
ESFOR 2004 Preliminary Version

Darwin: A Theorem Prover for the
Model Evolution Calculus

Peter Baumgartner 1

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

Alexander Fuchs 2

Universität Koblenz-Landau
Fachbereich Informatik
Universitätsstraße 1

D 56070 Koblenz, Germany

Cesare Tinelli 3

Department of Computer Science
The University of Iowa

14 MacLean Hall
Iowa City, IA 52242, USA

Abstract

Darwin is the first implementation of the Model Evolution Calculus by Baumgartner
and Tinelli. The Model Evolution Calculus lifts the DPLL procedure to first-order
logic. Darwin is meant to be a fast and clean implementation of the calculus, show-
ing its effectiveness and providing a base for further improvements and extensions.

Based on a brief summary of the Model Evolution Calculus, we describe in the
main part of the paper Darwin’s proof procedure and its data structures and algo-
rithms, discussing the main design decisions and features that influence Darwin’s
performance. We also report on practical experiments carried out with problems
from the CADE-18 and CADE-19 system competitions, as well as on results on
parts of the TPTP Problem Library.

Key words: Automated Theorem Proving,
Davis-Putnam-Logemann-Loveland procedure

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Baumgartner, Fuchs, Tinelli

1 Introduction

In propositional satisfiability the DPLL procedure [5,4], is the most popular
and successful method for building complete SAT solvers. Its success is due to
its simplicity, its polynomial space requirements, and the fact that, as a search
procedure, it is amenable to powerful but also relatively inexpensive heuristics
and constraint propagation techniques for reducing the search space. Thanks
to these heuristics and to very careful engineering, the best SAT solvers today
can successfully attack real-world problems with hundreds of thousands of
variables and clauses.

Although the DPLL method is usually described procedurally, its essence
can be captured declaratively by means of a sequent-style calculus [16]. The
DPLL calculus has been recently lifted to the first-order level in [2]. The
result is a sound and complete calculus, called the Model Evolution calculus,
or ME calculus for short, for the unsatisfiability of first-order clauses (without
equality) 4 .

One of the main motivations for developing the Model Evolution calcu-
lus was the possibility of migrating to the first-order level some of those very
effective search techniques developed by the SAT community for the DPLL
procedure. This paper describes Darwin, a first implementation of the cal-
culus designed to incorporate these techniques—or better, their first-order
equivalents. The current version of Darwin implements a first-order version
of unit propagation [18], a form of simplification, and backjumping, a form
of intelligent backtracking (which seems to have been used for the first time
for a first-order theorem prover in [12]). The incorporation of another staple
technique for DPLL-based solvers, lemma learning, is planned for the next
version.

Although Darwin is still at a prototype stage, it borrows many advanced
techniques from the first-order theorem proving world—such as term indexing,
subterm sharing, redundancy elimination, and so on. The overall rationale for
developing this system was to get an initial sense of the performance potential
of the ME calculus, to constitute a robust code base for further improvements
on the implementation, and for future extensions of the calculus.

This paper provides a fairly high level description of Darwin’s architecture
and implementation, usually providing more details only on those implemen-
tation aspects that are specific to theME calculus—as opposed to a first-order
calculus in general.

1 Email: baumgart@mpi-sb.mpg.de
2 Email: alexf@uni-koblenz.de
3 Email: tinelli@cs.uiowa.edu
4 The ME calculus extends and significantly improves on the FDPLL calculus [1], which
was the first successful attempt to lift the DPLL calculus to the first-order level.

2

Baumgartner, Fuchs, Tinelli

2 The Model Evolution Calculus

We start by providing a summary description of the Model Evolution calculus
and its main features, concentrating on those aspects that are relevant to the
understanding of the implementation. More details on the calculus can be
found in [2,3].

The DPLL procedure can be described as one that attempts to find a
model of a given formula, input as a set of clauses, by starting with a default
interpretation in which all input atoms are false and incrementally modifying it
until it becomes a model of the input formula, or all alternative modifications
have been considered with no success. The ME calculus can be seen as lifting
this “model evolution” process to the first-order level.

The goal of the calculus is to construct a Herbrand model of a given set
Φ of clauses, if any such model exists. To do that, during a derivation the
calculus maintains a context Λ, a finite set of (possibly non-ground) literals.
The context Λ is a finite—and compact—representation of a Herbrand inter-
pretation IΛ, serving as a candidate model for Φ. The denoted interpretation
IΛ might not be a model of Φ because it does not satisfy some instances of
clauses in Φ. The purpose of the main rules of the calculus is to detect this
situation and either repair IΛ, by modifying Λ so that it becomes a model of
Φ, or recognize that IΛ is unrepairable and fail. In addition to these rules,
the calculus contains a number of simplification rules whose purpose is, like
in the DPLL procedure, to simplify the clause set and, as a consequence, to
speed up the computation.

The rules of the calculus manipulate sequents of the form Λ ` Φ, where
Λ is the current context and Φ is the current clause set. The initial sequent
is made of a context standing for an initial interpretation and of the input
clause set.

To describe the rules we need to introduce a few technical preliminaries
first.

2.1 Technical Preliminaries

Contexts are finite sets of possibly non-ground literals built over terms as
usual, however over two types of variables: universal variables—or simply
variables—drawn from an infinite set X and denoted here by x, y, z, and para-
metric variables—or simply, parameters—drawn from an infinite set V disjoint
with X and denoted here by u, v, w. Context literals are either universal, that
is parameter-free, or parametric, that is, variable-free. By contrast, clause
literals, that is, literals occurring in the clause set Φ of a sequent, are all
parameter-free. For all purposes, the literals of a context can be considered
variable and parameter disjoint with each other—in tableaux terms, neither
parameters nor variables are rigid.

Each context can be seen as the finite specification of a certain Herbrand

3

Baumgartner, Fuchs, Tinelli

interpretation. Roughly speaking, within a context both universal and para-
metric literals stand for their ground instances. The main difference is that
universal literals always stand for all of their ground instances, whereas para-
metric literals may stand only for a subset of all of their ground instances. The
precise way in which context literals denote ground instances and how that is
used to associate a Herbrand model to a context is defined in [2,3]. Here we
will limit ourselves to introduce a few notions that involve parameters and are
needed to describe the rules of the calculus.

Let us consider the set of substitutions defined over the set X ∪ V . We
say a substitution is parameter-preserving, or p-preserving for short, if its
restriction to the set V of parameters is a renaming over V in the standard
sense—i.e., it is a permutation of V . A substitution is a p-renaming if it is a
p-preserving renaming.

We say a term s is a p-preserving variant of a term t, or p-variant for short,
if there is a p-renaming ρ such that sρ = t. We say that s is p-preserving more
general than t, iff there is a p-preserving substitution σ such that sσ = t. If
t is a term we denote by Var(t) the set of t’s variables and by Par(t) the set
of t’s parameters. These definitions stated for terms also apply to literals and
clauses in the obvious way.

