
Splitting on Demand in SAT Modulo Theories

Clark Barrett1 Robert Nieuwenhuis2

barrett@cs.nyu.edu roberto@lsi.upc.edu

Albert Oliveras2 Cesare Tinelli
oliveras@lsi.upc.edu tinelli@cs.uiowa.edu

Department of Computer Science
The University of Iowa

Report No. 06-05

August 2006

1Department of Computer Science, New York University, 251 Mercer St., New York, NY 10012, USA.
2LSI Department, Technical University of Catalonia, Jordi Girona 1, E-08034 Barcelona, Spain.

i

Splitting on Demand in SAT Modulo Theories

Clark Barrett
Department of Computer Science

New York University
251 Mercer St., New York, NY 10012, USA

barrett@cs.nyu.edu

Robert Nieuwenhuis
LSI Department

Technical University of Catalonia
Jordi Girona 1, E-08034 Barcelona, Spain

roberto@lsi.upc.edu

Albert Oliveras
LSI Department

Technical University of Catalonia
Jordi Girona 1, E-08034 Barcelona, Spain

roberto@lsi.upc.edu

Cesare Tinelli
Department of Computer Science

The University of Iowa
14 MacLean Hall, Iowa City, IA 52242, USA

tinelli@cs.uiowa.edu

August 2006

Abstract

Lazy algorithms for Satisfiability Modulo Theories (SMT) combine a generic DPLL-
based SAT engine with a theory solver for the given theory T that can decide the
T -consistency of conjunctions of ground literals. For many theories of interest, theory
solvers need to reason by performing internal case splits. Here we argue that it is more
convenient to delegate these case splits to the DPLL engine instead. The delegation
can be done on demand for solvers that can encode their internal case splits into one or
more clauses, possibly including new constants and literals. This results in drastically
simpler theory solvers. We present this idea in an improved version of DPLL(T), a
general SMT architecture for the lazy approach, and formalize and prove it correct in an
extension of Abstract DPLL Modulo Theories, a framework for modeling and reasoning
about lazy algorithms for SMT. A remarkable additional feature of the architecture,

1

also discussed in the paper, is that it naturally includes an efficient Nelson-Oppen-like
combination of multiple theories and their solvers.

1 Introduction

The performance of propositional SAT solvers based on the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [DP60, DLL62] has importantly improved during the last
years, and DPLL-based solvers are becoming the tool of choice for attacking more and
more practical problems. The DPLL procedure has also been adapted for handling prob-
lems in more expressive logics, and, in particular, for the Satisfiability Modulo Theories
(SMT) problem: deciding the satisfiability of ground first-order formulas with respect
to background theories such as the integer or real numbers, or arrays. SMT problems
frequently arise in formal hardware and software verification applications, where typical
formulas consist of very large sets of clauses like:

p ∨ ¬q ∨ a=f(b− c) ∨ read(s, f(b−c))=d ∨ a−g(c)≤7
with propositional atoms as well as atoms over (combined) theories like the integers, arrays,
or Equality with Uninterpreted Functions (EUF). SMT has become a very active area of
research, and efficient SMT solvers exist that can handle (combinations of) many such
theories T (see also the SMT problem library [TR05] and the SMT Competition [BdMS05]).
. Currently most SMT solvers follow the so-called lazy approach to SMT, combining (i)
theory solvers that can handle conjunctions of literals over the given theory T , with (ii)
DPLL engines for dealing with the Boolean structure of the formulas.

DPLL(T) is a general SMT architecture for the lazy approach [GHN+04]. It consists of
a DPLL(X) engine, whose parameter X can be instantiated with a T -solver SolverT , thus
producing a DPLL(T) system. The DPLL(X) engine always considers the problem as a
purely propositional one. For example, if the theory T is EUF, at some point DPLL(X)
might consider a partial assignment containing, among many others, the four literals a=
b, f(a)= c, f(b)= d, and c 6= d without noticing its T -inconsistency, because it
just considers such literals as propositional (syntactic) objects. But SolverT continuously
analyzes the partial model that DPLL(X) is building (a conjunction of literals). It can
warn DPLL(X) about this T -inconsistency, and generate a clause, called a theory lemma,
like a 6=b ∨ f(a) 6=c ∨ f(b) 6=d ∨ c=d, which can be used by DPLL(X) for backjumping.
SolverT sometimes also does theory propagation: as soon as, e.g., a=b, f(a)=c, and
f(b)=d become true, it can notify DPLL(X) about T -consequences like c=d that occur in
the input formula. The modular DPLL(T) architecture is flexible, and can be implemented
efficiently: the BarcelogicTools implementation of DPLL(T) won all the four divisions it
entered at the 2005 SMT Competition [BdMS05].

Here we propose an improved version of the DPLL(T) architecture, to rationalize and
simplify the construction of lazy SMT systems where SolverT does reasoning by cases. We
present it formally by means of a corresponding extension of Abstract DPLL Modulo Theo-
ries, a uniform, declarative framework introduced in [NOT05] for modeling and reasoning
about lazy SMT procedures.

2

Example 1. In the array theory, the equation read(write(A, i, v), j) = read(A, j) holds
in two situations: when the indices i and j are distinct, or when they are equal but
the write(A, i, v) changes nothing, i.e., the value of array A at position i is already v.
Deciding the T -consistency of a large conjunction of equations and disequations over arrays
essentially requires SolverT to do an analysis of many Boolean combinations of such cases.
In the extension of DPLL(T) we propose here, SolverT can delegate all such case splittings
to the DPLL(X) engine, e.g., it can demand DPLL(X) to split on atoms like i=j, by sending
it a theory lemma (i.e., a ground clause valid in the theory) that encodes the split—for
instance, a clause like read(write(A, i, v), j) 6=read(A, j) ∨ i 6=j ∨ read(A, i) = v. �

The main novelty, and complication, versus the previous version of DPLL(T) is that
the lemma may contain atoms that do not occur in the input formula. Sometimes even new
constant symbols may be introduced. For example, in (fragments of) set theory [CZ00], a
set disequality s 6= s′ may be handled by the theory solver by reducing it to the disjunction
(a ∈ s ∧ a /∈ s′) ∨ (a /∈ s ∧ a ∈ s′), where a is a fresh Skolem constant.

Centralizing all case splitting in the engine allows one to avoid the duplication of search
functionality in the theory solver and drastically simplify its implementation, since a case
splitting infrastructure is no longer necessary. Roughly, the solver’s only requirement
reduces to being able to detect T -inconsistencies once all case splits it has requested have
been done.

The main contribution of this paper is a general and formal specification of this sort
of architecture, together with a rigorous proof of its correctness. The relevance of this
architecture is that it unquestionably leads to simpler solvers for theories that require case
splits—in practice, all theories T where checking the T -inconsistency of ground literals is
NP-hard.

In many SMT applications the background theory T is defined as a combination of
several component theories T1, . . . , Tn, each with its own local solver. An important aspect
of our approach is that it can be naturally refined to accommodate such combined theories,
giving rise to a DPLL(T1, . . . , Tn) architecture.

Example 2. Let T be the union of two disjoint theories T1 and T2 where T1 is EUF and
T2 is (some fragment of) arithmetic, two of the most common theories in SMT. Let F be
the conjunction a=b ∧ f(a)−c≤ 3 ∧ f(b)−c≥ 4 over the combined signature of
T1 and T2. Introducing new constants c1 and c2, F can be purified, into an equisatisfiable
conjunction of the T1-pure formula F1 and the T2-pure formula F2 below:

a=b ∧ c1=f(a) ∧ c2=f(b) c1−c≤3 ∧ c2−c≥4 .

