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Abstract—Many relevant problems in formal methods can
be tackled using enumerative syntax-guided synthesis (SyGuS).
Algorithms for enumerative SyGuS range from universally ap-
plicable techniques based on counterexample-guided inductive
synthesis (CEGIS), to more scalable but specialized techniques
based on divide and conquer. This paper presents a novel
algorithm for enumerative SyGuS, Unif+PI, which reaps the
benefits of scalability based on divide and conquer without
sacrificing generality. In this algorithm, an instance of an SMT
solver is used as both a classifier and an attribute generator.
Logical constraints in the form of test cases for the function-
to-synthesize and failed classification attempts guide its search
for new candidate solutions. We implement our approach as
an extension of the CVC4SY solver and evaluate it on standard
SyGuS benchmarks from different applications. We show that
the new algorithm leads to significant gains in invariant synthesis
with respect to state-of-the-art SyGuS solvers, and is competitive
with state-of-the-art k-induction based model checking.

I. INTRODUCTION

Syntax-guided synthesis (SyGuS) [1] is a recent paradigm
for program synthesis, successfully used for a number of ap-
plications in formal verification and programming languages.
It is characterized by supplementing the original synthesis
problem with syntactic restrictions on the solution space,
thus reducing the search effort. Most SyGuS solvers employ
the counterexample-guided inductive synthesis (CEGIS) ap-
proach [31, 32]: a refinement loop in which a learner proposes
solutions, and a verifier, usually an SMT solver [5], checks
them, providing counterexamples for failures. Generally, the
learner enumerates some set of terms, pruning those that it
recognizes as spurious [33]. Despite its scalability issues, the
simplicity and efficacy of enumerative SyGuS have made it
the de facto approach for SyGuS, although alternatives exist
for restricted fragments [2, 4, 26].

In the context of point-wise specifications, in which an input
point is only related to its output and not to outputs of other
input points, one such alternative is Alur et al.’s divide and
conquer (D&C) enumeration [4]. Their key idea is to indepen-
dently enumerate smaller terms that are correct on subsets of
inputs and predicates that distinguish these subsets. Unifying
terms via predicates into a conditional term correct on all
inputs is seen as a classification problem, solved via decision
tree learning. Their approach allows large solutions to be built

from smaller terms, which can lead to significant performance
gains by reducing the enumeration effort. However, while
some important applications fall within this fragment, such
as programming-by-examples (PBE) problems [15, 16], many
interesting fragments, such as invariant synthesis, do not, as
well as any function synthesis problem in which determining
the value of the function on a given input cannot be made
independently of its values on other inputs.

We present Unif+PI (Section III), a new algorithm that
allows D&C to be applied on arbitrary specifications, indepen-
dently of them being point-wise. To cope with the resulting
more complex classification problem we encode it in SMT
and use an SMT solver to both enumerate suitable terms and
predicates as well as to build classifiers. The enumeration
relies on previous work for efficiently exploring the search
space exhaustively [27, 28]. To avoid the scalability issues of
the complex search performed by Unif+PI, we also present a
variation (Section IV), which we denominate Unif+PI+E, that
enumerates predicates independently, using the SMT solver
only to enumerate suitable terms and relying on heuristic
decision tree learning to build the classifier. We have imple-
mented both approaches in the state-of-the-art SyGuS solver
CVC4SY [25]. Our experimental evaluation (Section V) shows
that both variants, but specially Unif+PI+E, have advantages
over the state-of-the-art in SyGuS invariant synthesis and that
a combination of the techniques is competitive against state-
of-the-art k-induction techniques from model checking.

II. CONVENTIONS AND BACKGROUND

We work in the context of many-sorted first-order logic with
equality modulo theories (see, e.g., [9]) and assume the reader
is familiar with the notions of signature, terms, and so on. In
particular, we use the predicate symbol ' for term equality,
while the symbol = stands for syntactic equality. The set of
all terms occurring in a formula ϕ (resp. term t) is denoted by
T(ϕ) (resp. T(t)). A theory is a pair T = (Σ, I) where Σ is a
signature and I is a non-empty class of Σ-interpretations, the
models of T , that is closed under variable reassignment and
isomorphism. A Σ-formula ϕ is T -satisfiable (respectively T -
unsatisfiable) if it is satisfied by some (resp., no) interpretation
in I. A satisfying interpretation for ϕ models ϕ. A formula ϕ



is valid in T (or T -valid), written |=T ϕ, if every model of T
is a model of ϕ. We use ā to denote the tuple (a1, . . . , an),
t[x̄] for a term that may depend on x̄, and t[x̄ 7→ s̄] for the
corresponding term where the terms x̄ are substituted for s̄.

A SyGuS problem for a function f in a background theory T
consists of semantic restrictions, or a specification, for f given
by a T -formula of the form ∃ f .ϕ[ f ], and syntactic restrictions
on the definitions for f , given by a context-free grammar R.
A solution for f is a lambda term λx̄.e such that ϕ[ f 7→ λx̄.e]
is in the language generated by R and is T -valid (modulo
beta-reductions). For brevity, we will drop the lambda prefix
when it is clear from context. We say a specification ∃ f . ϕ[ f ]
is point-wise if for each clause C in its conjunctive normal
form, every application of f in T(C) is the same term.

