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Abstract. The main contribution of this paper is a new method for
combining decision procedures for the word problem in equational the-
ories sharing “constructors.” The notion of constructors adopted in this
paper has a nice algebraic definition and is more general than a related
notion introduced in previous work on the combination problem.

1 Introduction

The integration of constraint solvers (that is, specialized decision procedures
for restricted classes of problems) into general purpose deductive systems (such
as Knuth-Bendix completion procedures, resolution-based theorem provers, or
Logic Programming systems) aims at combining the efficiency of the special-
ized method with the universality of the general one. Many applications of the
constraint-based systems obtained by such an integration require a combina-
tion of more than one constraint language, and thus a solver for the resulting
mixed constraints. The development of general combination methods for con-
straint solvers tries to avoid the necessity of designing a new specialized decision
procedure for each new combination of constraint languages.

For equational theories, one is usually interested in solvers for the following
decision problems: the word problem, the matching problem, and the unifica-
tion problem. In this setting, the research on combination of constraint solvers
is mainly concerned with finding conditions under which the following question
can be answered affirmatively: given two equational theories F; and E3 with de-
cidable word/matching/unification problems, is the word/matching/unification
problem for F; U F5 also decidable?

A very effective (but also rather strong) restriction is to require that F; and
FE5 be equational theories over disjoint signatures. Under this restriction, deci-
sion procedures for the word problems in F; and F5 can always be combined into
a decision procedure for the word problem in F; U Ey [10,14,13,8,7]. For the
matching and the unification problem, there also exist very general combination
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results under the disjointness restriction (see [12] for matching, and, e.g., [13,
4,1] for unification). It is not hard to extend these results to theories sharing
constant symbols [11, 7, 2]. The only work we are aware of that presents a general
combination approach for the union of equational theories having more than con-
stant symbols in common is [6], where the problem of combining algorithms for
the unification, matching, and word problem is investigated for theories sharing
so-called “constructors.”

In this paper, we restrict our attention to the word problem. The combination
result we obtain improves on the corresponding result in [6] in the following
respects. Firstly, we introduce a notion of constructors, modeled after the one
introduced in [15], which is strictly more general than the one in [6]. Whereas
[6] does not allow for nontrivial identities between constructor terms, we only
require the constructor theory to be collapse-free. Secondly, the definition of
constructors in [6] depends strongly on technical details such as the choice of an
appropriate well-founded and monotonic ordering. In contrast, our definition uses
only abstract algebraic properties. Finally, the combination procedure described
in [6], like the ones for the disjoint case [10, 13,8, 7], directly transforms the terms
for which the word problem is to be decided, by applying collapse equations!
and abstracting alien subterms. This transformation process must be carried on
with a rather strict strategy (in principle, going from the leaves of the terms to
their roots) and it is not easy to describe. In contrast, our procedure extends the
rule-based combination procedure for the word problem introduced in [2] for the
case of shared constants. It works on a set of equations rather than terms, and
its transformation rules can be applied in arbitrary order, that is, no strategy is
needed. We claim that this difference makes the method more flexible and easier
to describe and comprehend.

The next section introduces the word problem and describes a reduction of
the word problem in the union of equational theories to satisfiability of a conjunc-
tion of two pure formulae. Before we can describe our combination procedure,
we must introduce our notion of constructors (Section 3). Section 3 also contains
some results concerning the union of theories sharing constructors. In Section 4
we describe the new combination procedure for theories sharing constructors,
and prove its correctness. Section 5 investigates the connection between our no-
tion of constructors and the one introduced in [6], and includes some remarks on
how this work relates to the research on modularity properties of term rewriting
systems. Because of the page limit, we cannot give detailed proofs of our results.
They can be found in [3].

2 Word Problems and Satisfiability Problems

We will use V' to denote a countably infinite set of variables, and T'(£2,V) to
denote the set of all £2-terms, that is, terms over the signature {2 with variables in
V. An equational theory E over the signature {2 is a set of (implicitly universally
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quantified) equations between (2-terms. We use s = ¢ to denote an equation
between the terms s, t. For an equational theory E, the word problem is concerned
with the validity in F of quantifier-free formulae of the form s = ¢t. Equivalently,
the word problem asks for the (un)satisfiability of the disequation s # t in E—
where s #Z t is an abbreviation for the formula —(s = t). As usual, we often write
“s =g t” to express that the formula s = ¢ is valid in E. An equational theory
E is collapse-free iff x #g t for all variables  and non-variable terms ¢.