In general, an arrangement A for such pure conjunctions F1 . . . Fn is a conjunction saying,
for every two constants shared between at least two different Fi’s, whether the constants are
equal or distinct. A general combination result underpinning the Nelson-Oppen method
[NO79] states that for stably infinite and signature disjoint Ti’s, F is T -consistent if, and
only if, for some arrangement A each Fi ∧ A is Ti-consistent (see, e.g., [TH96] for precise

3

definitions and details). This can be decided by the respective Ti-solvers. In this example,
F is T -inconsistent since F1 ∧ c1 6=c2 is T1-inconsistent and F2 ∧ c1=c2 is T2-inconsistent.

In practice, it is useful if each Ti-solver is able to generate all clauses c1=c′1∨ . . .∨ck=c′k
over the shared constants that are Ti-entailed by the conjunction Fi. For convex Ti,
these entailed clauses are in fact always unit. It is not difficult to see that, if these two
properties hold for all Ti, we only have to consider one arrangement: the one where every
two constants not equated in a propagated equality are distinct. But usually the situation
is less ideal. If some Ti is non-convex, it is necessary to do case splitting over the Ti-entailed
non-unit clauses, and if some Ti-solver has limited or too expensive generation capabilities,
the possible arrangements need to be (partially) guessed and tried.

By centralizing case splitting into the DPLL(X) engine and extending it to equalities
over shared constants we can use the engine, in effect, to efficiently enumerate the arrange-
ments on demand, that is, as requested by the individual theory solvers. Note that in the
resulting DPLL(T1, . . . , Tn) architecture, the engine will again handle literals possibly not
in the input clauses, namely, (dis)equalities between shared variables. �

Section 2 of this paper introduces and discusses the correctness of an Extended Abstract
DPLL Modulo Theories framework that formalizes our approach. Section 3 illustrates
how to use the framework to avoid internal case splits in a very general class of theory
solvers. Section 4 discusses the application of the framework to DPLL(T1, . . . , Tn). Finally,
Section 5 concludes.

Related work. Some of the ideas formalized in this paper on centralizing case splits in
the Boolean engine are implemented in the system SVC [BDL96] and and its successors
CVC [BDS02]. and CVC-Lite [BB04]. But apart from a brief note in Clark Barrett’s PhD
thesis (in Section 3.5.1 of [Bar03]), we are not aware of any other description of them in
the literature.

Bozzano et al. propose in [BBC+06] to use the Boolean engine in multi-theory SMT
systems to do case splitting over the space of all possible arrangements. In contrast to
this work, there the centralization of case-splitting concerns only equalities between shared
constants, as needed by the Nelson-Oppen method. As far as theory solver combination
is concerned, our approach and that in [BBC+06] are in a sense dual, possibly as a conse-
quence of their different motivations. Simplifying a bit, in [BBC+06] the theory solvers are
(or can be) completely unaware of each other. The DPLL engine is in charge of identifying
shared constants and feeding (dis)equalities between them as appropriate to the solvers.
This way, off-the-shelf decision procedures can be used as theory solvers. In our case, the
roles are reversed. As we will see, the solvers are aware of their shared constants, and
are in charge of producing lemmas containing (dis)equalities between them, for the engine
to split on. The advantage in this case is that the same mechanism already in place for
splitting on demand can be used for combination as well, with no changes to the engine.

4

2 Extended Abstract DPLL Modulo Theories

In this section, we briefly describe the Abstract DPLL Modulo Theories framework (see
[NOT05] for more details) and then extend it so that it can be used to formalize our
new version of DPLL(T) and, more generally, SMT approaches where new atoms and new
symbols are introduced.

2.1 Abstract DPLL Modulo Theories

As usual in SMT, given a theory T (a set of closed first-order formulas), we will only
consider the SMT problem for ground (and hence quantifier-free) CNF formulas F . Such
formulas may contain free constants, i.e., constant symbols not in the signature of T , which,
as far as satisfiability is concerned, can be equivalently seen as existential variables. Other
than free constants, all other predicate and function symbols in the formulas will instead
come from the signature of T . From now on, we will assume that all formulas satisfy these
restrictions.

The formalism we describe is based on a set of states together with a binary relation
=⇒ (called the transition relation) over these states, defined by means of transition rules.
Starting with a state containing an input formula F , one can use the rules to generate a
finite sequence of states, where the final state indicates whether or not F is T -consistent.

A state is either the distinguished state FailState (denoting T -unsatisfiability) or a pair
of the form M || F , where M is a sequence of literals, with ∅ denoting the empty sequence,
and F is a formula in conjunctive normal form (CNF), i.e., a finite set of disjunctions of
literals. We additionally require that M never contains both a literal and its negation
and that each literal in M is annotated as either a decision literal (indicated by ld) or
not. Frequently, we will refer to M as a partial assignment or consider M just as a set or
conjunction of literals, ignoring both the annotations and the order of its elements.

In what follows, a possibly subscripted or primed lowercase l always denotes a lit-
eral. Similarly C and D always denote clauses (disjunctions of literals), F and G denote
conjunctions of clauses, and M and N denote partial assignments.

We write M |= F to indicate that M propositionally satisfies F . If C is a clause
l1 ∨ . . . ∨ ln, we sometimes write ¬C to denote the formula ¬l1 ∧ . . . ∧ ¬ln. We say that C
is conflicting in a state M || F,C if M |= ¬C.

A formula F is called T -(in)consistent if F ∧T is (un)satisfiable in the first-order sense.
We say that M is a T -model of F if M |= F and M , seen as a conjunction of literals,
is T -consistent. It is not difficult to see that F is T -consistent if, and only if, it has a
T -model. If F and G are formulas, then F entails G in T , written F |=T G, if F ∧ ¬G is
T -inconsistent. If F |=T G and G |=T F , we say that F and G are T -equivalent. A theory
lemma is a clause C such that ∅ |=T C.

We start with the transition system first presented in [NOT05].

Definition 3. Abstract DPLL Modulo Theories consists of the following rules:

5

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{

M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{

l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ FailState if
{

M |= ¬C
M contains no decision literals

Restart :

M || F =⇒ ∅ || F

T -Learn :

M || F =⇒ M || F, C if
{

each atom of C occurs in F or in M
F |=T C

T -Forget :

M || F, C =⇒ M || F if
{

F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:

F,C |=T C ′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

T-Propagate :

M || F =⇒ M l || F if

M |=T l
l or ¬l occurs in F
l is undefined in M

The Basic DPLL Modulo Theories system consists of the rules Decide, Fail, UnitPropagate,
T-Propagate and T -Backjump. We denote the transition relation defined by these rules by
=⇒B. We denote the transition relation defined by all the rules by =⇒FT. 2

For a transition relation =⇒, we denote by =⇒∗ the reflexive-transitive closure of =⇒.
We call any sequence of the form S0 =⇒ S1, S1 =⇒ S2, . . . a derivation, and denote it
by S0 =⇒ S1 =⇒ S2 =⇒ We call any subsequence of a derivation a subderivation. If
S =⇒ S′ we say that there is a transition from S to S′. A state S is final with respect to
=⇒ if there are no transitions from S.

The relevant derivations in the Abstract DPLL Modulo Theories system are those that
start with a state of the form ∅ || F , where F is a formula to be checked for T -consistency,
and end in a state that is final with respect to =⇒B.

The following two theorems summarize the main results of [NOT05] for the transition
relation =⇒FT.

