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Abstract. Recent years have seen considerable interest in procedures for com-
puting finite models of first-order logic specifications. One of the major paradigms,
MACE-style model building, is based on reducing model search to a sequence of
propositional satisfiability problems and applying (efficient) SAT solvers to them.
A problem with this method is that it does not scale well, as the propositional for-
mulas to be considered may become very large.
We propose instead to reduce model search to a sequence of satisfiability prob-
lems made of function-free first-order clause sets, and to apply (efficient) theo-
rem provers capable of deciding such problems. The main appeal of this method
is that first-order clause sets grow more slowly than their propositional counter-
parts, thus allowing for more space efficient reasoning.
In the paper we describe the method in detail and show how it is integrated into
one such prover, Darwin, our implementation of the Model Evolution calculus.
The results are general, however, as our approach can be used in principle with
any system that decides the satisfiability of function-free first-order clause sets.
To demonstrate its practical feasibility, we tested our approach on all satisfiable
problems from the TPTP library. Our methods can solve a significant subset of
these problems, which overlaps but is not included in the subset of problems
solvable by state-of-the-art finite model builders such as Paradox and Mace4.

1 Introduction

Methods for model computation can be classified as those that directly search for a
finite model, like the extended PUHR tableau method [8], the methods in [6, 10] and
the methods in the SEM-family [14, 16, 13], and those based on transformations into
certain fragments of logic and relying on corresponding readily available systems (see
[4] for a recent approach).

The latter approach includes the family of MACE-style model builders [13]. These
systems search for finite models, essentially, by searching the space of interpretations
with domain sizes 1,2, . . ., in increasing order, until a model is found. The MACE-style
model builder with the best performance today is perhaps the Paradox system [9]. We
present in this paper a new approach in the MACE/Paradox tradition which however
capitalizes on new advances in instantiation-based first-order theorem proving, as op-
posed to advances in propositional satisfiability as in the case of MACE and Paradox.
The general idea in our approach is the same: to find a model withn elements for a



given a clause set possibly with equality, the clause set is first converted into a simpler
form by means of the following transformations.

1. Each clause is flattened.
2. Eachn-ary function symbol is replaced by ann+1-ary predicate symbol and equal-

ity is eliminated.
3. Clauses are added to the clause set that impose totality constraints on the new pred-

icate symbols, but over a domain of cardinalityn.

The details of our transformation differ in various aspects from the MACE/Paradox
approach. In particular, we add no functionality constraints over the new predicate sym-
bols. The main difference, however, is that we evenually reduce the original problem
to a satisfiability problem over function-free clause logic (without equality), not over
propositional logic. As a consequence of the different target logic, we do not use a SAT
solver to look for models. Instead, we use a variant ofDarwin [2], our implementation
of the Model Evolution calculus [5], which can decide satisfiability in that logic.

While we do take advantage of some of the distinguishing features ofDarwin and
the Model Evolution calculus, especially in the way models are constructed, our method
is general enough that it could use without much additional effort any other decision
procedure for function-free clause logic, for instance, any implementation of one of the
several instance-based methods for first-order reasoning that are currently enjoying a
growing popularity.

In this paper we illustrate our method in some detail, presenting the main translation
and its implementation withinDarwin, and discussing our initial experimental results
in comparison with Paradox itself and with Mace4 [13], a competitive, non-MACE-
like (despite the name) model builder. The results indicate that our method is rather
promising as it can solve 1074 of the 1251 satisfiable problems in the TPTP library [15].
These problems are neither a subset nor a superset of the sets of 1083 and 802 problems
respectively solved (under the same experimental settings) by Paradox and Mace4.

2 Preliminaries

We use standard terminology from automated reasoning. We assume as given a signa-
tureΣ = ΣF ∪ ΣP of function symbolsΣF (including constants) and predicate symbols
ΣP. As we are working (also) with equality, we assumeΣP contains a distinguished
binary predicate symbol≈, used in infix form, with6≈ denoting its negation. Terms,
atoms, literals and formulas overΣ and a given (denumerable) set of variablesV are
defined as usual. A clause is a (finite) implicitly universally quantified disjunction of
literals. Aclause setis a finite set of clauses. We use the letterC to denote clauses and
the letterL to denote literals.