We assume an infinite supply of Skolem constants disjoint with the set of
constants occurring in any given input clause set. We write Lsko to denote the
result of applying some substitution to the literal L that replaces each variable
in L by a fresh Skolem constant. We write L to the denote the complement
of L.

A literal L is contradictory with a context Λ iff there is a p-variant K of
some literal in Λ and a p-preserving substitution σ such that Lσ = Kσ.

Definition 2.1 (Context Unifier) Let Λ be a context and

C = L1 ∨ · · · ∨ Lm ∨ Lm+1 ∨ · · · ∨ Ln

a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context
unifier of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ iff there are fresh
p-preserving variants K1, . . . , Kn of context literals such that

(i) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},
(ii) for all i = 1, . . . ,m, (Par(Ki))σ ⊆ V ,

(iii) for all i = m + 1, . . . , n, (Par(Ki))σ 6⊆ V .

A context unifier σ of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ is
admissible iff for all distinct i, j = m+1, . . . , n, Liσ is parameter- or variable-
free and Var(Liσ) ∩ Var(Ljσ) = ∅.

The existence of an admissible context unifier Λ between a context and a
clause indicates that the interpretation IΛ denoted by Λ falsifies the clause. 5

5 Strictly speaking, this is true if the context unifier is also productive (see [2]). But the

4

Baumgartner, Fuchs, Tinelli

The rules of the ME calculus use context unifiers as a way to discover that the
interpretation associated with the current context falsifies one of the current
clauses, and decide how to “repair” the context.

Context unifiers are at the core of the ME calculus because they are used
by all of its non-optional derivation rules. In fact, context unification is the
computational bottleneck of our current implementation as most of Darwin’s
run time is spent on computing context unifiers. Darwin’s algorithm and data
structure to compute context unifiers are described in Section 4.6 below.

2.2 The Derivation Rules

The derivation rules of the calculus are described below. We follow the version
of rules given in [3] as those described in [2] are a somewhat simplified but
less powerful version. Except for Compact, which is a simplification rule that
applies only to contexts with variables/parameters, all the other rules are
direct first-order liftings of the rules of the DPLL calculus, and reduce to
those rules when the input clause set is ground.

Split
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L Λ, (Lσ)
sko ` Φ, C ∨ L

if (∗)

where (∗) =

C 6= 2,

σ is an admissible context unifier of C ∨ L against Λ

with remainder literal Lσ,

neither Lσ nor (Lσ)
sko

is contradictory with Λ

Split is the only non-deterministic rule of the calculus. As mentioned earlier,
the existence of an admissible context unifier σ of C∨L against Λ indicates that
IΛ falsifies (C∨L)σ. The left conclusion of the rule tries to fix this problem by
adding to the context a literal Lσ from σ’s remainder. The alternative right
conclusion—needed for soundness in case the repair on the left turns out to be
unsuccessful—adds instead the skolemized complement of Lσ, i.e. the results
of replacing all universal variables of Lσ, if any, by fresh Skolem constants.

The addition of (Lσ)
sko

prevents later splittings on L but leaves the possibility
of repairing the context by adding another of σ’s remainder literals. When
the rule is applicable, we call Lσ a split literal.

difference can be ignored here.

5

Baumgartner, Fuchs, Tinelli

Assert
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L
if

σ is a context unifier of C against

Λ with an empty remainder,

Lσ is universal and

non-contradictory with Λ,

there is no K ∈ Λ s. t. K is

p-preserving more general than Lσ

When Assert applies, the only way to find a model for the clause set based on
the current context or any extension of it is to satisfy every ground instance
of Lσ. The addition of Lσ makes sure that this is the case. Applications of
Assert are highly desirable in practice because i) they strongly constrain further
changes to the context, thereby limiting the non-determinism caused by the
Split rule, and ii) they cause more applications of the three simplification rules
below. When the rule is applicable, we call Lσ an assert literal.

Subsume
Λ, K ` Φ, L ∨ C

Λ, K ` Φ
if K is p-preserving more general than L.

Subsume removes clauses that are “permanently satisfied” by the context,
that is, satisfied by the interpretation denoted by the current context or any
context that extends the current one. Subsume is not needed for completeness
but might improve the performance of an implementation.

Resolve
Λ ` Φ, L ∨ C

Λ ` Φ, C
if

there is a context unifier σ of L

against Λ with an empty remainder

such that Cσ = C

Resolve simplifies the clause set by removing literals from clauses. Like
Subsume it is not needed for completeness. Resolve is the only rule of the
calculus that is not implemented in its full generality in Darwin. In the current
implementation Resolve is only applied for the special case in which there is a
K in Λ s.t. ¬K is p-preserving more general than L.

Compact
Λ, K, L ` Φ

Λ, K ` Φ
if K is p-preserving more general than L

Compact simplifies the context by removing literals which are instances of
other literals. 6 Compact is another optimization rule.

Close
Λ ` Φ, C

Λ ` 2
if

Φ 6= ∅ or C 6= 2,

there is a context unifier σ of C against Λ

with an empty remainder

6 The literals K and L are meant to be distinct.

6

Baumgartner, Fuchs, Tinelli

Close detects a context which falsifies the clause set and cannot be modified
in order to satisfy it. When the rule is applicable, we call σ a closing context
unifier.

2.3 Derivation Tree

Definition 2.2 (Derivation Tree) A derivation tree is a labeled tree induc-
tively defined as follows:

(i) a one-node tree is a derivation tree iff its root is labeled with a sequent
of the form Λ ` Φ, where Λ is a context and Φ is a clause set;

(ii) A tree T′ is a derivation tree iff it is obtained from a derivation tree T
by adding to a leaf node N in T new children nodes N1, . . . , Nm so that
the sequents labeling N1, . . . , Nm can be derived by applying a rule of the
calculus to the sequent labeling N . In this case, we say that T′ is derived
from T.

Split as the only non-deterministic rule introduces two children nodes, every
other rule only one child node.

Definition 2.3 (Open, Closed) A branch in a derivation tree is closed if
its leaf is labeled by a sequent of the form Λ ` 2; otherwise, the branch is
open. A derivation tree is closed if each of its branches is closed, and it is open
otherwise.

Definition 2.4 (Derivation) A derivation is a possibly infinite sequence of
derivation trees (Ti)i<κ, such that for all i with 0 < i < κ, Ti is derived from
Ti−1.

For a given input clause set Φ, derivations are started with the sequent
¬v ` Φ in the root node. Here, the pseudo-literal ¬v causes the interpretation
denoted by the context to falsify every atom by default.

A derivation ending with a closed derivation tree is a proof of the unsatis-
fiability of Φ. An exhausted branch, i.e. a branch to whose leaf no derivation
rules apply, is a proof for the satisfiability of Φ, its context denotes a model
for the clause set.

An important aspect to guarantee refutational completeness is to equip
the calculus with a suitable notion of fairness . We will not describe it here
and refer to [2,3] instead. We note, however, that it enables proof proce-
dures emphasizing don’t-care nondeterminisms. The sole form of don’t-know
nondeterminism is caused by the branching nature of the Split inference rule.

