
An Abstract Decision Procedure for Satisfiability in the

Theory of Recursive Data Types

Clark Barrett1 Igor Shikanian1 Cesare Tinelli2
1New York University, barrett|igor@cs.nyu.edu
2The University of Iowa, tinelli@cs.uiowa.edu

Abstract

The theory of recursive data types is a valuable modeling tool for software verifica-
tion. In the past, decision procedures have been proposed for both the full theory and
its universal fragment. However, previous work has been limited in various ways. In
this paper, we present a general algorithm for the universal fragment. The algorithm
is presented declaratively as a set of abstract rules which are terminating, sound, and
complete. We show how other algorithms can be realized as strategies within our
general framework. Finally, we propose a new strategy and give experimental results
showing that it is significantly faster than other strategies.

1 Introduction

Recursive data types are commonly used in programming. The same notion is also a
convenient abstraction for common data types such as records and data structures such
as linked lists used in more conventional programming languages. The ability to reason
automatically and efficiently about recursive data types thus provides an important tool
for the analysis and verification of programs.

Perhaps the best-known example of a simple recursive data type is the list type used in
LISP. Lists are either the null list or are constructed from other lists using the constructor
cons. This constructor takes two arguments and returns the result of prepending its first
argument to the list in its second argument. In order to retrieve the elements of a list, a
pair of selectors is provided: car returns the first element of a list and cdr returns the rest
of the list.

More generally, we are interested in any set of (possibly mutually) recursive data
types, each of which contains one or more constructors. Each constructor has selectors
that can be used to retrieve the original arguments as well as a tester which indicates
whether a given term was constructed using that constructor. As an example of the more
general case, consider a set of three recursive data types: nat, list, and tree. nat has
two constructors: zero, which takes no arguments (we call such a constructor a nullary
constructor or constant); and succ, which takes a single argument of type nat and has the
corresponding selector pred. The list type is as before except that we now specify that the
elements of the list are of type tree. The tree type in turn has two constructors: node,
which takes an argument of type list and has the corresponding selector children, and leaf,
which takes an argument of type nat and has the corresponding selector data. We can
represent this set of types using the following convenient notation based on that used in
functional programming languages:

1

nat := succ(pred : nat) | zero;
list := cons(car : tree, cdr : list) | null;
tree := node(children : list) | leaf(data : nat);

The testers for this set of data types are is succ, is zero, is cons, is null, is node, and
is leaf.

Propositions about a set of recursive data types can be captured in a sorted first-order
language which closely resembles the structure of the data types themselves in that it has
function symbols for each constructor and selector, and a predicate symbol for each tester.
For instance, propositions that we would expect to be true for the example above include:
(i) ∀x : nat. succ(x) 6= zero; (ii) ∀x : list. x = null ∨ ∃ y : nat, z : list. x = cons(y, z); and
(iii) ∀x : tree. is leaf(x) → (data(x) = zero ∨ is succ(data(x))).

In this paper, we discuss a procedure for deciding such formulas. We focus on satis-
fiability of a set of literals, which (through well-known reductions) can be used to decide
the validity of universal formulas.

There are three main contributions of this work over earlier work on the topic. First,
our setting is more general: we allow mutually recursive types and multiple constructors.
The second contribution is in presentation. We present the theory itself in terms of an
initial model rather than axiomatically as is often done. Also, the presentation of the
decision procedure is given as abstract rewrite rules, making it more flexible and easier to
analyze than if it were given imperatively. Finally, as described in Section 4, the flexibility
provided by the abstract algorithm allows us to describe a new strategy with significantly
improved practical efficiency.

