
Logical Methods in Computer Science
Vol. 8 (1:06) 2012, pp. 1–23
www.lmcs-online.org

Submitted Nov. 21, 2009
Published Feb. 16, 2012

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY ∗

ALEXANDER FUCHS a, AMIT GOEL b, JIM GRUNDY c, SAVA KRSTIĆ d, AND CESARE TINELLI e

a,e Department of Computer Science, The University of Iowa
e-mail address: cesare-tinelli@uiowa.edu

b,c,d Strategic CAD Labs, Intel Corporation
e-mail address: {amit1.goel,jim.d.grundy,sava.krstic}@intel.com

Abstract. Given a theory T and two formulas A and B jointly unsatisfiable in T , a
theory interpolant of A and B is a formula I such that (i) its non-theory symbols are
shared by both A and B, (ii) it is entailed by A in T , and (iii) it is unsatisfiable with B in
T . Theory interpolation has found several successful applications in model checking. We
present a novel method for computing interpolants for ground formulas in the theory of
equality. The method produces interpolants from colored congruence graphs representing
derivations in that theory. These graphs can be produced by conventional congruence
closure algorithms in a straightforward manner. By working with graphs, rather than at
the level of individual proof steps, we are able to derive interpolants that are pleasingly
simple (conjunctions of Horn clauses) and smaller than those generated by other tools.
Our interpolation method can be seen as a theory-specific implementation of a cooperative
interpolation game between two provers. We present a generic version of the interpolation
game, parametrized by the theory T , and define a general method to extract runs of the
game from proofs in T and then generate interpolants from these runs.

1. Introduction

The Craig Interpolation Theorem [Cra57] asserts, for every inconsistent pair of first-order
formulas A, B, the existence of a formula I that is implied by A, inconsistent with B, and
written using only logical symbols and symbols that occur in both A and B. Analogues
of this result hold for a variety of logics and logic fragments. Recently, they have found
practical use in symbolic model checking. Applications, starting with the work by McMil-
lan [McM03], involve computation of interpolants in propositional logic or in quantifier-free
logics with (combinations of) theories such as the theory of equality, linear rational arith-
metic, arrays, and finite sets [McM05b, YM05, KMZ06, CGS08]. There are now several
techniques that use interpolants to obtain property-driven approximate reachability sets of

1998 ACM Subject Classification: D.2.4, F.3.1, F.4.1, I.2.3.
Key words and phrases: Logical Interpolation, Satisfiability Modulo Theories.
∗ Revised and extended version of [FGG+09].
e Partially supported AFOSR Grant FA9550-09-1-0517.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:06) 2012
c© A. Fuchs, A. Goel, J. Gundy, S. Krstić, and C. Tinelli
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

transition relations, or compute refinements for predicate abstraction [McM05a, McM06,
JM05, JM06].

An important functionality in much of this work is the computation of ground in-
terpolants in the theory of equality, also known as the theory of uninterpreted functions
(EUF). The ground interpolation algorithm for this theory used in existing interpolation-
based model checkers was developed by McMillan [McM05b]. It derives interpolants from
proofs in a formal system that contains rules for the basic properties of equality.

In this paper, which is a revised and expanded version of [FGG+09], we present a novel
method for ground EUF interpolation. We compute interpolants from colored congruence
graphs that compactly represent EUF derivations from two sets of equalities, and can be
produced in a straightforward manner by conventional congruence closure algorithms, as
implemented in solvers for Satisfiability Modulo Theories (e.g., [DNS05, NO05]). Work-
ing with graphs makes it possible to exploit the global structure of proofs to streamline
interpolant generation. The generated interpolants are conjunctions of Horn clauses, the
simplest conceivable form for this theory. In most cases, they are smaller and logically
simpler than those produced by McMillan’s method.

We restrict ourselves to input formulas A and B that are just conjunctions of liter-
als. Such a restriction causes no loss of generality because any interpolation procedure for
conjunctions of literals can be extended in a uniform way to arbitrary ground formulas—
and under the right conditions also combined with interpolation procedures for other theo-
ries [McM05b, CGS08, GKT09].

Our interpolation method can be understood as the implementation of a cooperative
interpolation game between two provers. The game is not specific to the theory of equality
and can be generalized to other theories. We present a general version of the interpolation
game for a theory T and define a generic method to extract runs of the game from local
refutations in T and generate interpolants from these runs.

Our interpolation algorithm for EUF is described and proved correct in §4. In §3,
we give a series of examples to highlight important aspects of the algorithm. A detailed
comparison with McMillan’s method is given in §5, together with experimental data on a
set of benchmarks derived from those in the SMT-LIB repository [BST11]. The general
version of the interpolation game is described and proved correct in §6.

1.1. Formal preliminaries. We work in the context of first-order logic with equality, and
use standard notions of signature, term, literal, formula, clause, Horn clause, entailment,
and so on. We use the symbol = to denote the equality predicate in the logic as well as
equality at the meta-level, relying on context to disambiguate the two. For convenience,
we treat all equations modulo symmetry, that is, an equation of the form s = t will stand
indifferently for s = t or t = s. For terms or formulas we will use “ground”, i.e., variable-
free, and “quantifier-free” interchangeably since for our purposes free variables can be always
seen as free constants.

If S, S1, . . . , Sn are sets of sentences (i.e., closed formulas) and ϕ is a sentence, we
write, as usual, S1, . . . , Sn |= ϕ if S1 ∪ · · · ∪ Sn logically entails ϕ; we write S1, . . . , Sn |= S
if S1, . . . , Sn |= ψ for all ψ ∈ S. If T is a theory, understood as a set of sentences, we write
S |=T ϕ as an abbreviation of T ∪ S |= ϕ. We use the literals true and false as logical
constants denoting the universally true and the universally false formula. We say that a set
of sentences S is T -unsatisfiable if S |=T false.

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 3

In FOL with equality, for any given signature Σ the theory EUF is axiomatized by
the empty set of sentences. For convenience then, we write |= in place of |=EUF and write
“unsatisfiable” instead of “EUF -unsatisfiable” when talking about that theory. Also for
convenience, we do not distinguish a finite set of sentences from the conjunction of its
elements.

2. Ground Theory Interpolation

Interpolation is a property of logical fragments, i.e., classes of formulas with an associated
entailment relation over such formulas. To state it for a fragment F with entailment relation
|=F we need know only a partition of the symbols used to build formulas in F into logical
and non-logical symbols.

Let F(X) be the set of all formulas in F whose non-logical symbols belong to some
set X. By definition, F has the interpolation property if for every A ∈ F(X) and
B ∈ F(Y) such that A,B |=F false, there exists I ∈ F(X ∩ Y) such that A |=F I and
B, I |=F false. The formula I is an (F-)interpolant of A and B. Note the asymmetry:
I is not an interpolant of B and A; however, ¬I is—provided it belongs to F .

A classic theorem by William Craig [Cra57] states that the fragment of all first-order
logic formulas with the standard entailment relation has the interpolation property. (The
non-logical symbols are predicate and function symbols, and free variables.) The result
also implies a modulo theory generalization, where, for a given first-order theory T over
a signature Σ, the fragment F is the set of all Σ-formulas together with the entailment
relation |=T , and the symbols of Σ are treated as logical. The case where T and Σ are
empty is Craig’s original theorem.

Of particular interest is the interpolation property for quantifier-free fragments of the-
ories. The property may or may not hold, depending on the theory. Take, for example, the
quantifier-free fragment of linear integer arithmetic, and letA = {x = 2y}, B = {x = 2z+1}.
The set A∪B is unsatisfiable in this theory, and the formula ∃u.(x = 2u) is an interpolant.
However, there is no quantifier-free interpolant for A and B.

By definition, a theory has the ground interpolation property if its quantifier-
free fragment has the interpolation property. Aside from EUF , several other theories of
interest in model checking have this property, including the theory of rational arithmetic
among others [KMZ06, JCG08].

Example 2.1. The sets of inequalities A = {3x − z − 2 ≤ 0, −2x + z − 1 ≤ 0} and
B = {3y − 4z + 12 ≤ 0, −y + z − 1 ≤ 0} are jointly unsatisfiable in the theory of rational
arithmetic, as witnessed by the linear combination with positive coefficients

2 · (3x− z − 2 ≤ 0) + 3 · (−2x+ z − 1 ≤ 0) + 1 · (3y − 4z + 12 ≤ 0) + 3 · (−y + z − 1 ≤ 0)

which simplifies to 2 ≤ 0. The A-part of this linear combination 2 · (3x − z − 2 ≤ 0) + 3 ·
(−2x + z − 1 ≤ 0) gives us the interpolant I = (z − 7 ≤ 0) for A,B. Generalizing what
goes on in this example, one can obtain a ground interpolation procedure for the linear
arithmetic with real coefficients. See, e.g., [CGS08].

