π) = A(P(π)). From (4), we have

P ′(π) = A(π) ∪ P ′(B(A(π))) (5)

It suffices to check that

P ′(π) =

⋃

{P ′(σ) |σ is a factor of π} if π has ≥ 2 factors
⋃

{P ′(σ) |σ is a parent of an edge of π} if π is a B-path
{π} ∪

⋃

{P ′(σ) |σ ∈ B(π)} if π is an A-path

For the first case, suppose π = π1 · · ·πk is the factorization of π. By definition
of A, we have A(π) = A(π1)∪· · ·∪A(πk). The desired equation P ′(π) = P ′(π1)∪
· · · ∪ P ′(πk) then follows from (5). Assume now π = e1 · · · ek is a B-path. By
definition of A, we have A(π) = A(E1)∪· · ·∪A(Ek), where Ei is the set of parent
paths of the edge ei. Again, the desired equation P ′(π) = P ′(E1) ∪ · · · ∪ P ′(Ek)
follows from (5). Finally, assume that π is an A-path. Now A(π) = {π} and so
P ′(π) = {π} ∪ P ′(B(π)), again by (5). �

11

Lemma 5. B, I(π) |= JπK, for every path π in Γ with B-colorable endpoints.

Proof. We argue by induction along ≺. Let σ be an arbitrary A-premise of π

and τ an arbitrary B-premise of σ. The endpoints of τ are B-colorable, because
in general, every B-premise of any path is a B-factor of some path, and every
B-factor of any path has B-colorable endpoints. Thus, the induction hypothesis
applies to τ and we have B, I(τ) |= JτK. From equation (5) we have P ′(τ) ⊆
P ′(π), so we can derive I(π) |= I(τ) using Lemma 4. Thus, B, I(π) |= JτK
for every τ ∈ B(σ). By Lemma 4, I(π) contains J(σ) as a conjunct; therefore,
B, I(π) |= JσK. Since σ here is an arbitrary element of A(π), the second claim of
Lemma 3 finishes the proof. �

Proof of Theorem 2 The algorithm terminates because all pertinent functions
have been proven terminating.

Let s 6= t be the critical disequality obtained in the step (i1) of the algorithm.
Let π be the path st, and let st = π1θπ2, as in the definition of I ′(π). The two
cases to consider, s 6= t ∈ B and s 6= t ∈ A, will be referred to as Cases 1 and 2
respectively. Let φ be the returned formula—I(π) in Case 1; I ′(π) in Case 2.

(i) φ is an AB-colorable conjunction of Horn clauses. For any σ with AB-
colorable endpoints, J(σ) is an AB-colorable Horn clause. If π has B-colorable
endpoints, then so do all paths in P(π) and so, by Lemma 2(iii), all paths in
A(P(π)) have AB-colorable endpoints. With Lemma 4, this proves Case 1. For
Case 2, observe that if θ is empty, then I(θ) = JθK = true; otherwise, θ has AB-
colorable endpoints. Also, π1 and π2 are A-paths, so by the dual of Lemma 2(iii),
all paths in B(π1) ∪ B(π2) have AB-colorable endpoints. These facts suffice to
derive the proof of Case 2 from the already proved Case 1.

(ii) A |= φ. By the first claim of Lemma 3, A |= J(σ) holds for every σ. This
suffices for Case 1. For Case 2 then, we only need to check that the last conjunct
of I ′(π) is implied by A, which amounts to showing A, JB(π1)K, JB(π2)K |= ¬JθK.
This indeed follows from the first claim of Lemma 3, the transitivity entailment
Jπ1K, JθK, Jπ2K |= JπK, and the assumption ¬JπK ∈ A.

