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Abstract. Many applications of automated deduction require reasoning modulo
some form of integer arithmetic. Unfortunately, theory reasoning support for the
integers in current theorem provers is sometimes too weak for practical purposes.
In this paper we propose a novel calculus for a large fragment of first-order logic
modulo Linear Integer Arithmetic (LIA) that overcomes several limitations of
existing theory reasoning approaches. The new calculus — based on the Model
Evolution calculus, a first-order logic version of the propositional DPLL pro-
cedure — supports restricted quantifiers, requires only a decision procedure for
LIA-validity instead of a complete LIA-unification procedure, and is amenable to
strong redundancy criteria. We present a basic version of the calculus and prove
it sound and (refutationally) complete.

1 Introduction

Many applications of automated deduction require reasoning modulo some form of
integer arithmetic. Unfortunately, theory reasoning support for the integers in current
theorem provers is sometimes too weak for practical purposes. We propose a novel
refutation calculus for a restricted clause logic modulo Linear Integer Arithmetic (LIA)
that overcomes these problems. To obtain a complete calculus, we disallow free function
symbols of arity > 0 and restrict every free constant to range over a finite interval of Z.
For simplicity, we also restrict every (universal) variable to range over a bounded below
interval of Z (such as, for instance, N),

In spite of the restrictions, the logic is quite powerful. For instance, functions with a
finite range can be easily encoded into it. This makes the logic particularly well-suited
for applications that deal with bounded domains, such as, for instance, bounded model
checking and planning. SAT-based techniques, based on clever reductions of BMC and
planning to SAT, have achieved considerable success in the past, but they do not scale
very well due to the size of the propositional formulas produced. It has been argued
and shown by us and others [4, 12] that this sort of applications could benefit from a
reduction to a more powerful logic for which efficient decision procedures are available.
That work had proposed the function-free fragment of clause logic as a candidate. This

? The work of the last two authors was partially supported by the National Science Foundation
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paper takes that proposal a step further by adding integer constraints to the picture. The
ability to reason natively about the integers can provide a reduction in search space even
for problems that do not originally contain integer constraints. The following simple
example from finite model reasoning demonstrates this:3

a : [1..100] P(a) ¬P(x)← 1
.
≤ x∧ x

.
≤ 100 .

The clause set above is unsatisfiable because the interval declaration a : [1..100] for the
constant a together with the unit clause P(a) permit only models that satisfy one of
P(1), . . . ,P(100). Such models however falsify the third clause. Finite model finders,
e.g., need about 100 steps to refute the clause set, one for each possible value of a. Our
ME(LIA) calculus, on the other hand, reasons directly with integer intervals and allows
a refutation in O(1) steps. See Section 2 for an in-depth discussion of another example.

The calculus we propose is derived from the Model Evolution calculus (ME) [7],
a first-order logic version of the propositional DPLL procedure. The new calculus,
ME(LIA), shares with ME the concept of evolving interpretations in search for a model
for the input clause set. The crucial insight that leads from ME to ME(LIA) lies in the
use of the ordering < on integers in ME(LIA) instead of the instantiation ordering
on terms in ME. This then allows ME(LIA) to work with concepts over integers that
are similar to concepts used in ME over free terms. For instance, it enables a strong
redundancy criterion that is formulated, ultimately, as certain constraints over LIA ex-
pressions. All that requires (only) a decision procedure for the full fragment of LIA
instead of a complete enumerator of LIA-unifiers.

For space constraints, we present only a basic version of the calculus. We refer the
reader to a longer version of this paper [6] for extensions and improvements.

Related work. Most of the related work has been carried out in the framework of the
resolution calculus. One of the earliest related calculi is theory resolution [15]. In our
terminology, theory resolution requires the enumeration of a complete set of solutions of
constraints. The same applies to various “theory reasoning” calculi introduced later [2,
9]. In contrast, in ME(LIA) all background reasoning tasks can be reduced to satisfia-
bility checks of (quantified) constraint formulas. This weaker requirement facilitates the
integration of a larger class of solvers (such as quantifier elimination procedures) and
leads to potentially far less calls to the background reasoner. For an extreme example,
the clause ¬(0 < x)∨P(x) has, by itself, infinitely many most general LIA-unifiers (the
theory reasoning analogous of most general unifiers), namely {x 7→ 1},{x 7→ 2}, . . ., the
most general solutions of the constraint (0 < x) with respect to the term instantiation or-
dering. Thus, any calculus based on the computation of complete sets of (most general)
solutions of LIA-constraints may need to consider all of them. In contrast, in ME(LIA),
or in other calculi based on satisfiability alone, notably Bürckert’s constrained resolu-
tion [8], it is enough just to check that a constraint like (0 < x) is LIA-satisfiable.

Constrained resolution is actually more general than ME(LIA), as it admits back-
ground theories with (infinitely, essentially enumerable) many models, as opposed to
the single fixed model that ME(LIA) works with.4 On the other hand, constraint reso-
lution does not admit free constant or function symbols—unless they are considered as

3 The predicate symbol
.
≤ denotes less than or equal on integers.

4 Extending ME(LIA) correspondingly is future work.
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part of the background theory, which is pointless since specialized background theory
reasoners do not accept free symbols. The most severe drawback of constraint resolu-
tion, however, is the lack of redundancy criteria.