A. Enumerative Syntax Guided Synthesis

Enumerative SyGuS solving produces candidate solutions
for the function to synthesize via exhaustive generation of
all expressions from R’s language, in increasing order of
expression size. We define the size of an expression as the
number of non-nullary symbols it contains, e.g., the expression
x has size 0 and the expression ite(x≥ y, x+1,y) has size 3.

Example 1: Consider synthesizing a binary integer function
f satisfying the specification ∃ f . ∀x1x2. ψ[ f , x1, x2], with a
solution space defined by the context-free grammar R where:

ψ = f (x1, x1)' x1 +1 ∧ f (x1, x1 +1)' x1

R = A→ 0 | 1 | x1 | x2 | A+A | ite(B, A, A) |
B→ A≤ A | ¬B

The specification states that f relates integers and their suc-
cessors: when applied over identical integers f yields their
successor; and when applied over consecutive integers it yields
the first one. A solution for f is e = λx1x2. ite(x2 ≤ x1, x1 +

1, x1), since it satisfies the specification by returning x1 + 1
when |=T x2 ' x1 and x1 when |=T x2 ' x1 + 1. Moreover
it is minimal since there is no smaller expression that is
also a solution. Enumeration will discover this solution after
considering all expressions of size zero: 0, 1, x, x2; then of
size one: x1 + x2, x1 +1, . . . ; of size two: ite(x1 ≤ x2, x1, 1),
. . . ; and possibly many others of size three. •

B. Counterexample-guided inductive synthesis (CEGIS)

In enumerative CEGIS [33], counterexamples from failed
candidates are used to generate refinement lemmas: concrete
instantiations of the specification that the next candidate solu-
tions must satisfy before being verified.

Example 2: To synthesize the function f from Example 1,
say the first term in the enumeration is x. The verification of
ψ[ f 7→ x1] yields the counterexample {x1 7→ 1}, with which we
instantiate the specification and obtain the refinement lemma
f (1, 1)' 2∧ f (1, 2)' 1 (L1), which all subsequent candidate
solutions must satisfy. Say we then consider the candidate

solution 1. Since applying f 7→ 1 does not satisfy the above
equalities, we discard it. The same goes for expressions x1,
x2, x1 + x2, and so on for sizes 1 and 2. To find a candidate
expression that meets the above equalities, it is necessary to
reach size three, e.g., ite(x2 ≤ 1, 1+1, 1). Its verification fails,
however, and the counterexample {x1 7→ 0} generates the new
refinement lemma f (0, 0) ' 1∧ f (0, 1) ' 0 (L2). The next
enumerated expression to satisfy both refinement lemmas is
ite(x2 ≤ x1, x1 +1, x1), which is also a solution. •

Often the bottleneck in enumerative CEGIS is generating
candidate solutions, whereas invoking the verification oracle
occurs relatively infrequently, as in the above example. Due to
its exhaustiveness, this approach typically only performs well
when solutions have relatively small term size, typically up to
5 for most grammars like the one in the previous example.

C. Divide and conquer enumeration (D&C)

In point-wise specifications, such as in Example 1, refine-
ment lemmas constitute a set of constraints on independent
inputs, which can be seen as test points: a candidate only
needs to be verified if it is correct on all test cases. The D&C
algorithm implemented in EUSolver [4] leverages this view by
finding partial solutions, correct on subsets of the test points,
and then attempting to combine them into a larger expression
correct on all points. Candidates for partial solutions, i.e.,
terms of type of the function-to-synthesize, and conditions,
i.e., predicates, are enumerated separately.

Example 3: To synthesize the function from the previous
examples, D&C also operates on a CEGIS loop. After (L1)
is generated, inputs (1,1) and (1,2) become test points. The
terms x1 + 1 and x1 are generated as solutions for the first
and second points, respectively, and the predicate x2 ≤ x1 is
generated as a separation condition for the points, allowing a
candidate ite(x2 ≤ x1, x1 + 1, x1) to be constructed and then
verified as a solution. In contrast to CEGIS, which required
enumeration up to size 3, a solution can be build by D&C
from enumerated expressions that have size at most 1. •

Combining terms and predicates into candidate solutions is
done by solving a multi-label decision tree learning problem.
Informally (for formal definitions we refer to standard texts
such as [6]), a decision tree is a finite binary tree with
internal nodes consisting of attributes (predicates) and with
leaf nodes, each containing data points and labeled with a
term corresponding to the classification of these points. A set
of data points is called a sample. In the CEGIS case, the data
points are possible inputs for the function to synthesize in the
refinement lemmas. In building decision trees, attributes are
chosen to separate points, while leaf nodes are labeled with
terms covering all their data points, i.e., that term is a solution
for the constraints of each data point in the leaf. Finding a
solution amounts to classifying the sample correctly, i.e., to



split the sample with attributes so that every leaf node can
be labeled, and converting the decision tree to a conditional
expression. We assume a recursive function TOITE that for a
leaf returns its label and for an internal node with attribute p
and children L,R returns ite(p,TOITE(L),TOITE(R)).