For a given atomP(t1, . . . , tn) (possibly an equation) the termst1, . . . , tn are also
called thetop-levelterms (ofP(t1, . . . , tn)).

With regards to semantics, we use the notions of (first-order)satisfiabilityandE-
satisfiabilityin a completely standard way. IfI is an (E-)interpretation then|I| denotes
the domain (or universe) ofI. Recall that inE-interpretations the equality relation is
interpreted as theidentity relation, i.e. for everyE-interpretationI it holds ≈I =



{(d,d) | d ∈ |I|}. We are primarily interested in computingfinite models, which are
models (of the given clause set) with a finite domain.

In the remainder of the paper, we assume thatM is a given (finite) clause set over
signatureΣ = ΣF ∪ ΣP, whereΣF (resp.ΣP) are the function symbols (resp. predicate
symbols) occuring inM.

3 Finite Model Transformation

In this section we give a general description of the tranformations we apply to the input
problem to reduce it to an equisatisfiable problem in function-free clause logic without
equality. We do that by defining various transformation rules on clauses.

In the rules, we writeL∨C C′ ∨C to indicate that the clauseC′ ∨C is obtained
from the clauseL∨C by (single) application of one of these rules.

3.1 Basic Transformation

(1) Abstraction of positive equations.

s≈ y∨C  s 6≈ x∨x≈ y∨C if s is not a variable and
x is a fresh variable

x≈ t ∨C  t 6≈ y∨x≈ y∨C if t is not a variable and
y is a fresh variable

s≈ t ∨C  s 6≈ x∨ t 6≈ y∨x≈ y∨C if s andt are not variables and
x andy are fresh variables

These rules make sure that all (positive) equations are between variables.
(2) Flattening of non-equations.

(¬)P(. . . ,s, . . .)∨C  (¬)P(. . . ,x, . . .)∨s 6≈ x∨C if P 6= ≈, s is not a variable, and
x is a fresh variable

(3) Flattening of negative equations.

f (. . . ,s, . . .) 6≈ t ∨C  f (. . . ,x, . . .) 6≈ t ∨s 6≈ x∨C if s is not a variable
andx is a fresh variable

(4) Separation of negative equations.

s 6≈ t ∨C  s 6≈ x∨ t 6≈ x∨C if neithers nor t is a variable,
andx andy are fresh variables

This rule makes sure that at least one side of a (negative) equation is a variable.
Notice that this property is also satisfied by the transformations (2) and (3).

(5) Removal of trivial negative equations.

x 6≈ y∨C  Cσ whereσ = {x 7→ y}



(6) Orientation of negative equations.

x 6≈ t ∨C  t 6≈ x∨C if t is not a variable

For a clauseC, let thebasic transformation of C, denoted asB(C), be the clause ob-
tained fromC by applying the transformations (1)-(6), in this order, each as long as
possible.4 We extend this notation to clause sets in the obvious way, i.e.,B(M) is the
clause set consisting of the basic transformation of all clauses inM.

The two flattening transformations alone, when applied exhaustively, turn a clause
into aflat one, where a clause isflat if:

1. each top-level term of each of its negative equations is a variable or has the form
f (x1, . . . ,xn), where f is a function symbol,n≥ 0, andx1, . . . ,xn are variables;

2. each top-level term of each of its non-equations is a variable.

Similar flattening transformations have been considered before as a means to deal more
efficiently with equality within calculi for first-order logic without equality [7, 1].

The basic transformation above is correct in the following sense.

Lemma 1 (Correctness ofB). The clause set M is E-satisfiable if and only ifB(M) is
E-satisfiable.

