
Computing Finite Models by

Reduction to Function-Free Clause Logic

Peter Baumgartner

NICTA, Australia

Alexander Fuchs

The University of Iowa, USA

Hans de Nivelle

University of Wroclaw, Poland

Cesare Tinelli

The University of Iowa, USA

Abstract

Recent years have seen considerable interest in procedures for computing finite
models of first-order logic specifications. One of the major paradigms, MACE-style
model building, is based on reducing model search to a sequence of propositional
satisfiability problems and applying (efficient) SAT solvers to them. A problem with
this method is that it does not scale well because the propositional formulas to be
considered may become very large.

We propose instead to reduce model search to a sequence of satisfiability problems
consisting of function-free first-order clause sets, and to apply (efficient) theorem
provers capable of deciding such problems. The main appeal of this method is that
first-order clause sets grow more slowly than their propositional counterparts, thus
allowing for more space efficient reasoning.

In this paper we describe our proposed reduction in detail and discuss how it
is integrated into the Darwin prover, our implementation of the Model Evolution
calculus. The results are general, however, as our approach can be used in principle
with any system that decides the satisfiability of function-free first-order clause sets.

To demonstrate its practical feasibility, we tested our approach on all satisfiable
problems from the TPTP library. Our methods can solve a significant subset of these
problems, which overlaps but is not included in the subset of problems solvable by
state-of-the-art finite model builders such as Paradox and Mace4.

Key words: Automated Theorem Proving, Model Building

Preprint submitted to Elsevier Science 5 April 2007

1 Introduction

Methods for model computation can be classified as those that directly search
for a finite model, like the extended PUHR tableau method (Bry and Torge,
1998), the methods in (Bezem, 2005; de Nivelle and Meng, 2006) and the
methods in the SEM-family (Slaney, 1992; Zhang and Zhang, 1995; McCune,
2003), and those that are based on transformations into certain fragments
of logic and which rely on readily available systems for these fragments (see
(Baumgartner and Schmidt, 2006) for a recent approach).

The latter approach includes the family of MACE-style model builders (Mc-
Cune, 2003). These systems search for finite models essentially by constructing
a sequence of translations corresponding to interpretations with domain sizes
1, 2, . . ., in increasing order, until a model has been found. The target logic
used by MACE-style model builders is propositional logic. The model builder
from this class with the best performance today is probably Paradox (Claessen
and Sörensson, 2003).

We present in this paper a new approach in the MACE/Paradox tradition
which however exploits new advances in instantiation-based first-order the-
orem proving. Instead of using propositional logic as a target logic, we use
function-free clause logic, a decidable fragment of first-order logic whose lan-
guage consists of clauses over a signature containing no function symbols of
arity greater than zero. Theorem provers for instantiation-based calculi like
the Model Evolution (Baumgartner and Tinelli, 2003), the Disconnection (Letz
and Stenz, 2001) and the Inst-Gen (Ganzinger and Korovin, 2003) calculus are
natural and efficient decision procedures for this fragment. This is in contrast
with provers for saturation-based calculi (such as, for instance, Resolution),
where all known approaches for deciding this fragment have in the end to
resort to ground instantiation of variables.

The general idea of our approach is the same as that of MACE-style model
finders. To find a model with n elements for a given a clause set (possibly with
equality), the clause set is first converted into the target logic by means of the
following transformations:

(1) Each clause is flattened (nested function symbols are removed).

Email addresses: Peter.Baumgartner@nicta.com.au (Peter Baumgartner),
fuchs@cs.uiowa.edu (Alexander Fuchs), nivelle@ii.uni.wroc.pl (Hans de
Nivelle), tinelli@cs.uiowa.edu (Cesare Tinelli).

2

(2) Each n-ary function symbol is replaced by an n+1-ary predicate symbol
and equality is eliminated.

(3) Clauses are added to the clause set that impose totality constraints on
the new predicate symbols, but over a domain of cardinality n.

The details of our transformation differ in various aspects from the MACE/Paradox
approach. In particular, we add no functionality constraints over the new pred-
icate symbols. The crucial difference, however, is the choice of a more expres-
sive target logic that is much closer to the logic than propositional logic. To
find models in this logic we use a variant of Darwin (Baumgartner et al.,
2006a), our implementation of the Model Evolution calculus. (Baumgartner
and Tinelli, 2003), which can decide satisfiability in that logic.

While we do take advantage of some of the distinguishing features of Dar-
win and the Model Evolution calculus, especially in the way models are con-
structed, our method does not depend on Darwin or the Model Evolution
calculus. Without much additional effort, we could use any other decision
procedure for function-free clause logic, such as, for example, current imple-
mentations of the other instantiation-based calculi mentioned above.

In this paper we illustrate our method in some detail, presenting the main
translation and its implementation within Darwin, and discuss our initial ex-
perimental results in comparison with Paradox itself and with Mace4 (Mc-
Cune, 2003), a competitive, non-MACE-like (despite the name) model builder.
The results indicate that our method is rather promising as it can solve 1074
of the 1251 satisfiable problems in the TPTP library (Sutcliffe and Suttner,
1998). These problems are neither a subset nor a superset of the sets of 1083
and 802 problems respectively solved (under the same experimental settings)
by Paradox and Mace4.

2 Preliminaries

We use standard terminology from automated reasoning (Robinson and Voronkov,
2001, e.g.). We work with clauses over a signature Σ of function and predicate
symbols, possibly with equality. As usual, we call 0-arity function symbols
constants. We use the distinguished infix symbol ≈ for the equality predicate,
and the notation s 6≈ t as an abbreviation of ¬(s ≈ t).

We define terms, atoms, literals and formulas over Σ and a given (enumer-
able) set of variables V as usual. A clause is a (finite) implicitly universally
quantified disjunction of literals. A clause set is a finite set of clauses. We use
the letter C to denote clauses and the letter L to denote literals.

3

For a given atom P (t1, . . . , tn) (possibly an equation) the terms t1, . . . , tn are
also called the top-level terms (of P (t1, . . . , tn)).

We also use the usual notion of substitution. We denote substitutions by the
letter σ or more concretely by finite maps of the form {x1 7→ t1, . . . , xn 7→ tn}
from variables to terms.

With regards to semantics, we use the notions of first-order satisfiability and
E-satisfiability in a completely standard way. If I is an (E-)interpretation then
|I| denotes the domain (or universe) of I. If P is an n-ary predicate symbol,
P I denotes the relation over |I|n that I associates to P (similarly for function
symbols). Recall that in E-interpretations the equality relation is interpreted
as the identity relation, i.e. for every E-interpretation I, ≈I = {(d, d) | d ∈
|I|}.

We are primarily interested in computing finite models, which are models (of
the given clause set) with a finite domain.

In the remainder of the paper, we consider with no loss of generality only
input problems expressed as a (finite) set of clauses. We fix one such set M
and let Σ = ΣF ∪ ΣP be its signature, where ΣF (resp. ΣP) are the function
symbols (resp. predicate symbols) occurring in M .

3 Finite Model Transformation

In this section we describe a set of transformations that we apply to the input
problem to reduce it to an equisatisfiable problem in function-free clause logic
without equality, for a given domain size.

In the rules, the letters s and t denote terms, while the letters x and y denote
variables. We write L ∨ C ; C ′ ∨ C to indicate that the clause C ′ ∨ C is
obtained from the clause L ∨ C by a (single) application of one of the rules.