6

Theorem 4 (Termination of =⇒FT). A derivation Der of the form: ∅ || F = S0 =⇒FT

S1 =⇒FT . . . is finite if the following two conditions hold:

1. Der has no infinite subderivations consisting only of T -Learn and T -Forget steps.

2. For every subderivation of Der of the form:
Si−1 =⇒FT Si =⇒FT . . . =⇒FT Sj =⇒FT . . . =⇒FT Sk where the only three Restart
steps are the ones producing Si, Sj, and Sk, either: (i) there are more Basic DPLL
Modulo Theories steps in Sj =⇒FT . . . =⇒FT Sk than in Si =⇒FT . . . =⇒FT Sj, or
(ii) in Sj =⇒FT . . . =⇒FT Sk a clause is learned that is not forgotten in Der. 2

Theorem 5. Let ∅ || F =⇒∗
FT S be a derivation where (i) S is final wrt =⇒B, and (ii)

if S is of the form M || F ′ then M is T -consistent. Then:

1. S is FailState if, and only if, F is T -unsatisfiable.

2. If S is of the form M || F ′ then M is a T -model of F . 2

2.2 The Extended Abstract DPLL Modulo Theories System

Any realization of the Abstract DPLL Modulo Theories framework, in addition to imple-
menting the rules anda terminating strategy, must be able to determine the T -consistency
of M when a final state M || F is reached. For this purpose, one typically assumes the
existence of SolverT which can do precisely that.

However, for some important theories, determining the T -consistency of a conjunction
of literals requires additional internal case splitting. In order to simplify SolverT and
centralize the case splitting in the DPLL engine, it is desirable to relax the requirement on
SolverT by allowing it to demand that the DPLL engine do additional case splits before
determining the T -consistency of the partial assignment. For flexibility—and because it
is needed by actual theories of interest—the theory solver should be able to demand case
splits on literals that do not appear in M or F and possibly even contain fresh constant
symbols.

It is not hard to see, however, that allowing this kind of flexibility poses a potential
termination problem. We can overcome this difficulty if, for any input formula F , the set
of all literals needed to check the T -consistency of F is finite. More precisely, as a purely
theoretical construction, we assume that for every input formula F there is a finite set
L(F) of literals containing all literals on which a given theory solver may demand case
splits when starting with a conjunction of literals from F . For example, for a solver for the
theory of arrays L(F) could contain atoms of the form i=j, where i and j are array indices
occurring in F . This technical requirement poses no limitations on any of the practically
useful theory solver procedures we are aware of (see Section 3). Also, for the proofs here
there is no need to construct the set L(F). It is enough to know that it exists. Formally,
we require the following.

7

Definition 6. L is a suitable literal-generating function if for every finite set of literals L:

1. L maps L to a new finite set of literals L′ such that L ⊆ L′.

2. For each atomic formula α, α ∈ L(L) iff ¬α ∈ L(L).

3. If L′ is a set of literals and L ⊆ L′, then, L(L) ⊆ L(L′) (monotonicity).

4. L(L(L)) = L(L) (idempotence). 2

For convenience, given a formula F , we denote by L(F) the result of applying L to the set
of all literals appearing in F .

The introduction of new constant symbols poses potential problems not only for ter-
mination, but also for soundness. One property of the transition relation =⇒FT is that
whenever ∅ || F =⇒∗

FT M || F ′, the formulas F and F ′ are T -equivalent. This will no longer
be true if we allow the introduction of new constant symbols. However, it is sufficient to
simply ensure T -equisatisfiability of F and F ′. To this end, we introduce the following
definition.

Definition 7. Given a formula F and a formula G, we define γF (G) as follows:

1. Let G′ be the formula obtained by replacing each free constant symbol in G that
does not appear in F with a fresh variable.

2. Let v be the set of all fresh variables introduced in the previous step.

3. Then, γF (G) = ∃ v.G′. 2

Now we can give a new transition rule called Extended T-Learn which replaces T -Learn and
allows for the desired additional flexibility.

Definition 8. The Extended DPLL Modulo Theories system, denoted as =⇒XT, consists
of the rules of Basic DPLL Modulo Theories, together with the rules Restart, T -Forget
and the rule:

Extended T-Learn

M || F =⇒ M || F, C if
{

each atom of C occurs in F or in L(M)
F |=T γF (C)

2

The key observation is that an implementation using Extended T-Learn has more flexi-
bility when a state M || F is reached which is final with respect to =⇒B. Whereas before
it would have been necessary for the theory solver to determine the T -consistency of M
when such a state was reached, the Extended T-Learn rule allows the possibility of delaying
a response by demanding that additional case splits (on possibly new literals appearing in
the clause C) be done first. As we will show below, the properties of L ensure that the
solver’s response cannot be delayed indefinitely.

8

2.3 Correctness of Extended Abstract DPLL Modulo Theories

A decision procedure for SMT can be obtained by generating a derivation using =⇒XT

with a particular strategy. As with =⇒FT, the aim of a derivation is to compute a state S
such that: (i) S is final with respect to the rules of Basic DPLL Modulo Theories and (ii)
if S is of the form M || F then M is T -consistent. First, we prove some invariants.

Lemma 9. If ∅ || F =⇒∗
XT M || G then the following hold.

1. All the literals in M and all the literals in G are in L(F).

2. M contains no literal more than once and is indeed an assignment, i.e., it contains
no pair of literals of the form p and ¬p.

3. G |=T F and for some H, F |=T γH(G).

4. If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision literals
of M , then G, l1, . . . , li |=T Mi for all i in 0 . . . n. 2

Proof. Since all four properties trivially hold in the initial state ∅ || F , we only need to
prove that all the rules preserve them. Notice that Fail preserves them vacuously since
FailState is not of the form M || G. For the others, consider a step M ′ || F ′ =⇒XT M ′′ || F ′′

and assume all properties hold in M ′ || F ′.
It is easy to see that Property 1 holds in M ′′ || F ′′ for all rules except Extended T-Learn

because none of these rules introduce new literals that aren’t already present in M ′ or F ′.
The only way it could fail for Extended T-Learn is if one of the atoms in the added clause
(call it C) is not in L(F). We know that each atom in C is either in F ′ or in L(M ′). If the
former, we are done since we know that F ′ ⊆ L(F). If the latter, then since M ′ ⊆ L(F),
it follows by monotonicity and idempotence of L that L(M ′) ⊆ L(F).

The side conditions of the rules clearly preserve Property 2. As for Property 3, for
all rules except Forget and Extended T-Learn, F ′ = F ′′, so it is preserved trivially. Now,
consider Forget and suppose that C is the clause that was forgotten. Then F ′ = F ′′, C.
The second part is trivial since F ′′ ⊆ F ′. For the first part, we know that F ′′ |=T C, so it
follows that F ′′ |=T F ′′, C. But this means that F ′′ |=T F ′, and since F ′ |= F , this implies
that F ′′ |= F . Suppose on the other hand that Extended T-Learn was applied and that C
is the learned clause (so that F ′′ = F ′, C). In this case, the first part is trivial because
F ′ ⊆ F ′′. For the second part, suppose that A is a structure satisfying F . We know that
F |=T γH(F ′) for some H. By the definition of γ, this means that there exists a structure
A′ which differs from A only on the symbols in F ′ that don’t appear in H such that A′

satisfies F ′. But by the Extended T-Learn rule, we have that F ′ |=T γF ′(C), so there exists
some structure A′′ which differs from A′ only on the symbols in C that don’t appear in
F ′ such that A′′ satisfies F ′ ∧C. Let H ′ be some formula containing all the symbols in H
except those also appearing in C but not in F ′. It follows that F |=T γH′(F ′ ∧ C).

Finally, consider the fourth property. We know that M ′ is of the form
M ′

0 l1 M ′
1 . . . ln M ′

n, and l1, . . . , ln are all the decision literals of M ′. If the step is an

9

application of Decide or Restart, there is nothing to prove. For Forget, it easily follows since
M ′ = M ′′ and F ′ and F ′′ are T -equivalent. Similarly, for Extended T-Learn, M ′ = M ′′ and
F ′ ⊆ F ′′. The remaining rules are:

UnitPropagate: Since M ′′ will be of the form M ′l (we use l and C as in the definition of
the rule), we only have to prove that F ′′, l1, . . . , ln |= l, which holds since (i) F ′, l1, . . . , ln |=
M ′, (ii) M ′ |= ¬C, (iii) C ∨ l is a clause of F ′ and (iv) F ′ and F ′′ are equivalent.