(iii) B, φ |= false. In Case 1, we have ¬JπK ∈ B, so Lemma 5 finishes the
proof. In Case 2, Lemma 5 implies B, I ′(π) |= JθK and B, I ′(π) |= I(τ) for every
τ ∈ B(π1)∪B(π2). These consequences of B ∪ I ′(π) contradict the last conjunct
of I ′(π). �

6 Comparison with McMillan’s Algorithm

Our EUF ground interpolation algorithm is, as far as we know, the only al-
ternative to McMillan’s algorithm [8]. The latter constructs an interpolant for
A, B from the proof of A, B |= false derived in a formal system (E , say) with
rules for introducing hypotheses (equalities from A ∪ B), reflexivity, symmetry,
transitivity, congruence, and contradiction (deriving false from an equality and
its negation). The algorithm proceeds top down by annotating each intermedi-
ate derived equality u = v (or false in the final step) with a quadruple of the

12

form [u′, v′, ρ, γ], where u′, v′ are terms and ρ, γ are AB-colorable formulas. The
annotation of each derived equality is obtained from annotations of the equali-
ties occurring in the premises of the corresponding rule application. The exact
computation of annotations is specified by 11 rules, each corresponding to a
case (depending on colors of the terms involved) of one of the original six rules.
An invariant that relates a derived intermediate equality with its annotation is
formulated and all 11 rules are proved to preserve the invariant. The invariant
implies that if [u′, v′, ρ, γ] is the annotation of false, then ρ ⇒ γ is an interpolant
for A, B. It can be shown that ρ is always a conjunction of Horn clauses, and γ

is a conjunction of equalities and at most one disequality.

There is a clear relationship between proofs in the formal system E and
congruence graphs from which our interpolants are derived. The main difference
is that in congruence graphs, paths condense inferences by reflexivity, symmetry,
and transitivity. A congruence graph provides a big-step proof that, if necessary,
can be expanded into a proof in the system E .

In Example 2 (Figure 1(a)) our algorithm looks at the path y3z4, summarizes
its only A-factor, producing the interpolant z1 = z4. McMillan’s algorithm pro-
cesses the path edge-by-edge, eagerly summarizing A-chains with AB-colorable
endpoints, so that the interpolant it produces is z1 = z2∧z2 = f(z3)∧f(z3) = z4.

For the second difference, consider Example 7 (Figure 4(b)) where McMillan’s
algorithm produces an entangled version (z1 = z2 ∧ (z3 = z4 ⇒ z5 = z6)) ⇒
z3 = z4 ∧ z7 = z8 of our interpolant (z1 = z2 ⇒ z3 = z4) ∧ (z5 = z6 ⇒ z7 =
z8), computed in Example 10. In general, McMillan’s algorithm accumulates B-
justifications (duals of our J(σ)) in the ρ-part of the annotation and keeps them
past their one-time use to derive a particular conjunct of γ.

The third difference is in creating auxiliary AB-terms (“equality interpolants”,
in the terminology of [14]) to split derivations of equalities in which one side is
not A-colorable and the other is not B-colorable, as in Example 5. We introduce
an absolute minimum of such terms in the preliminary step (i2) of our algo-
rithm, where these terms are added to make the congruence graph colorable.
In contrast, McMillan’s algorithm introduces these terms “on-the-fly”, as in the
example illustrated in Figure 5. When it derives the equality x1 = z2, its an-
notation is [z1, z2, true, true], then when it uses the congruence rule to derive
f(x1) = f(z2), this equality gets annotated with [f(z1), f(z2), true, true], and
the term f(z1) becomes part of the final interpolant z3 = f(z1)∧f(z2) = z4. On
the other hand, our algorithm recognizes the edge 〈f(x1), f(z2)〉 as A-colorable
and does not split it; the interpolant it produces is z1 = z2 ⇒ z3 = z4.

The final difference is in flexibility. McMillan’s algorithm is fully specified
and leaves little room for variation. On the other hand, the actions in the step
(i2) of our algorithm are largely non-deterministic. Our current implementation
chooses to minimize the number of vertices in the colorable modification of Γ ,
and then colors the graph with a strategy that eagerly minimizes the number of
factors in the relevant paths. Other choices are yet to be explored.