4

3.1 Basic Transformation

(1) Abstraction of positive equations.

s ≈ y ∨ C ; s 6≈ x ∨ x ≈ y ∨ C if s is not a variable and
x is a fresh variable

x ≈ t ∨ C ; t 6≈ y ∨ x ≈ y ∨ C if t is not a variable and
y is a fresh variable

s ≈ t ∨ C ; s 6≈ x ∨ t 6≈ y ∨ x ≈ y ∨ C if s and t are not variables and
x and y are fresh variables

These rules make sure that all (positive) equations are between variables.

(2) Flattening of non-equations.

(¬)P (. . . , s, . . .) ∨ C ; (¬)P (. . . , x, . . .) ∨ s 6≈ x ∨ C if P is not ≈,
s is not a variable,
and x is a fresh variable

(3) Flattening of negative equations.

f(. . . , s, . . .) 6≈ t ∨ C ; f(. . . , x, . . .) 6≈ t ∨ s 6≈ x ∨ C if s is not a variable
and x is a fresh variable

(4) Separation of negative equations.

s 6≈ t ∨ C ; s 6≈ x ∨ t 6≈ x ∨ C if s and t are not variables,
and x is a fresh variable

This rule makes sure that at least one side of a (negative) equation is a
variable. Notice that this property is also satisfied by the transformations
(2) and (3).

(5) Removal of trivial negative equations.

x 6≈ y ∨ C ; Cσ where σ = {x 7→ y}

(6) Orientation of negative equations.

x 6≈ t ∨ C ; t 6≈ x ∨ C if t is not a variable

For a clause C, let the basic transformation of C, denoted as B(C), be the
clause obtained from C by applying the transformations (1)-(6), in this order,
each as long as possible. 1

1 It is easy to see that this process is guaranteed to terminate.

5

We extend this notation to clause sets in the obvious way, i.e., B(M) is the
clause set consisting of the basic transformation of all clauses in M .

This transformation follows closely the one applied by the Paradox MACE-
style model finder. The only significant difference is in (1), where, in contrast
to Paradox, we abstract also equations of the form s ≈ x and x ≈ s. This
relieves us from the need to add functionality axioms to the transformed clause
set, as explained below (Section 3.2). Note that our possibly larger number of
fresh variables does not have the negative impact it would have in Paradox’s
case, as the final clause set is not grounded in our case (Section 5).

The two flattening transformations (2) and (3) alone, when applied exhaus-
tively, turn a clause into a flat one, i.e., a clause consisting of flat literals, where
a literal is flat if its atom, modulo the orientation of ≈, has the form x ≈ y,
x ≈ f(x1, . . . , xn), f(x1, . . . , xn) ≈ g(y1, . . . , ym), or P (x1, . . . , xn) where the
x’s and the y’s are variables, f, g are function symbols (possibly of 0-arity),
and P is a predicate symbol.

Similar flattening transformations have been considered before as a means to
deal more efficiently with equality within calculi for first-order logic without
equality (Brand, 1975; Bachmair et al., 1998).

The basic transformation above is correct in the following sense.

Lemma 1 (Correctness of B) The clause set M is E-satisfiable if and only
if B(M) is E-satisfiable.

PROOF. That flattening preserves E-satisfiability (both ways) is well-know
(cf. (Brand, 1975)). Regarding transformations (1), (4), (5) and (6), the proof
is straightforward or trivial. 2

3.2 Conversion to Relational Form

It is not hard to see that, for any clause C, the following holds for the clause
set B(C):

(1) each of its positive equations is between two variables,
(2) each of its negative equations is flat and of the form f(x1, . . . , xn) 6≈ y,

and
(3) each of its non-equations is flat.

After the basic transformation, we apply the following one, turning each n-ary
function symbol f into a (new) n + 1-ary predicate symbol Rf .

6

(7) Elimination of function symbols.

f(x1, . . . , xn) 6≈ y ∨ C ; ¬Rf (x1, . . . , xn, y) ∨ C

Let BR(M) be the clause set obtained from an exhaustive application of this
transformation to B(M).

For example, the application of (1) – (6) transforms the unit clause a ≈ f(z)
into a 6≈ x∨f(z) 6≈ y∨x ≈ y. Applying (7) as well yields ¬Ra(x)∨¬Rf (z, y)∨
x ≈ y.

Recall that an n + 1-ary relation R over a set A is left-total if for every
a1, . . . , an ∈ A there is an b ∈ A such that (a1, . . . , an, b) ∈ R. The relation R
is right-unique if whenever (a1, . . . , an, b) ∈ R there is no other tuple of the
form (a1, . . . , an, b

′) in R.

Because of the above properties (1)–(3) of B(M), the transformation BR(M)
is well-defined, and will produce a clause set with no function symbols. This
transformation however is not unsatisfiability preserving unless one considers
only left-total interpretations for the predicate symbols Rf . More formally:

Lemma 2 (Correctness of BR) The clause set M is E-satisfiable if and
only if there is an E-model I of BR(M) such that (Rf)

I is left-total, for every
function symbol f ∈ ΣF.

PROOF. The direction from left to right is easy. For the other direction, let
I be an E-model of BR(M) such that (Rf)

I is left-total for every function
symbol f ∈ ΣF.

Recall that functions are nothing but left-total and right-unique relations. We
will show how to obtain from I an E-model I′ of BR(M), that preserves left-
totality and adds right-uniqueness, i.e., such that (Rf)

I′
is both left-total and

right-unique for all f ∈ ΣF. Since such an interpretation is clearly a model of
B(M), it will then follow immediately by Lemma 1 that M is E-satisfiable.

We obtain I′ as the interpretation that is like I, except that (Rf)
I′

contains
exactly one tuple (d1, . . . , dn, d), for every d1, . . . , dn ∈ |I|, chosen arbitrarily
from (Rf)

I (this choice exists because (Rf)
I is left-total). It is clear from the

construction that (Rf)
I′

is right-unique and left-total. Trivially, I′ interpretes
≈ as the identity relation, because I does, as I is an E-interpretation. Thus,
I′ is an E-interpretation, too.

What is left to prove is that when I is a model of BR(M) so is I′. This follows
from the fact that every occurrence of a predicate symbol Rf , with f ∈ ΣF, in
the clause set BR(M) is in a negative literal. But then, since (Rf)

I′ ⊆ (Rf)
I

7

by construction, it follows easily that any clause of BR(M) satisfied by I is
also satisfied by I′. 2

The significance of this lemma is that it requires us to interpret the predicate
symbols Rf as left-total relations, but not necessarily as right-unique ones.
Consequently, right-uniqueness will not be axiomatized below.

3.3 Adding Finite-Domain Constraints

In order to enforce left-totality, one could add the Skolemized version of axioms
of the form

∀x1, . . . , xn∃y Rf (x1, . . . , xn, y)

to Br(M). The resulting set would be E-satisfiable exactly when M is E-
satisfiable. 2 However, since we are interested in finite satisfiability, we use
finite approximations of these axioms. To this end, let d be a positive integer,
the domain size. We consider the expansion of the signature of BR(M) with
d domain values, that is, d fresh constant symbols, which we name 1, . . . , d.
Intuitively, for each E-interpretation of cardinality d, instead of the totality
axiom above we can now use the axiom

∀x1, . . . , xn∃y ∈ {1, . . . , d} Rf (x1, . . . , xn, y) .

Concretely, if f is an n-ary function symbol let the clause

Rf (x1, . . . , xn, 1) ∨ · · · ∨Rf (x1, . . . , xn, d)

be the d-totality axiom for f , and let D(d) be the set of all d-totality axioms
for all function symbols f ∈ ΣF. The set D(d) axiomatizes the left-totality
of (Rf)

I, for every function symbol f ∈ ΣF and interpretation I with |I| =
{1, . . . , d}.