Related Work. Term algebras over constructors provide the natural intended model for
recursive data types. In [4] two dual axiomatizations of term algebras are presented, one
with constructors only, the other with selectors and testers only. More recently, several
papers by Zhang et al. [9, 10] explore decision procedures for a single recursive data type.
These papers focus on ambitious schemes for quantifier elimination and combinations with
other theories. Their work is largely orthogonal to ours since we focus on the quantifier-free
decision problem which is only mentioned briefly in their work. An often-cited reference
for the quantifier-free case is the treatment by Nelson and Oppen in 1980[7, 8] (where the
problem is also shown to be NP-complete). In particular, Oppen’s algorithm in [8] gives
a detailed decision procedure for a single recursive data type with a single constructor.
Unfortunately, the case of multiple constructors is discussed only briefly and not rigorously.
A possible extension of Oppen’s algorithm to the case of multiple constructors is discussed
briefly in [9]. We will discuss the relationship of our algorithm to these in more detail in
Section 4.

2 The Theory of Recursive Data Types

Previous work on recursive data types (RDTs) [9, 10] uses first-order axiomatizations in
an attempt to capture the main properties of a recursive data type and reason about it.
We find it simpler and cleaner to use a semantic approach instead, as is done in algebraic
specification. A set of RDTs can be given a simple equational specification over a suitable
signature. The intended model for our theory can be formally, and uniquely, defined as
the initial model of this specification. Reasoning about a set of RDTs then amounts to
reasoning about formulas that are true in this particular initial model.

2

2.1 Specifying RDTs

We formalize RDTs in the context of many-sorted equational logic (see [6] among others).
We will assume that the reader is familiar with the basic notions in this logic, and also
with basic notions of term rewriting.

We start with the theory signature. We assume a many-sorted signature Σ whose set
of sorts consists of a distinguished sort bool for the Booleans, and p ≥ 1 sorts τ1, . . . , τp

for the RDTs. We also allow r ≥ 0 additional (non-RDT) sorts σ1, . . . , σr. We will denote
by s, possibly with subscripts and superscripts, any sort in the signature other than bool,
and by σ any sort in {σ1, . . . , σr}.

As mentioned earlier, the function symbols in our theory signature correspond to the
constructors, selectors, and testers of the set of RDTs under consideration. We assume
for each τi (1 ≤ i ≤ p) a set of mi ≥ 1 constructors of τi. We denote these symbols as Ci

j ,
where j ranges from 1 to mi. We denote the arity of Ci

j as ni
j (0-arity constructors are also

called nullary constructors or constants) and its sort as si
j,1 × · · · × si

j,ni
j
→ τi. For each

constructor Ci
j , we have a set of selectors, which we denote as Si

j,k, where k ranges from 1
to ni

j , of sort τi → si
j,k. Finally, for each constructor, there is a tester.1 isCi

j : τi → bool.
In addition to these symbols, we also assume that the signature contains two constants,

true and false of sort bool, and an infinite number of distinct constants of each sort σ. The
constants are meant to be names for the elements of that sort, so for instance if σ1 were
a sort for the natural numbers, we could use all the numerals as the constants of sort σ1.
Having all these constants in the signature is not necessary for our approach, but in the
following exposition it provides an easy way of ensuring that the sorts in σ are infinite.
Section ?? shows that our approach can be easily extended to the case in which some
of these sorts are finite. To summarize, the set of function symbols of the signature Σ
consists of:

Ci
j : si

j,1 × · · · × si
j,ni

j
→ τi, for i = 1, . . . , p, j = 1, . . . ,mi,

Si
j,k : τi → si

j,k, for i = 1, . . . , p, j = 1, . . . ,mi, k = 1, . . . , ni
j ,

isCi
j : τi → bool, for i = 1, . . . , p, j = 1, . . . ,mi,

true : bool, false : bool,
An infinite number of constants for each σl, for l = 1, . . . , r.

As usual in many-sorted equational logic, we also have p + r + 1 equality symbols (one for
each sort), all written as ≈.