The importance of powerful redundancy criteria has been emphasized in the de-
velopment of the modern theory of resolution in the 1990s [14]. With slight variations
they carry over to hierarchical superposition [1], a calculus that is related to constraint
resolution. The recent calculus in [11] integrates dedicated inference rules for Linear
Rational Arithmetic into superposition. In [7, e.g.] we have described conceptual dif-
ferences between ME, further instance based methods [3] and other (resolution) calculi.
Many of the differences carry over to the constraint-case, possibly after some modifica-
tions. For instance, ME(LIA) explicitly, like ME, maintains a candidate model, which
gives rise to a redundancy criterion different to the ones in superposition calculi. Also
it is known that instance-based methods decide different fragments of first-order logic,
and the same holds true for the constraint-case.

Over the last years, Satisfiability Modulo Theories has become a major paradigm for
theorem proving modulo background theories. In one of its main approaches, DPLL(T ),
a DPLL-style SAT-solver is combined with a decision procedure for the quantifier-free
fragment of the background theory T [13]. DPLL(T ) is essentially limited to the ground
case. In fact, addressing this intrinsic limitation by lifting DPLL(T ) to the first-order
level is one of the main motivations for the ME(LIA) calculus (much like ME was
motivated by the goal of lifting the propositional DPLL procedure to the first-order
level while preserving its good properties). At the current stage of development the
core of the procedure—the Split rule—and the data structures are already lifted to the
first-order level. We are working on an enhanced version with additional rules, targeting
efficiency improvements. With these rules then ME(LIA) can indeed be seen as a proper
lifting of DPLL(T ) to the first-order level (within recursion-theoretic limitations).

2 Calculus Preview

It is instructive to discuss the main ideas of the ME(LIA) calculus with a simple exam-
ple before defining the calculus formally. Consider the following two unit constrained
clauses (formally defined in Section 3):5

P(x)← a
.
< x (1) ¬P(x)← x .= b (2)

where a,b are free constants, which we call parameters, x,y are (implicitly universally
quantified) variables, and a

.
< x and x .= b are the respective constraints of clause (1)

and (2). The restriction that all parameters range over some finite integer domain is
achieved with the global constraints a : [1..10], b : [1..10]. Informally, clause (1) states
that there is a value of a in {1, . . . ,10} such that P(x) holds for all integers x greater
than a. Similarly for clause (2).

The clause set above is satisfiable in any expansion of the integers structure Z to
{a,b,P} that maps a,b into {1, . . . ,10} with a ≥ b. The calculus will discover that
and compute a data structure that denotes exactly all these expansions. To see how

5 The predicate symbol .= denotes integer equality and 6 .= stands for ¬(· .= ·); similarly for
.
<.
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b : [1..10]
a : [1..10]

(a) Initial tree

¬P(x) | a
.
< xP(x) | a

.
< x

b : [1..10]
a : [1..10]

(1)

(b) (1) causes Split

(1)

a+1 .= b a+1 6 .= b

P(x) | a
.
< x ¬P(x) | a

.
< x

b : [1..10]
a : [1..10]

(2)

(c) (2) causes Domain Split

(1)

a+1 .= b a+1 6 .= b

P(x) | a
.
< x ¬P(x) | a

.
< x

b : [1..10]
a : [1..10]

P(x) |¬P(x) |
x .= b∧a

.
< x x .= b∧a

.
< x

(2)

(2)

(d) (2) causes Split

(1)

a+1 .= b a+1 6 .= b

P(x) | a
.
< x ¬P(x) | a

.
< x

b : [1..10]
a : [1..10]

P(x) |¬P(x) |
x .= b∧a

.
< x x .= b∧a

.
< x

(2)

(2)

(1)

a
.
< b a 6

.
< b

(e) (1) causes Domain Split

Fig. 1: Derivation example. Closed branches are marked with the number of the clause used to
close them.

this works, it is best to describe the calculus’ main operations using a semantic tree
construction, illustrated in Figure 1. Each branch in the semantic tree denotes a finite
set of first-order interpretations that are expansions of Z. These interpretations are the
key to understanding the working of the calculus. The calculus’ goal is to construct a
branch denoting a set of interpretations that are each a model of the given clause set and
the global parameter constraints, or to show that there is no such model.

In the example in Figure 1a, the initial single-node tree denotes all interpretations
that interpret a and b over {1, . . . ,10} and falsify by default all ground atoms of the
form P(n) where n is an integer constants (e.g., P(−1),P(4), . . .). Each of these (100)
interpretations falsifies clause (1). The calculus detects that and tries to fix the problem
by changing the set of interpretations in two essentially complementary ways. It does
that by computing a context unifier and applying the Split inference rule (both defined
later) which extends the tree as in Figure 1b. With the addition of the constrained literal
P(x) | a

.
< x, the left branch of the new tree now denotes all interpretations that interpret

a and b as before but satisfy P(n) only for values of n greater than a.
The right branch in Figure 1b still denotes the same set of interpretations as in the

original branch. However, the presence of ¬P(x) | a
.
< x now imposes a restriction on
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later extensions of the branch. To explain how, we must observe first that in the calcu-
lus the set of solutions of any constraint (which are integer tuples) is a well-founded
poset. Hence, each satisfiable constraint has minimal solutions. Now, if a branch in the
semantic tree contains a literal L(x1, . . . ,xk) | c where c is a satisfiable constraint over
the variables x1, . . . ,xn, each associated interpretation I satisfies L(n1, . . . ,nk) where
(n1, . . . ,nk) is one of the minimal solutions of c in I. Further extensions of the branch
must maintain L(n1, . . . ,nk) satisfied. This minimal solution is commited to at the time
the literal is added to the semantic tree. In the right branch of Figure 1b a (unique)
minimal solution of a

.
< x is a + 1 for all interpretations. This entails that ¬P(a + 1) is

permanently valid in the branch in the sense that (i) ¬P(a+1) holds in every interpre-
tation of the branch and (ii) no extensions of the branch are allowed to change that. As
a consequence, the right branch permanently falsifies clause (1), and so it can be closed.