3.4 Putting all Together

Since we want to use clause logic without equality as the target logic of our
overall transformation, the only remaining step is the explicit axiomatization
of the equality symbol ≈ over domains of size d—so that we can exploit

2 Altogether, this proves the (well-known) result that function symbols are “syn-
tactic sugar”. They can always be eliminated in a satisfiability preserving way, at
the cost of introducing existential quantifiers.

8

Lemma 2 in the (interesting) right-to-left direction. This is easily achieved
with the clause set 3

E(d) = {i 6≈ j | 1 ≤ i, j ≤ d and i 6= j} .

Finally then, we define the finite-domain transformation of M for size d as
the clause set

F(M, d) := BR(M) ∪D(d) ∪ E(d) .

Putting all together we arrive at the following first main result:

Theorem 3 (Correctness of the Finite-Domain Translation) Let d be
a positive integer. Then, M is E-satisfiable by some finite interpretation with
domain size d if and only if F(M, d) is satisfiable.

PROOF. Follows from Lemma 2 and the comments above on D(d) and E(d),
together with the observation that, for being a set of universal formulas with
no function symbols other than the constants 1, . . . , d, the set F(M, d) is satis-
fiable if and only if it is satisfiable in a Herbrand interpretation with universe
{1, . . . , d}.

More precisely, for the only-if direction assume as given a Herbrand model I

of F(M, d) with universe {1, . . . , d}. It is clear from the axioms E(d) that I

assigns false to the equation (d′ ≈ d′′), for any two different elements d′, d′′ ∈
{1, . . . , d}. Now, the model I can be modified to assign true to all equations
d′ ≈ d′, for all d′ ∈ {1, . . . , d} and the resulting E-interpretation will still be a
model for F(M, d). This is, because the only occurrences of negative equations
in F(M, d) are those contributed by E(d), which are still satisfied after the
change. 4 It is this modified model that can be turned into an E-model of
M . 2

This theorem suggests immediately a—practical—procedure to search for fi-
nite models, by testing F(M, d) for satisfiability, with d = 1, 2, . . ., and stop-
ping as soon as the first satisfiable set has been found. Moreover, any reason-
able such procedure will return in the satisfiable case a Herbrand representa-
tion (of some finite model).

Indeed, the idea of searching for a finite model by testing satisfiability over
finite domains of size 1, 2, . . . is implemented in our approach and many others

3 Notice that as equality is now completely axiomatized, we could have chosen to
replace ≈ by a fresh predicate symbol, say E.
4 Notice, in particular, that BR(M) contains only positive occurrences of equations,
if any.

9

(Paradox (Claessen and Sörensson, 2003), Finder (Slaney, 1992), Mace (Mc-
Cune, 1994), Mace4 (McCune, 2003), SEM (Zhang and Zhang, 1995) to name
a few).

4 Implementation

We implemented the transformation described so far within our theorem prover
Darwin. In addition to being a full-blown theorem prover for first-order logic
without equality, Darwin is a decision procedure for the satisfiability of function-
free clause sets, and thus is a suitable back-end for our transformation. We
call the combined system FM-Darwin (for Finite Models Darwin).

Conceptually, FM-Darwin builds on Darwin by adding to it as a front-end an
implementation of the transformation F (Section 3.4), and invoking Darwin
on F(M, d), for d = 1, 2, ..., until a model is found. In reality, FM-Darwin is
built within Darwin and differs from the conceptual procedure described so
far as detailed below.

The difference consists in a number of technical improvements that help the
performance of our method while preserving its correctness. These improve-
ments are not difficult to prove correct, so for most of them we will leave the
correctness proofs to the reader.

4.1 Preprocessing Improvements

Initial Transformation

FM-Darwin implements some obvious optimizations over the transformation
rules described in Section 3. For instance, the transformations (1)–(4) are done
in parallel, depending on the structure of the current literal. Transformation
(6) is done implicitly as part of transformation (7), when turning equations
into relations. Also, when flattening a clause, the same variable is used to
abstract different occurrences of identical subterms. The latter improvement,
which is trivially satisfiability preserving, is justified by its very small cost in
Darwin 5 and the fact that it leads to a significant performance improvement
in a number of cases.

5 Because common subexpressions are always shared.

10

Naming Subterms

Clauses with deep terms lead to long flat clauses. To avoid that, deep subterms
can be extracted and named by an equation. For instance, the clause set

P (h(g(f(x)), y)), Q(g(f(z)))

can be replaced by the clause set

P (h2(x, y)), Q(h1(z)), h2(x, y) ≈ h(h1(x), y), h1(x) ≈ g(f(x))

where h1 and h2 are fresh function symbols. When carried out repeatedly,
reusing definitions across the whole clause set, this transformation yields
shorter flattened clauses. It is not hard to show, especially when the extracted
terms are ground, that this sort of transformation is satisfiability preserving.
We do not delve in its formal definition and proof of correctness here because
of the following.

We tried some heuristics for when to apply the transformation, based on how
often a term occurs in the clause set, and how much larger the flattened
clause would be without extracting some subterms first. The only consistent
improvement on TPTP problems was achieved when definitions were intro-
duced for ground terms only. This solved 16 more problems, 14 of which were
Horn. Thus, currently only ground terms are extracted by default with this
transformation in FM-Darwin.

Functionality Axioms

While our transformation does not require us to axiomatize functionality, ex-
periments showed that doing so is more often beneficial than not, if only
marginally overall. Therefore, by default we add the following functionality
axiom for each predicate symbol Rf

¬Rf (x1, . . . , xn, d) ∨ ¬Rf (x1, . . . , xn, d
′)

for all domain elements d, d′ with d < d′. For additional flexibility, FM-Darwin
leaves the user the option to omit these axioms.

Splitting Clauses

Systems like Paradox and Mace2 use transformations that, by introducing new
predicate symbols, can split a flat clause with many variables into several flat

11

clauses with fewer variables. For instance, a clause of the form

P (x, y) ∨Q(y, z)

whose two subclauses share only the variable y can be transformed into the
two clauses

P (x, y) ∨ S(y) ¬S(y) ∨Q(y, z)

where the predicate symbol in the connecting literal S(y) is fresh. It is well
known that this sort of transformation preserves satisfiability. In this example,
where the number of variables in a clause is reduced by from 3 to 2, procedures
based on a full ground instantiation of the input clause set may benefit from
of having to deal with the O(2n2) ground instances of the new clauses instead
of O(n3) ground instances of the original clause. 6

Now, reducing the number of variables per clause is not necessarily helpful
in our case. Since (FM-)Darwin does not perform an exhaustive ground in-
stantiation of its input clause set, splitting clauses can actually be counter-
productive because it forces the system to populate its model representation
with instances of connecting literals like S(y) above. Our experiments indi-
cate that this is generally expensive unless the connecting literals contain
no variables. Still, in contrast to Darwin, where in general clause splitting is
only an improvement for ground connecting literals, for FM-Darwin splitting
in all cases gives a slight improvement. In particular, in our experiments on
the TPTP library (Section 5.2) it helped to solve eight additional satisfiable
problems.

Symmetry Breaking

Symmetries, in particular value symmetries, have been identified as a major
source of inefficiencies in constraint solving. A constraint satisfaction problem
exhibits value symmetry if permuting the values of a partial solution for the
problem (i.e., an assignment of values to a subset of the problem’s variables
that satisfies a subset of the constraints) gives another partial solution. Break-
ing such symmetries often produces considerable efficiency gains—with no loss
of generality if one is not interested in symmetric solutions.