3 The Proof Procedure

The proof procedure implemented in Darwin follows the main loop described
below. Similarly to the DPLL procedure, Darwin’s procedure basically corre-
sponds to a depth-first, or more precisely an iterative-deepening, exploration

7

Baumgartner, Fuchs, Tinelli

of a derivation tree of the calculus. At any moment, the procedure stores in
its data structures a single branch of the tree, where split nodes correspond
to decision points. The procedure grows a branch until

• the branch can be closed, in which case it backtracks to a previous choice
point and regrows the branch in the alternative direction, or

• the branch cannot be grown further, which means that a model of the input
set has been found, or

• a depth limit is reached, in which case the procedure restarts from the
beginning, but with an increased depth limit.

At any moment, in addition to the current context and the set of current
clauses, the procedure maintains a set of candidate literals, literals that could
be added to the context as a consequence of the application of the Assert or
Split rule. Before entering the main loop, the candidate set is initialized with
all the literals that could be added to the initial context by an application of
Assert, which are just the unit clauses from the given clause set.

The main loop of Darwin’s proof procedure consists of the following steps:

(i) Candidate Selection
If the candidate set is empty the problem is proven satisfiable and the

procedure ends returning the current context, which denotes a model of
the input clause set. Otherwise, a literal is chosen from the candidate set
based on selection heuristics described in Section 4.7. The heuristics are
based on various measures but it always prefers Assert candidates over
Split candidates, in order to minimize the creation of backtrack points.

(ii) Context Evolution
If the selected literal is a Split literal, a backtrack point is created (cor-

responding to the left part of the application of the Split rule). Then, the
literal is added to the context, the Compact rule is exhaustively applied
to the new context, and the Subsume, and Resolve rules are exhaustively
applied to the current clause set using the new context literal.

(iii) Context Unifier Computation
All possible context unifiers between current clauses and the new con-

text are computed which involve the new context literal. If this leads to
the computation of a closing context unifier, a context unifier with an
empty remainder, the current branch is immediately closed, forcing the
procedure to backtrack.

(iv) Backtracking
If a closing context unifier is found in the previous step, the current

context does not satisfy the input clause set and is unrepairable. The
procedure then backtracks to a previous choice point, undoing all changes
to the context and the clause set done from that choice point on. Since
the choice point corresponds to the left part of the application of the
Split rule which added a literal L to the context, the right part of the

8

Baumgartner, Fuchs, Tinelli

application is then tried. The skolemized complement of L is selected for
addition to the context and the computation continues with Step ii.

If there are no more choice points to backtrack to, the input set is
proven unsatisfiable and the procedure quits.

(v) Candidate Generation
If no closing context unifier is found in Step iii, the procedure extracts

from the computed context unifiers all those literals that are suitable for
an application of Split or Assert, adds them to the candidate sets, and
goes back to Step 1.

A high-level pseudocode description of the proof procedure is provided in
Figure 1. For simplicity we describe a non-restarting recursive version of the
procedure implementing naive chronological backtracking. When it terminates
the procedure either returns a set of literals, representing the most recent
context and denoting a model of the input clause set, or raises the exception
CLOSED, to denote that the clause set is unsatisfiable. In the backjumping
version the exception CLOSED would also carry dependency information used
to decide whether to ignore right splits or not. The following example is
intended to demonstrate the working of the proof procedure.

Example 3.1 Let Φ be the following clause set.

p(x, a) ∨ s(a) (1)
q(x, y) ∨ q(y, x) (2)
r(f(x, y)) ∨ ¬p(x, y) (3)
¬p(a, a) ∨ ¬q(x, y) ∨ ¬r(f(a, y)) (4)

After initializing its variables Λ and L, the proof procedure in Figure 1
first determines an initial set of candidates CS . Because Φ contains no unit
clause, CS is the empty set and the function me is called as me(Φ, ∅,¬v, ∅).

The set of new candidates CS ′ determined then consists of the two split
literals p(x, a) and q(u, v). They originate from clause 1 and from clause 2,
respectively. Simplification of Φ has no effect, and so Φ′ is the same as Φ.
The current context Λ′ becomes {¬v}. Because of CS ′ 6= ∅, line 20 is reached,
and the selection heuristics choses p(x, a) as the literaral L to consider for
the next inference step (the literal p(x, a) is preferred over the other split
literal, q(u, v), because it is universal, while q(u, v) is not; cf. Section 4.7 for
details). Because p(x, a) is a split literal, line 25 is reached, which results
in the call me(Φ, {¬v}, p(x, a), {q(u, v)}). In its execution, the new assert
candidate r(f(x, a)) is determined (from p(x, a) and clause 3) and thus gets
added to the given candidates, yielding CS ′ = {r(f(x, a)), q(u, v)}. This time,
simplification does show an effect: with the given literal p(x, a), which belongs
to the current context as noted on line 7, clause 1 is subsumed, and the first
literal of clause 4 is resolved away. The new clause set Φ′ thus is

q(x, y) ∨ q(y, x) (2)

9

Baumgartner, Fuchs, Tinelli

Darwin
1 function darwin Φ
2 // input: a clause set Φ
3 // output: either ”unsatisfiable”
4 // or a set of literals encoding a model of Φ
5 let Λ = ∅ // set of literals
6 let L = ¬v // (pseudo) literal
7 // Λ∪{L} is the current context
8 let CS = set of assert literals consisting of the unit clauses in Φ
9 // the candidate set

10 try me(Φ, Λ, L, CS)
11 catch CLOSED-> "unsatisfiable"
12

13 function me(Φ, Λ, K, CS)
14 let CS ′ = add_new_candidates (Φ, Λ, K, CS)
15 let Φ′ = Φ simplified by Subsume and Resolve
16 let Λ′ = Λ ∪ {K} simplified by Compact
17 if CS ′ = ∅ then
18 Λ′ // Λ′ encodes a model of Φ′

19 else
20 let L = select_best (CS ′, Λ′)
21 if L is an assert literal then
22 me(Φ′, Λ′, L, CS ′ \ {L}) // assert L
23 else
24 try
25 me(Φ′, Λ′, L, CS ′ \ {L}) // left split on L
26 catch CLOSED->
27 me(Φ′, Λ′, L

sko
, CS ′ \ {L}) // right split on L

28

29 function add_new_candidates (Φ, Λ, L, CS)
30 adds to CS all assert literals from context unifiers involving L
31 and one split literal from each remainder of a context unifier involving L
32 raises the exception CLOSEDif it finds a closing context unifier
33

34 function select_best (CS , Λ)
35 returns the best assert or split literal in CS

Fig. 1. Darwin’s proof procedure as pseudo code.

r(f(x, y)) ∨ ¬p(x, y) (3)
¬q(x, y) ∨ ¬r(f(a, y)) (4’)

Next, p(x, a) is moved to the current context, yielding Λ′ = {¬v, p(x, a)}.
The execution of the pseudocode reaches line 20, and among the current candi-