In general, our algorithm produces smaller and simpler interpolants. For ex-
perimental confirmation, we used the state-of-the-art implementation of McMil-

13

1xf()

1x z1

z3

z2y1

z4x2 y3

f()2z

y2

f()2y f()3y

Fig. 5: A colored congruence graph for A = {x1 = z1, z3 = f(x1), f(z2) = x2, x2 = z4}
and B = {z1 = y1, y1 = z2, y2 = z3, z4 = y3, f(y2) 6= f(y3)} with two derived edges
〈f(x1), f(z2)〉 and 〈f(y2), f(y3)〉.

lan’s algorithm in MathSAT [3] and compared it against our interpolation-
generating extension of the DPT solver [1]. Two other relevant components—the
propositional interpolation algorithm, and the algorithm for combining proposi-
tional and theory interpolation in a DPLL(T) framework [8, 3]—are the same
in MathSAT and DPT, and therefore unlikely to substantially affect the com-
parison. The last factor to be accounted for in this comparison is the size of the
resolution proofs derived from the DPLL search within each solver. These sizes
being comparable, we can eliminate the differences in propositional reasoning as
a cause for DPT producing smaller interpolants.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

D
P

T

MathSAT

Interpolant Size (# Nodes)

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

D
P

T

MathSAT

Resolution Proof Size (# Nodes)

Fig. 6: DPT vs. MathSAT on 45 benchmarks from the MathSAT library derived by
partitioning unsatisfiable SMT-LIB benchmarks [2].

We ran both solvers on 45 EUF interpolation benchmarks selected from the
set of 100 that are used in [3]. (In the remaining 55 benchmarks, either all
formulas in A are B-colorable, or all formulas in B are A-colorable, so one of
the formulas A, ¬B is an easily obtained interpolant.) Both solvers computed
42 interpolants, timing out in 100s on the same three benchmarks. Runtimes
were comparable, with DPT being slightly faster. Figure 6 shows the sizes of
interpolants produced: DPT interpolants are, on average, 3.8 times smaller, in
spite of DPT proofs being, on average, 1.7 times larger.

14

7 Conclusion

Our analysis of the interpolation for the theory of equality was motivated by the
central role this theory plays in SMT solving, and by the practical applicability
of interpolant-producing SMT solvers. The algorithm we obtained is easy to
implement on top of the standard congruence closure procedure. It generates
interpolants of a simple logical form and smaller size than those produced by
the alternative method.

We identified congruence graphs as a convenient structure to represent proofs
in EUF and to derive interpolants. The possibilities for global analysis and trans-
formations of these graphs go beyond what we have explored. Our algorithm
provides a basis for further refinement and multiple implementations. This flex-
ibility may prove useful when the notion of interpolant quality is better under-
stood.

Acknowledgment. We thank Alberto Griggio for providing interpolation bench-
marks used in [3], and a MathSAT executable for benchmarking.

References

1. Decision Procedure Toolkit. www.sourceforge.net/projects/DPT, 2008.
2. C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories

Library (SMT-LIB). www.SMT-LIB.org, 2008.
3. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in sat-

isfiability modulo theories. In C. R. Ramakrishnan and J. Rehof, editors, TACAS,
volume 4963 of LNCS, pages 397–412. Springer, 2008.

4. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.

5. S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal

of Automated Reasoning, 33(3–4):221–249, 2005.
6. D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures. In

M. Young and P. T. Devanbu, editors, SIGSOFT FSE, pages 105–116. ACM, 2006.
7. K. McMillan. Interpolation and SAT-based model checking. In W. A. Hunt Jr.

and F. Somenzi, editors, CAV, volume 2725 of LNCS, pages 1–13. Springer, 2003.
8. K. L. McMillan. An interpolating theorem prover. Theoretical Computer Science,

345(1):101–121, 2005.
9. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems, 1(2):245–257, 1979.
10. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.

Journal of the ACM, 27(2):356–364, 1980.
11. R. Nieuwenhuis and A. Oliveras. Proof-producing congruence closure. In J. Giesl,

editor, RTA, volume 3467 of LNCS, pages 453–468. Springer, 2005.
12. P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone

computations. Journal of Symbolic Logic, 62(3), 1997.
13. C. Tinelli. Cooperation of background reasoners in theory reasoning by residue

sharing. Journal of Automated Reasoning, 30(1):1–31, 2003.
14. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.

In R. Nieuwenhuis, editor, CADE, volume 3632 of LNCS, pages 353–368. Springer,
2005.

15