By the following lemma, if we want an algorithm for ground T -interpolation, it suffices
to have one that works for inputs A and B that are sets of ground literals.

Lemma 2.2. Let T be a theory and suppose every pair of jointly T -unsatisfiable sets of
literals has a quantifier-free interpolant. Then, T has the ground interpolation property.

4 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

f()3z

z1

z2

z3

z4

x1 x2 x3

y1 2y 3y
=/

f()2z

f()3z

z1

z2

z3

z4

x1 x3

y1 3y
=/

2y

x2f()2z

(b)(a)

Figure 1: Solid (hollow) edges represent literals from the set A (set B) in Example 3.1. For
the vertex coloring convention, see Example 4.5.

The reader is referred to [McM05b, CGS08, GKT09] for effective proofs of the lemma—
descriptions of a general mechanism to combine interpolation procedures restricted to sets
of literals with a method for computing interpolants in propositional logic [Pud97, McM03].
With this justification, our interpolation method for EUF focuses on sets of ground literals.

3. Interpolation in EUF

It is instructive to look first at some examples of interpolants for pairs of literal sets A and
B jointly unsatisfiable in EUF .

Example 3.1. The picture in Figure 1(a) demonstrates the joint unsatisfiability of

A = {z1 = x1, x1 = z2, z2 = x2, x2 = f(z3), f(z3) = x3, x3 = z4, f(z2) = x2, x2 = z3},
B = {z1 = y1, y1 = f(z2), f(z2) = y2, y2 = z3, z3 = y3, z2 = y2, y2 = f(z3), y3 6= z4}

which follows by the transitivity of equality. An interpolant is the equality z1 = z4 that
summarizes the transitivity A-chain in the figure. For the variation in Figure 1(b), which
provides an alternative demonstration of the joint unsatisfiability of A and B, an interpolant
is the conjunction z1 = z2 ∧ f(z3) = z4 ∧ f(z2) = z3 of summaries of A-chains.

For yet another variation, this time with slightly different sets A and B, modify Fig-
ure 1(b) by moving the disequality sign to the edge 〈x3, z4〉. There, an interpolant is
z1 = z2 ∧ f(z3) 6= z4 ∧ f(z2) = z3.

Example 3.2. When the unsatisfiability of A ∪ B involves the congruence property of =,
an interpolant in the form of a conjunction of equalities need not exist. Let

A = {u1 = x · u0, v1 = x · v0} and B = {u0 = v0, u1 6= v1}
where the dot is an infix binary function symbol. There are no equalities entailed by A that
do not contain x. The transitivity chain u1 = x · u0 = x · v0 = v1 contradicts u1 6= v1 ∈ B,
but its middle equality is not entailed by A. However, A does entail it under the condition
u0 = v0 that B provides. That gives us the interpolant u0 = v0 ⇒ u1 = v1.

Example 3.3. With

A = {x = z1, x · z2 = z3} and B = {y = z2, z1 · y 6= z3}
pictured in Figure 2, we can derive false from the chain z3 = x · z2 = z1 · y 6= z3, where
the congruence reasoning that produces the middle equality x · z2 = z1 · y uses an equality
from A (x = z1) and an equality from B (z2 = y), and cannot be derived from either A
or B alone. A simple split of the problematic equality into two produces a chain in which
every literal follows from either A or B: z3 = x · z2 = z1 · z2 = z1 · y 6= z3. The summary
z3 = z1 · z2 of the A-chain is and interpolant of A and B. The upshot here is that creating

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 5

1z y

2zx

3z

=/

1z

2z

x

y

.

.

Figure 2: The solid and the dashed arrows point to the two equalities of A ∪B that entail
the equality x · z2 = z1 · y. (Example 3.3)

an interpolant may require terms (in this case, z1 · z2) that do not occur in either A or B.
See Lemma 4.6 below.

4. Interpolants From Congruence Closure

Efficient decision procedures for the satisfiability of sets of literals in EUF are typically
based on congruence closure [NO80, DNS05, NO05]. In this section, we show that one can
minimally modify such procedures to produce interpolants as well.

4.1. Congruence Closure. The congruence closure algorithm takes as inputs

• a finite set E of ground equalities and
• a finite subterm-closed set T of ground terms.

Its state is an undirected graph G, initialized so that its vertex set is T and its edge set is
empty. We write u ∼ v to mean that u and v are connected by a path in G. The algorithm
proceeds as follows.

(cc0) Let G = (T,∅)
(cc1) Choose distinct s, t ∈ T such that s 6∼ t and either

(a) (s = t) ∈ E; or
(b) s is f(s1, . . . , sk), t is f(t1, . . . , tk), and s1 ∼ t1, . . . , sk ∼ tk.
Then add the edge 〈s, t〉 to G

(cc2) Repeat (cc1) for as long as possible.

Theorem 4.1. [NO80, NO05] Let ∼ be the equivalence relation obtained by running the
congruence closure algorithm above. For every s, t ∈ T , one has E |= s = t if and only if
s ∼ t. Moreover, the set E ∪ {s 6= t | s 6∼ t} is satisfiable.

If L is an arbitrary set of ground EUF literals, let L = L= ∪ L 6=, where L= and
L6= consists respectively of the equalities and disequalities of L. To check whether L is
satisfiable, it suffices to run the congruence closure algorithm with E = L= and T consisting
of all the terms (and subterms) occurring in L. By Theorem 4.1, L is satisfiable if and only
if s 6∼ t holds for every disequality s 6= t in L6=. Conversely, L is unsatisfiable if and only if
L= ∪ {δ} is unsatisfiable for some δ ∈ L6=.

6 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

4.2. Congruence Graphs. For any finite set E of ground equalities and a finite subterm-
closed set T of ground terms, a congruence graph over E and T is any intermediate
graph G obtainable by the congruence closure algorithm above. We will not mention the
term set T when it is understood or unimportant.

The assumption s 6∼ t in Step (cc1) ensures that every congruence graph is acyclic.
Thus, if u ∼ v in a congruence graph G, there is a unique path connecting them. We
denote this path by uv. Empty paths are those of the form uu.

We call an edge of a congruence graph G basic or derived depending on whether it has
been introduced in G respectively because of Condition (a) or Condition (b) of Step (cc1).
A derived edge 〈f(u1, . . . , uk), f(v1, . . . , vk)〉 has k parent paths u1v1,. . . ,ukvk, some (but
not all) of which may be empty.

Example 4.2. Each of the graphs in Figures 1 and 2, when we delete from it the edge
marked with the 6= symbol, is a congruence graph over the corresponding set of equalities
(A ∪ B)=. All edges in these graphs are basic; in Figure 2, a derived edge between the
nodes x · z2 and z1 · y could be added as a consequence of the basic edges pointed to by the
arrows.

Example 4.3. Let E = (A ∪B)= where

A = {x1 = z1, z2 = x2, z3 = f x1, f x2 = z4, x3 = z5, z6 = x4, z7 = f x3, f x4 = z8},
B = {z1 = z2, z5 = f z3, f z4 = z6, y1 = z7, z8 = y2, y1 6= y2} .

Figure 3(b) depicts a congruence graph over E. The basic edges are shown in Figure 3(a);
each corresponds to an equality in E. Since f is unary, each of the three derived edges has
one parent path.

4.3. Colorable Congruence Graphs. Let A and B be sets of ground literals and let ΣA
and ΣB be the sets of non-logical symbols that occur in A and B, respectively. Terms,
literals, and formulas over ΣA will be called A-colorable, those over ΣB will be called
B-colorable. Such expressions will be called colorable if they are either A-colorable
or B-colorable, and AB-colorable if they are both.

Example 4.4. In Example 3.3, ΣA = {x, z1, z2, z3, ·} and ΣB = {y, z1, z2, z3, ·}. Terms and
equalities without occurrences of either x or y are AB-colorable. The term x · y and the
equality x · z2 = z1 · y are not colorable.