In our context, it is easy to break some of the value symmetries introduced
by assigning domain values to constant symbols. Suppose ΣF contains m con-
stants c1, . . . , cm. Recall that D(d) contains, in particular, the axioms shown
in Figure 1(a). Similarly to what is done with Paradox, these axioms can be
replaced by the more triangular form shown in Figure 1(b). It is easy to see

6 A similar observation is made in (Kautz and Selman, 1996) and is used successfully
to solve planning problems by reduction to SAT.

12

Rc1(1) ∨ · · · ∨Rc1(d)

Rc2(1) ∨ · · · ∨Rc2(d)

...

Rcm(1) ∨ · · · ∨Rcm(d)

Rc1(1)

Rc2(1) ∨Rc2(2)
...

Rcd
(1) ∨ · · · ∨Rcd

(d)

Rcd+1
(1) ∨ · · · ∨Rcd+1

(d)
...

Rcm(1) ∨ · · · ∨Rcm(d)

(a) (b)

Fig. 1. Totality axioms for constants and their triangular form

that the triangular form has less satisfying interpretations over the domain
{1, . . . , d} than the first form, and that, nevertheless, any interpretation satis-
fying the first form is isomorphic to an interpretation satisfying the second. In
fact, one could further strengthen the symmetry breaking axioms by adding
(unit) clauses like ¬Rc1(2), . . . ,¬Rc1(d). We do not add them, however, as
they do not constrain the search for a model further (they are all pure).

This improvement is quite effective, especially when combined with others. In
concrete, it yields speed ups on all problems, allowing the system to solve be-
tween 40 and 70 additional satisfiable TPTP problems, depending on whether
it is used alone or with sort inference (described next).

We point out that a similar symmetry breaking trick exists for unary function
symbols. This one however is not effective for FM-Darwin; hence we do not
describe it here and instead refer the reader to (Claessen and Sörensson, 2003)
where it is illustrated for Paradox.

Sort Inference

Like Paradox, FM-Darwin performs a kind of sort inference to improve the
effectiveness of symmetry breaking. Our sort inference algorithm is essentially
the same as the type reconstruction algorithm used in programming languages
with parametric types (but no subtypes) such as ML. 7

At the beginning, each function and predicate symbol of arity n in Σ is assigned
a type, respectively of the form S1× . . .×Sn → Sn+1 and S1× . . .×Sn where
all sorts Si are initially distinct. Each term in the input clause set is assigned

7 An earlier use of it in automated deduction in (unsorted) first-order logic can be
found in (Baumgartner et al., 1997).

13

the result sort of its top symbol. Two sorts Si and Sj are then identified based
on the input clause set by applying a union-find algorithm with the following
rules. First, the sorts assigned to different occurrences of the same variable in a
clause are identified; second, the result sorts of two terms s and t in an equality
s ≈ t are identified; third, for each term or atom of the form f(. . . , t, . . .) the
argument sort of f at t’s position is identified with the sort of t.

All sorts left at the end are taken to be disjoint and of the same size. In essence,
this is achieved by using annotated versions {1S, . . . , dS} of the domain values
for each sort S. This way, when a sorted model is found it can be translated
into an unsorted model by an isomorphic translation of each sort into a single
domain of size d.

Searching for a sorted model instead of an unsorted one allows the system
to apply the symmetry breaking axioms independently for each sort. For ex-
ample, if the constant symbols in Σ were a, b, c and d, and we used them in
alphabetical order in the totality axioms, for the unsorted problem we would
get the triangular form

Ra(1), Rb(1) ∨Rb(2), Rc(1) ∨Rc(2) ∨Rc(3), Rd(1) ∨Rd(2) ∨Rd(3) ∨Rd(4).

In contrast, if sort inference determined a, b, and c to be of one sort and d of
a different sort, say, the axioms would be

Ra(1), Rb(1) ∨Rb(2), Rc(1) ∨Rc(2) ∨Rc(3), Rd(1).

The latter axiomatization amounts to recognizing, and breaking, more sym-
metries than in the unsorted case, and leads to substantial reductions in the
search space as well as improvements in performance.

In practice, sort inference produces more than one sort for more than 40% of
all TPTP problems, and in particular for more than 60% of all satisfiable ones.
Applying symmetry-breaking by sort then leads to about 30 additional solved
problems and a general speed up of a factor of two, compared to symmetry
breaking in the unsorted case.

It is worth noting that, by also reducing the number of possible ways to order
the input constants for the triangular form totality axioms, sorting also makes
the whole system more robust, since different orders can have a dramatic
impact on the shape of the search space.

Meta Modeling

Recall from step (7) in the transformation (Section 3.2) that every function
symbol is turned into a predicate symbol. In our actual implementation, we

14

go one step further and use a meta modeling approach that can make the final
clause set produced by our translation more compact, and generally speed up
the search as well, thanks to the way models are built in the Model Evolution
calculus. The idea is the following.

For every n > 0, instead of generating an n + 1-ary relation symbol Rf for
each n-ary function symbol f ∈ ΣF we use an n + 2-ary relation symbol Rn,
for all n-ary function symbols. Then, instead of translating a literal of the
form f(x1, ..., xn) 6≈ y into the literal ¬Rf (x1, ..., xn, y), we translate it into
the literal Rn(f, x1, ..., xn, y), treating f as a zero-arity symbol. The advantage
of this translation is that instead of needing one totality axiom per relation
symbol Rf with f ∈ ΣF, we only need one per function symbol arity (among
those found in ΣF). For example, if the ΣF contains the function symbols
f1, . . . , fn of arity n, then instead of one totality axiom per function symbol

Rf1(x1, . . . , xn, 1) ∨ · · · ∨Rf1(x1, . . . , xn, d)

. . .

Rfn(x1, . . . , xn, 1) ∨ · · · ∨Rfn(x1, . . . , xn, d)

it suffices to have the following single totality axiom for all function symbols
of arity n

Rn(y, x1, . . . , xn, 1) ∨ · · · ∨Rn(y, x1, . . . , xn, d)

where the variable y is meant to be quantified over the (original) function
symbols in ΣF. Furthermore, in all reasonable proof procedures based on the
Model Evolution calculus y will be instantiated in a totality axiom only if there
is a complementary literal of the form ¬Rn(f, x′1, . . . , x

′
n, d), thus ensuring

that y will be instantiated only with zero-arity symbols representing function
symbols of arity n. 8 Note that the zero-arity symbols representing the original
function symbols in the input are in addition to the domain constants, and of
course never interact with them. 9

Meta modeling is not a new idea. Similar forms of it were already extensively
used in early applications of automated reasoning in Artificial Intelligence
(see, e.g., (Genesereth and Nilsson, 1987)). While its correctness is not as
immediate as in the case of the other transformations presented so far, we do
not discuss it here because meta modeling turns out to provide only a very
modest improvement in FM-Darwin, in terms of time as well as memory. We
think there are several reasons for this. First, the generalization can only pay

8 While this is not required for correctness, it ensures that the transformation does
not increase the search space.
9 They are intuitively of a different sort S. Moreover, by the Herbrand theorem, we
can consider with no loss of generality only interpretations that populate the sort
S precisely with these constants, and no more.

15

off (and consequently is only applied) if for a given arity there are at least
two symbols of that arity, otherwise it merely introduces unification overhead.
Second, the symmetry breaking axioms prevent its application to constant
symbols. Third, when sort inference is applied it is not enough to generalize
function symbols by arity alone, instead their sorts have to be taken into
account as well. Altogether this makes it questionable whether the increase in
complexity introduced by this transformation is justified.