Example 4: Solution building in Example 3 is done by
learning the decision tree

dt =
x2 ≤ x1

{(1,2)}← x1{(1,1)}← x1 +1

> ⊥

which classifies the sample {(1,1),(1,2)} by separating its
points into leafs whose labels cover these points. Then,
TOITE(dt) = ite(x2 ≤ x1, x1 +1, x1). •

In D&C the enumeration of terms and predicates continues
until the sample can be classified, with the respective candidate
solution then being tested on the specification. D&C is partic-
ularly effective on PBE problems, in which the specification
for the function to synthesize is essentially just a conjunction
of equalities of the form f (c̄) ' d where c̄,d are concrete
constants. In these problems, piecing together a conditional
expression satisfying these equalities amounts to solving the
entire synthesis problem. The main limitation of D&C is
requiring specifications to be point-wise. Other specifications
yield points that cannot be labeled independently, which
significantly complicates the classification process.

Example 5: Consider again the SyGuS problem from Ex-
ample 1, but with a specification augmented with the clause
f (x1, x2) ' x1 + 1⇒ f (x1 + 2, x2) ' x1. This relational con-
straint makes this specification non-point-wise by introducing
a dependency between different inputs of f . For example,
testing a candidate solution x1 yields the counterexample
{x1 7→ 1, x2 7→ 0}, from which we generate the refinement
lemma f (1, 1) ' 2∧ f (1, 0) ' 2⇒ f (3, 0) ' 1∧ f (1, 2) ' 1
(L3). Determining a solution for (1, 0) restricts the solution for
(3, 0): e.g., if the former is x1 + 1 then the latter must be 1,
x2+1 or another term whose output on (3, 0) is 1. Since D&C
cannot reason about such restrictions, it cannot be applied
to this problem. Moreover, a minimal solution for f , e.g.,
ite(x1≤ x2, ite(x2≤ x1, x1+1, x1), x2), has size 5, making this
seemly simple problem hard for enumerative CEGIS. •

III. SYNTHESIS VIA PIECEWISE-INDEPENDENT

UNIFICATION (UNIF+PI)

We introduce Unif+PI, a new procedure for enumerative
SyGuS based, like D&C, on a CEGIS loop for the derivation
of refinement lemmas and on extracting data points from these
lemmas to guide the unification of partial solutions by means
of decision tree learning. In contrast to D&C, however, and
similarly to CEGIS in general, it can be applied to any kind of
specification. Handling general, as opposed to only piece-wise,
specifications introduces a serious challenge to unification:

determining a solution to a given point cannot in general be
done independently of other points, as shown in Example 5.

SMT-based
Classifier

Term assignment Ordered 
predicates list

Classification
checker

Fig. 1: Unif+PI loop.

The overall architecture of Unif+PI is shown in Figure 1.
Its main component is an SMT-based classifier. This module
is an instance of an SMT solver, and manages two kinds
of constraints: refinement lemmas, as introduced earlier, and
separation lemmas, which we describe in the following. The
SMT-based classifier produces a term assignment: a mapping
from data points, represented by their respective function
applications, to terms, so that assigning each point to its
respective term satisfies the refinement lemma. An example
of a term assignment consistent with (L3) from Example 5 is
f (1, 1) 7→ x2 + x2,{ f (1, 0), f (3, 0), f (1, 2)} 7→ x1. The SMT-
based classifier also generates an ordered list of predicates
p1, . . . , pn whose goal is to separate points that are assigned to
different terms. A predicate separates two points if it evaluates
differently on them, e.g., x1 6' x2 separates (1, 1) and (3, 0).

The term assignment and the ordered list of predicates cor-
respond to a candidate classifier. The predicate list represents
a full binary tree whose internal nodes at level i are the i-th
predicate, and the term assignment represents how leafs should
be labeled. The classification checker determines if a decision
tree that correctly classifies the sample can be built from
such a candidate. Since the term assignment is consistent with
the refinement lemmas, the remaining condition for a correct
classification is that all data points in a leaf are assigned the
same term. In that case a candidate solution is extracted (with
TOITE) from the decision tree. Otherwise a separation lemma,
which explains why classification failed, is generated to force
the SMT-based classifier to produce new, distinct candidate
classifiers. Together, these components comprise a learner of
classifiers. Their interplay is detailed in the following section.

Our procedure relies on a solution-complete search strategy
which generates classifiers in increasing order of complexity,
defined by a measure that accounts for both the size of the
terms, the predicates involved, and their quantity. The strategy
considers increasingly complex candidates until a successful
classifier is learned, in which case the corresponding candidate
solution is verified against the specification. Counterexamples
to the candidate solution generate new refinement lemmas and
cause the learning process to restart. For Example 5, whose



SMTCLASSIFY ←− (ϕR, ϕS, n)
1) If there exists tassign = { f (v̄i) 7→ ti | Fi ∈ T(ϕR)} and

preds = [p1, . . . , pn−1] such that:
a) #{t | f (v̄) 7→ t ∈ tassign} ≤ n

b) size(t)≤ log2(n), for each f (v̄) 7→ t ∈ tassign

c) size(p)≤ log2(n), for each p ∈ preds

d) |=T ϕRσF where σF = {Fi 7→ (λx̄. ti) v̄i | f (v̄i) 7→ ti ∈
tassign}

e) |=T ϕSσFσP where σP = {Pi 7→ λx̄. pi | 1≤ i≤ n−1}
Then, return classifier ( tassign, preds )

2) Otherwise, return SMTCLASSIFY(ϕR, ϕS, n+1)

Fig. 2a: Classifier parameterized by sets of refinement lemmas
ϕR, separation lemmas ϕS, and threshold n, with n = 1 initially.