We extend the above definitions to edges of congruence graphs over A ∪ B so that an
edge 〈s, t〉 has the same colorability attributes as the equality s = t. Note that basic edges
are always colorable. Finally, we define a path in a congruence graph (resp., a congruence
graph) to be colorable if all edges in the path (resp., graph) are colorable.

Example 4.5. The congruence graphs derived from graphs in Figures 1 and 2 by removing
their disequality edges are all colorable. Among the vertices (which are terms), the half-
filled ones are AB-colorable, the dark ones are A-colorable but not B-colorable, and the
light ones are B- but not A-colorable; however, if we add the derived edge 〈x · z2, z1 · y〉 to
the graph in Figure 2, it will not be colorable.

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 7

For our purposes, the uncolorability of some congruence graphs is not a problem thanks
to the following result.

Lemma 4.6. If s and t are colorable terms and if A,B |= s = t, then there exist a term
set T and a colorable congruence graph over (A ∪B)= and T in which s ∼ t.

Proof. This is essentially Lemma 2 of [YM05], and the proof is constructive. Start with
any congruence graph G with colorable vertices in which s ∼ t holds. If there are uncol-
orable edges, let e = 〈f(u1, . . . , uk), f(v1, . . . , vk)〉 be a minimal such edge in the deriva-
tion order. Thus, the parent paths uivi are all colorable, and each of them connects an
A-colorable vertex with a B-colorable one. It follows that there exists an AB-colorable
vertex wi on each path uivi (which may be one of its endpoints). The term f(w1, . . . , wk)
is AB-colorable, so add it to the vertex set of G and replace e in G with the two edges
〈f(u1, . . . , uk), f(w1, . . . , wk)〉 and 〈f(w1, . . . , wk), f(v1, . . . , vk)〉, both of which are colorable.
Now repeat the process until all uncolorable edges of G are eliminated. The set T is the
final set of vertices of G.

Note that the proof of Lemma 4.6 provides an effective procedure for turning any
uncolorable graph into a colorable one. Using a data structure for the congruence graph
that also maintains for each derived edge a pointer to its parent paths allows a linear-time
bottom-up implementation of the procedure.

Example 4.7. Consider again the uncolorable congruence graph obtained by adding the
derived edge 〈x · z2, z1 · y〉 to the graph in Figure 2. Using the procedure in the proof of
Lemma 4.6 we can turn it into a colorable congruence graph by replacing the edge 〈x·z2, z1·y〉
with the edges 〈x · z2, z1 · z2〉 and 〈z1 · z2, z1 · y〉.

4.4. Colored Congruence Graphs. Assume (without loss of generality) that the literal
sets A,B are disjoint. A coloring of a colorable congruence graph over (A ∪ B)= is an
assignment of a unique color A or B to each edge of the graph, such that

• basic edges are assigned the color of the set they belong to,
• every edge colored X has both endpoints X-colorable (X ∈ {A,B}).
Thus, to color a colorable congruence graph, the only choice we have is with AB-colorable
derived edges, and each of them can be colored arbitrarily. In the terminology of the
interpolation game described later in §6, this means choosing which prover derives an AB-
equality in a situation when either of them could do it. In Figure 3(b,c) we have two colored
congruence graphs. They differ only in the coloring of 〈f(z3), f(z4)〉—the only derived edge
with AB-colorable endpoints.

In a colored graph, we can speak of A-paths (whose edges are all colored A), and
B-paths. There is also a color-induced factorization of arbitrary paths, where a factor
of a path π is a maximal subpath of π consisting of equally colored edges. Clearly, every
path can be uniquely represented as a concatenation of its factors, the consecutive factors
having distinct colors.

8 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf() f()2x
z5 z6x3 x4

1x x2
z1 z2

z3 z4

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf()
z5 z6x3 x4

1x x2
z1 z2

z3 z4

3xf() f()4x z8z7 y2y1

f()3z f()4z

1xf() f()2x
z5 z6x3 x4

1x x2
z1 z2

z3 z4

f()2x

(a) (b) (c)

Figure 3: Congruence graphs over (A ∪ B)=, with A and B from Example 4.3. The con-
nection between a derived edge and its parent is indicated by a pair of arrows.

4.5. The Interpolation Algorithm. Our goal is to construct an interpolant for the pair
of sets A and B of ground literals that are jointly inconsistent in EUF . The algorithm pre-
sented below relies on the results in the previous subsection which guaranteed the existence
(and computability) of a disequality s 6= t in A∪B and a colored congruence graph G over
(A ∪B)= such that s and t are connected in G.

A path uv in a congruence graph represents the equality u = v between its endpoints,
summarizing the reflexivity, symmetry and transitivity inferences encoded by the path. The
algorithm presented below builds an interpolant as a conjunction of Horn clauses whose
atoms are AB-colorable equalities, each summarizing an A-path or a B-path of the graph
G. The algorithm minimizes the number of such equalities by breaking paths only along
their color-induced factorization (as opposed to other, finer partitions).

We will write JπK to denote the equality represented by the path π. More generally, if
P is a set of paths, JP K is the corresponding set of equalities. For convenience, we will take
JuuK to be true, instead of u = u, for each empty path uu. (Similarly for JP K, when P = ∅.)

For every path π in a colored congruence graph G, we define below the associated
B-premise set B(π), the A-justification J(π), and the path interpolant I(π). Intu-
itively, for an A-path π, the B-premise set collects all the maximal B-paths in G that allow
the construction of π (by connecting ancestors of edges in π); the A-justification is an impli-
cation from all the equalities represented by π’s B-premises to JπK, capturing the fact that
JπK is a consequence of A and all those equalities; the path interpolant is the conjunction
of π’s A-justification together with the path interpolants for each of its B-premises. For a
B-path π, the B-premise set is simply {π}; the A-justification is, trivially, JπK⇒ JπK (and
actually never used); the path interpolant is the conjunction of all the path interpolants of
π’s parent paths.

For instance, for the congruence graph in Figure 3(b), B(z3z4) = {z1z2}, J(z3z4) =
(z1 = z2 ⇒ z3 = z4), I(z5z6) = I(z3z4) = (z1 = z2 ⇒ z3 = z4), B(z7z8) = {z5z6},
J(z7z8) = (z5 = z6 ⇒ z7 = z8), and I(z7z8) = (z5 = z6 ⇒ z7 = z8) ∧ (z1 = z2 ⇒ z3 = z4).

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 9

B(π) =

⋃
{B(σ) | σ is a factor of π} if π has ≥ 2 factors

{π} if π is a B-path⋃
{B(σ) | σ is a parent of an edge of π} if π is an A-path

(4.1)

J(π) = (
∧

JB(π)K)⇒ JπK (4.2)

I(π) =

∧
{I(σ) | σ is a factor of π} if π has ≥ 2 factors∧
{I(σ) | σ is a parent of an edge of π} if π is a B-path

J(π) ∧
∧
{I(σ) | σ ∈ B(π)} if π is an A-path

(4.3)

Empty parent paths σ in the definitions of B(π) and I(π) can be ignored because
JσK = J(σ) = I(σ) = true when σ is empty.

We also need a modified interpolant function I ′, expressed in terms of I as follows. The
argument path π is first decomposed as π = π1θπ2, where θ is the largest subpath with
B-colorable endpoints, or an empty path if there are no B-colorable vertices on π; then

I ′(π) = I(θ) ∧
∧
{I(τ) | τ ∈ B(π1) ∪ B(π2)} ∧

(∧
JB(π1) ∪ B(π2)K ⇒ ¬JθK

)
(4.4)

It is not difficult to see that B, J, I and I ′ are all well defined and computable. In
particular, I ′ is well defined because π1, θ, π2 are uniquely determined by π if θ is not
empty, and if θ is empty, the way we write π as π1π2 is irrelevant. Note that when π = θ,
we have I ′(π) = I(π) ∧ ¬JπK.

The EUF ground interpolation algorithm, given as input two jointly inconsistent
(disjoint) sets A,B of literals, proceeds as follows.

(i1) Run the congruence closure algorithm to find a congruence graph G over (A∪B)= and
a disequality (s 6= t) ∈ A ∪B such that s ∼ t in G [§4.1,§4.2].

(i1) Modify G as necessary to make it colorable [§4.3], then color it [§4.4].
(i1) If (s 6= t) ∈ B, return I(st); if (s 6= t) ∈ A, return I ′(st).