Our procedure requires one additional constraint on the set of RDTs: It must be well-
founded. Informally, this means that each sort must contain terms that are not cyclic or
infinite. More formally, we have the following definitions by simultaneous induction over
constructors and sorts: (i) a constructor Ci

j is well-founded if all of its argument sorts are
well-founded; (ii) the sorts σ1, . . . , σr are all well-founded; (iii) a sort τi is well-founded if
at least one of its constructors is well-founded. We require that every sort be well-founded
according to the above definition.

In some cases, it will be necessary to distinguish between finite and infinite τ -sorts: (i)
a constructor is finite if it is nullary or if all of its argument sorts are finite; (ii) a sort τi is
finite if all of its constructors are finite, and is infinite otherwise; (iii) the sorts σ1, . . . , σr

are all infinite. As we will see, consistent with the above terminology, our semantics will
interpret finite, resp. infinite, τ -sorts indeed as finite, resp. infinite, sets.

1To simplify some of the proofs, and without loss of generality, we use functions to bool instead of
predicates for the testers.

3

We denote by T (Σ) the set of well-sorted ground terms of signature Σ or, equivalently,
the (many-sorted) term algebra over that signature.

The RDTs with functions and predicates denoted by the symbols of Σ are specified by
the following set E of (universally quantified) equations. For reasons explained below, we
assume that associated with every selector Si

j,k : τi → si
j,k is a distinguished ground term

of sort si
j,k containing no selectors (or testers), which we denote by tij,k.

Equational Specification of the RDT: for i = 1, . . . , p:

∀x1, . . . , xni
j
. isCi

j(C
i
j(x1, . . . , xni

j
)) ≈ true (for j = 1, . . . ,mi)

∀x1, . . . , xni
j′
. isCi

j(C
i
j′(x1, . . . , xni

j′
)) ≈ false (for j, j′ = 1, . . . ,mi, j 6= j′)

∀x1, . . . , xni
j
. Si

j,k(C
i
j(x1, . . . , xni

j
)) ≈ xk (for k = 1, . . . , ni

j , j = 1, . . . ,mi)

∀x1, . . . , xni
j′
. Si

j,k(C
i
j′(x1, . . . , xni

j′
)) ≈ tij,k (for j, j′ = 1, . . . ,mi, j 6= j′)

The last axiom specifies what happens when a selector is applied to the “wrong”
constructor. Note that there is no obviously correct thing to do in this case since it would
correspond to an error condition in a real application. Our axiom specifies that in this
case, the result is the designated ground term for that selector. This is different from other
treatments (such as [4, 9, 10]) where the application of a wrong selector is treated as the
identity function. The main reason for this difference is that identity function would not
always be well-sorted in multi-sorted logic.

By standard results in universal algebra we know that E admits an initial model R.
By standard results in universal algebra we can show the following result:2 Let Ω be the
signature obtained from Σ by removing the selectors and the testers; then, the reduct of
R to Ω is isomorphic to T (Ω). Informally, this means that R does in fact capture the set
of RDTs in question, as we can take the carrier of R to be the term algebra T (Ω).

3 The Decision Procedure

We start with an informal overview based on examples. Our procedure builds on the
algorithm by Oppen [8] for a single type with a single constructor. Consider, for example,
the list data type without null and the following set of literals: {cons(x, y) ≈ z, car(w) ≈
x, cdr(w) ≈ y, w 6≈ z}. The idea of Oppen’s algorithm is to use a graph which relates
terms according to their meaning in the intended model. Thus, cons(x, y) is a parent of
x and y and car(w) and cdr(w) are children of w. The equations induce an equivalence
relation on the nodes of the graph. The Oppen algorithm proceeds by performing upwards
(congruence) and downwards (unification) closure on the graph and then checking for
cycles3 or for a violation of any disequalities. For our example, upwards closure results in
the conclusion w ≈ z, which contradicts the disequality w 6≈ z.

Suppose we replace w 6≈ z with v ≈ w and y 6≈ cdr(v) in the previous set. The new
graph has a node for v, with car(v) as its left child. A right child node with cdr(v) is
then added for completeness. Now, downwards closure forces car(v) ≈ car(w) ≈ x and
cdr(v) ≈ cdr(w) ≈ y, contradicting the disequality y 6≈ cdr(v).