Proof. That flattening preservesE-satisfiability (both ways) is well-know (cf. [7]). Re-
garding transformations (1), (4), (5) and (6), the proof is straightforward or trivial.ut

3.2 Conversion to Relational Form

It is not hard to see that, for any clauseC, the following holds for the clause setB(C):

1. each of its positive equations is between two variables,
2. each of its negative equations is flat and of the formf (x1, . . . ,xn) 6≈ y, and
3. each of its non-equations is flat.

After the basic transformation, we apply the following one, turning eachn-ary func-
tion symbol f into a (new)n+1-ary predicate symbolRf .

(7) Elimination of function symbols.

f (x1, . . . ,xn) 6≈ y∨C  ¬Rf (x1, . . . ,xn,y)∨C

Let BR(M) be the clause set obtained from an exhaustive application of this transfor-
mation toB(M).

Recall that ann+1-ary relationRover a setA is left-total if for everya1, . . . ,an ∈ A
there is anb∈A such that(a1, . . . ,an,b)∈R. The relationR is right-uniqueif whenever
(a1, . . . ,an,b) ∈ R there is no other tuple of the form(a1, . . . ,an,b′) in R.

Because of the above properties (1)–(3) ofB(M), the transformationBR(M) is well-
defined, and will produce a clause set with no function symbols. This transformation
however is not unsatisfiability preserving unless one considers only left-total interpre-
tations for the predicate symbolsRf . More formally:

4 It is easy to see that this process always terminates.



Lemma 2 (Correctness ofBR). The clause set M is E-satisfiable if and only if there is
an E-modelI of BR(M) such that(Rf )I is left-total, for every function symbol f∈ ΣF.

Proof. The direction from left to right is easy. For the other direction, letI be anE-
model ofBR(M) such that(Rf )I is left-total for every function symbolf ∈ ΣF.

Recall that functions are nothing but left-total and right-unique relations. We will
show how to obtain fromI anE-modelI′ of BR(M), that preserves left-totality and adds
right-uniqueness, i.e., such that(Rf )I′ is both left-total and right-unique for allf ∈ ΣF.
Since such an interpretation is clearly a model ofB(M), it will the follow immediately
by Lemma 1 thatM is E-satisfiable.

We obtainI′ as the interpretation that is likeI, except that(Rf )I′ contains exactly
one element(d1, . . . ,dn,d), for everyd1, . . . ,dn∈ |I|, chosen arbitrarily from(Rf )I (this
choice exists because(Rf )I is left-total). It is clear from the construction that(Rf )I′ is
right-unique and left-total. Trivially,I′ interpretes≈ as the identity relation, becauseI
does, asI is anE-interpretation. Thus,I′ is anE-interpretation, too.

It remains to prove that withI being a model ofBR(M) then so isI′. This follows
from the fact that every occurrence of a predicate symbolRf , with f ∈ ΣF, in the clause
setBR(M) is in a negative literal. But then, since(Rf )I′ ⊆ (Rf )I by construction, it
follows immediately that any clause ofBR(M) satisfied byI is also satisfied byI′. ut

The significance of this lemma is that it requires us to interpret the predicate symbols
Rf as left-total relations,but not necessarily as right-unique ones. Consequently, right-
uniqueness will not be axiomatized below.

3.3 Addition of Finite Domain Constraints

To force left-totality, one could add the Skolemized version of axioms of the form

∀x1, . . . ,xn∃y Rf (x1, . . . ,xn,y)

to Br(M). The resulting set would beE-satisfiable exactly whenM is E-satisfiable.5

However, since we are interested in finite satisfiability, we use finite approximations
of these axioms. To this end, letd be a positive integer, thedomain size. We consider
the expansion of the signature ofBr(M) by d fresh constant symbols, which we name
1, . . . ,d. Intuitively, instead of the totality axiom above we can now use the axiom

∀x1, . . . ,xn∃y∈ {1, . . . ,d} Rf (x1, . . . ,xn,y) .