10

Baumgartner, Fuchs, Tinelli

dates CS ′ = {r(f(x, a)), q(u, v)} the literal r(f(x, a)) is selected by the heuris-
tics for further processing (see again Section 4.7). Because r(f(x, a)) is an
assert literal, line 22 is reached and me(Φ, {¬v, p(x, a)}, r(f(x, a)), {q(u, v)})
is called. On execution, the newly asserted literal r(f(x, a)) together with the
clause 4’ gives rise to the new assert candidate ¬q(x, a). Notice that in the un-
derlying Assert rule application the context literal r(f(x, a)) gets instantiated
to r(f(a, a)) – with a parametric literal r(f(u, a)) instead, ¬q(x, a) could not
be derived as an assert candidate. Now, ¬q(x, a) is chosen to be asserted, and
the next call thus is me(Φ, {¬v, p(x, a), r(f(x, a))},¬q(x, a), {q(u, v)}). Be-
cause for the context {¬v, p(x, a), r(f(x, a)),¬q(x, a)} a closing context uni-
fier exists (it uses clause 2), the exception CLOSED is raised. Notice that the
parametric literal p(u, v) from the set of candidate literals was never chosen
to derive this closed branch.

The exception raised is caught by the first incarnation of me. Its execution
thus reaches line 27 and tries the right alternative of that Split application.
Because the split literal was p(x, a) the corresponding call to me uses the
complement of the Skolemized version of p(x, a), say, ¬p(c, a). On the ex-
ecution of me(Φ, {¬v},¬p(c, a), {q(u, v)}), the new assert candidate s(a) is
derived from ¬p(c, a) and clause (1). It will indeed be asserted, and for the
next call to me only one candidate will be available, which is the split lit-
eral q(u, v). After chosing it and calling me again no more candidate can be
determined. The execution of me thus terminates and returns the context
{¬v,¬p(c, a), s(a), p(u, v)} to indicate satisfiability of the given clause set.

4 Implementation

The description of the proof procedure in the previous section omits most
implementation details and also leaves room for certain improvements. We
provide some of these details as implemented in Darwin next, focusing more
on those that are significant for its performance.

4.1 Term Database

During the derivation hundreds of thousands of terms may be created, eas-
ily consuming hundreds of megabytes of memory. Many of these terms are
dropped soon after creation, e.g. in backtracking or when a new context literal
permanently satisfies a number of remainders. This causes a lot of time spent
by the garbage collector.

To lessen the problems caused by high memory consumption, terms are
stored in a compact way. Terms are represented in a natural way as tree-like
data-structures. However, at a lower representational level, Darwin uses a
database technique similar to the one used in the Vampire prover [13]. 7 Com-
pared to a näıve representation of terms, it allows for vastly reduced memory

7 Similar techniques are also used in Otter [11] and E [14].

11

Baumgartner, Fuchs, Tinelli

consumption by sharing common subterms. For instance, the terms p(f(a))
and g(f(a)) share the common subterm f(a), which needs to be represented
only once in memory.

As in Vampire, usage of terms is managed by associating counters with
them. Requesting a term increments its usage counter, explicit deregistration
decrements it. When a term’s usage counter drops to zero, the term is re-
moved from the database and garbage collected. 8 Contrary to term requests,
which are processed immediately, deregistration requests for a term are stored
in a buffer and processed (in order of arrival) only when the buffer is full,
effectively delaying by the buffer’s length the decrement of the term’s usage
counter. Since quite often the same terms are requested and released as part
of the candidate set management process, this delay in processing deregistra-
tion requests reduces the number of times those terms are actually removed
from and reinserted into the database.

The overhead of retrieving a term from the database is reduced by means
of an efficient hashing on the terms. Furthermore, we gain the possibility
of implementing term equality tests as constant-time pointer equality tests,
and we save in term creation and garbage collection, leading in practice to
performance improvements in some cases.

4.2 Backjumping and Dynamic Backtracking

The simplest backtracking strategy for a search procedure is (näıve) chrono-
logical backtracking, which backtracks to the most recent choice point in the
current branch of the search tree. A more effective form of chronological
backtracking, implemented instead in Darwin, is backjumping, which takes
dependencies between choice points into account. The idea of backjumping is
best explained in terms of the calculus: suppose the derivation subtree below a
left node introduced by a Split rule application is closed and the literal added
on the left conclusion by that application is not needed to establish that the
subtree is closed. Then, the Split rule application can be viewed as not being
carried out at all. The proof procedure thus may neglect the corresponding
choice point on backtracking and proceed to the previous one.

Backjumping is well known to be one of the most effective improvements
for propositional SAT solvers. Its implementation is not too difficult and is
based on keeping track of which context literals and clauses are involved in
particular in Assert and Close rule applications. Backjumping is an example of
a successful propositional technique that directly lifts to the proof procedure
of Darwin.

8 Note that Darwin does not implement its own garbage collector. Since Darwin is written
in OCaml, removing the term from the database is enough to make the memory locations
it occupies available to OCaml’s garbage collector. To eliminate the overhead of explicit
registrations and deregistration in the database we plan to reimplement the term database
using OCaml’s weak hash tables, which effectively push the registrations and deregistration
activities down to the compiler level.

12

Baumgartner, Fuchs, Tinelli

A smarter technique than backjumping has been proposed under the name
of dynamic backtracking by Ginsberg [7]. It can be adapted to our proof pro-
cedure and it is currently implemented in Darwin as an alternative to back-
jumping. The idea is that a choice point (and associated state) not involved
in establishing that a branch is closed is not discarded as in backjumping,
but kept if it does not depend on a discarded choice point. Conceptually,
the choice points are no longer seen as nodes in a tree but as nodes of a de-
pendency graph. Discarding a choice point does not automatically invalidate
all later created choice points as well, but only those dependent on it. Thus
dropping and possibly recomputing a still valid and potentially useful part of
the derivation is avoided.

A disadvantage of dynamic backtracking versus backjumping is that its
implementation is more involved and requires a more complex type of depen-
dency analysis. This causes non-negligible runtime overhead. Furthermore,
because derivations are in general not shorter than with backjumping, it is not
yet clear at the moment when it is best to use dynamic backtracking instead
of backjumping.

4.3 Iterative Deepening over Term Depth

The refutational completeness of the proof procedure is ensured by using iter-
ative deepening over a bound on term depth, i.e. over the depth of terms seen
as trees. The proof procedure never adds a literal to the context if its depth
exceeds the current term depth bound. Thus, when the inference rule applica-
tions to the current context are exhausted 9 and leave it open, the procedure
has to check if a candidate literal has been ignored because it exceeded the
depth bound. If so, the procedure will restart with a completely new deriva-
tion and an increased term depth bound; otherwise, it reports the discovery
of a model for the input set.

A benefit of the scheme described is that possibly many candidates for
Assert and Split rule applications with deep terms will be dropped. This
vastly decreases the memory requirements for some problems which have a
refutation using only comparatively shallow terms but have lots of candidates
with deeper terms.