CLASSCHECKER ←− ({ f (v̄1) 7→ t1, . . . , f (v̄n) 7→ tn}, [p1, . . . , pm] )

3) For a given f (v̄) 7→ t, let eval(v̄) = [ |=T p1(v̄), . . . , |=T pm(v̄) ]

4) If there are no f (v̄i) 7→ ti, f (v̄ j) 7→ t j ∈ tassign, for 1≤ i < j≤ n,
such that eval(v̄i) = eval(v̄ j) and 6|=T ti ' t j

Then, return candidate solution TOITE(tassign, preds)

5) Otherwise, return separation lemma

E1∧Fs1 6' Fs′1 ∧P1 ' p1∧·· ·∧Em∧Fsm 6' Fs′m ∧Pm ' pm⇒ Fi ' F j

in which s′1 < · · · < s′m < j, E1 = F1 ' ·· · ' Fs1−1, and, for l > 1,
El =

∧
Fk1 ' Fk2 , such that eval(v̄k1) = eval(v̄k2), |=T tk1 ' tk2 ,

k1 < k2, k1 ≤ sl or k1 ≤ s′l, and k2 > sl, s′l.

Fig. 2b: Checks if a candidate classifier, given by a term assignment
and an ordered list of predicates, can correctly classify sample. We
assume a natural extension of TOITE for candidate classifiers.

solution is an expression of size 5, Unif+PI is able to assemble
it by unifying partial solutions of size up to 1 using predicates
of size 1. Our implementation of Unif+PI in the CVC4SY solver
finds this solution for f in 1s, while CVC4SY’s CEGIS takes
18s and EUSolver, which cannot apply its D&C and is forced
to fall back to CEGIS, takes 4m20s.

A. SMT-based decision tree learning

The SMT-based classifier (SMTCLASSIFY) and the classi-
fication checker (CLASSCHECKER) are described at a high
level in Figures 2a and 2b. For the enumeration of terms
and predicates, SMTCLASSIFY relies on an underlying SMT
solver. It encodes syntax restrictions as logical constraints
whose model values correspond to expressions generated by
the grammar, exploring the search space exhaustively [27, 28].
Thus ϕR and ϕS are constraints in terms of metavariables
corresponding to data points and ranging over expressions
to be enumerated. For instance, (L3) from Example 5 is
normalized as F1 ' 2 ∧ F2 ' 2 ⇒ F3 ' 1 ∧ F4 ' 1, with
metavariable F1 corresponding to point f (1,1) and so on.
Separation lemmas also depend on metavariables, with Pi

denoting the i-th predicate in the classifier.
Conditions (1a)-(1c) in SMTCLASSIFY refer to generating

terms and predicates within the current threshold, given by n.
Condition (1a) requires the number of distinct terms assigned
to be at most n. This ensures a minimally diverse term
assignment, considering first partial solutions that cover more
data points. The number of predicates, n−1, is bound by the
number of distinct terms. The rationale is that, in building a
classifier, one should not need more predicates than distinct
partial solutions. Conditions (1b) and (1c) require that no term
or predicate have a bigger size than log2(n), thus biasing
the search towards many small expressions. These conditions
guarantee that we only try a new combination of maximum
term size, maximum predicate size, number of distinct terms
and of distinct predicates once all candidate classifiers in

the current threshold fail. Conditions (1d) and (1e) require
consistency with the input refinement and separation lemmas.

Once SMTCLASSIFY produces a candidate classifier con-
sistent with the lemmas, CLASSCHECKER is invoked to deter-
mine whether it correctly classifies the sample. This is based
on whether the sample is separable. This is not the case when
two data points have the same evaluation vectors in the ordered
predicate list, computed in Step (3), but are assigned different
terms. This test is made in Step (4). If the sample is separa-
ble, a candidate solution is built as a conditional expression
corresponding to the classifier. Otherwise, a separation lemma
is generated, in Step (5). The lemma can be seen as a trace of
incrementally building a decision tree, with predicates added
to resolve separation conflicts: points assigned different terms
having the same classification in the current tree. We explain
the structure of the separation lemma in detail in Example 6
below, showing a complete execution of Unif+PI. Intuitively, it
is structured so that the i-th predicate solves the i-th separation
conflict. This conflict is witnessed, after the (i−1)-th conflict,
by (a) Ei, a series of points with the same classification, (b)
a pair of points (Fsi ,Fs′i

) assigned different terms and (c) the
value of the i-th predicate separating (Fsi ,Fs′i