Example 4.8. Let us run the algorithm for A,B in Example 4.3, using the colored con-
gruence graph in Figure 3(b). Since y1 6= y2 ∈ B, the interpolant is computed by applying
I to y1y2:

I(y1y2) = I(y1z7) ∧ I(z7z8) ∧ I(z8y2) = true ∧ I(z7z8) ∧ true

= I(z7z8) = J(z7z8) ∧
∧
{I(σ) | σ ∈ B(z7z8)}

In turn, B(z7z8) = B(x3x4) = B(x3z5)∪B(z5z6)∪B(z6x4) = ∅∪{z5z6}∪∅ = {z5z6}. Thus,
J(z7z8) = (z5 = z6 ⇒ z7 = z8). Continuing the main computation:

I(y1y2) = J(z7z8) ∧ I(z5z6)

= J(z7z8) ∧ J(z3z4) ∧
∧
{I(σ) | σ ∈ B(z3z4)}

10 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

Now, B(z3z4) = B(x1x2) = B(x1z1) ∪ B(z1z2) ∪ B(z2x2) = ∅ ∪ {z1z2} ∪∅ = {z1z2}. Thus,
J(z3z4) = (z1 = z2 ⇒ z3 = z4). Back to the main computation again,

I(y1y2) = J(z7z8) ∧ J(z3z4) ∧ I(z1z2) = J(z7z8) ∧ J(z3z4) ∧ true

= (z5 = z6 ⇒ z7 = z8) ∧ (z1 = z2 ⇒ z3 = z4)

The reader can verify that using the graph in Figure 3(c) results in a different inter-
polant:

I(y1y2) = (z5 = f(z3) ∧ z6 = f(z4) ∧ z1 = z2)⇒ z7 = z8.

4.6. Correctness. Our main correctness results can be expressed as follows.

Theorem 4.9. With any jointly inconsistent sets A,B of EUF literals as inputs, the EUF
ground interpolation algorithm (§4.5) terminates and returns an interpolant for A,B that
is a conjunction of Horn clauses.

To prove the theorem we need to introduce some additional notions and notation. For
the rest of the section let G be a colored congruence graph.

The termination of our recursive definitions and other inductive arguments are proved
using a well-founded relation ≺ over paths of G. Define σ ≺1 π to hold whenever:

• π has more than one factor and σ is one of them, or
• σ is a parent path of an edge of π.

Then, define ≺ as the transitive closure of ≺1. It is not difficult to see that the relation ≺
is well-founded. Note that minimal elements under ≺ are the paths all of whose edges are
basic and of the same color.

The following equations redefine the set B(π) of B-premises and introduce the analogous
set A(π) of A-premises.

A(π) = {A-factors of π} ∪ A({parent paths of B-edges of π}) (4.5)

B(π) = {B-factors of π} ∪ B({parent paths of A-edges of π}) (4.6)

Here and in the sequel, we use the convention f(P) =
⋃
{f(σ) |σ ∈ P} for extending a

set-valued function f defined on paths to a function defined on sets of paths. Observe that
(4.6) is just a restatement of (4.1). Also, the arguments in the recursive calls are smaller
than π under the relation ≺, so termination is guaranteed.

The basic properties ofA are collected in the following lemma. The analogous properties
of B follow by symmetry.

Lemma 4.10. Let π be an arbitrary non-empty path in G.

(1) If π is an A-path, then A(π) = {π}; otherwise, σ ≺ π for every σ ∈ A(π).
(2) If σ ∈ A(π), then A(σ) ⊆ A(π).
(3) If the endpoints of π are B-colorable, then the endpoints of all paths in A(π) are AB-

colorable.

Proof. All three parts are proved by well-founded induction.
(1) If π is an A-colored path, then π is the only element of A(π) (by definition). If π

is not an A-colored path and τ is an element of A(π), then τ is either an A-factor of π and
so τ ≺ π holds, or τ ∈ A(σ) for some parent σ of a B-edge of π. In the latter case, τ ≺ π
holds because of σ ≺ π and the consequence τ � σ of the induction hypothesis.

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 11

(2) If σ is an A-factor of π, then A(σ) = {σ} ⊆ A(π). If σ ∈ A(τ) where τ is a
parent path of a B-edge of π, then A(σ) ⊆ A(τ) ⊆ A(π), the first inclusion by induction
hypothesis, the second from the definition of A.

(3) Since parent paths of any B-edge must have B-colorable endpoints, for the inductive
argument we only need to check that every A-factor of a path π with B-colorable endpoints
has AB-colorable endpoints. Indeed, A-colorability of endpoints of A-factors is obvious.
For B-colorability, observe that an endpoint of an A-factor of π is either also an endpoint
of a B-factor of π, or an endpoint of π itself.

The following lemma justifies the names A-premises and B-premises. Intuitively, B-
premises are the B-paths whose summaries, together with A, entail JπK. Dually, A-premises
are the A-paths whose summaries, together with B, entail JπK.

Lemma 4.11. A, JB(π)K |= JπK and B, JA(π)K |= JπK for every path π in G.

Proof. We prove the first claim only, by well-founded induction based on ≺. Viewing π as
the concatenation of its B-factors and A-edges, we have by transitivity

JB-factors of πK, JA-edges of πK |= JπK

and then, since A |= JeK for every basic A-edge e (by definition of edge coloring),

A, JB-factors of πK, Jderived A-edges of πK |= JπK.

For every derived edge e we have Jparents of eK |= JeK. Thus,

A, JB-factors of πK, Jparents of A-edges of πK |= JπK,

so it suffices to prove A, JB(π)K |= JσK for every σ that is either a B-factor of π or a parent
of an A-edge of π.

In the first case, the claim holds since σ ∈ B(π). In the second case, we have σ ≺ π,
so the induction hypothesis gives us A, JB(σ)K |= JσK. To finish the proof, just use the fact
B(σ) ⊆ B(π), by Lemma 4.10(ii).

Define the cumulative set of premises (cf. §6) of a path π as

P(π) = {π} ∪ P(B(A(π))) . (4.7)

The termination of this recursive definition follows from Lemma 4.10(i).

Lemma 4.12. For every path π in G, I(π) =
∧
{J(σ) |σ ∈ A(P(π))}.

Proof. Let P ′(π) = A(P(π)). From (4.7), we have

P ′(π) = A(π) ∪ P ′(B(A(π))) (4.8)

It suffices to check that

P ′(π) =

⋃
{P ′(σ) | σ is a factor of π} if π has ≥ 2 factors⋃
{P ′(σ) | σ is a parent of an edge of π} if π is a B-path

{π} ∪
⋃
{P ′(σ) | σ ∈ B(π)} if π is an A-path

For the first case, suppose π = π1 · · ·πk is the factorization of π. By definition of A, we
have A(π) = A(π1) ∪ · · · ∪ A(πk). The desired equality P ′(π) = P ′(π1) ∪ · · · ∪ P ′(πk) then
follows from (4.8).

12 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

Assume now that π = e1 · · · ek is a B-path. By definition of A, we have A(π) =
A(E1) ∪ · · · ∪ A(Ek), where Ei is the set of parent paths of the edge ei for i = 1, . . . , k.
Again, the desired equality P ′(π) = P ′(E1) ∪ · · · ∪ P ′(Ek) follows from (4.8).

Finally, assume that π is an A-path. Now A(π) = {π} and so P ′(π) = {π} ∪ P ′(B(π)),
again by (4.8).

Lemma 4.13. B, I(π) |= JπK for every path π in G with B-colorable endpoints.

Proof. We argue by induction along ≺. Let σ be an arbitrary A-premise of π and τ an
arbitrary B-premise of σ. The endpoints of τ are B-colorable, because in general, every
B-premise of any path is a B-factor of some path, and every B-factor of any path has B-
colorable endpoints. Thus, the induction hypothesis applies to τ and we have B, I(τ) |= JτK.
From equation (4.8) we have P ′(τ) ⊆ P ′(π), so we can derive I(π) |= I(τ) using Lemma 4.12.
Thus, B, I(π) |= JτK for every τ ∈ B(σ). By Lemma 4.12, I(π) contains J(σ) as a conjunct;
therefore, B, I(π) |= JσK. Since σ here is an arbitrary element of A(π), the second claim of
Lemma 4.11 finishes the proof.

Proof of Theorem 4.9. The algorithm terminates because all pertinent functions have been
proven terminating.