Currently, no information from a previous round is kept after a restart.
A valuable improvement of Darwin might be to avoid this and keep growing
the current branch under the increased term depth bound. Asymptotically,
though, there should be no difference. Another related improvement would
be to compute permanent lemma clauses as a side effect of derivations, as can
be commonly found in SAT solvers.

Alternative measures for literal complexity than taking the term depth

9 By the design of the inference rules it is impossible that a context contains two or more
p-variants of the same literal. This property implies the termination of exhaustive inference
rule applications under a term depth bound.

13

Baumgartner, Fuchs, Tinelli

could be used as well. For instance, the hyper tableau prover KRHyper [17]
uses iterative deeping over term weights, which are computed as the number
of symbols in a term. The resolution prover Otter [11] offers sophisticated
control facilities to weigh a term. There is considerable room for further
experimentation.

4.4 Initial Default Interpretation

As mentioned in Section 2.3, the pseudo-literal ¬v that constitutes the initial
context assigns by default false to all ground atoms. Instead of ¬v, the pseudo-
literal v may be used, assigning true to all ground atoms. It is indeed often
plausible to take v, given that many theorem proving benchmarks consist
of an “axiom part” and a “theorem” part. The theorem part quite often
consists of one or more negative clauses. These theorem clauses are falsified
in the interpretation associated with the pseudo-literal v. Now, the calculus
considers for Split rule applications only clause instances that are falsified in
the current interpretation. This means that then theorems are used early in
the derivation, de-emphasizing, in particular, the use of positive clauses from
the axiom part. This way the calculus becomes more goal-oriented than it
would be with {¬v} as the initial context.

Nevertheless, and somewhat surprisingly (to us), the overall performance
on many TPTP problems that have the structure mentioned is much better
with ¬v than with v. This phenomenon should be investigated further.

4.5 Unification with Offsets

In order to avoid creating variants of terms when needed for unification, Otter
and KRHyper use so called contexts. A compile time limit for the number
of variables per term is imposed, e.g. 64 variables per term in the case of
KRHyper. Each variable in a term is identified by a number less than the
limit. During unification a context – containing a multiplier – is associated
with each term. The effective id of a variable during the unification is the
limit multiplied by the associated context’s multiplier plus the variable’s real
id. E.g. if the limit is 64, y has the id 1 in p(x, y), and for a given unification
the multiplier of the context associated with p(x, y) is 3, then the effective id
of y during the unification is 64 ∗ 3+1 = 193. To avoid exceeding the compile
time limit, terms are normalized when constructed so that the variable ids are
enumerated from 0 on.

Inspired by this idea Darwin uses offsets, which avoid the compile time
limitation. During unification the terms of each clause are associated with an
offset unique for the unification. The unification operates on “terms” of the
form offset :term. For example, if the clause p(x)∨ p(f(x)) is unified with two
variants of the context literal ¬p(u), the offset 0 may be associated with the
clause, and the offsets 1 resp. 2 with the two occurrences of the context literal.
Then the terms 0:p(x) and 1:¬p(u) are unified, and the terms 0:p(f(x)) and

14

Baumgartner, Fuchs, Tinelli

2:¬p(u) are unified, yielding the unifier {0:x 7→ 1:u, 2:u 7→ 0:f(1:u)} where
1:u and 2:u are in fact two different variables.

4.6 Context Unifiers

Recall that Step 3 of Darwin’s proof procedure computes all possible context
unifiers involving the context literal just added. To be precise, the system
computes context unifiers of input clauses in order to identify literals that
can be added to the context by the Split rule, and computes context unifiers
of subsets of input clauses in order to identify literals that can be added by
the Assert rule. To speed up this computation, context unifiers are partially
precomputed and cached as described below. For simplicity, we consider here
only the computation of the context unifiers for Split. Figure 4.6 illustrates
this process and its embedding in the proof procedure.

θ1

L

L1

Ln

S1

Sn

Remainder

⊆ Cσ

···
···

···

θn

C

K ′· · · · · ·K

K Kθ = Lθ

③ σ = θθ1 · · · θn

④⑤

②
θ

②

K ′

θ

①

Candidate literals

unifiers
Partial context

Fig. 2. Computation of context unifiers and its embedding in the proof procedure.

Each input literal has an associated list of partial context unifiers. A partial
context unifier is merely a unifier between the input literal and a literal from
the current context. If a literal occurs in several input clauses at the same
position these occurrences share one list.

The bindings of the stored partial context unifiers are kept in a database
similar to the term database. Especially for some Horn problems, where many
very similar terms are computed, the unifiers tend to share most bindings.
Using the database leads to significant memory savings.

When a new literal K is added to the context (step i in the proof proce-
dure, step ① in Figure 4.6), the system computes all partial context unifiers
between (a fresh variant of) K and each input literal. Then it stores each
computed unifier on the list of the corresponding input literal. This is de-
picted in Figure 4.6 as step ②, however for only one input literal. After that,

15

Baumgartner, Fuchs, Tinelli

for each literal L that unifies with K and for each input clause C containing
L, the system attempts to find all possible context unifiers of C against the
current context. This is done as follows.

Assume that C is of the form L∨L1∨· · ·∨Ln, θ is the partial context unifier
between L and K, and Si is the set of partial context unifiers stored in Li’s list.
Then the system considers each tuple of partial unifiers in {θ}×S1× · · ·×Sn

and attempts to merge the elements of that tuple into a single unifier (step
③ in Figure 4.6). When the merge succeeds, the resulting substitution is a
context unifier of C against the current context. 10

To minimize recomputation, the merged unifiers are computed incremen-
tally by traversing the partial context unifier lists for the clause C in a depth-
first fashion. The root node of the depth-first traversal is θ, its children are
all the partial context unifiers of L1, the children of each of the root’s children
are all the partial context unifiers of L2, and so on. Partial context unifiers are
merged incrementally as they are visited along a path of this imaginary tree,
and the merged unifier computed along a path is reused for all the extensions
of that path.

Clearly, less work is done if the tree is slim at the top, as less merging
operations are then necessary. To achieve this the lists associated with the
literals L1, . . . , Ln in C are actually first ordered by increasing length before
starting the traversal. This is indicated in Figure 4.6 by boxes of growing
length for S1 to Sn in this order.

Each newly computed context unifier determines a remainder (step ④ in
Figure 4.6), and every such (non-empty) remainder provides one new can-
didate literal that gets added to the candidate set in Step v of the proof
procedure 11 (step ⑤ in Figure 4.6, where the new candidate literal is denoted
as K ′).

Note that for each candidate literal, the system maintains a reference to
the remainder and the context unifier it came from. This entails that all the
computed context unifiers are permanently kept in memory. 12

It is interesting to point out though that the calculus does not prescribe
that at all: the Split inference rule (and similarly Assert) admits implementa-
tions that compute remainders only “locally”, during the Split rule application,
and discards them afterwards. Thus, for a given context, the possible context
unifiers of a clause could be computed, say, one after the other until an ad-
missible one is found. At this point Split could be applied using that unifier
and the unifier could then be immediately discarded. Memory consumption

10 The context unifier is converted into an admissible context unifier afterwards. But we
can ignore this issue here.
11 It can be shown that it is indeed enough to consider only one Split literal per remainder
without affecting the calculus’ completeness.
12 This is not entirely accurate, since only context unifiers with remainders containing
active candidate literals are explicitly kept (see Section 4.8). It is accurate though if we
assume that the set of active candidates is large enough to contain all candidates.