Initial Domain Size

Following again the example of Paradox, FM-Darwin performs some static
analysis of the input clause set to quickly determine a (possibly suboptimal)
lower bound k on the cardinality of any model of the clause set. Roughly, this
is done by identifying cliques of disequations entailed by the clause set. Then,
the search starts with k as the initial domain size instead of 1.

The computation of a lower bound is done by default because of its very small
overhead. However, we must add that in our experiments it did not lead to
any substantial performance improvement overall.

4.2 Run-time Improvements

Restarts

The search for models of increasing size is built in Darwin’s own restarting
mechanism. For refutational completeness Darwin explores its search space
in an iterative-deepening fashion with respect of certain depth measures. The
same mechanism is used in FM-Darwin to restart the search with an increased
domain size d + 1 if the input problem has no models of size d.

By modifying the treatment of equality we could allow for increasing the do-
main size in steps greater than 1. That is, when going from domain size d to
domain size d+m, we would add the axioms E(d+1) instead of E(d+m). This
would enforce a lower domain size of d + 1 instead of d + m. Furthermore, as
Darwin has no native support for equality we would need to add the standard
axioms of equality, that is reflexivity, symmetry, transitivity, and predicate
substitution axioms. This ensures that the domain elements are in an equiva-
lence relation, if a model of domain size smaller than d + m is found. Since it
turned out in our experiments that this approach is significantly less efficient,
we consider in the following only a fixed increment of 1.

Because the clause sets F(M, d) and F(M, d + 1), for any d, differ only in the

16

their subsets D(d) ∪ E(d) and D(d + 1) ∪ E(d + 1), respectively, there is no
need to re-generate the constant part, and this is not done.

Conflict-based Learning

Similarly to SAT solvers based on the DPLL procedure, Darwin has the ability
to learn new (entailed) clauses—or lemmas—in failed branches of a deriva-
tion. Using learned lemmas is helpful in pruning later branches of the search
space (Baumgartner et al., 2006b). Some of the learned lemmas are indepen-
dent from the current domain size and so can be carried over to later itera-
tions with larger domain sizes. To do that, each clause in D(d + 1) is actually
guarded by an additional literal Dd standing for the current domain size. In
FM-Darwin, lemmas depending on the current domain size d, and only those,
retain the guard Dd when they are built, making it easy to eliminate them
when moving to the next size d + 1.

Inspired by the mechanism used in (Jia and Zhang, 2006) for a constraint-
based model finder, lemmas produced by Darwin can in some cases be gen-
eralized in FM-Darwin. The basic idea of (Jia and Zhang, 2006) is to store
explored branches of the search tree so that later in the search branches that
are redundant due to some isomorphism can be detected and pruned. However,
in contrast to their approach, ours does not need an additional data structure
to store this information. That information can be incorporated into the ex-
isting lemma learning mechanism, and more compactly, too, since lemmas
capture the reason for a failure in a branch, instead of the whole branch.

The idea is the following. Assume for now, just for simplicity, that we do not
perform any sort inference on the input clause set M (or that the sort inference
procedure generates a single sort S). When the number m of input constants
(of sort S) is smaller than the current domain size d, the symmetry breaking
triangular form for the totality axioms forces the first m domain values to
be the interpretation of the input constants, but imposes no constraints on
the remaining d − m domain values. 10 As a consequence, every Herbrand
model I of the clause set F(M, d) is invariant under any permutation p of
(m + 1, . . . , d). In other words, if the model satisfies a ground literal L, it will
also satisfy the literal obtained by applying p to L. This means that whenever
F(M, d) entails a formula ϕ(v1, . . . , vk) containing the domain values v1, . . . , vk

10 Note that naming of subterms and splitting of clauses might introduce Skolem
constants, to which symmetry breaking is applied just as to an input constant, thus
potentially increasing the number of constrained domain elements.

17

from {m + 1, . . . , d} it will also entail the formula

∀x1, . . . , xk.
∧

1≤i≤k

xi ∈ {m + 1, . . . , d} ∧
∧

1≤i<j≤k

xi 6≈ xj ⇒ ϕ(x1, . . . , xk)

where ϕ(x1, . . . , xk) is obtained from ϕ(v1, . . . , vk) by replacing, for each i,
every occurrence of the value vi with the fresh variable xi.

In the general case of more than one sort, this kind of generalization is applied
to lemmas containing unconstrained domain constants as follows. During pre-
processing, the system adds to F(M, d) a unit clause of the form PerS (v) (for
“v is permutable in S”) for each inferred sort S and domain value v of sort S
that is unconstrained by the symmetry breaking axioms for S. Then, during
search, every computed lemma C(v1, . . . , vk) containing unconstrained values
v1, . . . , vk of sort S, say, is generalized to the lemma∨

1≤i≤k

¬PerS(xi) ∨
∨

1≤i<j≤k

xi ≈ xj ∨ C(x1, . . . , xk)

where x1, . . . , xk are fresh variables (of sort S). This lemma is then further
generalized by applying to it the same process but for another sort, until all
unconstrained domain values have been eliminated.

With the resulting generalized lemma the system can break more symmetries
at run time than with the original lemma. In fact, the search process will avoid
not just any (candidate) model I that falsifies the original lemma but also any
model obtained from I by a well-sorted permutation of the unconstrained
domain values.

Combined with the improvement described next, which reduces the overhead
of using longer clauses, generalized lemmas lead to shorter derivations, a
smaller search space and smaller run-times overall. Nevertheless, while us-
ing the original lemmas leads in general to a significant speed up of a factor
of 2 to 4 (see (Baumgartner et al., 2006b) for details), the magnitude of the
further lemma generalization in our experimental evaluation was so far min-
imal. Specifically, the additional speed up factor is only 1.11 over the whole
TPTP library. More important, the number of solved problems is essentially
unchanged.

Constraint-based approach

FM-Darwin has a facility for treating equality and permutability predicates
as built-in constraints. In this approach, every clause of the form

C ∨
∨
i,ι

¬PerSι(xi) ∨
∨
i,j

xi ≈ xj

18

where C contains no disequations and no permutability literals, is rewritten
as a constrained clause of the form C | Γ where Γ is the constraint set

⋃
i,ι

{PerSι(xi)} ∪
⋃
i,j

{xi 6≈ xj} .

Darwin’s inference process is based on generating instances of its input clause
set M ′—in this case of the set F(M, d) plus any lemmas added along the
way—and choosing literals from these instances to build a candidate model of
the clause set. These instances are generated by computing certain unifiers,
called context unifiers, for each clause C in M ′, and applying them to C—
see (Baumgartner et al., 2006a) for more details.

In the regular approach, if the clause contains an equation x ≈ y with x
and y of some sort S, the computation of the context unifiers will attempt
to instantiate x and y to all domain values for S. Similarly, if the clause
contains a permutability literal PerS(x), it will attempt to instantiate x to all
unconstrained domain values for S.

In the constraint-based approach, context unifiers are computed as usual but
using only the clause part C of a constrained clause C | Γ. Then, each context
unifier σ for C is further refined into the unifier σθ for each solution θ of
the constraint Γσ over the sort domains. These solutions are computed using
constraint satisfaction techniques that treat sort assignments to variables as
well as permutability constraints as domain constraints, and disequations as
disequality constraints.