T-Propagate: As above, we must show that F ′′, l1, . . . , ln |= l, which holds since (i)
F ′, l1, . . . , ln |= M ′, (ii) M ′ |= l, and (iii) F ′ and F ′′ are equivalent.

T -Backjump: Assume that, in the T -Backjump rule, ld is lj+1, the j + 1-th deci-
sion literal. Then (using l′ and C ′ as in the definition of the rule), M ′′ is of the form
M ′

0 l1 M ′
1 . . . lj M ′

j l′. We only need to show that F ′′, l1, . . . , lj |= l′. This holds as
for the UnitPropagate case, since we have (i) F ′, l1, . . . , lj |= M ′

0 l1 M ′
1 . . . lj M ′

j , (ii)
M ′

0 l1 M ′
1 . . . lj M ′

j |= ¬C ′, (iii) F ′ |=T C ′ ∨ l′ and (iv) F ′ and F ′′ are equivalent. �

Note that it is very easy to generate non-terminating derivations for =⇒XT, for instance,
by keeping learning and forgetting the same lemma, or by applying Restart indiscriminately.
The next result shows a very general strategy for avoiding generating non-terminating
derivations.

The main difference in the termination argument with respect to =⇒FT is that, while
Extended T-Learn can produce lemmas with new literals, it can only produce a finite number
of them thanks to the properties of L.

Theorem 10 (Termination of =⇒XT). Every derivation Der of the form
∅ || F = S0 =⇒XT S1 =⇒XT . . . is finite if the following two conditions hold:

1. Der has no infinite subderivations consisting of only Extended T-Learn and T -Forget
steps.

2. For every subderivation of Der of the form
Si−1 =⇒XT Si =⇒XT . . . =⇒XT Sj =⇒XT . . . =⇒XT Sk where the only three Restart
steps are the ones producing Si, Sj, and Sk, either:

• there are more Basic DPLL Modulo Theories steps in Sj =⇒XT . . . =⇒XT Sk

than in Si =⇒XT . . . =⇒XT Sj, or

• in Sj =⇒XT . . . =⇒XT Sk a new clause is learned that is not forgotten in Der.2

Proof. We begin by defining a well-founded strict partial ordering � on states. Let M be
of the form M0 l1 M1 . . . lp Mp, where l1, . . . , lp are all the decision literals of M . Similarly,
let M ′ be M ′

0 l′1 M ′
1 . . . l′p′ M ′

p′ . Let n be the number of distinct atomic formulas in L(F).
By Lemma 9-(1,2) we have that p, p′ and the length of M and M ′ are always smaller than
or equal to n.

For each assignment N , define m(N) to be n− length(N), that is, m(N) is the number
of atomic formulas of L(F) “missing” from N . Now define: M || F ′ � M ′ || F ′′ if

10

(i) there is some i with 0 ≤ i ≤ p, p′ such that

m(M0) = m(M ′
0), . . . m(Mi−1) = m(M ′

i−1), m(Mi) > m(M ′
i) or

(ii) m(M0) = m(M ′
0), . . . m(Mp) = m(M ′

p) and m(M) > m(M ′).

Comparing the number of missing literals in sequences is clearly a strict ordering (i.e., it
is an irreflexive and transitive relation) and it is also well-founded, and hence this also
holds for its lexicographic extension on tuples of sequences of bounded length. We can
extend � to states by simply comparing the partial assignments and adding FailState as
an additional minimal element. It is easy to see that all Basic DPLL Modulo Theories rules
result in a state that is smaller with respect to �. The rules UnitPropagate, T -Backjump,
and T-Propagate decrease by case (i) of the definition and Decide decreases by case (ii).

Now, assume there exists an infinite derivation Der fulfilling the requirements. We will
show that this leads to a contradiction. In a subderivation of Der without Restart steps, at
each step either the state decreases with respect to � (by the application of a Basic DPLL
Modulo Theories step) or it remains equal (by the Extended T-Learn and Forget steps).
Therefore, since � is well-founded and there is no infinite subderivation consisting of only
Extended T-Learn and Forget steps, there must be infinitely many Restart steps in Der.

Furthermore, because L(F) is finite, there are only a finite number of possible clauses
that can be learned and never forgotten. Thus, at some point, there must be an infinite
number of Restart steps which occur with increasing periodicity.

Finally, if between two states there is at least one Basic DPLL Modulo Theories step and
no Restart step, these states do not have the same first component. Therefore, if n denotes
the (fixed, finite) number of different first components of states that exist, there cannot
be any subderivations with more than n Basic DPLL Modulo Theories steps between two
Restart steps. This contradicts the fact that there are infinitely many Restart steps with
increasing periodicity in Der. �

Lemma 11. If ∅ || F =⇒∗
XT M || F ′ and there is some conflicting clause in M || F ′, i.e.,

M |= ¬C for some clause C in F ′, then either Fail or T -Backjump applies to M || F ′. 2

Proof. If there is no decision literal in M , it is immediate that Fail applies. Otherwise,
M is of the form M0 l1 M1 . . . ln Mn for some n > 0, where l1, . . . , ln are all the decision
literals of M . Since M |= ¬C we have, due to Lemma 9-4, that F ′, l1, . . . , ln |= ¬C. If we
now consider any i in 1 . . . n such that F ′, l1, . . . , li |= ¬C, and any j in 0 . . . i−1 such that
F ′, l1, . . . , lj , li |= ¬C, we can show that then backjumping to decision level j is possible.

Let C ′ be the clause ¬l1 ∨ . . . ∨ ¬lj , and note that M is also of the form M ′ lj+1 N .
Then T -Backjump is applicable to M || F ′, yielding the state M ′ ¬li || F ′. That is because
the clause C ′ ∨ ¬li satisfies all the side conditions of the T -Backjump rule:

(i) F ′, l1, . . . , lj , li |=T ¬C by Lemma 9-4 and F ′, l1, . . . , lj , li |=T C because C is in F ′,
so F ′, l1, . . . , lj , li is unsatisfiable. Thus, F ′ |=T C ′ ∨ ¬li.

(ii) ¬li is undefined in M ′ (by Lemma 9-2);
(iii) li occurs in M . �

11

Property 12. If ∅ || F =⇒∗
XT M || F ′ and M is T -inconsistent, then either there is

a conflicting clause in M || F ′, or else Extended T-Learn applies to M || F ′, generating a
clause enabling some Basic DPLL Modulo Theories step. 2

Proof. If M is T -inconsistent, then there exists a subset {l1, . . . , ln} of M such that
∅ |=T ¬l1∨. . .∨¬ln. Hence, the conflicting clause ¬l1∨. . .∨¬ln is either in M || F ′, or else
it can be learned by one Extended T-Learn step, thus enabling either Fail or T -Backjump
(by Lemma 11 above). Alternatively, if there are literals in L(M) that are undefined in
M , then Extended T-Learn can be used to learn a clause containing such a literal, enabling
Decide. �

Lemma 11 and Property 12 show that, for a state of the form M || F , if there is some
literal of F undefined in M , or there is some conflicting clause, or M is T -inconsistent,
then a rule of Basic DPLL Modulo Theories is always applicable, possibly after a sin-
gle Extended T-Learn step. Together with Theorem 10 (Termination), this shows how to
compute a state to which the following main theorem is applicable.

Theorem 13. Let Der be a derivation ∅ || F =⇒∗
XT S , where S is (i) final with

respect to Basic DPLL Modulo Theories, and (ii) if S is of the form M || F ′ then M is
T -consistent. Then

1. S is FailState if, and only if, F is T -inconsistent.

2. If S is of the form M || F ′ then M is a T -model of F . 2

Proof. For Property 1, if S is FailState it is because there is some state M || F ′ such that
∅ || F =⇒∗

XT M || F ′ =⇒ FailState. By the definition of the Fail rule, there is no decision
literal in M and there is a clause C in F ′ such that M |= ¬C. By Lemma 9-4, F ′ |=T M , so
F ′ |=T ¬C. But C is in F ′, so F ′ must be unsatisfiable. By the second part of Lemma 9-3,
every model of F can be modified to obtain a model of F ′. Since F ′ is unsatisfiable, F
must also be unsatisfiable.