Given an f2-term s, an {2-algebra A, and a valuation « (of the variables in s
by elements of A), we denote by [s] the interpretation of the term s in .A under
the valuation . Also, if X is a subsignature of 2, we denote by A% the reduct
of A to the subsignature . An 2-algebra A is a model of F iff every equation
in F is valid in A. The equational theory E over the signature {2 defines an {2-
variety, i.e., the class of all models of . When FE is non-trivial i.e., has models
of cardinality greater than 1, this variety contains free algebras for any set of
generators. We will call these algebras F-free algebras. Given a set of generators
(or variables) X, an E-free algebra with generators X can be obtained as the
quotient term algebra 7 ({2, X)/=g. It is well-known that two E-free algebras
with sets of generators of the same cardinality are isomorphic.

In this paper, we are interested in combined equational theories, that is,
equational theories F of the form F := F;U Fs, where Fy and F» are equational
theories over two (not necessarily disjoint) signatures X; and X5. The elements
of X1 N Xy are called shared symbols. We call 1-symbols the elements of X, and
2-symbols the elements of X5. A term ¢ € T(X; U Xy, V) is an i-term iff its top
symbol t(e) € V' U X, i.e., if ¢ is a variable or has the form ¢ = f(¢1,...,t,) for
some -symbol f (i = 1,2). Note that variables and terms ¢ with ¢(e) € Xy N Xy
are both 1- and 2-terms. A subterm s of a 1-term ¢ is an alien subterm of t iff it
is not a 1-term and every proper superterm of s in ¢ is a 1-term. Alien subterms
of 2-terms are defined analogously. For ¢ = 1,2, an i-term s is pure iff it contains
only i-symbols and variables. A (dis)equation s =t (s # t) is é-pure iff s and ¢
are pure i-terms. It is called pure iff it is é-pure for some i € {1, 2}.

A given disequation s # t between (X U X3)-terms s,t can be transformed
into an equisatisfiable formula ¢; A @2, where ¢; is a conjunction of i-pure
equations and disequations (¢ = 1,2). This can be achieved by the usual variable
abstraction process in which alien subterms are replaced by new variables (see,
e.g., [1,3] for a detailed description of the process). Obviously, if we know that
©1 N g is satisfiable in a model A of FE; U E3, then ¢; is satisfiable in the
reduct A%¥i, which is a model of F; (i = 1,2). However, the converse need not
be true, that is, if ¢; is satisfiable in a model A; of F; (i = 1,2), then we cannot
necessarily deduce that the conjunction ¢; A @5 is satisfiable in some model A4
of E; U FEs. One case in which we can is described by the proposition below.

Proposition 1. Let A; be a model of E; (i =1,2), and X := X1 N Xy. Assume
that the reducts .A12 and AQZ are both free in the same X -variety and their
respective sets of generators Y1 and Yy have the same cardinality. If ¢; is satis-
fiable in A; with the variables in Var(p1) N Var(pa) taking distinct values over
Y; for i =1,2, then there is a model of E1 U Ey in which o1 A @2 is satisfiable.



This proposition is a special case of more general results in [15]. A simpler direct
proof in the special case can also be found in [3].

In the following, we will consider the case where the algebras A; are Fj;-
free. Unfortunately, the property of being a free algebra is not preserved under
signature reduction. The problem is that the reduct of an algebra may need
more generators than the algebra itself. For example, consider the signature
2 := {p,s} and the equational theory F axiomatized by the equations

E :={z =p(s(z)), z =s(p(x))}.

The integers Z are a free model of E over a set of generators of cardinality
1 when s and p are interpreted as the successor and the predecessor function,
respectively. Now, if X := {s}, then Z¥ is definitely not free because it does not
even admit a non-redundant set of generators, which is a necessary condition for
an algebra to be free.

Nonetheless, there are free algebras admitting reducts that are also free,
although over a possibly larger set of generators. These algebras are models of
equational theories that admit constructors in the sense explained in the next
section.

3 Theories Admitting Constructors

In the following, {2 will be an at most countably infinite functional signature,
and X a subset of (2. For a given equational theory F over {2 we define the
X-restriction of E as E¥ :={s=t|s,t€ T(X,V) and s =g t}.

Definition 2 (Constructors). The subsignature X of §2 is a set of construc-
tors for E if the following two properties hold:

1. The X -reduct of the countably infinitely generated E-free (2-algebra is an
E¥_free algebra.
2. E¥ is collapse-free.

This definition is a rather abstract formulation of our requirements on the theory
E. In the following, we develop a more concrete characterization? of theories
admitting constructors, which will make it easier to show that a given theory
admits constructors. But first, we must introduce some more notation.

Given a subset G of T(£2,V), we denote by T'(X,G) the set of terms over
the “variables” G. To express this construction we will denote any such term by
s(7) where T is the tuple made of the terms of G that replace the variables of s.
Notice that this notation is consistent with the fact that G C T(X, G). In fact,
every 7 € G can be represented as s(r) where s is a variable of V. Also notice
that T(X,V) C T(X,G) whenever V C G. In this case, every s € T(X, V) can
be trivially represented as s(7) where @ are the variables of s.