).
Example 6: Consider again the SyGuS problem from Ex-

ample 5. Initially the set of refinement lemmas is empty, so
no data points have been collected. The enumeration in SMT-
CLASSIFY produces a single term of size 0 as the candidate
classifier, which is trivially a candidate solution returned by
CLASSCHECKER. Say that solution is f = λx1x2. x1; its verifi-
cation will fail with, say, the counterexample {x1 7→ 1, x2 7→ 0}
which yields the refinement lemma f (1, 1) ' 2 ∧ f (1, 0) '
2⇒ f (3, 0)' 1 ∧ f (1, 2)' 1, normalized for SMTCLASSIFY

as F1 ' 2 ∧ F2 ' 2⇒ F3 ' 1 ∧ F4 ' 1. To simplify presenta-
tion we ambiguously refer to data points by their metavariables
Fi. SMTCLASSIFY starts searching for a term assignment with
a single distinct term of size 0 that is consistent with ϕR.
No such assignment exists, which forces an increase of the



F1 � F2 →
x1 ≤ x2

F2F1

→∗
x1 ≤ x2

F2, F3F1 � F4

→

x1 ≤ x2

F2, F3x2 ≤ x1

F4F1

→∗ x1 ≤ x2

F2, F3 � F6x2 ≤ x1

F4F1, F5

F1 F2 F3 F4 F5 F6

Point (1,1) (1,0) (3,0) (1,2) (−1,−1) (1,−1)

x1 ≤ x2 > ⊥ ⊥ > > ⊥
x2 ≤ x1 > > > ⊥ > >

SL = F1 6' F2 ∧ P1 ' x1 ≤ x2︸ ︷︷ ︸
1st conflict resolution

∧F2 ' F3 ∧ F1 6' F4 ∧ P2 ' x2 ≤ x1︸ ︷︷ ︸
2nd conflict resolution

∧F1 ' F5 → F3 ' F6︸ ︷︷ ︸
Unresolved conflict

Fig. 3: Step-wise computation of separation lemma for failed classification checking.

enumeration threshold. After the expansion, term assignments
now contain up to two distinct terms and one predicate, with
maximum expression size 1. The next candidate classifier
generated within this threshold that satisfies the refinement
lemma is F1 7→ x2 + x2,{F2, F3, F4} 7→ x1,P1 7→ >. Again to
simplify presentation we represent the ordered predicate list
as a mapping of indexed predicate metavariables.

We illustrate the checking of candidate classifiers by
CLASSCHECKER via the incremental building of a decision
tree as represented in a separation lemma. As soon as we
consider the points corresponding to F1 and F2, which have
different term assignments, we have a separation conflict.
Since > cannot separate (1, 1) and (1, 0), the classification
fails and a separation lemma P1 '>⇒ F1 ' F2 is produced:
if the first predicate is >, then F1 and F2 must be assigned the
same term, otherwise we would have the same conflict. Adding
this lemma to SMTCLASSIFY forces new candidate classifiers
to either equate F1 to F2 in the assignment or to provide
a new predicate. The next candidate classifier to satisfy the
constraints is {F1, F2, F3} 7→ x2 +1, F4 7→ 1, P1 7→ x2 ≤ x1.
Running CLASSCHECKER on it goes as follows:

F1, F2, F3 � F4 →

x2 ≤ x1

F4F1, F2, F3

> ⊥

Point x2 ≤ x1

F1 (1, 1) >
F2 (1, 0) >
F3 (3, 0) >
F4 (1, 2) ⊥

The first three points can be added to the same leaf since they
are assigned the same term. A separation conflict, represented
by �, occurs when F4 is added; however, it can be resolved by
the predicate P1 which separates the offending points. Thus the
sample is classified, so the candidate solution ite(x2 ≤ x1, x2+

1, 1) can be extracted from the decision tree. The verification
fails again though, and a refinement lemma f (−1,−1) '
0 ∧ f (−1,−1) ' 0⇒ f (1,−1) ' −1 ∧ f (−1, 0) ' −1, nor-

malized as F5 ' 0 ∧ F5 ' 0⇒ F6 '−1 ∧ F7 '−1, is added
to SMTCLASSIFY. A new candidate classifier satisfying the
new set of lemmas can only be generated after increasing
the threshold, now allowing 3 distinct terms and 2 pred-
icates to be used, with size up to 1. The next candidate
classifier provided to CLASSCHECKER is {F1, F5} 7→ x1 +1,
{F6} 7→ x2, {F2, F3,F4 F7} 7→ x1, P1 7→ x1≤ x2, P2 7→ x2≤ x1,
whose failed checking and resulting separation lemma are seen
in Figure 3. Note that three separation conflicts occur, first
F1 � F2, which is resolved by P1, then F1 � F4, resolved by
P2, and finally F3 �F6, which cannot be resolved. Changing
the term assignment by equating F3 (and therefore also F2)
to F6 avoids this scenario and is consistent with the previous
lemmas. With SMTCLASSIFY returning the candidate clas-
sifier {F1, F5} 7→ x1 + 1, {F2, F3, F6} 7→ x2, {F4, F7} 7→ x1,
P1 7→ x1 ≤ x2, P2 7→ x2 ≤ x1, CLASSCHECKER verifies it and
produces the minimal solution from Example 5:

x1 ≤ x2

F2, F3 F6x2 ≤ x1

F4, F7F1, F5

→λx1x2. ite(x1 ≤ x2,

ite(x2 ≤ x1, x1 +1, x1),

x2

) •

B. Unif+PI Correctness Properties

Unif+PI satisfies the following properties where ϕR is the
input set of refinement lemmas before normalization.