Similarly, P(a + 1) is permanently valid in the left branch of Figure 1b.6 In inter-
pretations of the branch where a + 1 = b this is a problem because there clause (2) is
falsified. Since the branch also has interpretations where a+1 6= b, the calculus makes
progress by splitting on a + 1 .= b. This is done with the Domain Split rule, leading
to the tree in Figure 1c. The leftmost branch there denotes only interpretations where
a + 1 = b. That branch can be closed because it permanently falsifies clause (2). It
is worth pointing out that domain splits like the above, identifying “critical” cases of
parameter assignments, can be computed deterministically. They do not need not be
guessed.

We skip the rest of the derivation, and just note that the trees in Figure 1d and
Figure 1e are obtained by applying Split and Domain Split, respectively. As for the
branch ending in a 6

.
< b, all its interpretations satisfy P(n) for all n > a (because the

constraint in ¬P(x) | x .= b∧ a
.
< x is now unsatisfiable) and falsify P(b) (by default,

because a 6< b). It follows that they all satisfy the clause set. The calculus recognizes
that and stops. Had the clause set been unsatisfiable, the calculus would have generated
a tree with closed branches only.

Note how the calculus found a model, in fact a set of models, for the input clause
set without having to enumerate all possible values for the parameters a and b, resorting
instead to much more course-grained domain splits. In its full generality, the calculus
still works as sketched above. Its formal description is, however, more complex because
the calculus handles constraints with more than one (free) variable, and does not require
the computation of explicit, symbolic representations of minimal solutions.

3 Constraints and Constrained Clauses

The new calculus works with clauses containing parametric linear integer constraints,
which we call here simply constraints. These are any first-order formulas over the signa-
ture ΣΠ

Z = { .=,
.
<, +,−, 0,±1,±2, . . .}∪Π, where Π is a finite set of constant symbols

not in ΣZ = ΣΠ

Z \Π. The symbols of ΣZ have the expected arity and usage. Following
a common math terminology, we will call the elements of Π parameters. We will use,

6 In DPLL terms, the split with P(x) | a
.
< x and ¬P(x) | a

.
< x is akin to a split on the comple-

mentary literals P(a + 1) and ¬P(a + 1). The calculus soundness proof relies in essence on
this observation.
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possibly with subscripts, the letters m,n to denote the integer constants (the constants
in ΣZ); a,b to denote parameters; x,y to denote variables (chosen from an infinite set
X); s, t to denote terms over ΣΠ

Z , and l to denote literals.

We write t : [m ..n] as an abbreviation of m
.
≤ t ∧ t

.
≤ n. We denote by ∃̄ c (resp. ∀̄c)

the existential (resp. universal) closure of the constraint c, and by π x c the projection
of c on x, i.e., ∃y c where y is a tuple of all the free variables of c that are not in
the variable tuple x. We use the predicate symbol

.
≤ also to denote the component-wise

extension of the integer ordering
.
≤ to integer tuples (for any tuple size),

.
≤` to denote the

lexicographic extension of
.
≤ to integer tuples, and

.
< and

.
<` to denote their respective

strict version.7

A constraint is ground if it contains no variables, closed if it contains no free vari-
ables.8 We define a satisfaction relation |=Z for closed parameter-free constraints as fol-
lows: |=Z c if c is satisfied in the standard sense in the structure Z of the integers—the
one interpreting the symbols of ΣZ in the usual way over the universe Z. A parameter
valuation α, a mapping from Π to Z, determines an expansion Zα of Z to the signature
ΣΠ

Z that interprets each a ∈Π as α(a). For each parameter valuation α and closed con-
straint c we write α |=Z c to denote that c is satisfied in Zα. A (possibly non-closed)
constraint c is α-satisfiable if α |=Z ∃̄c.

For finite sets Γ of closed constraints we denote by Mods(Γ) the set of all valuations
α such that α |=Z Γ. We write Γ |=Z c to denote that α |=Z c for all α ∈Mods(Γ). For
instance, a : [1 ..10] |=Z ∃x x

.
< a but a : [1 ..10] 6|=Z ∃x (5

.
< x∧ x

.
< a).

If e is a term or a constraint, y = (y1, . . . ,yk) is a tuple of distinct variables con-
taining the free variables of e, and t = (t1, . . . , tk), we denote by e[t/y] the result of
simultaneously replacing each free occurrence of yi in e by ti, possibly after renaming
e’s bound variables as needed to avoid variable capturing. We will write just e[t] when
y is clear from context. With a slight abuse of notation, when x is a tuple of distinct
variables, we will write e[x] to denote that the free variables of e are included in x.

For any valuation α, a tuple m of integer constants is an α-solution of a constraint
c[x] if α |=Z c[m]. For instance, {a 7→ 3} |=Z c[4,1], where c[x,y] = (a .= x− y).

The example in the introduction demonstrated the role of minimal solutions of (sat-
isfiable) constraints. However, minimal solutions need not always exist—consider e.g.
the constraint x

.
< 0. We say that a constraint c is admissible iff for all parameter val-

uations α, if c is α-satisfiable then the set of α-solutions of c contains finitely many
minimal elements with respect to

.
≤, each of which we call a minimal α-solution of c.

From now on we always assume that all constraints are admissible. Note that admis-
sibility can be easily enforced by conjoining a given constraint c[x] with the constraint
n

.
≤ x for some tuple n of integer constants.