Concretely, if f is ann-ary function symbol let the clause

Rf (x1, . . . ,xn,1)∨·· ·∨Rf (x1, . . . ,xn,d)

be thed-totality axiom for f, and letD(d) be the set of alld-totality axioms for all
function symbolsf ∈ ΣF. The setD(d) axiomatizes the left-totality of(Rf )I, for every
function symbolf ∈ ΣF and interpretationI with |I|= {1, . . . ,d}.
5 Altogether, this proves the (well-known) result that function symbols are “syntactic sugar”.

They can always be eliminated in an equisatisfiability preserving way, at the cost of introducing
existential quantifiers.



Rc1(1)∨·· ·∨Rc1(d)
Rc2(1)∨·· ·∨Rc2(d)

...

Rcm(1)∨·· ·∨Rcm(d)

Rc1(1)
Rc2(1)∨Rc2(2)

...
Rcd(1)∨·· ·∨Rcd(d)
Rcd+1(1)∨·· ·∨Rcd+1(d)

...
Rcm(1)∨·· ·∨Rcm(d)

(a) (b)

Fig. 1.Totality axioms for constants and their triangular form

3.4 Symmetry Breaking

Symmetrieshave been identified as a major source for inefficiencies in constrain solving
systems.Value symmetryapplies to a problem when a permutation of the values (or
better, value vector) assigned to variables constitutes a solution to the problem, too. A
dual symmetry property may apply to the (decision) variables of a problem, giving rise
to variable symmetry. Breaking such symmetries has been recognized as a source for
considerable efficiency gains.

It is easy to break some value symmetries introduced by assigning domain values
to constants. SupposeΣF containsm constantsc1, . . . ,cm. Recall thatD(d) contains, in
particular, the axioms shown in Figure 1(a). Similarly to what is done with Paradox,
these axioms can be replaced by the more “triangular” form shown in Figure 1(b). This
form reflects symmetry breaking of assigning values for the firstd constants. In fact,
one could further strengthen the symmetry breaking axioms by adding (unit) clauses
like ¬Rc1(2), . . .¬Rc1(d). We do not add them, as they do not constrain the search for a
model further (they are all pure).

In the sequel we will refer to the clause set as described here asD(d).

3.5 Putting all Together

Since we want to use clause logicwithout equality as the target logic of our overall
transformation, the only remaining step is the explicit axiomatization of the equality
symbol≈ over domains of sized—so that we can exploit Lemma 2 in the (interesting)
right-to-left direction. This is easily achieved with the clause set

E(d) = {i 6≈ j | 1≤ i, j ≤ d andi 6= j} .

Finally then, we define thefinite-domain transformation of Mas the clause set

F (M,d) := BR(M) ∪ D(d) ∪ E(d) .

Putting all together we arrive at the following first main result:



Theorem 3 (Correctness of the Finite-Domain Translation).Let d be a positive in-
teger. Then, M is E-satisfiable by some finite interpretation with domain size d if and
only if F (M,d) is satisfiable.

Proof. Follows from Lemma 2 and the comments above onD(d) andE(d), together
with the observation that ifF (M,d) is satisfiable it is satisfiable in a Herbrand interpre-
tation with universe{1, . . . ,d}.

More precisely, for the only-if direction assume as given a Herbrand modelI of
F (M,d) with universe{1, . . . ,d}. It is clear from the axiomsE(d) thatI assigns false
to the equation(d′ ≈ d′′), for any two different elementsd′,d′′ ∈ {1, . . . ,d}. Now, the
modelI can be modified to assign true to all equationsd′ ≈ d′, for all d′ ∈ {1, . . . ,d}
and the resultingE-interpretation will still be a model forF (M,d). This is, because the
only occurences of negative equations inF (M,d) are those contributed byE(d), which
are still satisfied after the change.6 It is this modified model that can be turned into an
E-model ofM. ut

This theorem suggests immediately a (practical) procedure to search for finite mod-
els, by testingF (M,d) for satisfiability, withd = 1,2, . . ., and stopping as soon as the
first satisfiable set has been found. Moreover, any reasonable such procedure will return
in the satisfiable case a Herbrand representation (of some finite model).