Let s 6= t be the disequality obtained in the step (i1) of the algorithm. Let π be the path
st, and let st = π1θπ2, as in the definition of I ′(π). The two cases to consider, s 6= t ∈ B
and s 6= t ∈ A, will be referred to as Cases 1 and 2 respectively. Let ϕ be the returned
formula—I(π) in Case 1; I ′(π) in Case 2.

(i) ϕ is an AB-colorable conjunction of Horn clauses. For any factor σ of π with AB-
colorable endpoints, J(σ) is an AB-colorable Horn clause. If π has B-colorable endpoints,
then so do all paths in P(π) and so, by Lemma 4.10(iii), all paths in A(P(π)) have AB-
colorable endpoints. With Lemma 4.12, this proves Case 1. For Case 2, observe that if θ is
empty, then I(θ) = JθK = true; otherwise, θ has AB-colorable endpoints. Also, π1 and π2

are A-paths, so by the dual of Lemma 4.10(iii), all paths in B(π1)∪B(π2) have AB-colorable
endpoints. These facts suffice to derive the proof of Case 2 from the already proved Case 1.

(ii) A |= ϕ. By the first claim of Lemma 4.11, A |= J(σ) holds for every path σ. This
suffices for Case 1. For Case 2 then, we only need to check that the last conjunct of I ′(π)
is implied by A, which amounts to showing A, JB(π1)K, JB(π2)K |= ¬JθK. This indeed follows
from the first claim of Lemma 4.11, the transitivity entailment Jπ1K, JθK, Jπ2K |= JπK, and
the assumption ¬JπK ∈ A.

(iii) B,ϕ |= false. In Case 1, we have ¬JπK ∈ B, so Lemma 4.13 finishes the proof. In
Case 2, Lemma 4.13 implies B, I ′(π) |= JθK and B, I ′(π) |= I(τ) for every τ ∈ B(π1)∪B(π2).
These consequences of B ∪ I ′(π) contradict the last conjunct of I ′(π).

5. Comparison with McMillan’s Algorithm

Our EUF ground interpolation algorithm is, as far as we know, the only alternative to
McMillan’s algorithm [McM05b]. The latter constructs an interpolant for A,B from the
proof of A,B |= false derived in a formal system (E , say) with rules for introducing hypothe-
ses (equalities from A∪B), reflexivity, symmetry, transitivity, congruence, and contradiction
(deriving false from an equality and its negation). The algorithm proceeds top down by

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 13

1xf()

1x z1

z3

z2y1

z4x2 y3

f()2z

y2

f()2y f()3y

Figure 4: A colored congruence graph for A = {x1 = z1, z3 = f(x1), f(z2) = x2, x2 = z4}
and B = {z1 = y1, y1 = z2, y2 = z3, z4 = y3, f(y2) 6= f(y3)} with two derived
edges 〈f(x1), f(z2)〉 and 〈f(y2), f(y3)〉.

annotating each intermediate derived equality u = v (or false in the final step) with a
quadruple of the form [u′, v′, ρ, γ], where u′, v′ are terms and ρ, γ are AB-colorable formu-
las. The annotation of each derived equality is obtained from annotations of the equalities
occurring in the premises of the corresponding rule application. The exact computation
of annotations is specified by 11 rules, each corresponding to a case (depending on colors
of the terms involved) of one of the original six rules. An invariant that relates a derived
intermediate equality with its annotation is formulated and all 11 rules are proved to pre-
serve the invariant. The invariant implies that if [u′, v′, ρ, γ] is the annotation of false, then
ρ ⇒ γ is an interpolant for A,B. It can be shown that ρ is always a conjunction of Horn
clauses, and γ is a conjunction of equalities and at most one disequality.

There is a clear relationship between proofs in the formal system E and congruence
graphs from which our interpolants are derived. The main difference is that in congruence
graphs, paths condense inferences by reflexivity, symmetry, and transitivity. A congruence
graph provides a big-step proof that, if necessary, can be expanded into a proof in the
system E .

In Example 3.1 (Figure 1(a)) our algorithm looks at the path y3z4, summarizes its only
A-factor, producing the interpolant z1 = z4. McMillan’s algorithm processes the path edge-
by-edge, eagerly summarizing A-chains with AB-colorable endpoints, so that the interpolant
it produces is z1 = z2 ∧ z2 = f(z3) ∧ f(z3) = z4.

For the second difference, consider Example 4.3 (Figure 3(b)) where McMillan’s algo-
rithm produces an entangled version (z1 = z2 ∧ (z3 = z4 ⇒ z5 = z6)) ⇒ z3 = z4 ∧ z7 = z8

of our interpolant (z1 = z2 ⇒ z3 = z4)∧ (z5 = z6 ⇒ z7 = z8), computed in Example 4.8. In
general, McMillan’s algorithm accumulates B-justifications (duals of our J(σ)) in the ρ-part
of the annotation and keeps them past their one-time use to derive a particular conjunct of
γ.

The third difference is in creating auxiliary AB-terms (“equality interpolants”, in the
terminology of Yorsh and Musuvathi [YM05]) to split derivations of equalities in which one
side is not A-colorable and the other is not B-colorable, as in Example 3.3. We introduce
such terms in the preliminary step (i2) of our algorithm only when required to make the
congruence graph colorable. In contrast, McMillan’s algorithm introduces these terms “on-
the-fly”, as in the example illustrated in Figure 4. When it derives the equality x1 = z2,
its annotation is [z1, z2, true, true], then when it uses the congruence rule to derive f(x1) =
f(z2), this equality gets annotated with [f(z1), f(z2), true, true], and the term f(z1) becomes
part of the final interpolant z3 = f(z1) ∧ f(z2) = z4. On the other hand, our algorithm
recognizes the edge 〈f(x1), f(z2)〉 as A-colorable and does not split it; the interpolant it
produces is z1 = z2 ⇒ z3 = z4.

14 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

D
P

T

MathSAT

Interpolant Size (# Nodes)

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

D
P

T

MathSAT

Resolution Proof Size (# Nodes)

Figure 5: DPT vs. MathSAT on 45 benchmarks from the MathSAT library derived by
partitioning unsatisfiable SMT-LIB benchmarks [BST11].

The final difference is in flexibility. McMillan’s algorithm is fully specified and leaves
little room for variation. On the other hand, the actions in the step (i2) of our algorithm
are largely non-deterministic. Our current implementation chooses to minimize the number
of vertices in the colorable modification of Γ , and then colors the graph with a strategy
that eagerly minimizes the number of factors in the relevant paths. Other choices are yet
to be explored.

5.1. Experimental evaluation. In general, our interpolation algorithm produces smaller
and simpler interpolants. For experimental confirmation, we used the state-of-the-art im-
plementation of McMillan’s algorithm in MathSAT [CGS08] and compared it against our
interpolation-generating extension of the DPT solver [Var08].

Two other relevant components—the propositional interpolation algorithm, and the
algorithm for combining propositional and theory interpolation in a DPLL(T) framework
[McM05b, CGS08]—are the same in MathSAT and DPT, and therefore unlikely to substan-
tially affect the comparison. The last factor to be accounted for in this comparison is the
size of the resolution proofs derived from the DPLL search within each solver. Since these
sizes are comparable, we can eliminate differences in propositional reasoning as a cause for
DPT ’s producing smaller interpolants.

We ran both solvers on 45 EUF interpolation benchmarks selected from the set of 100
that are used in [CGS08]. (In the remaining 55 benchmarks, either all formulas in A are
B-colorable, or all formulas in B are A-colorable, so one of the formulas A, ¬B is an easily
obtained interpolant.) Both solvers computed 42 interpolants, timing out in 100s on the
same three benchmarks. Runtimes were comparable, with DPT being slightly faster. Fig-
ure 5 shows the sizes of interpolants produced: DPT interpolants are, on average, 3.8 times
smaller, in spite of DPT proofs being, on average, 1.7 times larger.