An alternative algorithm for the case of a single constructor is to introduce new terms
and variables to replace variables that are inside of selectors. For example, for the first set
of literals above, we would introduce w ≈ cons(s, t) where s, t are new variables. Now, by

2Proofs of all results in this paper can be found in [3].
3A simple example of a cycle is: cdr(x) ≈ x.

4

substituting and collapsing applications of selectors to constructors, we get {cons(x, y) ≈
z, w ≈ cons(s, t), x ≈ s, t ≈ y, w 6≈ z}. In general, this approach only requires downwards
closure.

Unfortunately, with the addition of more than one constructor, things are not quite as
simple. In particular, the simple approach of replacing variables with constructor terms
does not work because one cannot establish a priori whether the value denoted by a
given variable is built with one constructor or another. A simple extension of Oppen’s
algorithm for the case of multiple constructors is proposed in [9]. The idea is to first
guess a type completion, that is, a labeling of every variable by a constructor, which is
meant to constrain a variable to take only values built with the associated constructor.
Once all variables are labeled by a single constructor, the Oppen algorithm can be used to
determine if the constraints can be satisfied under that labeling. Unfortunately, the type
completion guess can be very expensive in practice.

Our presentation combines ideas from all of these algorithms as well as introducing
some new ones. There is a set of upward and downward closure rules to mimic Oppen’s
algorithm. The idea of a type completion is replaced by a set of labeling rules that can
be used to refine the set of possible constructors for each term (in particular, this allows
us to delay guessing as long as possible). And the notion of introducing constructors and
eliminating selectors is captured by a set of selector rules. In addition to the presentation,
one of our key contributions is to provide precise side-conditions for when case splitting is
necessary as opposed to when it can be delayed. The results given in Section 4 show that
with the right strategy, significant gains in efficiency can be obtained.

We describe our procedure formally in the following, as a set of derivation rules. We
build on and adopt the style of similar rules for abstract congruence closure [1] and syn-
tactic unification [5].

3.1 Definitions and Notation

In the following, we will consider well-sorted formulas over the signature Σ above and an
infinite set X of variables. To distinguish these variables, which can occur in formulas
given to the decision procedure described below, from other internal variables used by the
decision procedure, we will sometimes call the elements of X input variables.

Given a set Γ of literals (i.e., equations or negated equations) over Σ and variables
from X, we wish to determine the satisfiability of Γ in the algebra R.4 We will assume
for simplicity, and with no loss of generality, that the only occurrences of terms of sort
bool are in atoms of the form isCj

k(t) ≈ true, which we will write just as isCj
k(t). We will

abbreviate negated equations ¬(t1 ≈ t2) between non-Boolean terms as t1 6≈ t2.
Following [1], we will make use of the sets Vτi (Vσi) of abstraction variables of sort τi

(σi); abstraction variables are disjoint from input variables (variables in Γ) and function
as equivalence class representatives for the terms in Γ. We denote the set of all variables
(both input and abstraction) in E as Var(E). We will use the expression lbls(τi) for the
set {Ci

1, . . . , C
i
mi
} and define lbls(σl) to be the empty set of labels for each σl. We will

write sort(t) to denote the sort of the term t.
The rules make use of three additional constructs that are not in the language of Σ:

→, 7→, and Inst.
4In both theory and practice, the satisfiability of arbitrary quantifier-free formulas can be easily deter-

mined given a decision procedure for a set of literals. Using the fact that a universal formula ∀xϕ(x) is
true in a model exactly when ¬ϕ(x) is unsatisfiable in the model, this also provides a decision procedure
for universal formulas.

5

The symbol → is used to represent oriented equations. Its left-hand side is a Σ-term
t and its right-hand side is an abstraction variable v. Given a variable assignment α into
the elements of R, we say that α satisfies t → v in R iff α satisfies the equation t ≈ v in
R.