Indeed, the idea of searching for a finite model by testing satisfiability over finite
domains of size 1,2, . . . is implemented in our approach and many others (Paradox [9],
Finder [14], Mace [12], Mace4 [13] , SEM [16] to name a few).

4 Implementation

We implemented the transformation described so far within our theorem proverDarwin.
In addition to being a full-blown theorem prover for first-order logic without equality,
Darwin is a decision procedure for the satisfiability of function-free clause sets, and thus
is a suitable back-end for our transformation. We call the combined system FM-Darwin
(for Finite ModelsDarwin).

Conceptually, FM-Darwin builds onDarwin by adding to it as a front-end an im-
plementation of the transformationF (Section 3.5), and invoking Darwin onF (M,d),
for d = 1,2, ..., until a model is found. In reality, FM-Darwin is built within Darwinand
differs from the conceptual procedure described so far in the following ways:

1. The search for models of increasing size is built inDarwin’s own restarting mech-
anism. For refutational completenessDarwin explores its search space in an iterative-
deepening fashion with respect of certaindepthmeasures. The same mechanism is used
in FM-Darwin to restart the search with an increased domain sized + 1 if the input
problem has no models of sized.

2. FM-Darwin implements some obvious optimizations over the transformation rules
described in Section 3. For instance, the tranformations (1)–(4) are done in parallel,
depending on the structure of the current literal. Transformation (6) is done implicitly

6 Notice, in particular, thatBR(M) contains only positive occurences of equations, if any.



as part of tranformation (7), when turning equations into relations. Also, when flattening
a clause, the same variable is used to abstract different occurrences of a subterm.

3. Because the clause setsF (M,d) andF (M,d+1), for anyd, differ only in the their
subsetsD(d) ∪ E(d) andD(d + 1) ∪ E(d + 1), respectively, there is no need to re-
generate the constant part, and this is not done.

4. Similarly to SAT solvers based on the DPLL procedure,Darwin has the ability to
learn new (entailed) clauses—orlemmas—in failed branches of a derivation, which is
helpful to prune search space in later branches [3]. Some of the learned lemmas are
independent from the current domain size and so can be carried over to later iterations
with larger domain sizes. To do that, each clause inD(d + 1) is actuallyguardedby
an additional literalMd standing for the current domain size. In FM-Darwin, lemmas
depending on the current domain sized, and only those, retain the guardMd when they
are built, making it easy to eliminate them when moving to the next sized+1.

5. Recall from step (7) in the transformation (Section 3.2) that every function symbol
is turned into a predicate symbol. In our actual implementation, we go one step further
and use a meta modeling approach that can make the final clause set produced by our
translation more compact, and possibly speed up the search as well, thanks to the way
models are built in the Model Evolution calculus. The idea is the following.

For everyn> 0, instead of generating ann+1-ary relation symbolRf for eachn-ary
function symbolf ∈ ΣF we use ann+2-ary relation symbolRn, for all n-ary function
symbols. Then, instead of translating a literal of the formf (x1, ...,xn) 6≈ y into the literal
¬Rf (x1, ...,xn,y), we translate it into the literalRn( f ,x1, ...,xn,y), treating f as a zero-
arity symbol. The advantage of this translation is that instead of needing one totality
axiom per relation symbolRf with f ∈ ΣF we only need one per function symbolarity
(among those found inΣF). 7 Thed-totality axioms then take the more general form

Rn(y,x1, . . . ,xn,1)∨·· ·∨Rn(y,x1, . . . ,xn,d)

where the variabley is meant to be quantified over the (original) function symbols in
ΣF. Note that the zero-arity symbols representing the original function symbols in the
input are in addition to the domain constants, and of course never interact with them.8

6. Like Paradox, FM-Darwin performs a kind of sort inference in order to improve the
effectiveness of symmetry breaking. Each function and predicate symbol of arityn in
Σ is assigned a type respectively of the formS1× . . .×Sn → Sn+1 andS1× . . .×Sn,
where all sortsSi are initially distinct. Each term in the input clause set is assigned the
result sort of its top symbol. Two sortsSi andSj are then identified based on the input
clause set by applying a union-find algorithm with the following rules. First, all sorts of
different occurrences of the same variable in a clause are identified; second, the result
sorts of two termssandt in an equalitys≈ t are identified; third, for each term or atom

7 Consequently, this translation is actually applied for a given arity only if there are at least two
symbols of that arity.