While these experimental results confirm the claim that our algorithm produces smaller
interpolants, we observe that formula size is not necessarily a good metric, given the ability
of modern SMT-solvers to process large formulas quickly. It could be argued that some
measure of logical strength would be better instead. The case for that, however, is not
obvious either. To start, the only reasonable way to compare two first-order logic formulas
ϕ1 and ϕ2 for logical strength is to check whether one of the two entails the other in the

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 15

theory (i.e., whether ϕ1 |=T ϕ2 or ϕ2 |=T ϕ1). Unfortunately, entailment is not a total
relation and so it is possible to have incomparable interpolants for the same partition A,B
of a set of formulas. Finally, even with comparable invariants, whether the stronger or the
weaker one is better depends on the specific application using them; worse still, for other
applications, such as interpolation-based predicate abstraction, it is arguable that logical
strength (or formula size for that matter) is of any importance, since interpolants are simply
mined for useful predicates. Further work is needed to identify useful evaluation metrics for
interpolants and then see if the flexibility of our algorithm, or a suitably modified version
of it, can be used to produce better interpolants according to some of those metrics.

6. Interpolation as a Cooperative Game

Our results about EUF interpolation can be generalized to a wider class of theories T in
terms of a cooperative interpolation game between two deductive provers for T—possibly
two copies of the same prover. The game metaphor suggests a simple and general mech-
anism for producing interpolants from sets of formulas and theories that satisfy certain
requirements. We define this mechanism and prove its properties in §6.2 and §6.3, after
giving an informal general description of the interpolation game.

For the rest of the section, let T be a first-order theory of signature Σ, and let A and
B be two disjoint sets of formulas possibly containing free symbols, i.e., predicate and
function symbols not in Σ. For convenience, and without loss of generality, we consider
only formulas with no free variables. Let ΣI be the shared signature, the expansion of
Σ with the free symbols occurring in both A and B.

6.1. The interpolation game. The participants are an A-prover and a B-prover which
incrementally construct a set SA and a set SB of ΣI -formulas. The game starts with
SA = SB = ∅ and proceeds in rounds so that at each round one of the following happens:

• the A-prover adds to SA one or more ΣI -formulas α such that A, β1, . . . , βn |=T α for
some β1, . . . , βm ∈ SB, the B-premises of α;
• the B-prover adds to SB one or more ΣI -formulas β such that B,α1, . . . , αn |=T β for

some α1, . . . , αn ∈ SA, the A-premises of β.

The game ends successfully when the B-prover adds false to SB.
As we discuss below, a T -interpolant for A and B can be generated from a successful

run of the game by tracking the B-premises of each formula in SA and the A-premises of
each formula in SB.

Note that, as described, the interpolation game involves arbitrary theories and input
sets A and B. Also, the game does not have to use two provers literally. If A ∪ B has a
local refutation (see later) in the theory T , it is possible to extract from that refutation a
successful run of the game from which a T -interpolant of A and B can then be generated.

For some theories and classes of input formulas the game admits complete strategies,
guaranteed to end the game when A and B are jointly T -unsatisfiable. Depending on the
theory and the class of input formulas, these strategies can be considerably restrictive in the
choice of formulas to propagate from one prover to the other (i.e., formulas to add to SA
and SB). For instance, when A and B are sets of ground literals and the theory is convex,1

1 A theory is convex if L |=T p1 ∨ · · · ∨ pk implies L |=T pi for some i, where L is any set of ground
literals and the pi are any positive literals.

16 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

0u

0v

1u 2u

0u1x
1x 0v 2x 1v

n−1unx

nx n−1v

nv

nu

=/1u2x

v21v

.

. .
.
.

.

Figure 6: A long derivation. (Example 6.3)

it is enough to propagate just ground atomic formulas in all rounds of the game. In that
case, all interpolants computed will be conjunctions of ground Horn clauses.

The interpolation method described in §4.5 for the theory of equality (which is con-
vex) can be seen as a customized implementation of the interpolation game, with formula
propagation restricted to (positive) equalities. A colorable congruence graph is a compact
representation of a local refutation, and the interpolation function I defined in §4.5 can be
understood as generating the interpolant from a successful run of the game extracted from
the local refutation.

Example 6.1. Looking back at Example 3.1 in terms of the interpolation game above,
we can see that in each of the three cases presented in the example there is a successful
interpolation game with two rounds. In the first round, the A-prover derives a conjunction
of literals in the shared signature (respectively, z1 = z4, z1 = z2 ∧ f(z3) = z4 ∧ f(z2) = z3

and z1 = z2 ∧ f(z3) 6= z4 ∧ f(z2) = z3) that the B-prover uses them to derive false.

Example 6.2. For the sets A and B in Example 3.2, there is a game with three rounds
where u0 = v0 is initially derived by the B-prover, u1 = v1 is derived next by the A-prover,
and then false is derived by the B-prover.

Example 6.3. Generalizing the previous example, consider this matrix—organized set of
literals:

u0 = v0
x1 · u0 = u1

x1 · v0 = v1

x2 · u1 = u2

x2 · v1 = v2
. . .

xn · un−1 = un
xn · vn−1 = vn

un 6= vn

Let A be the set of equalities occurring in the odd-numbered columns (with columns counted
starting from 1) of this matrix, and B be the set of the remaining equalities; see Figure 6.
The shared symbols are u0, v0, . . . , un, vn, the symbols local to A are x2, x4, . . ., and the
symbols local to B are x1, x3, . . .

A run of the interpolation game takes n+2 rounds. It begins with the A-prover adding
u0 = v0 to SA. Then, using the equalities from the second column, the B-prover can derive
u1 = v1, and add it to SB. Now, the A-prover can use this equality together with equalities
from the third column to derive u2 = v2 and add it to SA. Assuming n is even, the last
equality un = vn will be derived by the A-prover, after which B derives false. Collecting
justifications of all equalities derived by A, we obtain the interpolant

(u0 = v0) ∧ (u1 = v1 ⇒ u2 = v2) ∧ · · · ∧ (un−1 = vn−1 ⇒ un = vn) .

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 17

Remark 6.4. The well-known method for combining decision procedures due to Nelson
and Oppen [NO79] is essentially a version of the interpolation game. The main differences
are that in the Nelson-Oppen method (i) the input sets of formulas A1 and A2 need not
be jointly T -unsatisfiable; (ii) the goal is not to produce interpolants for A1 and A2 but
just to check the T -unsatisfiability of A1 ∪A2; (iii) T is the union of two signature-disjoint
theories T1 and T2; (iv) each formula Ai is built from the symbols of Ti and free constants;
(v) each Ai-prover works just over Ti instead of the whole T ; (vi) additional restrictions on
T1 and T2 guarantee termination even when A1 ∪A2 is T -satisfiable.

A description of a Nelson-Oppen combination framework in terms similar to our inter-
polation game is given by Ghilardi [Ghi05].

6.2. Extracting interpolants from interpolation runs. To show how to generate T -
interpolants from runs of the interpolation game we start by formalizing the notion of a
run.

Definition 6.5. A T -interpolation run for A and B is a triple (SA, SB,@) where SA
and SB are two disjoint finite sets of ΣI -formulas and @ is a well-founded (partial) ordering
on SA ∪ SB with associated computable functions PB : SA → 2SB , PA : SB → 2SA such
that:

(1) A,PB(α) |=T α and β @ α for all β ∈ PB(α);
(2) B,PA(β) |=T β and α @ β for all α ∈ PA(β).

A T -interpolation run (SA, SB,@) is successful if false ∈ SB.

Given a T -interpolation run (SA, SB,@), we extend PB from SA to 2SA as done in §4.6,
that is, for all S ⊆ SA,

PB(S) =
⋃
{PB(α) | α ∈ S} .

We extend PA from SB to 2SB in a similar way. Then, for all β ∈ SB let

P(β) = {β} ∪
⋃
{P(β′) | β′ ∈ PB(PA(β))} .

Extending P to 2SB as done with PA, we can write the definition of P more compactly as

P(β) = {β} ∪ P(PB(PA(β))) .

Finally, we define the (computable) function I from SB to the set of ΣI -formulas such
that

I(β) =
⋃
{PB(α)⇒ α | α ∈ PA(P(β))} .

This function returns partial T -interpolants in the following sense.

Lemma 6.6. Let (SA, SB,@) be a T -interpolation run for A and B and let I be defined as
above. Then, for all β ∈ SB,

(1) A |=T I(β);
(2) B, I(β) |=T β.