As indicated in Section 2, the calculus needs to analyse constraints and their mini-
mal solutions. We stress that for the calculus to be effective, it need not actually compute
minimal solutions. Instead, it is enough for it to work with constraints that denote each
of the minimal α-solutions m1, ...,mn of an α-satisfiable constraint c[x]. This can be
done with the formulas µk c defined below, where y is a tuple of fresh variables with the

7 We remark that each of the new symbols is definable in the given constraint language.
8 Note that a ground or closed constraint can contain parameters.
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same length as x and k ≥ 1.9

µc def= c∧∀y (c[y]→¬(y
.
< x)) µ` c def= c∧∀y (c[y]→ x

.
≤` y)

µk c def= µ` (¬(µ1 c)∧·· ·∧¬(µk−1 c)∧ (µc))

Recalling that c is admissible, it is easy to see that for any valuation α, µc has at most
n α-solutions (for some n): the n minimal α-solutions of c, if any. If c is α-satisfiable,
let m1, ...,mn be the enumeration of these solutions in the lexicographic order

.
≤`. Ob-

serving that
.
≤` is a linearization of

.
≤, it is also easy to see that µ` c has exactly one

α-solution: m1. Similarly, for k = 1, . . . ,n, µk c has exactly one α-solution: mk (this is
thanks to the additional constraint ¬(µ1 c)∧ ·· · ∧¬(µk−1 c), which excludes the previ-
ous minimal α-solutions, denoted by µ1 c, . . . ,µk−1. For k > n, µk c is never α-satisfiable.
This is a formal statement of these claims:

Lemma 1. Let α be an assignment and c an admissible constraint. Then, there is an
n ≥ 0 such that µ1 c, . . . ,µn c have unique, pairwise different α-solutions, which are all
minimal α-solutions of c. Furthermore, for all k > n, µk c is not α-satisfiable.

For example, if c[(x,y)] = a
.
≤ x∧a

.
≤ y∧¬(x .= y) then µ`c is semantically equiv-

alent (≡) to x .= a∧ y .= a + 1, µc ≡ (x .= a∧ y .= a + 1)∨ (x .= a + 1∧ y .= a), µ1 c ≡
(x .= a∧ y .= a+1), µ2 c = (x .= a+1∧ y .= a) and µ3 c is not α-satisfiable, for any α.

As we will see later, the calculus compares lexicographically minimal α-solutions
of constraints that have a single minimal solution. With such constraints it is enough
to compare their least α-solutions with respect to

.
≤`. This is done with the following

comparison operators over constraints, where x and y are disjoint vectors of variables
of the same length:

c
.
<µ`

d def= ∃x∃y (µ` c[x]∧µ` d[y]∧x
.
<` y) c .=µ`

d def= ∃x (µ` c[x]∧µ` d[x])

In words, the formula c
.
<µ`

d is α-satisfiable iff the least α-solutions of c and d exist,
and the former is

.
<`-smaller than the latter. Similarly for c .=µ`

d wrt. same least α-
solutions.

From the above, it is not difficult to show the following.

Lemma 2 (Total ordering). Let α be a parameter valuation, and c[x] and d[x] two
α-satisfiable (admissible) constraints. Then, exactly one of the following cases applies:
(i) α |=Z c

.
<µ`

d, (ii) α |=Z c .=µ`
d, or (iii) α |=Z d

.
<µ`

c.

We stress that the restriction to α-satisfiable constraints is essential here. If c or d is
not α-satisfiable, then none of the listed cases applies.

3.1 Constrained Clauses

We now expand the signature ΣΠ

Z with a finite set of free predicate symbols, and denote
the resulting signature by Σ. The language of our logic is made of sets of admissible

9 The notations ∀x c and ∃x c stand just for c when x is empty.
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constrained Σ-clauses, defined below. The semantics of the logic consists of all the
expansions of the integer structure to the signature Σ, the Σ-expansions of Z.

A normalized literal is an expression of the form (¬)p(x) where p is a n-ary free
predicate symbol of Σ and x is an n-tuple of distinct variables. We write L(x) to denote
that L is a normalized literal whose argument tuple is exactly x.

A normalized clause is an expression C = L1(x1)∨ ·· · ∨ Ln(xn) where n ≥ 0 and
each Li(xi) is a normalized literal, called a literal in C. We write C(x) to indicate that C
is a normalized clause whose variables are exactly x. We denote the empty clause by �.

A (constrained Σ-)clause D[x] is an expression of the form C(x)← c with the free
variables of c included in x. When C is � we call D a constrained empty clause. A clause
C(x)← c is LIA-(un)satisfiable if there is an (no) Σ-expansion of the integer structure
Z that satisfies ∀x(c→C(x)). A set S of clauses and constraints is LIA-(un)satisfiable
if there is an (no) Σ-expansion of Z that satisfies every element of S.

We will consider only admissible clauses, i.e., constrained clauses C(x)← c where
(i) C 6= � and (ii) c is an admissible constraint. Condition (i) above is motivated by
purely technical reasons. It is, however, no real restriction, as any clause �← c in a
clause set S can be replaced by false← c, where false is a 0-ary predicate symbol not
in S, once S has been extended with the clause ¬false←>.10 Condition (ii) is the real
restriction, needed to guarantee the existence of minimal solutions, as explained earlier.
To simplify the presentation, we will further restrict ourselves to clauses with (trivially
admissible) constrains of the form c[x]∧ 0

.
≤ x, where 0 is the tuple of all zeros. For

brevity, in our examples we will sometimes leave the constraint 0
.
≤ x implicit.

4 Constrained Contexts

A context literal K is a pair L(x) | c where L(x) is a normalized literal and c is an (ad-
missible) constraint with free variables included in x. We denote by K the constrained
literal L(x) | c, where L is the complement of L.