The symbol 7→ denotes labellings of abstraction variables with sets of constructor sym-
bols. It is used to keep track of possible constructors for instantiating a τi variable.5 A
variable assignment α satisfies a labeling pair v 7→ {Ci

j1
, . . . , Ci

jn
} in R if α satisfies the

formula isCi
j1

(v) ∨ · · · ∨ isCi
jn

(v) in R.
Finally, the Inst construct is used to track applications of the Instantiate rules given

below. It is needed to ensure termination by preventing multiple applications of the same
Instantiate rule. It is a unary predicate that is applied only to abstraction variables. It
is always satisfied by every variable assignment.

Let ΣC denote the set of all constant symbols in Σ, including 0-arity constructors. We
will denote by Λ the set of all possible literals over Σ and input variables X. Note that
this does not include oriented equations (t → v), labeling pairs (v 7→ L), or applications of
Inst. In contrast, we will denote by E multisets of literals of Λ, oriented equations, labeling
pairs, and applications of Inst. To simplify the presentation, we will consistently use the
following meta-variables: c, d denote constants (elements of ΣC) or input variables from
X; u, v, w denote abstraction variables; t denotes a flat term—i.e., a term all of whose
proper sub-terms are abstraction variables—or a label set, depending on the context.
u,v denote possibly empty sequences of abstraction variables; and u → v is shorthand
for the set of oriented equations resulting from pairing corresponding elements from u
and v and orienting them so that the left hand variable is greater than the right hand
variable according to �. Finally, v ./ t denotes any of v ≈ t, t ≈ v, v 6≈ t, t 6≈ v, or
v 7→ t. To streamline the notation, we will sometimes denote function application simply
by juxtaposition.

In the derivation rules we assume an arbitrary, but fixed, well-founded ordering � on
the abstraction variables that is total on variables of the same sort. Each rule consists of
a premise and one or more conclusions. Each premise is made up of a multiset of literals,
oriented equations, labeling pairs, and applications of Inst. Conclusions are either similar
multisets or ⊥, where ⊥ represents a trivially unsatisfiable formula. As we show later, the
soundness of our rule-based procedure depends on the fact that the premise E of a rule
is satisfied in R by a valuation α of Var(E) iff one of the conclusions E′ of the rule is
satisfied in R by an extension of α to Var(E′).

3.2 The derivation rules

Our decision procedure consists of the following derivation rules on multisets E.

Abstraction rules

Abstract 1
p[c], E

c → v, v 7→ lbls(s), p[v], E
if

p ∈ Λ, c : s,
v fresh from Vs

Abstract 2
p[Ci

ju], E

Ci
ju → v, p[v], v 7→ {Ci

j}, E
if p ∈ Λ, v fresh from Vτi

5To simplify the writing of the rules, some rules may introduce labeling pairs for variables with a non-τ
sort, even though these play no role.

6

Abstract 3

p[Si
j,κu], E

Si
j,1u → v1, . . . , Si

j,ni
j
u → vni

j
, p[vκ],

v1 7→ lbls(s1), . . . , vni
j
7→ lbls(sni

j
), E

if
p ∈ Λ, Si

j,k : τi → sk,

each vι fresh from Vsι

The abstraction or flattening rules essentially perform a pre-processing step, assigning
a new abstraction variable to every sub-term in the original set of literals. Abstraction
variables are then used as place-holders or equivalence class representatives for those sub-
terms. While we would not expect a practical implementation to actually introduce these
variables, it greatly simplifies the presentation of the remaining rules.

The Abstract 1 rule replaces input variables or constants. Abstract 2 replaces
constructor terms, and Abstract 3 replaces selector terms. Notice that in each case, a
labeling pair for the introduced variables is also created. This corresponds to labeling each
sub-term with the set of possible constructors with which it could have been constructed.
Also notice that in the Abstract 3 rule, whenever a selector Si

j,k is applied, we effectively
introduce all possible applications of selectors associated with the same constructor. This
simplifies the later selector rules and corresponds to the step in the Oppen algorithm which
ensures that in the term graph, any node with children has a complete set of children.