18 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

Proof. We prove both claims by well founded induction on @. By definition, P(β) = {β} ∪
P(β1) ∪ · · · ∪ P(βk) where {β1, . . . , βk} = PB(PA(β)) with k ≥ 0. Then,

I(β) =
⋃
{PB(α)⇒ α | α ∈ PA({β} ∪ P(β1) ∪ · · · ∪ P(βk))}

=
⋃
{PB(α)⇒ α | α ∈ PA(β) ∪ PA(P(β1)) ∪ · · · ∪ PA(P(βk))}

=
⋃
{PB(α)⇒ α | α ∈ PA(β)} ∪

⋃
i

⋃
{PB(α)⇒ α | α ∈ PA(P(βi))}

=
⋃
{PB(α)⇒ α | α ∈ PA(β)} ∪

⋃
i I(βi)

To prove Claim (1), we check that every element of I(β) is entailed by A. Indeed,
A |=T I(βi) holds by the induction hypothesis, and A |=T PB(α)⇒ α follows directly from
the defining property of PB.

The defining property B,PA(β) |=T β of PA reduces proving Claim (2) to proving
B, I(β) |=T α, for every α ∈ PA(β). Since (PB(α) ⇒ α) is in I(β), it suffices to prove
that B, I(β) |=T PB(α). And indeed, PB(α) is a subset of {β1, . . . , βk}, and B, I(β) |=T βi
holds by induction hypothesis.

Lemma 6.6 is the induction vehicle for the following main result.

Theorem 6.7. Let (SA, SB,@) be a successful T -interpolation run for A and B and let I
be defined as above. The formula

∧
I(false) is a T -interpolant of A and B.

Proof. Since false ∈ SB, we can instantiate Lemma 6.6 with β equal to false. The free
symbols occurring in I(false) are shared by A and B because, by construction, I returns
ΣI -formulas.

6.3. Interpolation runs from local refutations. The next question is how to construct
successful interpolation runs for A and B. One way is to extract them from proofs of T -
unsatisfiability of A ∪ B in a suitable proof system. We define a fairly general notion of a
proof system and show that any refutation of A∪B in the system that is local in the sense
of Jhala and McMillan [JM06] contains a successful interpolation run.

6.3.1. Proofs and proof systems. A proof rule is a binary relation between finite sets of
formulas and formulas. Any pair ϕ1, . . . , ϕn ` ϕ, with n ≥ 0, in a proof rule, usually written
as

ϕ1 · · · ϕn
ϕ

,

is an inference step with premises ϕ1, . . . , ϕn and conclusion ϕ. The conclusion of
an inference step with an empty set of premises is an axiom. A proof system is a set of
proof rules. A proof rule is sound with respect to a theory T if ϕ1, . . . , ϕn |=T ϕ for each
inference step ϕ1, . . . , ϕn ` ϕ of the rule.

Definition 6.8. For every proof system R, formula ϕ and set of formulas S, a proof of
ϕ from S in R is a labelled tree defined inductively as follows.

(1) If ϕ ∈ S, the one-node tree with root labelled ϕ is a proof of ϕ from S in R;
(2) if ϕ1, . . . , ϕn `R ϕ is an inference step of R and Di a proof of ϕi from S in R for

i = 1, . . . , n, then the tree D with root ϕ and immediate subtrees D1, . . . ,Dn is a proof
of ϕ from S in R. The roots of D1, . . . ,Dn are the parents of the root of D.

A refutation of S in R is a proof of false from S in R.

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 19

In the following, we will identify nodes of a proof with their labels when this does not
cause confusion. Observe that if all the rules of R are sound with respect to a theory T ,
then S |=T ϕ for each proof in R of a formula ϕ from a set of formulas S. In particular,
any set of formulas that has a refutation in R is T -unsatisfiable.

Extending the terminology introduced in §4.3, we say that an inference step in R is A-
colorable (resp., B-colorable) if the formulas in the inference step are all A-colorable
(resp., all B-colorable). We define a proof of a formula ϕ from A ∪ B in R to be local if
every inference step in the proof is A- or B-colorable. An example of local proof is shown
in Figure 7.

6.3.2. Constructing interpolation runs. Fix any proof system R that is sound for T . We
show that from any local proof D from A∪B in R, we can construct a T -interpolation run
(SA, SB,@) so that if D is a refutation then false ∈ SB. (Then, the function I can be used
to produce a T -interpolant of A and B as shown in §6.2.)

Let D be a local refutation of A ∪ B in R. Without loss of generality we can assume
that (i) if two nodes of D have the same label, then they are roots of structurally identical
subtrees of D, and (ii) the parents of false in D are all B-colorable. Local refutations
that do not satisfy Requirement (ii) can be modified by replacing false with a new logical
constant false′ interpreted in the same way and then adding a final, B-colorable inference,
false′ ` false.

Define @ as the relation on the labels of D such that ϕ @ ψ iff ϕ is an ancestor of ψ
in D. By the assumptions on D, the (finite) relation @ is acyclic. Hence, both @ and its
inverse are well founded.

If we cut D at a node ϕ, we obtain two local proofs in R: a local proof of ϕ from A∪B
(the tree rooted at ϕ), and a local proof of false from A∪B ∪{ϕ} (the remaining tree, with
same root as D and ϕ as one of its leafs). More generally, we can decompose D into several
smaller local proofs by cutting it repeatedly at different nodes.

Definition 6.9. A pair TA, TB of sets of nodes in D is a coloring cut of D if

(1) all nodes in TA ∪ TB are AB-colorable;
(2) TA and TB are disjoint, and false is in TB;
(3) for all α ∈ TA and ψ ∈ TA∪(B\TB) with ψ @ α, there is a β ∈ TB such that ψ @ β @ α;
(4) for all β ∈ TB and ψ ∈ TB∪(A\TA) with ψ @ β, there is a α ∈ TA such that ψ @ α @ β.

It is simple to verify that cutting D at the nodes of TA ∪TB, where TA, TB is a coloring
cut, decomposes D into colorable proofs. More precisely, every resulting smaller proof rooted
at a node of TA (resp., TB) consists of A-colorable (resp., B-colorable) nodes.

Example 6.10. Let T be some arbitrary theory with a signature consisting of the predicate
symbols r, t and such that |=T ∀x.(r(x)⇒ t(x)). Then, let

A = {∀u.(p(u) ∧ q(v, u)⇒ r(u)), p(a), r(b) ∨ q(fa, a)},
B = {∀v.(s(v) ∧ r(v)⇒ r(fv)), ∀x.s(x), ¬r(b), ¬t(fa)} .

where p, q, a, b, f and s are non-theory symbols. The proof in Figure 7 is a local refutation of
A ∪B. The exact proof system used to build the refutation is not important here. Simply
observe that each inference step is sound with respect to T , which shows that A ∪ B is
T -unsatisfiable.

20 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

∀̄(p(u) ∧ q(v, u)⇒ r(u))

r(b) ∨ q(fa, a) ¬r(b)

q(fa, a)

p(a)⇒ r(a)

∀̄s(x)

∀̄(s(v) ∧ r(v)⇒ r(fv))

∀̄(s(v) ∧ r(v)⇒ t(fv))

∀̄(r(x)⇒ t(fx))

p(a)⇒ t(fa) p(a)

t(fa) ¬t(fa)

false

Figure 7: A local refutation D of A∪B. The symbols r and t are from the theory’s signature.
Of the remaining symbols, p and q occur only in A, s occurs only in B, and a, b and
f occur in both. The boxed formulas are those in the coloring cut in Example 6.10.

A coloring cut of D is given by the sets

TA = {t(fa)} and TB = {¬r(b), ∀x.(r(x)⇒ t(fx)), false} .
Note that the last inference step (the one with conclusion false) is both A- and B-colorable.
In the cut, however, it is essentially seen as a B-colored step.

Every coloring cut induces a successful interpolation run.

Theorem 6.11. If SA, SB is a coloring cut, then (SA, SB,@) is a successful T -interpolation
run for A and B.

Proof. It is enough to define functions PA and PB satisfying Definition 6.5.
For each α ∈ SA, let Dα be the proof of α in the decomposition of D defined by the

coloring cut SA, SB. Define

PA(α) = {β ∈ SB | β is a leaf of Dα} .
Clearly, β @ α for all β ∈ PA(α). To show that A,PA(α) |=T α we show that every leaf of
Dα is in A ∪ PA(α). Now, every leaf ϕ of Dα is either a leaf of D (so an element of A ∪B),
or a cut node (an element of SA ∪ SB). Since ϕ @ α, it follows from the third defining
property of coloring cuts, that ϕ /∈ SA ∪ B (otherwise, we would be able to cut Dα at a
node between ϕ and α). Thus, ϕ ∈ SB ∪A.