A (constrained) context is a pair Λ ·Γ where Γ is a finite set of closed constraints
and Λ is a finite set of context literals. We will implicitly identify the sets Λ with their
closure under renamings of a context literal’s free variables.

In terms of the semantic tree presentation in Figure 1, each branch there corresponds
(modulo a detail explained below) to a context Λ ·Γ, where Γ are the parameter con-
straints along the branch and Λ are the constrained literals. In the discussion of Figure 1
we explained informally the meaning of parameter constraints and constrained literals.
The purpose of this section is to provide a formal account for that.

Definition 3 (α-Covers, α-Extends). Let α be a parameter valuation. A context literal
L(x) | c1 α-covers a context literal L(x) | c2 if α |=Z ∃̄ c2 and α |=Z ∀̄ (c2→ c1).

The literal L(x) | c1 α-extends L(x) | c2 if L(x) | c1 α-covers L(x) | c2 and α |=Z
c1

.=µ`
c2. If Γ is a set of closed constraints, L(x) | c1 Γ-extends L(x) | c2 if it α-extends

it for all α ∈Mods(Γ).

10 We will use > and ⊥ respectively for the universally true and the universally false constraint.
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For an unnormalized literal L(t) we say that L(x) | c1[x] α-covers L(t) if L(x) covers
the normalized version of L(t), i.e., the literal L(x) | π x (x .= t[z/x]) where z is a tuple
of fresh variables.

The intention of the previous definition is to compare context literals with respect to
their set of solutions for a fixed valuation α. This is expressed basically by the second
condition in the definition of α-covers. For example, P(x) | a

.
< x α-covers P(x) | a+1

.
<

x, for any α. The first condition (α |=Z ∃̄ c2) is needed to exclude α-coverage for trivial
reasons, because c2 is not α-satisfiable. Without it, for example, P(x) | x .= 2 would
α-cover P(x) | x .= a∧a .= 5 when, say, α(a) = 3, which is not intended. But note that
α 6|=Z ∃x (x .= a∧a .= 5) in this case. Also note that the two conditions α |=Z ∃̄ c2 and
α |=Z ∀̄ (c2→ c1) in combination enforce that c1 is α-satisfiable as well.

The notion of α-extension is similar to that of α-coverage, but applies to literals
with the same least solutions only. For instance, P(x) | 0

.
≤ x∧ x

.
< 7 α-extends P(x) |

0
.
≤ x∧ x

.
< 3, and α-covers it, for any α (the least solution being 0 for both literals),

and P(x) | 3
.
< x α-covers P(x) | 7

.
< x but does not α-extend it.

The concepts introduced in the next three definitions allow us to associate a set of
structures to each context satisfying certain well-formedness conditions.

Definition 4 (α-Produces). Let Λ be a set of constrained literals and α a parameter
valuation. A context literal L(x) | c1 α-produces a context literal L(x) | c2 wrt. Λ if

1. L(x) | c1 α-covers L(x) | c2, and
2. there is no L(x) | d in Λ that α-covers L(x) | c2 and such that α |=Z c1

.
<µ`

d.

The set Λ α-produces a context literal K if some literal in Λ α-produces K wrt. Λ. A
context Λ ·Γ produces K if there is an α ∈Mods(Γ) such that Λ α-produces K.

As an example, if α(a) = 3 then P(x) | 2
.
< x α-produces P(5) wrt. Λ = {¬P(x) |

x .= a∧a .= 5}. Observe that neither α |=Z (2
.
< x)

.
<µ`

(x .= a∧a .= 5) holds nor does
¬P(x) | x .= a∧a .= 5 α-cover ¬P(5), as x .= a∧a .= 5 is not α-satisfiable. However, if
α(a) = 5 then P(x) | 2

.
< x no longer α-produces P(5) wrt. Λ, because now α |=Z (2

.
<

x)
.
<µ`

(x .= a∧a .= 5) and ¬P(x) | x .= a∧a .= 5 α-covers ¬P(5).

Definition 5 (α-Contradictory). Let Λ ·Γ be a context and α ∈ Mods(Γ). A context
literal L(x) | c is α-contradictory with Λ if there is a context literal L(x) | d in Λ such
that α |=Z c .=µ`

d. It is Γ-contradictory with Λ if there is a L(x) | d in Λ such that
Γ |=Z c .=µ`

d.
The literal L(x) | c is contradictory with the context Λ ·Γ if it is α-contradictory with

Λ for some α ∈Mods(Γ). The context Λ ·Γ itself is contradictory if some context literal
in Λ is contradictory with it.

The notion of Γ-contradictory is based on equality of the least α-solutions of the in-
volved constraints for all α∈Mods(Γ). It underlies the abandoning of candidate models
due to permanently falsified clauses in Section 2, which is captured precisely as closing
literals in Definition 8 below.

We require our contexts not only to be non-contradictory but also to constrain each
parameter to a finite subset of Z. Furthermore, they should guarantee that the associated
Σ-expansions of Z are total over tuples of natural numbers. All this is achieved with
admissible contexts.
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Definition 6 (Admissible Γ, Admissible Context). A context Γ ·Λ is admissible if

1. Γ is admissible, that is, Γ is satisfiable, and, for each parameter a in Π, there are
integer constants m,n≥ 0 such that Γ |= a : [m ..n].

2. For each free predicate symbol P in Σ, the set Λ contains ¬P(x) | −1
.
≤ x.

3. Λ ·Γ is not contradictory.11

Thanks to Condition 2 in the above definition, an admissible context α-produces
a literal ¬P(n) with n consisting of non-negative integer constants, if no other literal
in the context α-produces P(n). Observe that admissible contexts Λ ·Γ may contain
context literals whose constraint is not α-satisfiable for some (or even all) α∈Mods(Γ).
For those α’s, such literals simply do not matter as their effect is null.