16

Baumgartner, Fuchs, Tinelli

under such a scheme would be obviously far less. Nevertheless, the approach
as used in Darwin has a big advantage: because at any point in the derivation
all the theoretically necessary context unifiers and their remainders are explic-
itly stored, they are available for inspection and comparison. Because both
the choice of a remainder from the set of all possible (admissible) remainders,
and the choice of a literal from it to split with are don’t-care nondeterministic
choices, arbitrary heuristics can be employed for their computation.

Furthermore, for each pairing of an input literal L with a context lit-
eral, the computation of the context unifier for the clause containing L is
attempted exactly once in the current derivation tree branch. This avoids the
re-computation of the same context unifier that would happen in the more
näıve scheme indicated above.

These two considerations are the main rationale for the design decisions
that led to the described data structures and algorithms described above.
Fortunately, memory problems seem seldom to happen. But clearly more
experimental results explicitly monitoring memory consumption are needed.

4.7 Selection Heuristic

As explained in the previous section, all theoretically necessary remainders are
explicitly stored in memory, at any point in the derivation, which supports
the effortless implementation of heuristics to select a literal to split with. The
heuristics for selecting a literal from the candidate set to be added to the
context is based on the following criteria. The overall heuristics is determined
by the induced lexicographic ordering over these criteria, with “Universality”
being the most significant criterion, and “Generation” the least significant
one.

(i) Universality
Universal literals (which includes ground literals as well) are preferred

to parametric literals as they impose stronger constraints on the context.
Furthermore, as soon as the context contains parameters the number of
computed remainders and thus split candidates might increase signifi-
cantly.

(ii) Remainder Size 13

Recall that candidate literals for Split are drawn from the remainder
of some context unifier. Now, if the problem is satisfiable, at least one
remainder literal of every remainder must be satisfied by the context.
Because of this, candidate literals originating from smaller remainders
are preferred over literals from larger remainders. The rationale is that
backtracking is minimized this way. For an extreme case, note that for

13 This applies only to Split candidates, not Assert candidates. Assert is always preferred
over Split in order to emphasize redundancy elimination. Recall that Assert literals are
always universal. Therefore criterion (i) is always satisfied for Assert candidates, while
criteria (iii) and (iv) still take effect.

17

Baumgartner, Fuchs, Tinelli

Split literals coming from a singleton remainder applying the right side of
Split is pointless because it immediately produces a closed branch. As a
consequence Darwin does not even generate a choice point when it adds
such literals to the context.

(iii) Term Weight
The number of symbols in a literal has shown to be useful information

that should be exploited. This emphasizes the use of “lighter” literals.
Because variables are excluded from counting, additional preference is
given to literals with variables instead of parameters or other terms at
the variable positions.

(iv) Generation
This is a measure of how close in the derivation the candidate is to the

original clause set. The generation of a context literal is −1 for ¬v, and
the generation of the corresponding candidate otherwise. The generation
of a candidate is the maximum of the generations of the context literals
used in its context unifier incremented by one. That is, candidates whose
context unifier is solely based on ¬v are of generation 0.

Candidates with a smaller generation are preferred. The intention is
to keep the derivation close to the problem set, similar to bidirectional
search. For some problems this is the key to their solutions; on average
it is a slight improvement.

Recall that the term depth is not needed as part of the heuristic as it is
implicitly imposed by the depth bound (see Section 4.3).

4.8 Inactive Candidates

In order to decrease the memory usage there is a limit on the number of
active candidates, i.e. the candidates stored together with the remainder they
came from and additional information for the selection heuristic. For the
other candidates—the inactive candidates—only the clause and the context
literals used in the computation of the context unifier are are stored. Due
to the term database this amounts to a few pointers per inactive candidate.
The management of active/inactive candidates in Darwin is analogous to the
management of active/passive clauses in recent versions of Waldmeister [6].
Specifically, however, it works as follows.

When the limit of active candidates is reached a new candidate is first
compared with the worst active candidate, according to the ordering relation
described in the previous subsection. If the new candidate is better, the worst
active candidate is made inactive, and the new candidate is added to the
active candidates; otherwise the new candidate is put into the set of inactive
candidates. The best inactive candidates are moved to the active set as active
candidates are selected for addition to the context and removed from the set.
When an inactive candidate is made active, the context unifier has to be

18

Baumgartner, Fuchs, Tinelli

recomputed from the clause and context literals.

4.9 Substitution Tree Indexing

The context is basically a set of literals. The preconditions of Split, Assert,
and Subsume require, in essence, to search the context for literals that unify
with, subsume, or are subsumed by a given literal. Some of these queries are
applied to every computed candidate at least once in order to immediately
drop invalid, e.g. subsumed, candidates. In order to avoid a linear scan of the
context to perform each of these checks, Darwin uses term indexing for the
context based on substitution trees [9].

Substitution trees index terms by abstracting over identical subterms. E.g.
the terms f(g(a)) and f(g(b)) are represented by a node containing f(g(x))
and two children containing the substitutions {x 7→ a} and {x 7→ b}. Thus for
the term f(h(a)) the non-unifiability is detected at the node f(g(x)) for both
children. In general substitution trees seem to be best suited for deep terms
containing variables. For shallow ground terms, e.g. for clause sets stemming
from Bernays-Schönfinkel problems, Darwin’s implementation of substitution
trees actually produces slower performance than no indexing at all.

For comparison an alternative indexing scheme based on imperfect dis-
crimination trees has been implemented. Their performance is quite close
to substitution trees for non Horn problems and slightly superior for Horn
problems. This might be due to an inefficient implementation of the signifi-
cantly more complex substitution trees, too small indexes – rarely larger than
some ten thousand terms –, unsuitable terms or a bad query to maintenance
operation ratio.

4.10 Close Look-ahead

A branch is detected as unsatisfiable as soon as Close applies, which happens
when a context unifier with an empty remainder is computed for an input
clause. It is easy to see however, that when two contradictory Assert candidates
are computed, the branch containing them can be closed after one Assert
application. Now, due to the fact that candidate literals wait for their turn
in the candidate set, in unlucky cases two contradictory candidates might be
ignored for a long time. To avoid this problem, Assert candidates are stored in
a substitution tree (Section 4.9). Each new candidate is checked against the
tree for a contradiction. As soon as this check succeeds Close can be triggered
by adding the new candidate to the context. 14

It is not clear yet if this in general improves the performance by leading
to shorter derivations or decreases the performance by introducing too much
overhead. First tests seem to indicate the first, but further tests are needed.