Literal level rules

Orient
u ≈ v, E

u → v, E
if u � v

Inconsistent
v 6≈ v, E

⊥

Remove 1
isCi

j v, E

v 7→ {Ci
j}, E

Remove 2
¬isCi

j v, E

v 7→ lbls(sort(v)) \ {Ci
j}, E

The simple literal level rules are almost self-explanatory. The Orient rule is used to re-
place an equation between abstraction variables (which every equation eventually becomes
after applying the abstraction rules) with an oriented equation. Oriented equations are
used in the remaining rules below. The Inconsistent rule detects violations of reflexivity.
The Remove rules remove applications of testers and replace them with labeling pairs
that impose the same constraints.

Upward (i.e., congruence) closure rules

Simplify 1
u ./ t, u → v, E

v ./ t, u → v, E

Simplify 2
fuuv → w, u → v, E

fuvv → w, u → v, E

Superpose
t → u, t → v, E

u → v, t → v, E
if u � v

Compose
t → v, v → w, E

t → w, v → w, E

These rules are modeled after similar rules for abstract congruence closure in [1]. The
Simplify and Compose rules essentially provide a way to replace any abstraction variable
with a smaller (according to �) one if the two are known to be equal. The Superpose
rule merges two equivalence classes if they contain the same term. Congruence closure is
achieved by these rules because if two terms are congruent, then after repeated applications
of the first set of rules, they will become syntactically identical. Then the Superpose rule
will merge their two equivalence classes.

7

Downward (i.e., unification) closure rules

Decompose
Ci

ju → v, Ci
jv → v, E

Ci
ju → v, u → v, E

Clash
c → v, d → v, E

⊥ if c, d ∈ ΣC , c : σ, d : σ, c 6= d

Cycle
Cin

jn
unuvn→un−1, . . . , C

i2
j2
u2u2v2→u1, C

i1
j1
u1u1v1→u, E

⊥
if n ≥ 1

The main downward closure rule is the Decompose rule: whenever two terms with
the same constructor are in the same equivalence class, their arguments must be equal.
The Clash rule detects instances of terms that are in the same equivalence class that
must be disequal in the intended model. The Cycle rule detects the (inconsistent) cases
in which a term would have to be cyclical.

Selector rules

Instantiate 1
Si

j,1u → u1, . . . , Si
j,ni

j
u → uni

j
, u 7→ {Ci

j}, E

Ci
ju1 · · ·uni

j
→ u, u 7→ {Ci

j}, Inst(u), E
if Inst(u) 6∈ E

Instantiate 2

v 7→ {Ci
j}, E

Ci
ju1 · · ·uni

j
→ v, Inst(v), E

u1 7→ lbls(si
j,1), . . . , uni

j
7→ lbls(si

j,ni
j
)

if

Inst(v) 6∈ E,
v 7→ L 6∈ E,
Ci

j finite constructor,
Sa

b,c(v) → v′ 6∈ E,

uk fresh from Vsi
j,k

Collapse 1
Ci

ju1 · · ·uni
j
→ u, Si

j,ku → v, E

Ci
ju1 · · ·uni

j
→ u, uk ≈ v, E

Collapse 2
Si

j,ku → v, u 7→ L, E

tij,k ≈ v, u 7→ L, E
if Ci

j /∈ L

Rule Instantiate 1 is used to eliminate selectors by replacing the argument of the
selectors with a new term constructed using the appropriate constructor. Notice that only
terms that have selectors applied to them can be instantiated and then only once they are
unambiguously labeled. All of the selectors applied to the term are eliminated at the same
time. This is why the entire set of selectors is introduced in the Abstract 3 rule. Rule
Instantiate 2 is used for finite constructors. For completeness, terms labeled with finite
constructors must always be instantiated, even when no selectors are applied to them.