8 They are intuitively of a different sortS. Moreover, by the Herbrand theorem, we can consider
with no loss of generality only interpretations that populate the sortS precisely with these
constants, and no more.



of the form f (. . . , t, . . .) the argument sort off at t ’s position is identified with the sort
of t.

All sorts left at the end are assumed to have the same size. This way, when a sorted
model is found (with all sorts having some sized), it can be translated into an un-
sorted model by an isomorphic translation of each sort into a single domain of sized.
This implies that one can conceptually search for a sorted model and apply the sym-
metry breaking rules independently for each sort, and otherwise do everything else as
described in the previous section. In addition to generally improving performance, this
makes the whole procedure less fragile, as the order in which the constants are chosen
for the symmetry breaking rules can have a dramatic impact on the search space.

7. Splitting clauses.Paradox and Mace2 use transformations that, by introducing new
predicate symbols, can split a flat clause with many variables into several flat clauses
with fewer variables. For instance, a clause of the form

P(x,y)∨Q(y,z)

whose two subclauses share only the variabley can be transformed into the two clauses

P(x,y)∨S(y) ¬S(y)∨Q(y,z)

where the predicate symbol in theconnectingliteral S(y) is fresh. This sort of transfor-
mation preserves (un-)satisfiability. Thus, in this example, where the number of vari-
ables in a clause is reduced by from 3 to 2, procedures based on a full ground instantia-
tion of the input clause set may benefit from of having to deal with theO(2n2) ground
instances of the new clauses instead ofO(n3) ground instances of the original clause.9

As it happens, reducing of the number of variables per clause is not necessary help-
ful in our case. Since (FM-)Darwin does not perform an exhaustive ground instantia-
tion of its input clause set, splitting clauses can actually be counter-productive because
it forces the system to populate contexts with instances of connecting literals likeS(y)
above. Our experiments indicate that this is generally expensive unless the connect-
ing literals do not contain any variables. Still, in contrast to Darwin, where in general
clause splitting is only an improvement for ground connecting literals, for FM-Darwin
splitting in all cases gives a slight improvement.10

8. Naming subterms.Clauses with deep terms lead to long flat clauses. To avoid that,
deep subterms can be extracted and named by an equation. For instance, the clause set

P(h(g( f (x)),y)) Q( f (g(z)))

can be replaced by the clause set

P(h2(x,y)) Q(h1(x)) h2(x,y) = h(h1(x),y) h1(x) = g( f (x))

9 A similar observation was made in [11] and exploited beneficially to solve planning problems
by reduction to SAT.

10 In our experiments on the TPTP (Section 5.2) it helped to solve eight additional satisfiable
problems.



whereh1 andh2 are fresh function symbols. When carried out repeatedly, reusing defini-
tions across the whole clause set, this transformation yields to shorter flattened clauses.

We tried some heuristics for when to apply the transformation, based on how of-
ten a term occurs in the clause set, and how big the flattened definition is (i.e., how
much it is possible to save by using the definition). The only consistent improvement
on TPTP problems was achieved when introducing definitions only for ground terms.
This solves 16 more problems, 14 of which are Horn. Thus, currently only ground terms
are flattened by default with this transformation in FM-Darwin.

5 Experimental Evaluation

5.1 Space Efficiency

Our reduction to clause sets encoding finiteE-satisfiability is similar to, and indeed in-
spired by, the one in Paradox [9]. The most significant difference is, as we mentioned,
that in Paradox the whole counterpart of our clause setF (M,d) is grounded out, sim-
plified and fed into a SAT solver (Minisat). In our case,F (M,d) is fed directly to a
theorem prover capable of deciding the satisfiability of function-free clause sets. This
has the advantage of often being more space-efficient: in Paradox, as the domain size
d is increased, the number of ground instances of a clause grows exponentially in the
number of variables in the clause [9]. In contrast, in our transformation no ground in-
stances of the clause setF are produced. The subsetsD andE do grow with the domain
sized; however, the number of clauses inD(d) remains constant ind while their length
grows only linearly ind. The number of clauses inE(d), which are all unit, grows
instead quadratically.