14 Actually, it is not added but the derivation is immediately backtracked.

19

Baumgartner, Fuchs, Tinelli

4.11 Programming Language

Darwin is implemented in OCaml 15 . OCaml is—among other things—a fast
strongly-typed functional language based on ML. OCaml—and thus Darwin—
is available for several Unix-like operating systems including Linux and Mac
OS X, and for the Windows family. OCaml has previously been successfully
used for the implementation of the theorem prover KRHyper 16 at the Univer-
sity of Koblenz and for the solver ICS 17 at SRI International, among others.

Though the programming background of the second author, the main de-
veloper of Darwin, was mostly in OO-style C++, he quickly enjoyed using
OCaml. Among other things OCaml’s strong-typing, garbage collection, ex-
tremely short compile times, and informative news group made up for the
paradigm shift. At the current stage of development we find that the higher
level of abstraction provided by OCaml constructs—and thus the better read-
ability and maintainability of the code, compared to e.g. C—amply compen-
sate for possible performance losses when compared to implementations in
lower level languages like C.

5 Performance Evaluation

As mentioned we have just started evaluating the performance against the
TPTP problem library 18 . Because Darwin’s input language is clause logic,
and Darwin does not (yet) have dedicated inference rules for equality, we
concentrated on the clausal problems without equality.

Furthermore, in order to compare Darwin with other current provers, we
separately list results for some of the problem sets used in the last two CASC
competitions, i.e. CASC-18 in 2002 and CASC-19 in 2003 19 . Equality was
handled by including the axioms of equality as provided in the TPTP.

All tests were run on a Pentium IV 2.4Ghz computer with 512MB of RAM.
The imposed time limit was 300 seconds for the tests on the clausal problems of
the TPTP without equality, and 500 seconds for the CASC tests; the memory
limit was 500 MB in both cases. Experiments showed that for the CASC
competitions slower machines by a factor of three were used. As most problems
are solved within 100 seconds the results are comparable nevertheless.

Table 1 summarizes the results for the former problems and Table 2 sum-
marizes the result for the CASC problems. For each problem set the name
and the number of problems are given, followed by the results for the tested
Darwin configurations. Each result is stated as the number of problems solved
and the average CPU time spent on it.

15 See http://caml.inria.fr/ .
16 See http://www.uni-koblenz.de/~wernhard/krhyper/ .
17 See http://www.icansolve.com/ .
18 See http://www.cs.miami.edu/~tptp/ .
19 Available at http://www.cs.miami.edu/~tptp/CASC/18/ and
http://www.cs.miami.edu/~tptp/CASC/19/.

20

Baumgartner, Fuchs, Tinelli

Name # Problems Default Dyn.Bt. v Inact. Discr. -Subs.
HNE 753 591/6.5 591/6.5 591/6.5 600/7.6 592/6.0 591/6.4
NNE 1172 803/4.1 804/3.9 730/9.0 802/4.0 801/3.7 802/4.1

Table 1. Results for Darwin test runs on the clausal problems of the TPTP prob-
lem library (version 2.6) without equality, divided in Horn problems (“HNE”) and
non-Horn problems (“NNE”). Table entries are of the form “Number of problems
solved”/“average CPU time”. See text for further explanations.

Name # Problems Best Default Dyn.Bt. v Inact.

CASC-18

HNE 35 34 18/24.0 18/24.0 18/24.0 19/23.0
HEQ 35 33 9/23.6 9/23.6 9/23.6 9/24.2
EPS 35 27 28/11.1 30/3.8 29/26.9 28/10.0
EPT 35 34 33/16.8 32/9.9 28/7.1 33/18.1
NNE 35 33 16/7.4 16/7.7 11/6.8 17/19.7
SNE 35 28 9/14.5 9/15.5 6/0.0 9/14.1

CASC-19

HNE 20 18 10/64.9 10/64.9 10/64.9 10/33.8
HEQ 20 18 0/0.0 0/0.0 0/0.0 0/0.0
EPS 35 34 31/6.2 31/5.0 31/28.5 31/5.4
EPT 35 33 31/5.6 31/7.6 30/29.3 32/19.1
NNE 20 18 12/16.5 10/16.8 8/53.9 13/31.0
SNE 35 34 3/0.0 3/0.0 2/0.0 3/0.0

Table 2. Results for Darwin test runs on CASC-18 and CASC-19 problem sets.
Problem names: HNE – Horn with No Equality; HEQ – Horn with some (but not
pure) Equality; EPS – Effectively Propositional non-theorems (satisfiable clause
sets); EPT – Effectively Propositional Theorems (unsatisfiable clause sets); NNE –
Non-Horn with No Equality; SAT with No Equality. Table entries are of the form
“Number of problems solved”/“average runtime”. See text for further explanations.

In Table 2, “Best” is the number of problems solved by the best prover for
this problem set at the CASC competition. In both tables, “Default” refers
to Darwin with all inference rules enabled, backjumping enabled, the initial
context {¬v}, the initial depth bound set to 2, and the use of substitution
tree indexing. The remaining columns represent modifications of this default
setting: “Dyn.Bt.” means dynamic backtracking instead of backjumping is
used, “v” means the initial context is set to {v}, “Inact.” picks the best
inactive literal instead of the oldest, i.e. candidate selection is better informed
but leads to more memory consumption 20 , “Discr.” uses discrimination trees
instead of substitution trees and “-Subs.” does not apply the Subsume rule.

20 Note that we described this improved behavior in Section 4.8.

21

Baumgartner, Fuchs, Tinelli

Note that the backtracking method and default interpretation does not
matter for Horn problems, as, first, no backtracking happens at all, and,
second, no splitting occurs 21 — the pseudo-literal ¬v (or v) of the initial
context is never used. Further note that Darwin is among the best provers
for the EPS and EPT divisions, which consist of clause sets without function
symbols except constants.

The results show that backjumping and dynamic backtracking are close in
the number of solved problems, though they do not solve exactly the same
problems. The “v” setting is clearly inferior to the “¬v” setting in terms
of performance. In addition, “v” and “Inact.” are the only configurations
exceeding the memory limit repeatedly in the CASC tests. “Inact.” makes
up for this with the best result for HNE. Discrimination trees are in general
noticeably faster than substitution trees for Horn problems, and similar for
non-Horn problems. Deactivating Subsume leads to a slight performance de-
crease. Altogether the best configuration seems to be “Default + Inact. +
Discr.” for Horn problems, and “Default + Inact.” for non-Horn problems, as
the current discrimination tree implementation does not support productivity
checks.

Updates of experimental results and more detailed information, including
Darwin’s time and memory consumption individually for each problem, can
be found on Darwin’s web page, http://www.mpi-sb.mpg.de/~baumgart/

DARWIN/.

6 Conclusions and Future Work

The purpose of this paper was to describe the design of the Darwin theo-
rem prover, its proof procedure, data structures and algorithms. One of the
main motivations for developing Darwin’s calculus, Model Evolution, was the
possibility of migrating to the first-order level some of those very effective
techniques developed by the SAT community for the DPLL procedure. This
goal has been achieved to a certain degree: the current version of Darwin
implements a first-order version of unit propagation, a form of simplification,
and backjumping, a form of intelligent backtracking. These features, which
are considered absolutely critical for the good performance of propositional
DPLL-based SAT solvers, where the most immediately implementable as the
Model Evolution calculus itself [2,3] was already designed with them in mind.