Assume S is not FailState. Then (i) all literals of F ′ are defined in M since otherwise,
Decide would be applicable. Similarly, (ii) there is no clause C in F ′ such that M |= ¬C
because otherwise, by Lemma 11, either Fail or T -Backjump would apply. Together (i) and
(ii) imply that all clauses of F ′ are defined and true in M which is T -consistent. Finally,
by the first part of Lemma 9-3, F ′ |=T F , and this implies that M is a T -model of F . �

For a given theory T , Theorems 10 and 13 show how to obtain a decision procedure
for the T -consistency of formulas as long as we have a theory solver and can prove for it
the existence of a suitable literal-generating function L such that the following holds: for
every state of the form M || F that is final with respect to =⇒B, the theory solver is able
to

1. determine that M is T -inconsistent,

12

2. determine that M is T -consistent, or

3. generate a new clause via Extended T-Learn that enables some Basic DPLL Modulo
Theories step.

3 Avoiding case splitting within theory solvers

In this section, we show how rule-based theory solvers can be used in the context of
Extended DPLL Modulo Theories.

Recall that theory solvers only need to deal with conjunctions (equivalently, sets) of
literals. Then observe that any solver deciding the T -consistency of such conjunctions in
a theory where this problem is NP-hard is bound to resort to some form of case splitting.1

We show how the Extended T-Learn rule allows such solvers to avoid any internal case
splitting, and we explain why, for rule-based solvers, the existence of L is reasonable.

3.1 Rule-based Theory Solvers

A large class of theory solvers can be defined using inference rules that describe how to take
a set of literals and transform it in some way to get new sets of literals (or ⊥, indicating
T -inconsistency). Consider a theory T . For our purposes, let us assume that an inference
rule has one of the following two formats:

Γ,∆
⊥

Γ,∆
Γ,∆1 Γ,∆2 · · · Γ,∆n

where the meta-variables Γ,∆ and ∆i represent sets of literals. We call rules of the first
kind refuting rules and rules of the second kind progress rules. Typically, ∆ has side-
conditions or is a schema, while Γ can represent any set of literals. Progress rules describe
a local change based on a small number of literals (the ones in ∆), while all of the other
literals (the ones in Γ) are unchanged. For example, the following progress rule says that
in any set of literals, an equation (represented by the schema x = y) can be replaced by
its symmetric equivalent (y = x):

Γ, x = y

Γ, y = x

A refuting rule is sound iff any legal instance δ of ∆ is T -inconsistent. A progress
rule is sound if whenever ∆,∆1, . . . ,∆n are instantiated with δ, δ1, . . . , δn respectively, δ
is T -consistent iff

∨n
i=1 δi is T -consistent. We say that a set Φ of literals is (ir)reducible

with respect to a set of derivation rules R if (n)one of the rules in R applies to it, i.e., if
(no) some subset of Φ is a legal instance of ∆ in a rule of R. A strategy is a function that,
given a reducible set of literals Φ, chooses a rule from R to apply.

1In fact, conceivably a solver may be based on case splitting even if the above T -consistency problem is
polynomial, for simplicity or convenience.

13

Given a set R of rules and a strategy S, a derivation tree for a set of literals Φ is a
finite tree with root Φ such that for each internal node E of the tree, E is reducible and
its children are the conclusions of the rule selected by S for E. A refutation tree (for Φ)
is a derivation tree all of whose leaves are ⊥. A derivation is a sequence of derivation
trees starting with the single-node tree containing Φ, where each tree is derived from the
previous one by the application of a rule from R to one of its leaves. A refutation is a finite
derivation ending with a refutation tree. A strategy S is terminating if every derivation
using S is finite. A strategy S is complete if whenever Φ is T -inconsistent, S produces a
refutation for Φ.

It is not hard to see that a set R of sound inference rules together with a terminating
and complete strategy S provide a decision procedure for the T -consistency of sets of
ground literals. In fact, all decision procedures typically associated with applications of
Satisfiability Modulo Theories can be described in this way. We will now describe how
such decision procedures can be incorporated into the Extended Abstract DPLL Modulo
Theories formalism.

3.2 Integration with Rule-based Theory Solvers

Recall that the original DPLL Modulo Theories framework requires that for every state
M || F that is final with respect to Basic DPLL Modulo Theories, the theory solver can
determine the T -consistency of M . Given a set of sound inference rules and a terminating
and complete strategy, M can be checked for T -consistency simply by generating the
derivation starting with M and determining whether it results in a refutation tree or not.

Note that this process may require a large derivation tree with many branches. The
purpose of the Extended T-Learn rule is to allow the theory solver to avoid having to do
any splitting itself. This can be accomplished as follows. Given a state M || F which is
final with respect to Basic DPLL Modulo Theories, the theory solver begins applying rules
starting with M . However, this time, as soon as a splitting rule is encountered (a progress
rule with n > 1), the theory solver halts and uses Extended T-Learn to return one or more
clauses representing the case split. The theory solver is then suspended until another final
state M ′ || F ′ is reached.

The obvious remaining question is how to capture the case split with a learned clause.
One way to do this that will work for any rule-based theory solver is to encode the number
of possible case splits using Boolean constants.

Property 14. Any rule-based decision procedure for a theory T can be integrated with the
Extended DPLL Modulo Theories framework in such a way that no case splitting is required
within the theory solver. 2

Proof. Suppose R is a set of sound rules for T and that S is a complete and terminating
strategy for R. We show that every split rule can be replaced with an application of
Extended T-Learn and that an appropriate L function exists.

Consider first an inference rule r ∈ R that induces a 2-way case split. For some new
Boolean constant p, we can use Extended T-Learn to add the clause (p∨¬p). Assuming that

14

Extended T-Learn is only applied in a final state, the only DPLL rules that can be applied
are Decide, Restart, or Forget. If the DPLL engine is following a terminating strategy (as
described in Theorem 10), then we can assume without loss of generality that Decide is
applied to choose either p or ¬p. The resulting state M ′ || F ′ is once again final with respect
to Basic DPLL Modulo Theories, so the theory solver proceeds as follows: if p ∈ M ′ in the
new final state, the theory solver follows the left branch of the splitting rule r; otherwise,
the right branch is taken. For rules in R with an n-way case split, the n choices can be
encoded using dlog ne new Boolean constants.

Now we show the existence of an appropriate L function as follows. Given a set of
literals Φ, let Φ′ be the set of literals obtained by closing Φ under negation and consider
all possible derivations starting with any subset of Φ′. For each such derivation, look at
each branch of its final derivation tree and find the number of Boolean constants required
to uniquely encode all case splits along that branch. Let N be the maximum number of
required constants along all branches of all derivations and define L(Φ) as the union of Φ′

and a set of N distinct Boolean constants and their negations. Now, given a final state
M || F , if we always select from among the Boolean constants in L(M) when encoding
splitting rules, then by construction, there will always be enough constants to finish every
branch.