Theorem 1 (Soundness): The candidate solution produced
by CLASSCHECKER satisfies ϕR.

Theorem 2 (Solution Completeness): If there exists a candi-
date solution e satisfying ϕR, then SMTCLASSIFY(ϕR,ϕS,1),
in which ϕR has been normalized and ϕS is initially empty but
augmented after each failed execution of CLASSCHECKER,
generates a term assignment tassign and an ordered predicate
list preds such that CLASSCHECKER(tassign,preds) returns e.



Term assignment

SMT-based
Classifier

Predicate
Enumerator

Predicates

Fig. 4a: Unif+PI+E loop, with predicate enumeration independent
from term enumeration.

LEARN ←− ({ f (v̄1) 7→ t1, . . . , f (v̄n) 7→ tn}, {p1, . . . , pm})
1) If t1 = t2 = · · ·= tn then return t1
2) If {p1, . . . , pm}=∅ then return ⊥
3) Let p be a heuristically selected from {p1, . . . , pm} and

a) tassign> = { f (v̄i) 7→ ti | |=T p(v̄i)}, for 1≤ i≤ n
b) tassign⊥ = { f (v̄i) 7→ ti | 6|=T p(v̄i)}, for 1≤ i≤ n
c) preds = {p1, . . . , pm}\{p}

Return ite(p,LEARN(tassign>, preds),LEARN(tassign⊥, preds))

Fig. 4b: Decision tree learning algorithm based on ID3.

Moreover, e is minimal with respect to the complexity measure
used by SMTCLASSIFY.

IV. UNIF+PI WITH UNCONSTRAINED PREDICATE

ENUMERATION

The generation of separation lemmas by CLASSCHECKER

and their usage in SMTCLASSIFY, besides being instrumental
for (bounded) solution completeness, biases Unif+PI to pro-
duce candidate solutions minimal with respect to expression
size, number of distinct terms, and number of predicates.
Often, however, sacrificing completeness and minimality al-
lows problems to be solved more efficiently. We propose a
variation of Unif+PI, which we denominate Unif+PI+E, that
enumerates predicates independently of previous classification
attempts. The algorithm’s overall architecture can be seen
in Figure 4a. SMTCLASSIFY is simplified to produce only
term assignments, based solely on refinement lemmas, i.e.,
it drops conditions (1c) and (1e). An independent predicate
enumerator generates predicates in increasing order of size,
without further constraints. In this setting, more predicates
are available to the learner to solve separation conflicts and
successfully classify the sample. On the other hand, the
completeness and minimality guarantees of Unif+PI are lost.

The learning algorithm (LEARN) of Unif+PI+E is shown in
Figure 4b. It is very similar to the classical ID3 multi-label
decision tree learning algorithm [24]. It takes as input a set of
predicates and a term assignment and returns a conditional
expression corresponding to the learned classifier. Due to
the dependency between data points, it does not interleave
the labeling of leafs with choosing attributes, as in ID3.
Instead, the labeling is fixed by the term assignment built
by SMTCLASSIFY. Step 1 checks whether the input points
are assigned the same term, in which case the sample is
correctly classified, corresponding to a leaf in the decision
tree. Otherwise, a predicate is used to split the sample and
recursively attempt to classify it (Step 3), adding an internal
node to the decision tree. Classification fails when there is a
separation conflict that cannot be solved (Step 2).

LEARN is parameterized by a selection heuristic for choos-
ing predicates in Step 3. This choice influences not only the
size of the classifier, as in ID3, but also whether classification

succeeds, since the labeling is fixed. We follow previous work
on using extensions of information gain heuristics to function
and invariant synthesis [4, 14]. Note, however, that because
of our fixed labeling, we do not need to compute information
gain at the level of the refinement lemmas, as done in the ICE
framework for invariant synthesis [14].

The price we pay for a simpler enumeration is losing the
tight integration between predicates and term assignments
given by the separation lemmas in Unif+PI. Separation con-
flicts in Unif+PI+E are only resolved by enumerating new
predicates, which can make the procedure diverge, since term
assignments are not being considered exhaustively.

Another issue is that the large number of predicates avail-
able for classification makes Unif+PI+E heavily dependent
on the predicate selection heuristic, as it influences not only
whether a decision tree can be learned, and its size, but
also which predicates compose the decision tree. This is
problematic when a predicate that might be crucial for building
the actual solution for the function to synthesize, not only a
classifier for the sample, is ignored because other predicates
that do not lead to a successful solution are selected.