However, admissible contexts are always consistent in the sense that they cannot
produce both a constraint literal L(x) | c and its complement L(x) | c.

The following definition provides the formal account of the meaning of contexts
announced at the beginning of this section.

Definition 7 (Induced Structure). Let Γ ·Λ be an admissible context and let α ∈
Mods(Γ). The Σ-structure ZΛ,α induced by Λ and α is the expansion of Z to all the
symbols in Σ that interprets each parameter a as α(a), and satisfies a positive ground
literal L(s) iff Λ α-produces L(s).

The above consistency property and the presence of literals ¬P(x) | −1
.
≤ x in admis-

sible contexts entails that, for every α ∈ Mods(Γ), ZΛ,α satisfies a literal L(n) if and
only if Λ α-produces L(n), where n is a tuple of non-negative integer constants. Thus,
Definition 7 connects syntax (α-productivity) to semantics (truth) in a one-to-one way.

In Section 2 we explained the derivation in Figure 1 as being driven by semantic
considerations, to construct a model by successive branch extensions. The calculus’
inference rules achieve that in their core by computing context unifiers.

Definition 8 (Context Unifier). Let Λ ·Γ be an admissible context and D[x] = L1(x1)∨
·· · ∨Lk(xk)← c[x] a constrained clause with free variables x. A context unifier of D
against Λ ·Γ is a constraint

d[x] = d′[x]∧∃y (y
.
≤ x∧µ j d′[y]), where d′[x] = c[x]∧ c1[x1]∧·· ·∧ ck[xk] (1)

with each ci coming from a literal Li(xi) | ci in Λ, and j ≥ 1.
For each i = 1, . . . ,k, the context literal

Li(xi) | di, with di = π xi d (2)

is a literal of the context unifier. The literal Li(xi) | di is closing if Γ |=Z ci
.=µ`

di.
Otherwise, it is a (α-)remainder literal (of d) if there is an α ∈ Mods(Γ) such that
α |=Z ci

.
<µ`

di (equivalently, such that α 6|=Z ci
.=µ`

di and di is α-satisfiable)12.
The context unifier d is closing if each of its literals is closing. It is (α-)productive if

for each i = 1, . . . ,k, the context literal Li(xi) | ci α-produces Li(xi) | di wrt. Λ for some
α ∈Mods(Γ).
11 Equivalently, for every α ∈Mods(Γ) and every pair of context literals L(x) | c and L(x) | d in

Λ, it is not the case that α |=Z c .=µ` d.
12 Observe that if di is α-satisfiable so are d and ci.
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The constraint d in (1) can be perhaps best understood as follows. Its component
d′ = c[x]∧ c1[x1]∧·· ·∧ ck[xk] denotes any simultaneous solution of D’s constraint and
the constraints coming from pairing each of D’s literal with a context literal with same
predicate symbol but opposite sign. The component µ jd′[y] denotes the jth minimal
solution of d′, which bounds from below the solutions of d. A simple, but important
consequence (for completeness) is that for any α and concrete solution m of d′, j can
be always chosen so that d[m] is α-satisfied. As a special case, when m is the j-th
minimal solution of d′, it is also the least solution of d. Regarding di in (2), for any α,
the set of α-solutions of di is the projection over the vector xi of the solutions of d.

A formal statement of the above is expressed by the following lemma.

Lemma 9 (Lifting). Let Λ ·Γ be an admissible context, α ∈Mods(Γ), D[x] = L1(x1)∨
·· · ∨Lk(xk)← c[x] with k ≥ 1 a constrained clause, and m a vector of constants from
Z. If ZΛ,α falsifies D[m], then there is an α-productive context unifier d of D against
Λ ·Γ where m is an α-solution of d.

As an example (with no parameters, for simplicity), let d′ = c[x1,x2]∧c1[x1]∧c2[x2]
where c = ¬(x1

.= x2), c1 = 1
.
≤ x1, and c2 = 1

.
≤ x2. Then, the (unique) solution of

µ j d′ for j = 1 is (1,2); for j = 2 it is (2,1). By fixing j = 1 now let us commit to
(1,2). Then the solutions of d1 are (1),(2), . . . and the solutions of d2 are (2),(3), . . .
The least solution of d1, (1), coincides with the projection over x1 of the commited
minimal solution (1,2). Similarly for d2. This is no accident and is crucial in proving the
soundness of the calculus. It relies on the property that the least (individual) solutions of
all the di’s are, in combination, the least solution of d—which is in turn the first minimal
solution of d′. In the example, the least solutions of d1 and d2 are 1 and 2, respectively,
and combine into (1,2), the least solution of d.

We stress that all the notions in the above definition are effective thanks to the
decidability of LIA. A subtle point here is the choice of j in (1), as j is not bounded a
priori. However, all these notions hold only if di is α-satisfiable for some or all (finitely)
many choices of α ∈ Mods(Γ), and that di becomes α-unsatisfiable if j exceeds the
number of minimal α-solutions of di. By this argument, the possible values for j are
effectively bounded.

Example 10. Consider the context {P(x) | a
.
< x}·{a : [1 ..10],b : [1 ..10]} and the input

clause ¬P(x)← b
.
< x. The context corresponds to the left branch in Figure 1b. There

is a context unifier, for any j ≥ 1, d = a
.
< x∧b

.
< x∧∃y (y

.
≤ x∧µ j (a

.
< y∧b

.
< y)) .