The Collapse rules eliminate selectors when the result of their application can be de-
termined. In Collapse 1, a selector is applied to a term known to be equal to a constructor
of the “right” type. In this case, the selector expression is replaced by the appropriate
argument of the constructor. In Collapse 2, a selector is applied to a term which must
have been constructed with the “wrong” constructor. In this case, the designated term
tij,k for the selector replaces the selector expression.

8

Labeling rules

Refine
v 7→ L1, v 7→ L2, E

v 7→ L1 ∩ L2, E
Empty

v 7→ ∅, E

⊥ if v : τi

Split 1
Si

j,k(u) → v, u 7→ {Ci
j} ∪ L, E

Si
j,k(u) → v, u 7→ {Ci

j}, E Si
j,k(u) → v, u 7→ L, E

if L 6= ∅

Split 2
u 7→ {Ci

j} ∪ L, E

u 7→ {Ci
j}, E u 7→ L, E

if
L 6= ∅,
{Ci

j} ∪ L all finite constructors

The Refine rule simply combines labeling constraints that may arise from different
sources for the same equivalence class. Empty enforces the constraint that every τ -term
must be constructed by some constructor. The Split rules are used to refine the set of
possible constructors for a term and are the only rules that cause branching. If a term
labeled with only finite constructors cannot be eliminated in some other way, Split 2 must
be applied until it is labeled unambiguously. For other terms, the Split 1 rule only needs
to be applied to distinguish the case of a selector being applied to the “right” constructor
vs a selector being applied to the “wrong” constructor. On either branch, one of the
Collapse rules will apply immediately. We discuss this further in Section 4, below.

The rules are proved sound, complete and terminating in our full report [3]. The proofs
must be omitted here due to space considerations.

4 Strategies and Efficiency

4.1 Strategies

A strategy is a predetermined methodology for applying the rules. Before discussing our
recommended strategy, it is instructive to look at the closest related work. Oppen’s original
algorithm is roughly equivalent to the following: After abstraction, apply the selector rules
to eliminate all instances of selector symbols. Next, apply upward and downward closure
rules (the bidirectional closure). As you go, check for conflicts using the rules that can
derive ⊥. We will call this the basic strategy. Note that it excludes the Split rules:
because Oppen’s algorithm assumes a single constructor, the Split rules are never used.
A generalization of Oppen’s algorithm is mentioned in [9].6 They add the step of initially
guessing a “type completion”. To model this, we first add the following simple Split rule
which is invoked greedily (after abstraction) until it no longer applies, at which point the
basic strategy is followed.

Split
u 7→ {Ci

j} ∪ L, E

u 7→ {Ci
j}, E u 7→ L, E

if L 6= ∅

We will call this strategy the eager splitting strategy. One of the key contributions of this
paper is to recognize that the eager splitting strategy can be improved in two significant
ways. First, the split rule should be delayed as long as possible, and second, the simple
split rule should be replaced with the smarter Split 1 and Split 2 rules. We call this
the lazy splitting strategy. The two modifications work together to reduce the size of the
resulting derivation in two ways. First, unless an abstract variable u is labeled with all

6Unfortunately, there is not enough detail in [9] to be sure that this is an accurate characterization of
their algorithm, but this reflects our best understanding of it.

9

Worst Case Eager Lazy
Number of Splits Benchmarks Sat Unsat Splits Time (s) Splits Time (s)
0 4416 306 4110 0 24.4 0 24.9
1-5 2523 2217 306 6893 17.1 2419 16.4
6-10 692 570 122 4967 6.1 1600 5.5
11-20 176 112 64 2399 2.2 509 1.5
21-100 144 73 71 6282 4.4 334 1.2
101+ 49 11 38 16593 9.9 73 0.3

Table 1: Eager vs Lazy Splitting

finite constructors, Split 1 is only enabled when some selector is applied to u. By itself,
this eliminates many needless case splits. Second, by applying the split rules lazily (in
particular by first applying selector rules), it may be possible to eliminate selectors and
thus eliminate additional case splits.