V. EXPERIMENTS

We implemented our approach in CVC4SY [25]. We eval-
uated1 its two flavors in comparison with CVC4SY’s enumer-
ative CEGIS and with LOOPINVGEN [22], the winner of the
invariant track in SyGuS-COMP 2018 [3]. For Lustre invariant
synthesis problems, we also compared our implementation
with the Kind 2 model checker [8, 18]. We refer to CVC4SY’s
configurations by:

• CVC+C: CVC4SY’s enumerative CEGIS (previous work)
• CVC+UPI: CVC4SY’s Unif+PI (from Section III)
• CVC+UPI+E: CVC4SY’s Unif+PI+E (from Section IV)

The benchmark suite from the SyGuS-COMP 2018 contains
three kinds of benchmarks: PBE benchmarks, general function
synthesis benchmarks, and invariant synthesis benchmarks. We
do not consider PBE nor single invocation [27] benchmarks
since specialized procedures [2, 4, 27] are better suited for
these restricted fragments. Further eliminating benchmarks

1Full data at http://cvc4.cs.stanford.edu/papers/FMCAD2019-UnifPI/

http://cvc4.cs.stanford.edu/papers/FMCAD2019-UnifPI/


Solved Unique Total time Fastest Shortest

CVC+C 341 30 436251s 245 259
CVC+UPI+E 332 47 414356s 306 222
CVC+UPI 291 3 494534s 236 231
LOOPINVGEN 298 7 433273s 261 289

CVC-PORT 400 - 31476s 379 306

Fig. 5a: Results for 567 invariant SyGuS benchmarks, 1800s timeout.
“Unique” is problems solved only by that configuration. “Fastest” (resp.
“Shortest”) is how often a solution was reported among the fastest
(resp. shortest) with respect to other configurations. The criteria for
computing “fastest” and “shortest” are as in SyGuS-COMP 2018 [3].
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Fig. 6a: Solving time comparisons for CVC4SY configurations.
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Fig. 6b: Solving time comparisons for CVC4SY vs LOOPINVGEN.

whose syntax restrictions forbid conditional expressions leaves
only 16 general function synthesis benchmarks for consider-
ation. We therefore focus our evaluation on the remaining
127 invariant synthesis benchmarks and on an extra 440
invariant synthesis benchmarks stemming from the verification
of Lustre [17] programs in the standard test suite of Kind 2.

A. Comparison against other SyGuS solvers

Results are summarized in Figure 5a. CVC+C solves the
most problems, slightly ahead of CVC+UPI+E, while CVC+UPI

and LOOPINVGEN have comparable performance. However, as
seen in Figure 5b, CVC+UPI+E solves problems much faster
than CVC+C, except for some hard problems (>1000s), and
CVC+UPI is faster or comparable on problems requiring up
to 100s. Moreover, as indicated in Figure 6a, in comparison
with CVC+C on commonly solved problems, CVC+UPI is on
average 1.5× faster. Even more notably, CVC+UPI+E is over
100× faster. We attribute this to solutions to many invariant
synthesis problems involving Boolean combinations of small
literals, where divide and conquer techniques like Unif+PI
are more efficient. On the other hand, CVC+C excels when
invariants are only expressible by single literals with large
term sizes, where divide and conquer is not helpful.

Overall, CVC+UPI+E has compelling advantages over the
other solvers: it solves almost as many problems as CVC+C;
has the greatest number of uniquely solved problems; and
is often orders of magnitude faster on commonly solved
problems, as can be seen in the plots in Figures 6a and 6b.
A disadvantage is that its synthesized invariants are gener-
ally bigger than those produced by LOOPINVGEN and other
CVC4SY configurations, which seek minimal solutions. Often,

CVC+UPI+E can find invariants that combine several simple at-
tributes, while a smaller solution could be built by using fewer,
more complex, attributes or by considering different term
assignments for the data points. Furthermore, CVC+UPI+E

may fail to find solutions that CVC+C and CVC+UPI eventually
find thanks to their solution-completeness guarantees.

The performances of CVC+UPI and LOOPINVGEN are com-
parable, with CVC+UPI solving 29 problems not solved by
LOOPINVGEN, and LOOPINVGEN solving 36 not solved by
CVC+UPI. However, it is overall slower on commonly solved
problems with respect to both LOOPINVGEN and CVC+UPI+E.
We believe this is due to its exhaustive search up to a threshold,
which recall from Section III-A is related to the size and
number of predicates used in the classification.

Given the different strengths of both CVC+UPI and
CVC+UPI+E with respect to CVC+C, a portfolio (CVC-PORT)
of the three is close to the best of all worlds. As shown in
Figure 5a, it solves a total of 400 problems (100 more than
LOOPINVGEN), is significantly faster than all configurations
taken independently, and produces shortest solutions at a
similar rate as CVC+C and CVC+UPI. Note that CVC-PORT

is a virtual best solver, not an automatic scheduler.

B. Comparison against a model checker

To put the performance of our SyGuS approaches into
perspective, we include a comparison with the Kind 2 model
checker on its own set of benchmarks. In particular, this
evaluation shows how our general-purpose function synthesis
compares with specialized state-of-the-art model checking
techniques. While the only invariant synthesis specific tech-



nique CVC4SY applies is post-condition strengthening, model
checking techniques heavily exploit reachability analysis.