The main advantages of this approach are that (i) it is not necessary to include
in F(M, d) the quadratically many ground disequations v 6≈ v′ for all distinct
domain values nor the linearly many ground permutability predicates PerS(v);
(ii) Darwin’s inference rules operate on shorter clauses, especially in case of
generalized lemmas, and (iii) computing the context unifiers σθ using the
specialized constraint solving algorithm for the θ part is more efficient than
computing σθ directly with Darwin’s context unification procedure.

We finally remark that meta modeling and generalized lemma learning are
the only improvements specific to the targeted function-free clause logic, and
potentially to the Model Evolution calculus. All other optimizations are ap-
plicable in the original propositional MACE-style setting as well.

19

5 Experimental Evaluation

5.1 Space Efficiency

As we have seen, our reduction to a clause set F(M, d) encoding finite E-
satisfiability is heavily influenced by the one done in Paradox, but with the
difference that in Paradox the whole counterpart of our clause set F(M, d) is
grounded out, simplified and fed into a SAT solver.

Feeding the set F(M, d) directly instead to a theorem prover capable of de-
ciding the satisfiability of function-free clause sets has the advantage of often
being more space-efficient: in Paradox, as the domain size d is increased, the
number of ground instances of a clause grows exponentially in the number
of variables in the clause (Claessen and Sörensson, 2003). In contrast, in our
transformation no ground instances of the clause set F are produced. The
subsets D and E do grow with the domain size d; however, the number of
clauses in D(d) remains constant, while their length grows only linearly in d.
The number of clauses in E(d), which are all unit, grows instead quadratically.

As far as preprocessing the input clause set is concerned then, our approach
already has a significant space advantage over Paradox’s. This is crucial for
problems that have models of a relatively large size (more than 6 elements, say,
for function arities of 10), where Paradox’s eager conversion to a propositional
problem is simply unfeasible because of the huge size of the resulting formula.
A more accurate comparison, however, needs to take the dynamics of model
search into account.

By using Darwin as the back-end for our transformation, we are able to keep
space consumption down also during search. Being a DPLL-like system, Dar-
win never derives new clauses. 11 The only thing that grows unbounded in size
in Darwin is the context, the data structure representing the current candidate
model for the problem. With function-free clause sets the size of the context
depends on the number of possible ground instances of input literals, a much
smaller number than the number of possible ground instances of input clauses.
In addition, our experiments show that the context basically never grows to
its worst-case size.

The different asymptotic behaviours between FM-Darwin and Paradox can be
verified experimentally with the following simple problem.

Example 4 (Too big to ground) Let p be an n-ary predicate symbol, let

11 Except for lemmas of which, however, it keeps only a fixed number during a
derivation.

20

FM-Darwin Mace4 Paradox
n |Cont| Mem Time Time Vars Clauses Time
3 14 1 < 1 < 1 14 0 < 1
4 24 1 < 1 < 1 301 123 < 1
5 37 1 < 1 < 1 3192 534 < 1
6 53 1 < 1 < 1 46749 7919 < 1
7 72 1 1.1 178 823666 46749 12
8 94 1 5.1 Fail at size 7 Inconclusive, size ≥ 7 36
9 119 1 50 Fail at size 6 Inconclusive, size ≥ 5 9.6

10 147 1 566 Fail at size 4 Inconclusive, size ≥ 4 3.6

Table 1
Comparison of Darwin, Mace4 and Paradox on Example 4, for n = 3, . . . , 10. All
Time results are CPU time in seconds. FM-Darwin columns: |Cont|, maxi-
mum context size needed in derivation; Mem, required memory size in megabytes.
Mace4 columns: “Fail at size d”, memory limit of 400 MB exhausted during search
for a model with size d. Paradox columns: Vars, number of propositional variables
of the translation to propositional logic for domain size n; Clauses, likewise, num-
ber of propositional clauses; “Inconclusive, size ≥ d”, Paradox gave up after the
time stated.

c1, . . . , cn be (distinct) constants, and let x, x1, . . . , xn be (distinct) variables.
Then consider the clause set consisting of the following n · (n− 1)/2 + 1 unit
clauses, for n ≥ 0:

p(c1, . . . , cn)

¬p(x1, . . . , xi−1, x, xi+1, . . . , xj−1, x, xj+1, . . . , xn) for all 1 ≤ i < j ≤ n

The first clause just introduces n constants. Any (domain-minimal) model
has to map them to at most n domain elements. The remaining clauses force
the constants to be mapped to pairwise distinct domain elements. Thus, the
smallest model has exactly n elements. This clause set is perhaps the simplest
clause set to specify a domain with n elements in first-order logic without
equality. 2

We ran the example for n = 3, . . . , 10 on FM-Darwin, Mace4 1.3, and Paradox,
and obtained the results in Table 1. These results confirm our expectations
on FM-Darwin’s greater scalability with respect to space consumption. The
growth of the (propositional) variables and clauses within Paradox clearly
shows exponential behaviour. In contrast, Darwin’s context grows much more
slowly.

21

Problem Type Problems FM-Darwin Mace4 Paradox 1.3

Horn ≈ Sol Time Sol Time Sol Time

no no 607 575 3.9 394 3.0 578 0.9

no yes 383 312 4.3 190 7.8 264 0.4

yes no 65 51 17.5 37 0.2 59 2.1

yes yes 196 136 7.0 181 3.6 182 5.3

All 1251 1074 5.1 802 4.1 1083 1.6

Table 2
Comparison of FM-Darwin, Mace4, and Paradox 1.3 over all satisfiable TPTP prob-
lems, grouped based on being Horn and/or containing equality. Sol gives the number
of problems solved by a configuration, Time the average time used to solve these
problems.

5.2 Comparative Evaluation on TPTP

We evaluated the effectiveness of our approach on all the satisfiable problems
of the TPTP 3.1.1 in comparison to Paradox 1.3 and Mace4. Since Darwin’s
native input language is clausal, we used the E prover (Schulz, 2004) version
0.91 to convert non-clausal TPTP problems into clause form. All tests were
run on Xeon 2.4Ghz machines with 1GB of RAM, with the imposed limits of
300s of CPU time and 512MB of RAM. FM-Darwin was run with the grounded
learning option and with an upper limit of 500 lemmas. 12 Paradox and Mace4
were run in their respective default configuration, under the assumption that
it would be the most effective.

We report here only the results of FM-Darwin’s default configuration, which
uses sort inference and symmetry breaking but neither generalized lemmas
nor constraint solving, because the results for the alternative configurations
are only marginally different.

The results given in Table 2 show that in terms of solved problems FM-Darwin
significantly outperforms Mace4. Overall, our system is almost as good as
Paradox, outperforming it over the non-Horn problems in the set. We specu-
late that a factor in Paradox’s superior performance for Horn problems might
be the very efficient unit propagation algorithm of its underlying SAT solver,
based on the two-watched literals scheme (Moskewicz et al., 2001). Since the
only non-Horn clauses introduced by the transformation are the totality ax-

12 We refer the reader to (Baumgartner et al., 2006b) for more details on this option.
In brief, it makes Darwin generate less general lemmas, but much more efficiently,
making it Darwin’s most effective learning option in most cases.

22

ioms, and since lemmas learned from Horn clauses are still Horn, solving Horn
problems in Paradox probably requires only a minimal amount of actual search
and reduces to a large degree to unit propagation.

Looking at the experimental results in more detail, FM-Darwin solves 328
problems that Mace4 cannot solve—Mace4 runs out of time for 169 problems
and out of memory for the remaining ones—and solves 82 problems that Para-
dox can not solve—on all these problems Paradox runs out of memory or gives
up. We sampled some of these problems and re-ran Paradox without memory
and time limits, but to no avail. For problem NLP049-1, for instance, about
10 million (ground) clauses were generated for a domain size of 8, consuming
about 1 GB of memory, and the underlying SAT solver could not complete its
run within 15 minutes.