Yet, much remains to be done. Various alternatives and modifications to
Darwin’s data structures and algorithms have been identified in Section 4.
Among these, perhaps the most significant one concerns the selection heuris-
tics explained in Section 4.7.

It will be interesting to adapt to Darwin some of the heuristics that have
proven useful with the propositional DPLL procedure. For instance, we are

21 Assert and Close are sufficient for completeness, Split is not needed.

22

http://www.mpi-sb.mpg.de/~baumgart/DARWIN/
http://www.mpi-sb.mpg.de/~baumgart/DARWIN/
http://www.mpi-sb.mpg.de/~baumgart/DARWIN/

Baumgartner, Fuchs, Tinelli

considering implementing a literal selection heuristics that prefers candidates
from recent conflict sets, i.e., recently responsible for the closure of a previous
branch [8]. Since conflict sets are already computed in Darwin as they are
used for backtracking (see Section 4.2) this heuristics should be quite easy to
incorporate. The incorporation of another staple technique for DPLL-based
solvers, lemma learning, is planned for the next version. Adding lemmas,
however, will require some more theoretical work on the calculus level first.

Fairness of derivations is currently realized through iterative deepening
over term depth. It will be interesting to experiment with alternatives like iter-
ative deepening over derivation length. Different iterative deepening strategies
are known to have drastical impact on the search space exploration of model
elimination provers, and it seems plausible to expect the same for Darwin.

We also reported on practical experiments carried out with problems from
the CADE-18 and CADE-19 system competitions, as well as on results on
parts of the TPTP problem library. When assessing the performance of Dar-
win compared to other provers, we believe one should take into account that
the Model Evolution calculus is a very recent development. A great deal of
knowhow has been developed over the last decades for the implementation
in particular of resolution and model elimination based systems. Although
the techniques employed there can be partially exploited (and we tried so for
Darwin), new algorithms and data structure tailored for the Model Evolution
calculus are probably needed. Similarly, more work is necessary to identify
successful proof strategies and heuristics for the calculus. The same applies to
other instance-based methods such as, e.g., the disconnection tableau calculus
[10], which presently seems to be the only calculus of this kind for which a
competitive prover exists [15]. Despite a lack of established knowhow we find
our first experimental results very encouraging. In particular, Darwin per-
forms very well on clause sets stemming from Bernays-Schönfinkel problems.
It is among the best provers for the EPS and EPT divisions of the TPTP
library.

Darwin is available from the authors on request; we would be glad if others
found it useful.

Acknowledgements

We thank the anonymous referees for their insightful comments on how to im-
prove the paper and for their valuable suggestions on how to improve Darwin’s
implementation as well.

The work of the second and third authors was partially supported by Grant
No. 237422 from the National Science Foundation.

23

Baumgartner, Fuchs, Tinelli

References

[1] Peter Baumgartner. Fdpll – A First-Order Davis-Putnam-Logeman-Loveland
Procedure. In David McAllester, editor, CADE-17 – The 17th International
Conference on Automated Deduction, volume 1831 of Lecture Notes in Artificial
Intelligence, pages 200–219. Springer, 2000.

[2] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus. In
Franz Baader, editor, CADE-19 – The 19th International Conference on
Automated Deduction, volume 2741 of Lecture Notes in Artificial Intelligence,
pages 350–364. Springer, 2003.

[3] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus.
Fachberichte Informatik 1–2003, Universität Koblenz-Landau, Universität
Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, 2003.

[4] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem proving. Communications of the ACM, 5(7):394–397, July 1962.

[5] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, July 1960.

[6] J.-M. Gaillourdet, Th. Hillenbrand, B. Löchner, and H. Spies. The new
Waldmeister loop at work. In F. Baader, editor, Proceedings of the 19th
International Conference on Automated Deduction, volume 2741 of LNAI, pages
317–321. Springer-Verlag, 2003.

[7] Matthew L. Ginsberg, James M. Crawford, and David W. Etherington.
Dynamic backtracking, 1996.

[8] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver, 2002.

[9] Peter Graf. Substitution tree indexing. Research Report MPI-I-94-251, Max-
Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany,
October 1994.

[10] Reinhold Letz and Gernot Stenz. Proof and Model Generation with
Disconnection Tableaux. In Robert Nieuwenhuis and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, 8th International
Conference, LPAR 2001, Havana, Cuba, volume 2250 of Lecture Notes in
Computer Science. Springer, 2001.

[11] William W. McCune. OTTER 3.0 reference manual and guide. Technical
Report ANL-94/6, National Laboratory, Argonne, IL, 1994.

[12] F. Oppacher and E. Suen. HARP: A Tableau-Based Theorem Prover. Journal
of Automated Reasoning, 4:69–100, 1988.

[13] Alexandre Riazonov and Andrei Voronkov. Vampire 1.1 (system description).
In Proc. International Joint Conference on Automated Reasoning, volume 2083
of Lecture Notes in Computer Science. Springer-Verlag, 2001.

24

Baumgartner, Fuchs, Tinelli

[14] S. Schulz. System Abstract: E 0.3. In H. Ganzinger, editor, Proc. of the 16th
CADE, Trento, number 1632 in LNAI, pages 297–301. Springer, 1999.

[15] Gernot Stenz. DCTP 1.2 - System Abstract. In Uwe Egly and Christian G.
Fermüller, editors, Automated Reasoning with Analytic Tableaux and Related
Methods, International Conference, TABLEAUX 2002, Copenhagen, Denmark,
July 30 - August 1, 2002, Proceedings, volume 2381 of Lecture Notes in
Computer Science, pages 335–340. Springer, 2002.

[16] Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo
theories. In Giovambattista Ianni and Sergio Flesca, editors, Proceedings of the
8th European Conference on Logics in Artificial Intelligence (Cosenza, Italy),
volume 2424 of Lecture Notes in Artificial Intelligence. Springer, 2002.

[17] Christoph Wernhard. System Description: KRHyper. Fachberichte Informatik
14–2003, Universität Koblenz-Landau, Universität Koblenz-Landau, Institut für
Informatik, Rheinau 1, D-56075 Koblenz, 2003.

[18] H. Zhang and M. E. Stickel. An efficient algorithm for unit propagation. In
Proceedings of the Fourth International Symposium on Artificial Intelligence
and Mathematics (AI-MATH’96), Fort Lauderdale (Florida USA), 1996.

25

	Introduction
	The Model Evolution Calculus
	Technical Preliminaries
	The Derivation Rules
	Derivation Tree

	The Proof Procedure
	Implementation
	Term Database
	Backjumping and Dynamic Backtracking
	Iterative Deepening over Term Depth
	Initial Default Interpretation
	Unification with Offsets
	Context Unifiers
	Selection Heuristic
	Inactive Candidates
	Substitution Tree Indexing
	Close Look-ahead
	Programming Language

	Performance Evaluation
	Conclusions and Future Work
	References