Kind 2 employs three induction-based model checking tech-
niques: k-induction [30], IC3 [7], and generation of auxiliary
invariants [18]. The three techniques can be run in parallel and
complement each other. Kind 2 solves all the 480 benchmarks
it its test suite in less than 120 seconds. When only IC3 or
k-induction is enabled (without auxiliary invariant generation),
the number of solved instances decreases to 445 and 313,
respectively. Increasing the timeout to 1800s does not help
these techniques. In contrast, no CVC4SY configuration in
isolation can solve as many problems. However, with a 1800s
timeout, CVC+UPI+E can solve 8 problems that IC3 cannot
and 71 problems that k-induction cannot. More interestingly,
if we consider CVC-PORT, it solves more problems than k-
induction alone, 323 vs. 313, although is on average 10×
slower. Furthermore, CVC-PORT solves 82 problems that k-
induction cannot solve, and k-induction solves 72 problems
that CVC-PORT cannot solve. We consider these results en-
couraging, as our framework is general and can be used with
any theory for which a ground decision procedure is available.
This is not the case for IC3, where a key element of the
technique, the generalization of counterexamples, is highly
dependent on the theory. Nevertheless, the effectiveness of
Kind 2 shows ways of improving CVC4SY’s techniques for
syntax-guided invariant synthesis. Both IC3 and k-induction
are greatly helped using auxiliary invariants, which is a clear
direction for improving CVC4SY. A more challenging direction
is to adapt IC3 techniques to the enumerative SyGuS setting.

VI. RELATED WORK

A myriad of approaches have been developed to tackle
syntax-guided synthesis, generally as instances of CEGIS but
with varying ways of generating candidate solutions, such as
via enumerative [33], stochastic [29], symbolic [12, 26] search
or combinations thereof [2, 11, 19]. Our approach extends to
general function synthesis divide and conquer techniques [4,
21]. Conceptually, however, it is closer to invariant synthesis
techniques such as Padhi et al.’s precondition inference with
attribute learning (PIE) [23], which is the bases for LOOPIN-
VGEN, and Garg et al.’s ICE framework [13]. Both reduce in-
variant synthesis to learning a classifier for a sample built from
unrollings of the transition system and from counterexamples
for failed candidates. Differently from general function syn-
thesis, however, data points are always only labeled with >,⊥,
which allows them to operate on a significantly simpler setting.
In PIE, samples contain only positive and negative points, so
classification hinges on having attributes to resolve separation
conflicts. Attributes are generated via an enumerator, so their
overall algorithm is similar to Unif+PI+E. Candidate invariants
are generated via standard provably approximately correct

(PAC), which is biased towards small solutions, explaining
why LOOPINVGEN excels in finding concise invariants.

In ICE, samples contain implication counterexamples, so
that classification must account for the dependency between
these points. Since that is the only dependency in samples,
its focus is on extending information-gain heuristics to cope
with implications, rather than on producing a correct by
construction labeling, as in our approach, before building a
classifier. Recently, ICE has been extended to Horn clause
solving by Ezudheen et al. [10]. Similarly to our setting, they
need to cope with complex constraints relating data points.
Their decision tree learner therefore employs a Horn solver to
check that their labeling does not violate the constraints.

The SMT-based classifier in Unif+PI has similarities with
recent work by Narodytska et al. [20] on learning optimal
decision trees with SAT solvers. They fully reduce the task
of learning a minimal decision tree to a SAT problem and
show they can deal with publicly available datasets of practical
interest. Their encoding, however, tackles a significantly
simpler problem than we do, since they consider a fixed
set of attributes, only label points with >,⊥, and have no
dependencies between points.

VII. CONCLUSIONS AND FUTURE WORK

We have presented Unif+PI, a new algorithm for enumera-
tive syntax-guided synthesis based on learning classifiers using
an SMT solver. It generalizes divide and conquer enumeration
for non-point-wise specifications, thus extending the approach
to general purpose function synthesis. We also presented
Unif+PI+E, a variant that sacrifices coverage and conciseness
of solutions for better performance. We implemented both
algorithms in CVC4SY and extensively evaluated them on
standard benchmarks sets from the SyGuS and model checking
domains. Our results show that both flavors of our algorithm
lead to gains in comparison with the state of the art.

In future work we will focus on refining Unif+PI+E, which
shows more promising results. To improve convergence, we
may address the issue of not relating term assignments and
separation conflicts in a similar way to Horn-ICE [10] by
adopting partial term assignments. These would be extended
with suitable terms during decision tree learning, relying
on an underlying SMT solver to check that the assignment
still conforms with the refinement lemmas. Another direction,
which would also benefit Unif+PI, is to optimize enumeration,
thus improving scalability, by determining that parts of the
data points are irrelevant. Consider, e.g., a separation conflict
f (0,0,0,1,2,1,0) � f (1,0,0,5,2,1,3), whose resolution can be
done with predicates ranging only over f ’s first, fourth and
seventh inputs. This would reduce noise in the data by ignoring
portions of counterexamples, used to generate data points, that
are not necessary to witness solution verification failures.
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