The function PB is defined similarly.

Example 6.12. The T -interpolation run induced by the coloring cut in Example 6.10 can
be described informally in terms of the interpolation game as follows. In the first round,
the B-prover adds to SB the formulas β1 = ¬r(b) and β2 = ∀x.(r(x)⇒ t(fx)), each with an
empty set of A-premises (i.e., PA(β1) = PA(β2) = ∅). In the second round, the A-prover
adds to SA the formula α1 = t(fa), with PB(α1) = {β1, β2}. In the third and final round,
the B-prover adds false to SB, with PA(false) = {α1}.

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 21

The T -interpolant computed by the function I, defined in §6.2, from this interpolation
run is β1 ∧ β2 ⇒ α1, as shown below.

P(β1) = {α1} ∪ P(PB(PA(β1))) = {α1} ∪∅
= {α1}

P(β2)) = {β2} ∪ P(PB(PA(β2)))) = {β2} ∪∅
= {β2}

P(false) = {false} ∪ P(PB(PA(false)))
= {false} ∪ P(PB(α1)) = {false} ∪ P(β1) ∪ P(β2)
= {false, β1, β2}

PA(P(false)) = PA(false) ∪ PA(β1) ∪ PA(β2) = {α1} ∪∅ ∪∅
= {α1}

I(false) =
⋃
{PB(α)⇒ α | α ∈ PA(P(false))}

= {β1 ∧ β2 ⇒ α1}

We stress that computing a coloring cut from local refutations is just one way to produce
interpolation runs. For specific theories, other mechanisms are possible. A crucial point,
however, is that local refutations always admit a coloring cut. In fact, with D and with @ as
defined in §6.3.2, a coloring cut of D is provided by the sets SA and SB defined inductively
as follows over the set of AB-colorable nodes ϕ of D:

(1) false ∈ SB;
(2) if ϕ @ β for some β ∈ SB, ϕ is a leaf from A or has a non-B-colorable parent, and ϕ is

@-maximal with these properties2, then ϕ ∈ SA;
(3) if ϕ @ α for some α ∈ SA, ϕ is a leaf from B or has a non-A-colorable parent, and ϕ is

@-maximal with these properties, then ϕ ∈ SB.

Different coloring cut algorithms produce different interpolation runs, and therefore
different interpolants. The inductive definition above aims at minimizing the cardinality
of SA ∪ SB3 and so is likely to produce smaller interpolants. If there is a need to find
interpolants optimal in some other sense, one can hope that the problem will translate into
a meaningful optimization problem for coloring cuts.

7. Conclusion

Our study of interpolation for the theory of equality was motivated by the central role this
theory plays in SMT solving, and by the practical applicability of interpolant-producing
SMT solvers in model checking. The algorithm we presented is easy to implement on top
of the standard congruence closure procedure. It generates interpolants of a simple logical
form and smaller size than those produced by the alternative method.

2 That is, there is no AB-colorable ϕ′ with a non-B-colorable parent such that ϕ @ ϕ′ @ β.
3 In this sense, it is analogous to the congruence path factorization used in §4.4, where each relevant path

is broken into maximal subpaths consisting of equally colored edges. In both cases, the intent is to minimize
the number of color switches, so to speak—the number of factors in one case and the size of the coloring cut
in the other.

22 A. FUCHS, A. GOEL, J. GUNDY, S. KRSTIĆ, AND C. TINELLI

We identified congruence graphs as a convenient structure to represent proofs in EUF
and to derive interpolants. The possibilities for global analysis and transformations of
these graphs go beyond what we have explored. Our algorithm provides a basis for further
refinement and multiple implementations. This flexibility may prove useful when the notion
of interpolant quality is better understood.

The heart of our algorithm—the generation of an interpolant from a suitably colored
congruence graph—is not EUF -specific. We showed that behind it is a general interpolation
game and a general mechanism for deriving interpolants from suitably colored (local) proofs.

Acknowledgement

We thank Alberto Griggio for providing us with the interpolation benchmarks used in
[CGS08], and with a MathSAT executable for benchmarking. We also thank the anonymous
reviewers for their thoughtful comments on a preliminary version of this work, and their
suggestions for improving the presentation.

References

[BST11] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). http://www.SMT-LIB.org, 2011.

[CGS08] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient interpolant generation in
satisfiability modulo theories. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume
4963 of LNCS, pages 397–412. Springer, 2008.

[Cra57] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. Journal of Symbolic Logic, 22(3):269–285, 1957.

[DNS05] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. Journal
of ACM, 52(3):365–473, 2005.

[FGG+09] Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstić, and Cesare Tinelli. Ground interpolation
for the theory of equality. In S. Kowalewski and A. Philippou, editors, Proceedings of the 15th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(York, UK), volume 5505 of Lecture Notes in Computer Science, pages 413–427. Springer, 2009.

[Ghi05] Silvio Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal of Auto-
mated Reasoning, 33(3–4):221–249, 2005.

[GKT09] Amit Goel, Sava Krstić, and Cesare Tinelli. Ground interpolation for combined theories. In
R. Schmidt, editor, Proceedings of the 22nd International Conference on Automated Deduc-
tion (Montreal, Canada), volume 5663 of Lecture Notes in Artificial Intelligence, pages 183–198.
Springer, 2009.

[JCG08] Himanshu Jain, Edmund M. Clarke, and Orna Grumberg. Efficient craig interpolation for linear
diophantine (dis)equations and linear modular equations. In Proceedings of the 20th International
Conference on Computer-Aided Verification, pages 254–267, 2008.

[JM05] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transition relation approximation. In
Kousha Etessami and Sriram K. Rajamani, editors, Proceedings of 17th International Conference
on Computer Aided Verification (Edinburgh, Scotland, UK), volume 3576 of Lecture Notes in
Computer Science, pages 39–51. Springer, 2005.

[JM06] Ranjit Jhala and Kenneth L. McMillan. A practical and complete approach to predicate re-
finement. In Proceedings of the 12th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 459–473, 2006.

[KMZ06] Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. Interpolation for data structures. In
Michal Young and Premkumar T. Devanbu, editors, SIGSOFT FSE, pages 105–116. ACM, 2006.

[McM03] Ken McMillan. Interpolation and SAT-based model checking. In W. A. Hunt Jr. and F. Somenzi,
editors, CAV, volume 2725 of LNCS, pages 1–13. Springer, 2003.

http://www.SMT-LIB.org

GROUND INTERPOLATION FOR THE THEORY OF EQUALITY 23

[McM05a] Kenneth L. McMillan. Applications of Craig interpolants in model checking. In Nicolas Halbwachs
and Lenore D. Zuck, editors, TACAS, volume 3440 of LNCS, pages 1–12. Springer, 2005.

[McM05b] Kenneth L. McMillan. An interpolating theorem prover. Theoretical Computer Science,
345(1):101–121, 2005.

[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In T. Ball and R. Jones, editors, CAV,
volume 4144 of LNCS, pages 123–136. Springer, 2006.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Trans-
actions on Programming Languages and Systems, 1(2):245–257, 1979.

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. Journal
of the ACM, 27(2):356–364, 1980.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure. In J. Giesl, editor,
RTA, volume 3467 of LNCS, pages 453–468. Springer, 2005.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting planes proofs and monotone computations.
Journal of Symbolic Logic, 62(3), 1997.

[Var08] Various. Decision Procedure Toolkit. http://sourceforge.net/projects/dpt, 2008.
[YM05] Greta Yorsh and Madanlal Musuvathi. A combination method for generating interpolants. In

Robert Nieuwenhuis, editor, CADE, volume 3632 of LNCS, pages 353–368. Springer, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://sourceforge.net/projects/dpt

	1. Introduction
	1.1. Formal preliminaries

	2. Ground Theory Interpolation
	3. Interpolation in EUF
	4. Interpolants From Congruence Closure
	4.1. Congruence Closure
	4.2. Congruence Graphs
	4.3. Colorable Congruence Graphs
	4.4. Colored Congruence Graphs
	4.5. The Interpolation Algorithm
	4.6. Correctness

	5. Comparison with McMillan's Algorithm
	5.1. Experimental evaluation

	6. Interpolation as a Cooperative Game
	6.1. The interpolation game
	6.2. Extracting interpolants from interpolation runs
	6.3. Interpolation runs from local refutations

	7. Conclusion
	Acknowledgement
	References