As far as preprocessing the input clause set is concerned then, our approach already
has a significant space advantage over Paradox’s. This is crucial for problems that have
models of a relatively large size (more than 6 elements, say, for functions arities of 10),
where Paradox’s eager conversion to a propositional problem is simply unfeasible be-
cause of the huge size of the resulting formula. A more accurate comparison, however,
needs to take the dynamics of model search into account. By usingDarwin as the back-
end for our transformation, we are able to keep space consumption down also during
search. Being a DPLL-like system,Darwin never derives new clauses.11 The only thing
that grows unbounded in size inDarwin is thecontext, the data structure representing
the current candidate model for the problem. With function-free clause sets the size
of the context depends on the number of possible ground instances of inputliterals, a
much smaller number than the number of possible ground instances of inputclauses. In
addition, our experiments show that the context basically never grows to its worst-case
size.

The different asymptotic behaviours between FM-Darwin and Paradox can be veri-
fied experimentally with the following simple problem.

Example 4 (Too big to ground).Let p be ann-ary predicate symbol,c1, . . . ,cn (distinct)
constants, andx,x1, . . . ,xn (distinct) variables. Then consider the clause set consisting

11 Except for lemmas of which, however, it keeps only a fixed number during a derivation.



FM-Darwin Mace4 Paradox
n |Max. ctxt| Mem Time Time # Vars # Clauses Time
3 14 1 < 1 < 1 14 0 < 1
4 24 1 < 1 < 1 301 123 < 1
5 37 1 < 1 < 1 3192 534 < 1
6 53 1 < 1 < 1 46749 7919 < 1
7 72 1 < 1 178 823666 46749 12
8 94 1 5.1 Fail at size 7 Inconclusive, size≥ 7 36
9 119 1 50 Fail at size 6 Inconclusive, size≥ 5 9.6

10 147 1 566 Fail at size 4 Inconclusive, size≥ 4 3.6

Table 1. Comparison of Darwin and Paradox on Example 4, forn = 3, . . . ,9. All Time results
are CPU time in seconds. Specific column entries forFM-Darwin : |Max. ctxt| – maximum
context size needed in derivation;Mem – required memory size in megabytes. Column entry for
Mace4: “Fail at sized” – Memory limit of 400 MB exhausted during search for a model with
sized. Specific column entries forParadox: # Vars – the number of propositional variables of
the translation into propositional logic for domain sizen; # Clauses– likewise, the number of
propositional clauses; “Inconclusive, size≥ d”: Paradox gave up after the time stated.

of the followingn· (n−1)/2+1 unit clauses, forn≥ 0:

p(c1, . . . ,cn)
¬p(x1, . . . ,xi−1,x,xi+1, . . . ,x j−1,x,x j+1, . . . ,xn) for all 1≤ i < j ≤ n

The first clause just introducesn constants. Any (domain-minimal) model has to map
them to at mostn domain elements. The remaining clauses force the constants to be
mapped to pairwise distinct domain elements. Thus, the smallest model has exactlyn
elements. This clause set is perhaps the simplest clause set to specify a domain withn
elements. ut

We ran the example forn = 3, . . . ,10 on FM-Darwin, Mace4 and Paradox and ob-
tained the results in Table 1. These results confirm our expectations on FM-Darwin’s
greater scalability with respect to space consumption. The growth of the (propositional)
variables and clauses within Paradox clearly shows exponential behaviour. In contrast,
Darwin’s contexts grow much more slowly.