In contrast, on all problems FM-Darwin never uses more than 200 MB of
memory, and in most cases less than 50 MB. In conclusion then, both the
artificial problem in Example 4 and the more realistic problems in the TPTP
library support our thesis that FM-Darwin scales better on bigger problems,
that is, problems with a larger set of ground instances for non-trivial domain
sizes. While both approaches have the same complexity for a satisfiable prob-
lem, that is exponential for each domain size, this cost is paid eagerly in the
propositional approach.

On the other hand, Paradox and, to a lesser extent, Mace4 tend to solve
problems faster than FM-Darwin. We expect, however, that the difference in
speed will decrease in later implementations of our system as we refine and
improve our approach further.

5.3 (FM-)Darwin Variants on TPTP

We mentioned that Darwin is refutation complete prover for clause logic and a
decision procedure for function-free clause logic. 13 In addition, and contrary
to other provers, Darwin is often able to find (possibly infinite) models of
satisfiable clause sets containing function symbols. On the other hand, FM-
Darwin is a “finite-model complete” model finder for clause logic—that is,
with enough resources it is guaranteed to find a finite model for any input
clause set that has one. FM-Darwin is also able to decide function-free clause
logic by stopping the search when it fails to find a model of size up to the
number of input constants. 14

13 Darwin does accept clause sets with equality as well but it processes them rather
inefficiently by simply adding relevant equality axioms to the input clauses.
14 It is a well-known property that a clause set in this logic is satisfiable iff it has a
model with size no greater than the number of its constant symbols.

23

It is interesting then to see how FM-Darwin compares to plain Darwin, to
assess the advantage of extending the latter to the former. We measured the
performance of the two systems on the relevant subsets of the TPTP library,
namely all the satisfiable and all the function-free problems.

Since Darwin, contrary to FM-Darwin, is not complete for computing finite
models it is instructive to single out the results for function-free clause logic
problems. To this end, we created the following three disjoint problem classes—
where we classify a non-clausal TPTP problem based on its clause version as
obtained by using the E prover for clausification:

• NFF/S, consisting of all satisfiable problems containing (non-constant) func-
tion symbols,

• FF/S, consisting of all satisfiable function-free problems, and
• FF/U, consisting of all unsatisfiable function-free problems.

The tests in this section (Table 3 and Table 4) where done under the same
conditions as for the previous tests, with the only difference that we used
faster 3Ghz Pentium machines—which explains why FM-Darwin solves more
than the 1074 satisfiable problems reported earlier.

NFF/S FF/S FF/U

Solver Pro Sol Time Pro Sol Time Pro Sol Time

Darwin 910 404 3.9 341 338 0.6 642 641 0.2

FM-Darwin 910 758 3.8 341 322 6.4 642 519 0.6

Table 3
Comparison of Darwin and FM-Darwin over all satisfiable TPTP problems contain-
ing function symbols (NFF/S), all satisfiable function-free problems (FF/S), and all
unsatisfiable function-free problems (FF/U). Pro gives the number of problems for
a class, Sol gives the number of problems solved by a configuration, Time the
average time used to solve these problems.

As shown in Table 3, the experiments confirm our expectation that FM-Darwin
is superior to Darwin for problems with function symbols (NFF/S), and by
considerable a margin. For function-free problems the results are reversed, also
as expected. In particular, the difference in favor of Darwin is quite dramatic
for the unsatisfiable problems (FF/U). FM-Darwin’s worse performance in
this case is easily explained by observing that the system recognizes that the
input problem is unsatisfiable only after it has tried, and failed, to find a
model for each cardinality up to the number of input constants. Darwin, on
the other hand, directly builds a refutation of the problem. For the satisfiable
function-free problems (FF/S) Darwin tends to significally outperform FM-
Darwin only on problems that do not have models of small size. The reason is
again that Darwin does not perform an exhaustive model search by increasing

24

Symmetry reduction Sort inference Sol Time

no no 1012 10.3

yes no 1053 8.1

yes yes 1080 4.6

Table 4
Influence of symmetry reduction and sort inference, obtained by running FM-
Darwin over all 1251 satisfiable TPTP problems. Sol gives the number of problems
solved by a configuration, Time the average time used to solve these problems.

size.

The important point is that FM-Darwin clearly outperforms Darwin overall
on the satisfiable problems (NFF/S + FF/S) by solving 1080 problems over
a total of 1251, versus the 742 solved by Darwin. Darwin can solve only 21
satisfiable problems that FM-Darwin cannot solve. Of those, 16 are function-
free clause problems, and only for one of the other problems does Darwin
return an infinite model. So, at least on the TPTP library, Darwin’s capability
to find infinite Herbrand models does not seem to be an advantage.

We also ran FM-Darwin in different configurations to test the impact of sym-
metry reduction and sort inference (Section 4.1).

Table 4 contains results for three configurations: a basic one with no symme-
try reduction, and so no sort inference either; one with symmetry reduction,
via the triangular form totality axioms, but no sort inference; one with sort
inference and symmetry reduction by sort. As can be easily seen from the
table, symmetry reduction is quite effective, especially when done sort-wise.
It increases the number of solved problems while also decreasing the average
solving time.

5.4 CASC J3

We conclude this section by reporting the results of the last CASC compe-
tition, CASC-J3, held as part of the 2006 Federated Logic Conference, and
including FM-Darwin, Darwin, ad Paradox among its participants. CASC (the
CADE ATP System Competition) is an annually competition for first-order
provers, based on the TPTP library (Sutcliffe and Suttner, 2006).

Table 5 shows some comparative results for the SAT and EPR divisions of
CASC-J3. SAT contains only satisfiable problems with function symbols, while
EPR contains only function-free (satisfiable and unsatisfiable) clause prob-

25

Division FM-Darwin Darwin 1.3 Paradox 1.3

Sol Time Sol Time Sol Time

SAT 70 13.6 18 31.6 90 5.7

FM-Darwin Darwin 1.3 Vampire 8.0

Sol Time Sol Time Sol Time

EPR 92 10.33 100 4.7 78 4.19

Table 5
Results of selected systems for the SAT and EPR divison of CASC-J3 (100 problems
per division). Sol gives the number of problems solved by a configuration, Time
the average time used to solve these problems.

lems. FM-Darwin finished third in the SAT division, after two versions of
Paradox (1.3 and 2.0, in this order), and third in the EPR divison, after
Darwin and DCTP, a Disconnection Calculus prover that, like Darwin, is a
decision procedure for function-free clause logic. Paradox’s results for the EPR
division are not reported in the table because only Paradox 2.0 participated
there, performing worse than Paradox 1.3 would have.

Consistently with our previous evaluation, FM-Darwin performed reasonably
well on the satisfiable problems in the SAT division. An explanation for
Paradox 1.3 looking significantly superior to FM-Darwin is that satisfiable
function-free clause problems are included in the EPR division, but not in the
SAT division, and that among these there is a large number of problems for
which FM-Darwin succeeds, but Paradox fails.