Example. Consider the following simple tree data type. It has a binary constructor
node : tree× tree → tree with two associated selectors, left : tree → tree and right : tree →
tree. There is also a 0-arity constructor leaf which is also the designated term for both
selectors. Now, consider the following input:

leftn(Z) ≈ X ∧ isnode(Z) ∧ Z ≈ X

After abstraction, there are n + 2 abstraction variables labeled with two labels each. If
we eagerly apply the simple Split rule at this point, the derivation tree would reach size
O(2n+2). On the other hand, if we follow the lazy strategy, the worst case is O(n2). This
is because whenever we do a case split that assigns a constructor other than node to a
term, it induces a cascade of Collapse 2 and cuts off a large piece of the search space.

4.2 Experimental Results

We have implemented both the lazy and the eager splitting strategies in the theorem prover
CVC Lite [2]. Using the mutually recursive data types nat, list, and tree mentioned in the
introduction, we randomly generated 8000 benchmarks within the following parameters:
each benchmark tested the satisfiability of a conjunction of literals over the three data
types; the number of variables of each type varied from 1 to 10; the number of literals
varied from 2 to 10. In addition, for half of the benchmarks, we ensured that selectors were
only applied to the “appropriate” constructor (as would be expected in a real application).
For the other half, we relaxed this constraint.7

As might be expected with a large random set, most of the benchmarks are quite
uninteresting. In fact, over half of them are solved without any case splitting at all.
However, a few of them did prove to be somewhat challenging (at least in terms of the
number of splits required). The table below shows the total time and case splits required
to solve the benchmarks. The benchmarks are divided into categories based on the the
maximum number of case splits required to solve the benchmark. The results are shown
in Table 1.

The table shows that for easy benchmarks that don’t require many splits, the two
algorithms perform almost identically, though the eager strategy typically still needs more

7See http://www.cs.nyu.edu/∼barrett/datatypes for more details on the benchmarks and results.

10

case splits. In fact, on only 3 of 8000 benchmarks did the eager strategy require fewer case
splits than the lazy strategy.8 However, as the difficulty increases, the time and number
of case splits required by the eager strategy increases significantly while the lazy strategy
is much more robust.

5 Extending the Algorithm

Here we consider how to lift the limitation imposed before that each of σ ∈ {σ1, . . . , σr} is
infinite valued. Since we have no such restrictions on sorts τi, the idea is to simply replace
such a σ by a new τ -like sort τσ, whose set of constructors (all of which will be nullary)
will match the domain of σ. For example, if σ is a finite scalar of the form {1, . . . , n}, then
we can let

τσ ::== null1 | . . . | nulln;

We then proceed as before, after replacing all occurrences of σ by τσ and each i by nulli.

References

[1] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. JAR, 31:129–
168, 2003.

[2] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In R. Alur and D. A. Peled, editors, Proceedings of CAV ’04, volume
3114 of LNCS, pages 515–518. Springer-Verlag, July 2004.

[3] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfiabil-
ity in the theory of recursive data types. Technical Report TR2005-878, Department
of Computer Science, New York University, Nov. 2005.

[4] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[5] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, 1982.

[6] K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky, D. V. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1.
Claredon Press, 1992.

[7] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
JACM, 27(2):356–364, April 1980.

[8] D. C. Oppen. Reasoning about recursively defined data structures. JACM, 27(3):403–
411, July 1980.

[9] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with
integer constraints. In Proceedings of IJCAR ’04 LNCS 3097, pages 152–167, 2004.

[10] T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with length function and
bounded quantifier alternation. In Proceedings of TPHOLs ’04, volume 3223 of LNCS,
pages 321–336, 2004.

8The 3 benchmarks are not hard: both strategies can solve them with less than 10 splits and in negligible
time.

11