5.2 Comparative Evaluation on TPTP

We evaluated the effectiveness of our approach on all the satisfiable problems of the
TPTP 3.1.1 in comparison to Paradox 1.3 and Mace4.12 All tests were run on Xeon
2.4Ghz machines with 1GB of RAM, with the imposed limits of 300s of CPU time
and 512MB of RAM. FM-Darwin was run with thegroundedlearning option and with
an upper limit of 500 lemmas (see [3] for more details on these options), Paradox and
Mace4 in the default configuration.

12 SinceDarwin native input language is clausal, we used the eprover 0.91 to convert non-clausal
TPTP problems into clause form.



Problem Type Problems FM-Darwin Mace4 Paradox 1.3
Horn Equality Solved Time Solved Time Solved Time

no no 607 575 3.9 394 3.0 578 0.9
no yes 383 312 4.3 190 7.8 264 0.4
yes no 65 51 17.5 37 0.2 59 2.1
yes yes 196 136 7.0 181 3.6 182 5.3

all 1251 1074 5.1 802 4.1 1083 1.6

Table 2.Comparison of FM-Darwin, Mace4, and Paradox 1.3 over all satisfiable TPTP problems,
also grouped based on being Horn and/or containing equality.Solved Problemsgives the number
of problems solved by a configuration,Time the average time used to solve these problems.

The results given in Figure 2 show that in terms of solved problems FM-Darwin
significantly outperforms Mace4. Overall, our system is almost as good as Paradox,
outperforming it over the non-Horn problems in the set. More precisely, FM-Darwin
solves 328 problems that Mace4 cannot solve—Mace4 runs out of time for 169 prob-
lems and out of memory for the remaining ones—and solves 82 problems that Paradox
can not solve—on all these problems Paradox runs out of memory or gives up. We sam-
pled some of these problems and re-ran Paradox without memory and time limits, but to
no avail. For problemNLP049-1, for instance, about 10 million (ground) clauses were
generated for a domain size of 8, consuming about 1 GB of memory, and the underlying
SAT solver could not complete its run within 15 minutes.

In contrast, on all problems FM-Darwin never uses more than 200 MB of memory,
and in most cases less than 50 MB. In conclusion then, both the artificial problem in
Example 4 and the more realistic problems in the TPTP library support our thesis that
FM-Darwin scales better on bigger problems, that is, problems with a larger set of
ground instances for non-trivial domain sizes.

On the other hand, Paradox and to a lesser extent Mace4 tend to solve problems
faster than FM-Darwin. We expect, however, that the difference in speed will decrease
in later implementations of our system as we refine and improve our approach further.

6 Conclusions

Recent years have seen considerable interest in procedures for computing finite models
of first-order logic specifications. In this paper we overcome a major problem with
established, leading methods—embodied by systems like Paradox and Mace4—which
do not scale well with the required domain size of the (smallest) models. These methods
are essentially based on propositional reasoning. In contrast, we proposed instead to
reduce model search to a sequence of satisfiability problems made of function-free first-
order clause sets, and to apply (efficient) theorem provers capable of deciding such
problems.

In this paper we presented our approach in some detail and argued for its correct-
ness. We then provided results from a comparative evalution of our prover, Mace4 and
Paradox, demonstrating that the expected space advantages do indeed occur. The eval-
uation also shows that FM-Darwin, our initial implementation of our approach built on



top of theDarwin theorem prover, is already competitive with state-of-the-art model
builders.

We believe that the performance of FM-Darwin has still considerable room for im-
provement. One main opportunity of improvement is that currently there is no explicit
symmetry breaking mechanism for function symbols of arity greater than zero. Another
is that the disequality of domain elements is still explicitly axiomatized by ground ax-
ioms over the domain constants. In future work, we intend to explore the possibility
of adapting existing first-order level symmetry breaking techniques to our method, and
building-in equality over domain constants into FM-Darwin.

While FM-Darwin scales better memory-wise than the other systems considered, it
generally struggles like all other finite model-finders with problems (such as the TPTP
problemLAT053-1) whose smallest model is relatively large (20 or more elements).
Increasing the scalability towards larger domain sizes is then certainly a main area of
further research.
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