It is trivial to see that properties 1 and 2 of Definition 6 are satisfied by this definition.
To ensure that properties 3 and 4 are satisfied, we require that for sets L containing the
new Boolean constants, L(L) is the same as L(L′) where L′ is the subset of L obtained by
removing any literals containing the new Boolean constants. �

Encoding case splits using new Boolean constants works for any rule-based theory solver
and shows that it is always possible to integrate these solvers in such a way that the theory
solver does not need to do any splitting. In practice, however, it is usually possible and
desirable to encode splitting rules more directly. For example, a rule of the form:

Γ,∆
Γ,∆1 Γ,∆2 · · · Γ,∆n

,

(where n > 1) corresponds to the following formula schema: ¬(∆)∨
∨n

i=1 ∆i. Any instance
of this schema can be converted into CNF and the resulting clauses sent to the DPLL
engine via Extended T-Learn. 2 For this to work, one additional requirement is that
the rules be refining. We say that an inference rule is refining if it is a refuting rule or if
whenever ∆,∆1, . . . ,∆n are instantiated with δ, δ1, . . . , δn respectively, δ |=T γδ(

∨n
i=1 δi).

This is essentially a stronger version of soundness. It requires that any model of the premise
can be refined into a model of some of the consequents. It is necessary in order to satisfy
the side conditions of Extended T-Learn.

2In practice, if some ∆i contains more than one literal, it is replaced with a new predicate symbol pi,
and the condition pi ↔

V
∆i is added (this additional condition is easily converted into m + 1 clauses

where m is the number of literals in ∆i). This avoids a potential exponential blow-up when the formula is
converted into CNF.

15

We must also check that an appropriate literal-generating function L exists. Assume
we are given a set R of rules and a terminating strategy S. First, define D to be a function
which, given a set Φ of literals returns all literals that may appear along any branch of
the derivation tree with any subset of Φ at its root. And let N be a function which, given
a set Φ of literals, returns all literals that can be formed from the atomic formulas in Φ.
Now, we define a series of functions Li as follows. Let L0 be the identity function and for
i > 0, let Li(Φ) = N (D(Li−1(Φ))). If for some k > 0, Lk = Lk+1, then we say that R is
literal-bounded under S, and define L = Lk.

Property 15. If R is a set of sound refining rules for a theory T , S is a strategy for R that
is terminating and complete, and R is literal-bounded under S, then R can be integrated
with the Extended DPLL Modulo Theories framework. 2

Proof. We first show that L satisfies Definition 6. It is easy to see that Properties 1
and 2 in the definition are satisfied. Because D(Φ) considers derivations starting with any
subset of Φ, Property 3 must also be satisfied. Finally, because L is a fixed point of Li, it
must be idempotent.

Now, we must show that whenever a state M || F is reached that is final with respect
to Basic DPLL Modulo Theories, the theory solver can do one of the following: determine
that M is T -consistent; determine that M is T -inconsistent; or introduce a new clause via
Extended T-Learn that enables some Basic DPLL Modulo Theories step.

Given a state M || F , we simply apply rules from R to M according to strategy
S. If ⊥ is derived, then by soundness, M is T -inconsistent. If an irreducible set of
literals is derived, then by completeness, M must be T -consistent. If a splitting rule is
reached, and Γ,∆,∆1, . . . ,∆n are instantiated with φ, δ, δ1, . . . , δn respectively, there are
three possibilities:

1. For all i, M |= ¬δi. In this case, we apply Extended T-Learn to learn ¬(δ) ∨
∨n

i=1 δi,
which will result in one or more clauses that are conflicting in M , thus enabling either
Fail or T -Backjump by Lemma 11.

2. For some i, M |= δi, or else δi is undefined in M and M |= ¬δj for every j 6= i. In
either case, no split is necessary and we simply proceed by applying rules of R to
φ, δi.

3. The final case is when at least two of the δi are undefined in M . Then we apply
Extended T-Learn to learn ¬(δ) ∨

∨n
i=1 δi which is guaranteed to contain at least one

clause that is not satisfied by M , thus enabling Decide. �

Example 16. As we saw in a previous example the theory of arrays requires case splitting.
One (sound and refining) rule-based decision procedure for this theory is given in [SDBL01].
A careful examination of the decision procedure reveals the following:

1. Each term can be categorized as an array term, an index term, a value term, or a
set term.

16

2. No new array terms are ever introduced by the inference rules.

3. At most one new index term for every pair of array terms is introduced.

4. Set terms are made up of some finite number of index terms.

5. The only new value terms introduced are of the form read(a, i) where a is an array
term and i is an index term.

It follows that the total number of possible terms that can be generated by the procedure
starting with any finite set of literals is finite. Because there are only a finite number of
predicates, it then follows that this set of rules is literal-bounded. �

Example 17. A rule-based decision procedure for a subset of set theory is given in [CZ00].
As before, the rules given are sound and refining. The rules are carefully constructed so
that with the exception of one rule, none of them introduce new terms. The one exception
introduces a new constant whenever two original constants are disequal to each other, and
can be applied at most once for each such pair of original constants. Thus, at most one
new constant for every pair of original constants can be introduced. As with the array
procedure, it then follows that the total number of possible terms that can be generated
starting with any finite set of literals is finite. Because there are only a finite number of
predicates, this set of rules is also literal-bounded. �

In general, a similar analysis must be done for every theory before it can be integrated
with the Extended DPLL Modulo Theories framework as described above. However, it
is our experience that solvers for theories of interest are refining and literal-bounded and
that this can usually be shown without too much effort.

4 Application to Satisfiability Modulo Multiple Theories

In this section, we focus on background theories T that are actually the union of two or
more component theories T1, . . . , Tn, each equipped with its own solver.

We first show how to obtain an Abstract DPLL Modulo Theories transition system for
the combined theory T as a refinement of the system XT described in Section 2 using only
the solvers of the theories Ti. Then we show, more concretely, how to correspondingly refine
the new DPLL(T) architecture into a DPLL(T1, . . . , Tn) architecture in which each Ti-solver
is directly integrated into the DPLL(X1, . . . , Xn) engine. We discuss minimal requirements
on the solvers that guarantee the total correctness of DPLL(T1, . . . , Tn) computations.

We start with some necessary formal preliminaries. We will work here in the context
of first-order logic with equality. For the rest of the section we fix n > 1 stably infinite the-
ories3 T1, . . . , Tn with respective, mutually disjoint signatures Σ1, . . . ,Σn. We will consider
the theory T = T1 ∪ · · · ∪ Tn with signature Σ = Σ1 ∪ · · · ∪ Σn. We are interested in the

3A theory T is stably infinite if every T -consistent quantifier-free formula F over T ’s signature is satis-
fiable in an infinite model of T .

17

T -satisfiability of ground formulas over the signature Σ extended with an infinite set K of
free constants. For any signature Ω we will denote by Ω(K) the signature Ω ∪K. We say
that a ground clause or literal is (i-)pure if it has signature Σi(K) where i ∈ {1, . . . , n}.
Given a CNF formula F of signature Σ(K), by abstracting subterms with fresh constants
from K, it is possible to convert F in linear time into an equisatisfiable CNF formula, all of
whose atoms are pure. See [TH96], for instance, for details on this purification procedure.
Roughly speaking, though, the idea is to recursively replace an argument t of a function
or predicate symbol g in F by a fresh constant k ∈ K and add to F the unit clause k = t
whenever g ∈ Σi for some i and the root symbol of t is not in Σi(K). From now on, we
will limit ourselves with no loss of generality to pure formulas.

Following the Nelson-Oppen combination method, the various solvers will cooperate
by exchanging entailed equalities over shared constants. Here we define more precisely
what we mean by “shared.” Let L be a set of pure literals over the signature Σ(K). We
say that a constant k ∈ K is an (ij-)shared constant of L if it occurs in an i-pure and a
j-pure literal of L for some distinct i and j. For i = 1, . . . , n, we denote by Li the set of
all the Σi(K)-literals of L and by Si(L) the set of all equalities between distinct ij-shared
constants of L for every j 6= i. Note that for every j 6= i, Lj∩Li contains at most equalities
or the negation of equalities from Si(L). An arrangement for L is a set containing for each
equality e ∈

⋃
i Si(L) either e or ¬e (but not both), and nothing else.

The extended Abstract DPLL Modulo theories framework can be refined to take into
account that T is a combined theory by imposing the following additional requirements on
the XT system.