Its literal is K′ = ¬P(x) | d1, where d1 = π x d( = d). The constraint (a
.
< y∧b

.
< y) has

a unique minimal α-solution, which is also its least α-solution. Thus, d is equivalent
to a

.
< x∧ b

.
< x, obtained with j = 1. It is closing if Γ |=Z (a

.
< x) .=µ`

d1, which is
equivalent to Γ |=Z ¬(a

.
< b). That is not the case, i.e. there is an α ∈ Mods(Γ) that

satisfies a
.
< b. According to Definition 8 then, K′ is a remainder literal of d. Indeed, it

can be verified then that α |=Z (a
.
< x)

.
<µ`

(a
.
< x∧b

.
< x).

5 The Calculus

The inference rules of the calculus are defined over triples, sequents, of the form Λ ·Γ `
Φ where Λ ·Γ is an admissible context and Φ is a set of constrained clauses. Intuitively,
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an antecedent Λ ·Γ corresponds to a branch in the semantic tree presentation in Section 2
and always denotes a set of candidate models for Φ, the Σ-structures induced by Λ and
α ∈Mods(Γ) (Def. 7) .

The calculus derives a tree of sequents with the goal of incrementally modifying
the candidate models until they evolve, so to speak, into a set of models of Φ. More
precisely, a derivation of Γ and Φ starts with a tree with a root node only, which is
labeled with the sequent Λ0 · Γ ` Φ, where Λ0 contains (only) the constraint literal
¬p(x) | −1

.
≤ x for each free predicate symbol p in Σ. It then applies the derivation rules

defined below to grow that tree, by applying a rule at a time to a leaf of the tree and
extending it with the conclusions in the expected way. See [6] for a formal definition.

Context unifiers play a crucial role in the evolution of Λ ·Γ. To illustrate their use,
consider a sequent Λ ·Γ ` Φ. If for some α ∈ Mods(Γ) the structure ZΛ,α induced by
Λ and α falsifies Φ, it must falsify a “ground” instance D[m] of some clause D in Φ.
As shown in [6], this implies the existence of an α-productive context unifier d of D
against Λ ·Γ where m is an α-solution of d.

If d has an α-remainder literal K′i = L(xi) | di not contradictory with the context, the
problem with D[m] can be fixed by adding K′i to Λ. In fact, if mi is the projection of
m over xi, then K′i will α-produce Li(mi) in the new context, as its least solution is no
greater than mi.13 That will make the new ZΛ,α satisfy Li(mi) and so D[m] as well. This
is essentially what the calculus does to Λ ·Γ ` Φ with the rules Split(d) or Extend(d)
introduced below. If each α-remainder literal of d is contradictory with the context, it
will be β-contradictory with Λ for one or more β ∈ Mods(Γ). Then, it is necessary to
strengthen Γ to eliminate the offending β’s, which is achieved with the Domain Split(d)
rule. Strengthening Γ either makes Split(d) or Extend(d) applicable to an α-remainder
literal of d or turns all literals of d into closing ones. In the latter case, the calculus will
close the corresponding branch with the Close(d) rule.

The ME(LIA) calculus has four derivation rules. The application of these rules
is subject to certain fairness criteria, explained later. In the rules, the notation Φ,D
abbreviates Φ∪{D}. (Similarly for Λ,K and Γ,c.)

Close(d)
Λ ·Γ ` Φ,D

Λ ·Γ ` Φ,D,�←>
if
{

(�←>) /∈Φ∪{D}, and
d is a closing context unifier of D against Λ ·Γ.

This rule recognizes that the context not only falsifies some input clause D but is
also unfixable, and adds the empty clause as a marker for that.

Split(d)
Λ ·Γ ` Φ,D

(Λ,Li | di) ·Γ ` Φ,D (Λ,Li | di) ·Γ ` Φ,D
if


d is a context unifier of D against Λ ·Γ,
Li | di is a remainder literal of d, and
neither Li | di nor Li | di is contradictory

with Λ ·Γ.

This rule, analogous to the main rule of the DPLL procedure, derives one of two
possible sequents non-deterministically. The left-hand side conclusion chooses to fix
the context by adding Li | di to Λ. The right-hand side branch is needed for soundness,
in case the left-hand side fix leads to an application of Close. It causes progress in the
derivation by making Li | di Γ-contradictory with the context, which forces the calculus
to consider other alternatives to Li | di.
13 This is the analogous of “lifting” in a Herbrand-based theorem proving.
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Extend(d)
Λ ·Γ ` Φ,D

(Λ,Li | di) ·Γ ` Φ,D
if


d is a context unifier of D against Λ ·Γ,
Li | di is a remainder literal of d,
Li | di is Γ-contradictory with Λ, and
there is no K in Λ that Γ-extends Li | di.

This rule can be seen as a one-branched Split. If Li | di is Γ-contradictory with Λ,
the only way to fix the context is to add Li | di to it. Its last precondition is a redundancy
test—which also prevents a repeated application of the rule with the same literal.

To illustrate the need of Extend, suppose Λ = {¬P(x) | −1
.
≤ x, P(x) | x : [1 ..5]},

Γ = /0 and D = P(x)← x : [1 ..7]. The clause D is falsified in the (single) induced in-
terpretation14. Adding P(x) | x : [1 ..7] to Λ will fix the problem. However, Split cannot
be used for that since ¬P(x) | x : [1 ..7] is Γ-contradictory with Λ—for having the same
least solution, 1, as the constraint of P(x) | x : [1 ..5]. Extend will do instead.