The results show again that Darwin is very efficient on EPR problems, pro-
viding the basis for FM-Darwin’s efficiency. In this division, Darwin and FM-
Darwin compare very favorably to saturation-based provers, such as for in-
stance, Vampire, a frequent winner of the other divisions of CASC. In detail,
Vampire solves 48 unsatisfiable EPR problems, but only 30 satisfiable ones.
This result highlights the fact that while systems such as Vampire are highly
efficient in a general refutation setting, they are not well-suited for finite model
finding, especially if they are to rely on the transformations presented in this
paper. Another shortcoming of such provers versus instantiation-based provers
like Darwin or DCTP is that, even when they succeed in determining that an
input problem is satisfiable, it is usually not easy for them to output (a finite
representation of) an actual model.

26

6 Conclusions

Recent years have seen considerable interest in procedures for computing finite
models of first-order logic specifications. In this paper we overcome a major
problem with established, leading methods—embodied by systems like Para-
dox and Mace4—which do not scale well with the required domain size of the
(smallest) models. These methods are essentially based on propositional rea-
soning. In contrast, we proposed instead to reduce model search to a sequence
of satisfiability problems made of function-free first-order clause sets, and to
apply (efficient) theorem provers capable of deciding such problems.

In this paper we presented our approach in some detail and argued for its
correctness. We then provided results from a comparative evaluation of our
prover, Mace4 and Paradox, demonstrating that the expected space advan-
tages do indeed occur. The evaluation also shows that FM-Darwin, our initial
implementation of our approach built on top of the Darwin theorem prover,
is competitive with state-of-the-art model builders.

We believe that the performance of FM-Darwin has still considerable room for
improvement. One main opportunity of improvement is that currently there
is no explicit symmetry breaking mechanism for function symbols of arity
greater than one. Possible mechanisms are again similar to those implemented
in Paradox (Claessen and Sörensson, 2003). We plan to investigate additional,
more powerful symmetry breaking techniques that detect and break symme-
tries dynamically during the search for a model.

While FM-Darwin scales better memory-wise than the other systems consid-
ered, it generally struggles like all other finite model finders with problems
(such as the TPTP problem LAT053-1) whose smallest model is relatively
large (20 or more elements). Increasing the scalability towards larger domain
sizes is then certainly a main area of further research.

Acknowledgements

We thank the anonymous reviewers for their useful comments on improving
the paper’s presentation. We also thank Koen Claessen for his feedback on
this work and his kind explanations of the inner workings of Paradox.

The second and fourth author were partially supported by grant 0237422 from
the National Science Foundation.

27

References

Bachmair, L., Ganzinger, H., Voronkov, A., Jul. 1998. Elimination of equality
via transformation with ordering constraints. In: Kirchner, C., Kirchner, H.
(Eds.), Automated Deduction — CADE 15. LNAI 1421. Springer-Verlag,
Lindau, Germany, pp. 175–190.

Baumgartner, P., Fuchs, A., Tinelli, C., 2006a. Implementing the model evo-
lution calculus. International Journal of Artificial Intelligence Tools 15 (1),
21–52.

Baumgartner, P., Fuchs, A., Tinelli, C., 2006b. Lemma learning in the model
evolution calculus. In: Hermann, M., Voronkov, A. (Eds.), Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR). Vol. 4246 of LNAI.
Springer, pp. 572–586.

Baumgartner, P., Furbach, U., Stolzenburg, F., 1997. Computing Answers with
Model Elimination. Artificial Intelligence 90 (1–2), 135–176.

Baumgartner, P., Schmidt, R., 2006. Blocking and other enhancements for
bottom-up model generation methods. In: Furbach, U., Shankar, N. (Eds.),
Automated Reasoning – Third International Joint Conference on Auto-
mated Reasoning (IJCAR). Vol. 4130 of LNAI. Springer, pp. 125–139.

Baumgartner, P., Tinelli, C., 2003. The Model Evolution Calculus. In: Baader,
F. (Ed.), CADE-19 – The 19th International Conference on Automated
Deduction. Vol. 2741 of Lecture Notes in Artificial Intelligence. Springer,
pp. 350–364.

Bezem, M., 2005. Disproving distributivity in lattices using geometry logic.
In: Proc. CADE-20 Workshop on Disproving. pp. 2–9.

Brand, D., 1975. Proving theorems with the modification method. SIAM Jour-
nal on Computing 4, 412–430.

Bry, F., Torge, S., 1998. A Deduction Method Complete for Refutation and
Finite Satisfiability. In: Proc. 6th European Workshop on Logics in AI
(JELIA). Vol. 1489 of LNAI. Springer, pp. 122–138.

Claessen, K., Sörensson, N., 2003. New techniques that improve mace-style
finite model building. In: Baumgartner, P., Fermüller, C. G. (Eds.), CADE-
19 Workshop: Model Computation – Principles, Algorithms, Applications.
pp. 11–27.
URL http://www.cs.miami.edu/~geoff/Conferences/CADE-19/WS4/

de Nivelle, H., Meng, J., 2006. Geometric resolution: A proof procedure based
on finite model search. In: Furbach, U., Shankar, N. (Eds.), Proc. Inter-
national Joint Conference on Automated Reasoning (IJCAR). Vol. 4130 of
LNAI. Springer, pp. 303–317.

Ganzinger, H., Korovin, K., 2003. New directions in instantiation-based theo-
rem proving. In: LICS. IEEE Computer Society, pp. 55–64.

Genesereth, M. M., Nilsson, N. J., 1987. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann.

Jia, X., Zhang, J., 2006. A powerful technique to eliminate isomorphism in
finite model search. In: Furbach, U., Shankar, N. (Eds.), Proc. International

28

Joint Conference on Automated Reasoning (IJCAR). Vol. 4130 of LNAI.
Springer, pp. 318–331.

Kautz, H., Selman, B., 1996. Pushing the envelope: Planning, propositional
logic, and stochastic search. In: Proceedings of the 13th National Conference
on Artificial Intelligence and the Eighth Innovative Applications of Artificial
Intelligence Conference. Portland, OR, USA, pp. 1194–1201.

Letz, R., Stenz, G., 2001. Proof and Model Generation with Disconnection
Tableaux. In: Nieuwenhuis, R., Voronkov, A. (Eds.), Logic for Programming,
Artificial Intelligence, and Reasoning, 8th International Conference, LPAR
2001, Havana, Cuba. Vol. 2250 of Lecture Notes in Artificial Intelligence.
Springer, pp. 142–156.

McCune, W., 1994. A davis-putnam program and its application to finite
first-order model search: Qusigroup existence problems. Tech. rep., Argonne
National Laboratory.

McCune, W., 2003. Mace4 reference manual and guide. Tech. Rep. ANL/MCS-
TM-264, Argonne National Laboratory.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S., Jun.
2001. Chaff: Engineering an efficient SAT solver. In: Proceedings of the
38th Design Automation Conference. Las Vegas, Nevada, pp. 530–5.

Robinson, A., Voronkov, A. (Eds.), 2001. Handbook of Automated Reasoning.
Elsevier.

Schulz, S., 2004. System Description: E 0.81. In: Basin, D., Rusinowitch, M.
(Eds.), Proc. of the 2nd IJCAR, Cork, Ireland. Vol. 3097 of LNAI. Springer,
pp. 223–228.

Slaney, J., 1992. Finder (finite domain enumerator): Notes and guide. Tech.
Rep. TR-ARP-1/92, Australian National University, Automated Reasoning
Project, Canberra.

Sutcliffe, G., Suttner, C., 1998. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning 21 (2), 177–203.

Sutcliffe, G., Suttner, C., 2006. The State of CASC. AI Communications
19 (1), 35–48.

Zhang, J., Zhang, H., 1995. Sem: a system for enumerating models. In: IJCAI-
95 — Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Montreal. pp. 298–303.

29