Refinement 1. We consider only derivations starting with states of the form ∅ || F , where
each atom of F is a pure Σ(K)-atom.

Refinement 2. We consider only applications M || F =⇒ M l || F of T-Propagate and
applications M || F =⇒ M || F, C of Extended T-Learn where l and each literal of C are
pure.

Refinement 1 and 2 maintain the invariant that all the literals occurring in a state
are pure, and so can be fed to the corresponding local solvers. Given these minimal
requirements, it will be sufficient for T-Propagate to propagate only literals l that are i-
pure for some i = 1, . . . , n and such that and M i |=Ti l, where the entailment M i |=Ti l is
determined by the Ti-solver. Similarly, Extended T-Learn will rely on the local solvers only
to learn Ti-lemmas, i.e., i-pure clauses C such that ∅ |=Ti γF (C). Note that we do allow
lemmas C consisting of pure literals from different theories and such that F |=T γF (C),
as lemmas of this sort can be computed even if one only has local solvers (consider for
example the backjump clauses generated by standard conflict analysis mechanisms).

Refinement 3. The suitable literal-generating function L maps every finite set L of pure
Σ(K)-literals to a finite set of pure Σ(K)-literals including

⋃
i Si(L).

To use the various solvers together in a refutationally complete way for T -consistency,
it is necessary to make them agree on an arrangement. To do this efficiently, they should

18

be able to share the entailed (disjunctions) of equalities of shared constants. Refinement 3
then essentially states that theory lemmas can include shared equalities.

4.1 From DPLL(T) to DPLL(T1, . . . , Tn)

Assuming the previous refinements at the abstract level, we now show in concrete how the
DPLL(T) architecture can be specialized to use the various local solvers directly and to
facilitate cooperation among them.

Except for trivial cases, none of the Ti-solvers are refutationally complete for T -
consistency—they are complete at most for their theory Ti. In Section 2, however, we
saw that in practice it is not necessary to have a refutationally complete T -solver to ef-
fectively generate derivations in XT satisfying Theorem 13. There, the minimal require-
ment was that, whenever the T -solver cannot determine that a given assignment M is
T -consistent it must either (i) identify a T -inconsistent subset of M or (ii) produce a the-
ory lemma containing literals of L(M) that are undefined in M . Here, we define a similar
but local requirement on each Ti that does not even need refutational completeness for
Ti-consistency (let alone T -consistency). If M is an assignment consisting of pure literals
and i ∈ {1, . . . , n}, we call (default) completion of M i and denote by M̂ i the smallest
extension of M i falsifying every shared equation for M i that is undefined in M , that is,
M̂ i = M i ∪ {¬e | e ∈ Si(M), e undefined in M}.

Requirement 1. For each i = 1, . . . , n, the solver for Ti, given a state M || F , must be
able to do one of the following:

1. determine that M̂ i is Ti-consistent, or

2. identify a Ti-inconsistent subset of M i, or

3. produce an i-pure clause C containing at least one literal of L(M) undefined in M
and such that ∅ |=Ti γF (C).

The computational cost of the test in Point 1 of this requirement depends on the
deduction capabilities of the theory solver.4 Note, however, that the test can be deferred
thanks to Point 3. The solver may choose not to generate the completion of M i explicitly
and test it for Ti-inconsistency, and instead generate a lemma for the engine containing
one of the undefined equalities.

If a solver meeting Requirement 1 cannot determine the Ti-consistency of the completion
M̂ i, it must be either because it has determined that a subset of M̂ i (possibly of M i alone)
is in fact inconsistent, or that it needs more information about some of the undefined
literals of L(M) first. However, once every literal of L(M) is defined in M , including the
equalities in Si(M), the solver must be able to tell whether M i is Ti-consistent or not. This
is a minimal requirement for any solver to be used in a Nelson-Oppen style combination
procedure.

4For some solvers, such as the common ones for EUF or linear rational arithmetic, this additional cost is
actually zero as these solvers already explicitly maintain complete information on all the entailed equalities
between the known terms.

19

Usually though it is desirable for Nelson-Oppen solvers to also be able to compute
(disjunctions of) shared equalities entailed by a given set of literals, so that only these
equalities can be propagated to the other solvers, and guessing is minimized. For instance,
if one solver communicates that a is equal to either b or c, then the other solvers do not
have to consider cases where a is equal to some fourth constant. Requirement 1 allows
that possibility, as illustrated by the following example.

Example 18. Assume, just for simplicity, that for every M , L(M) is no more than M ∪⋃
i Si(M), which entails that each Ti-solver is refutationally complete for Ti-consistency.

Then consider an assignment M where Mi is Ti-consistent, for some i, and let e1, . . . , en be
equalities in Si(M) undefined in M such that l1, . . . , lm |=

∨
k ek for some {l1, . . . , lm} ⊆

M i. In this case, M̂ i is clearly Ti-inconsistent. However, since M i alone is consistent, by
Requirement 1 the Ti-solver must return a lemma containing one or more undefined literals
of L(M).

Now, if the solver can in fact compute (deterministically, with no internal case splits!)
the clause

∧
j lj ⇒

∨
k ek, that clause will be the ideal lemma to return. Otherwise, it is

enough for the solver to return any lemma that contains at least one shared equality e
(in the worst case, even a tautology of the form e ∨ ¬e will do). Intuitively, this marks a
progress in the computation because eventually one of the shared equalities will be added
to M (for instance, by an application of Decide), reducing the number of undefined literals
in L(M). �

Requirement 1 and the earlier refinements are enough to guarantee that we can use the
local Ti-solvers directly—as opposed to building a solver for the combined theory T—to
generate derivations satisfying Theorem 13.

The first thing we need for Theorem 13 is that we can always derive from a state ∅ || F a
final state S with respect to Basic DPLL Modulo Theories (=⇒B). This is indeed possible
in the current setting because of the only two basic rules that are theory based, the first,
T-Propagate, is never needed to reach a final state—as we saw in Section 2, therefore any
restrictions to its application are immaterial; the second, T -Backjump, can always use as
backjump clause one constructed directly from the state’s assignment and the conflicting
clause, without any further involvement of the theory solvers, again as shown in the proof
of Lemma 11.

The second thing we need for Theorem 13 is that whenever the final state S has the
form M || F ′, the assignment M is T -consistent.Property 20 below shows that this is indeed
possible. Although none of the local solvers is able to determine by itself whether M is
T -consistent, it can do that in cooperation with the other solvers, thanks to Requirement 1
and this previously mentioned combination result:

Proposition 19 ([TH96]). A set L of pure Σ(K) literals is T -consistent iff there is an
arrangement A for L such that Li ∪A is Ti-consistent for all i = 1, . . . , n. 2

It is then not difficult to show that, under the assumptions in this section, the following
property holds

20

Property 20. Each derivation of the form ∅ || F =⇒∗
XT M || G where M || G is final

wrt. Basic DPLL Modulo Theories can be extended in finitely many steps using the solvers
for T1, . . . , Tn to a derivation of the form ∅ || F =⇒∗