Domain Split(d)
Λ ·Γ ` Φ,D

Λ · (Γ,c .=µ` di) ` Φ,D Λ · (Γ,¬(c .=µ` di)) ` Φ,D
if



d is a c.u. of D against Λ ·Γ,
there is a literal Li | di of d, and
there is Li | c or Li | c in Λ s.t.

α |=Z c .=µ` di
for some α ∈Mods(Γ), and
Γ 6|=Z c .=µ` di.

The purpose of this rule is to enable later applications of the other rules that are not
applicable to the current context. It does that by partitioning the current Mods(Γ) in two
non-empty parts.

It is not too difficult to see that the derivation rules are mutually exclusive, in the
sense that for a given sequent at most one of them is applicable to the same clause D,
context unifier d, and literal of d.

In [6] we introduce another optional rule, Ground Split, that adds another, more
flexible, way to do case analysis on the parameters. The rule can improve efficiency
in particular when paired with a suitable quantifier elimination procedure for LIA. In
that case, one can replace each potential application of Domain Split, which would add
a constraint [¬](c .=µ`

di) to Γ, with one application of Ground Split, which splits on
a ground constraint l that entails c .=µ`

di and is computed from it by the QE proce-
dure. The net effect is that Γ grows only with ground literals, making tests involving it
considerably cheaper—at the cost of an increased number of splits for Γ.

5.1 Soundness and Completeness

Proposition 11 (Soundness). For all admissible clause sets Φ and admissible sets of
closed constraints Γ, if there is a derivation of Φ and Γ that ends in a tree containing
�←> in each of its leaf nodes, then Γ∪Φ is LIA-unsatisfiable.

In essence, and leaving Γ aside, the proof is by first deriving a binary tree over ground,
parameter-free literals that reflects the applications of the derivation rules in the con-
struction of the given refutation tree. For instance, a Split application with its new con-
straint literal L(x) | c in the left context gives rise to the literal L(m), where m is the least
α-solution of c for a given α. In the resulting tree neighbouring nodes will be labelled

14 Because, for instance, ¬P(6) is true in it.
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with complementary literals, like L(m) and ¬L(m). In the second step it is shown that
this binary tree is closed by ground instances from the input set. It is straightforward
then to argue that Φ∪Γ is LIA-unsatisfiable.

To prove the calculus’ completeness requires to introduce several technical notions.
Again we refer to the long version of this paper [6] for that, and provide a brief summary
here only. One of these notions is that of an exhausted branch, in essence, a (limit)
derivation tree branch that need not be extended any further. It is based on the notion of
redundant context unifiers.

Definition 12 (Redundant Context Unifier). Let Λ1 · Γ1 and Λ2 · Γ2 be admissible
contexts, α ∈ Mods(Γ1) and D a clause. A context unifier d of D against Λ1 · Γ1 is
α-redundant in Λ2 ·Γ2 if

1. Λ2 α-produces some literal of d, or
2. Mods(Γ2) ( Mods(Γ1)

We say that d is redundant in Λ2 ·Γ2 if it is α-redundant in Λ2 ·Γ2 for all α ∈Mods(Γ).

If condition (1) applies then the interpretation induced by Λ2 and α will already satisfy
D, and there is no point considering a derivation rule application based on that d. Condi-
tion (2) allows us to discard an existing derivation rule application when the constraints
in Γ are strengthened.
Now, an exhausted (limit) branch (i) has the property that whenever Split, Extend or
Domain Split is applicable to some of its sequents, based on an α-productive context
unifier, then this context unifier is α-redundant in the context of some later sequent (a
sequent more distant from the root), (ii) cannot be applied Close to, and (iii) does not
contain �←>. Finally, in fair derivations each leaf node of some derived tree contains
�←> or its limit tree has an exhausted branch.

Fair derivations in the sense above exist and are computable for any set of Σ-clauses.
A naive fair proof procedure, for instance, grows a branch until the above conditions (ii)
and (iii) are violated, and turns to another branch to work on, if any, or otherwise applies
the next Split, Extend or Domain Split taken from a FIFO queue, unless its context unifier
is redundant. A similar proof procedure has been described for the ME calculus in [5].

The following is our main result (see [6] for a more precise statement and proof).

Theorem 13 (Completeness). For every fair derivation of Φ and Γ, the (limit) context
of every exhausted branch of its limit tree induces a LIA-model of Φ∪Γ.

Note that this result includes a proof convergence result, that every fair derivation of
an unsatisfiable clause set is a refutation. In practical terms, it implies that as long as a
derivation strategy guarantees fairness, the order of application of the rules of the cal-
culus is irrelevant for proving an input clause set unsatisfiable, giving to the ME(LIA)
calculus the same flexibility enjoyed by the DPLL calculus at the propositional level.

An interesting special case arises when the exhausted branch in Theorem 13 is finite.
The branch then readily provides a model of the input clause set.

6 Conclusions and Further Work
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We have presented a basic version of ME(LIA), a new calculus for a logic with re-
stricted quantifiers and linear integer constraints. The calculus allows one to reason
with certain useful extensions of linear integer arithmetic with relations and finite do-
main constants. With the restriction of variables to finite domains, implementations
of the calculus have potential applications in formal methods and in planning, where
they can scale better than current decision procedures based on weaker logics, such as
propositional logic or function-free clause logic.

We are working on extending the set of derivation rules with rules analogous to the
unit-propagation rule of DPLL, which are crucial for producing efficient implementa-
tions. With that goal, we are also working on refinements of the calculus that reduce the
cost of processing LIA-constraints. We stress though that the basic version presented
here is already geared toward efficiency for featuring a (semantically justified) redun-
dancy criterion, by reduction to LIA’s ordering constraints, that allows one to avoid
inferences with clause instances satisfied by one of the current candidate models.
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