XT M || G =⇒∗
XT S where S is either

FailState or a state M ′ || G′ with a T -consistent M ′. 2

Proof. Consider the state M || G. If each Ti-solver can determine that the set M̂ i is
Ti-consistent we know that there exists an arrangement A of all the shared constants of M
such that M i ∪ A is Ti-consistent for all i. We can then conclude by Proposition 19 that
M is T -consistent. Otherwise, if for some i in {1, . . . , n} the solver for Ti cannot determine
that M̂ i is Ti-consistent, one of the cases of Requirement 1 applies. In the first case, the
solver identifies a Ti-inconsistent subset M̃i of Mi. The clause ¬M̃i, conflicting in M || F ′,
can be added to that state with an application of Extended T-Learn, as one can easily
verify. Since the clause is conflicting, the derivation can be continued with an application
of Fail or T -Backjump thanks to Lemma 11. In the second case, the solver produces an
i-pure clause C such that ∅ |=Ti γG(C) and C contains at least one literal of L(M) that is
undefined in M . This clause too can be added to the state M || F ′ with an application of
Extended T-Learn, as one can again easily verify. Since C contains at least one undefined
literal, the derivation can continue in this case as well with the application of a rule of the
basic system B. In both cases, the applicability of a rule of B allows the derivation to be
continued while satisfying the preconditions of Theorem 4. It follows that repeating the
process sketched above will never diverge into an infinite derivation. Eventually then there
will be no way to continue the derivation further, which means that one way or another
the derivation will reach the state FailState or a state of the form M ′ || G′ such that the
solver of each Ti is able to say that the set M̂ i is Ti-consistent, which implies, again by
Proposition 19, that M ′ is T -consistent. �

4.2 Convex theories

We mentioned in Section 1 that the Nelson-Oppen method is particularly efficient if (i) the
component theories Ti are all convex, i.e., such that for all sets L of ground Σi(K)-literals
and all sets E of ground K-equalities, L |=Ti

∨
e∈E e iff L |=Ti e for some e ∈ E and (ii)

the Ti solvers are able to compute Ti-entailed shared equalities. In that case, no expensive
case splits over shared equalities are needed, and the equality propagation process can be
stopped as soon as there are no more entailed shared equalities. This situation can be
neatly modeled in our framework if we slightly revise the precondition of the T-Propagate
rule on the state M || F to allow the propagation of entailed equalities occurring in

⋃
i S(M)

in addition to the literals occurring (possibly negated) in F .5 It is not difficult to see that
this extension preserves all the properties of the framework.

When only some of the component theories are convex, an even better extension is to
allow the propagation of entailed shared disequalities as well, because this too, even if not
strictly needed, may ease the lemma generation burden of the solvers for the non-convex

5Note that an equality between shared constants need not occur in F .

21

theories. With these extensions then, we can have solvers for convex theories use only
T-Propagate to propagate entailed shared (dis)equalities to the other solvers, and solvers
for non-convex theories use a flexible combination of T-Propagate, to propagate single
shared (dis)equalities and Extended T-Learn, to propagate proper disjunctions of shared
(dis)equalities.

5 Conclusions and further work

We have proposed a new version of DPLL(T) in which theory solvers can delegate all
case splits to the DPLL engine. This can be done on demand for solvers that can encode
their internal case splits into one or more clauses, possibly including new constants and
literals. We have formalized this in an extension of Abstract DPLL and proved it correct.
We think that the new insights gained by this formalization will help us and others when
incorporating these ideas into our respective SMT solvers.

We have also introduced a DPLL(T1, . . . , Tn) architecture for combined theories, which
also fits naturally into the extended Abstract DPLL framework. This refinement is crucial
in practice because most SMT applications are based on combinations of theories.

Our splitting on demand approach leads to significantly simpler theory solvers. The
price to pay is an increase in the complexity of the DPLL(X) engine, which must be able
to deal with a dynamically expanding set of literals. However, we believe that doing this
once and for all is better than paying the price of building a far more complex theory solver
for each theory that requires case splits. Moreover, the requirement of being able to deal
dynamically with new literals and clauses is needed in general for flexibility in applications,
not just for our approach.

As future work, we plan to evaluate the approach experimentally. We also plan to
investigate theory-dependent splitting heuristics, and effective ways for a theory solver to
share such heuristic information with the DPLL(X) engine.

Example 21. Consider the conjunction

f(g(c1), g(a)) 6=f(g(c2), g(b)) ∧ a=h(c1) ∧ b=h(c2) ∧ c1≤c2 ∧ c2≤c1

combining EUF and Difference Logic (DL) over the real numbers. This conjunction is T -
unsatisfiable, since from the EUF part (the first three equations) one can infer c1 6=c2, and,
from the remaining (DL) part, c1=c2. In an ideal Nelson-Oppen-like combination setting,
a solver for the combined theory is obtained by having each T -solver deal each with its
part and communicate to each other all inferred equalities between shared symbols, in
this case, c1 and c2. But it is well-known that requiring all theory solvers to generate
all equality consequences between the shared symbols is too expensive. Here, it would
also suffice, say, to have the EUF solver generate both the equality and the disequality
consequences, but, as the example already suggests, generating disequalities from EUF is
also expensive. However, cheap tests for generating a relatively small number of possible
disequality consequences may exist.

22

Therefore, again, it would be desirable that SolverT can demand DPLL(X) to split on
literals such as c1=c2. �

References

[Bar03] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combina-
tions of First-Order Theories. PhD thesis, Stanford University, 2003.

[BB04] Clark W. Barrett and Sergey Berezin. CVC lite: A new implementation of the
cooperating validity checker category b. In R. Alur and D. Peled, editors, Pro-
ceedings of the 16th International Conference on Computer Aided Verification,
CAV’04 (Boston, Massachusetts), volume 3114 of Lecture Notes in Computer
Science, pages 515–518. Springer, 2004.

[BBC+06] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A. Junttila,
Silvio Ranise, Peter van Rossum, and Roberto Sebastiani. Efficient theory
combination via boolean search. Information and Computation, x(x):xx–xx,
2006. To appear. Cf. conference paper at CAV’05.

[BDL96] C. Barrett, D. L. Dill, and J. Levitt. Validity checking for combinations of
theories with equality. In Procs. 1st Intl. Conference on Formal Methods in
Computer Aided Design, LNCS 1166, pages 187–201, 1996.

[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo
Theories Competition. In K. Etessami and S. Rajamani, editors, 17th Interna-
tional Conference on Computer Aided Verification, Lecture Notes in Computer
Science, pages 20–23. Springer, 2005. See www.csl.sri.com/users/demoura/smt-
comp.

[BDS02] Clarke Barrett, David Dill, and Aaron Stump. Checking satisfiability of first-
order formulas by incremental translation into sat. In Procs. 14th Intl. Conf.
on Computer Aided Verification (CAV), LNCS 2404, 2002.

[CZ00] Domenico. Cantone and Calogero G. Zarba. A new fast tableau-based decision
procedure for an unquantified fragment of set theory. In Ricardo Caferra and
Gernot Salzer, editors, Automated Deduction in Classical and Non-Classical
Logics, volume 1761 of Lecture Notes in Computer Science, pages 127–137.
Springer, 2000.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Comm. of the ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

23

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli. DPLL(T): Fast Decision Procedures. In R. Alur and D. Peled,
editors, Proceedings of the 16th International Conference on Computer Aided
Verification, CAV’04 (Boston, Massachusetts), volume 3114 of Lecture Notes
in Computer Science, pages 175–188. Springer, 2004.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[NOT05] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and
Abstract DPLL Modulo Theories. In Franz Baader and Andrei Voronkov,
editors, ”11th Int. Conf. Logic for Programming, Artif. Intell. and Reasoning
(LPAR)”, volume 3452 of Lecture Notes in Computer Science, pages 36–50.
Springer, 2005.

[SDBL01] Aaron Stump, David L. Dill, Clark W. Barrett, and Jeremy Levitt. A deci-
sion procedure for an extensional theory of arrays. In Proceedings of the 16th

IEEE Symposium on Logic in Computer Science (LICS ’01), pages 29–37. IEEE
Computer Society, June 2001. Boston, Massachusetts.

[TH96] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–
Oppen combination procedure. In Procs. Frontiers of Combining Systems (Fro-
CoS), Applied Logic, pages 103–120. Kluwer Academic Publishers, March 1996.

[TR05] Cesare Tinelli and Silvio Ranise. SMT-LIB: The Satisfiability Modulo Theories
Library, July 2005. http://goedel.cs.uiowa.edu/smtlib/.

24