2 This characterization of constructors is a special case of the definition of constructors
in [15].



For every equational theory FE over the signature {2 and every subset X of
2, we define the following subset of T'({2,V):

Ge(X,V):={re T(2,V)|r+#g f(t) forall fe€ X and tin T(2,V)}.

We will show that, if X' is a set of constructors for E, then Gg(X, V') determines
a set of free generators for the X-reduct of the countably infinitely generated
E-free algebra. But first, let us point out the following properties of Gg(X,V):

Lemma 3. Let E be an equational theory over {2 and X C (2.

1. Gg(X,V) is nonempty iff V C Gg(X,V);
2. If V. C Gg(X,V), then E¥ is collapse-free.

Theorem 4 (Characterization of constructors). Let ¥ C 2, E a non-
trivial equational theory over 2, and G := Gg(X,V). Then X is a set of con-
structors for E iff the following holds:

1. VCAG.
2. For allt € T(2,V), there is an s(F) € T(X,G) such that t =g s(F).
3. For all s1(71),82(T2) € T(X,Q),

51(T1) =g s2(72) iff s1(01) =g s2(02),

where U1, U2 are fresh variables abstracting 71,72 so that two terms in 71,72
are abstracted by the same variable iff they are equivalent in E.

Actually, the proof of the theorem—which can be found in [3]—provides a little
more information than stated in the formulation of the theorem.

Corollary 5. Let X' be a set of constructors for E, A an E-free (2-algebra
with the countably infinite set of generators X, and a a bijective valuation of
V onto X. Then, the reduct A” is an E*-free algebra with generators Y :=
{[7]JA | 7 € Gr(X,V)}, and X C Y.

Condition 2 of Theorem 4 says that, when X is a set of constructors for
E, every {2-term t is equivalent in E to a term s(7) € T(X,G) where G :=
Gg(X,V). We will call s(7) a normal form of t in E—in general, a term may
have more than one normal form. We will say that a term ¢ is in normal form
if it is already of the form t = s(7) € T'(X, G). Because V' C G, it is immediate
that X-terms are in normal form, as are terms in G. We will say that a term ¢
is F-reducible if it is not in normal form. Otherwise, it is E-irreducible.

We will make use of normal forms in our combination procedure. In partic-
ular, we will consider normal forms that are computable in the following sense.

Definition 6 (Computable Normal Forms). Let X' be a set of constructors
for the equational theory E over the signature 2. We say that normal forms are
computable for X and E if there is a computable function

NF5: T(2,V) — T(2,G)

such that NF3(t) is a normal form of t, i.e., NF5(t) =g t.



Notice that Definition 6 does not entail that the variables of NF3 (t) are included
in the variables of t. However, if Vg := Var(NF3(t)) \ Var(t) is nonempty, then
7(NF%(t)) is also a normal form of ¢ for any injective renaming 7 of the variables
in Vp. Consequently, if V] is a given finite subset of V', we can always assume
without loss of generality that Var(NF%(t)) \ Var(t) and V; are disjoint.? As a
rule then we will always assume that the variables occurring in a normal form
NFZ%(t) but not in ¢, if any, are fresh variables.

An important consequence of Definition 6 is that, when normal forms are
computable for X and F, it is always possible to tell whether a term is in normal
form or not.

Proposition 7. Let X be a set of constructors for the equational theory E over
the signature 2 and assume that normal forms are computable for X and E.
Then, the E-reducibility of terms in T(£2,V) is decidable.

We provide below two examples of equational theories admitting constructors
in the sense of Definition 2. But first, let us consider some counter-examples:

— The signature X := 2 := {f} is not a set of constructors for the theory E
axiomatized by {z = f(x)} because Definition 2(2) is not satisfied.

— The signature X := {f} C {f,g} =: 2 is not a set of constructors for the
theory E axiomatized by {g(z) = f(g(x))} because Theorem 4(2) is not
satisfied. In fact, the term g(z) does not have a normal form. (The signature
{f, g}, however, is a set of constructors for the same theory.)

— Finally, take 2 := {f,¢9} and ¥ := {f} and consider the theory E :=
{f(g9(z)) = f(f(g9(x)))}- Then we have Gg(X,V) = VU{g(t) | t € T(2,V)}.
It is easy to see that conditions (1) and (2) of Theorem 4 hold. However,
condition (3) does not hold since f(g(z)) =g f(f(g(x))), although f(y) #g

f(f(y))-

Ezample 8. The theory of the natural numbers with addition is the most immedi-
ate example of a theory with constructors. Consider the signature Xy := {0,s, +}
and the equational theory F; axiomatized by the equations below:

z4+y+z2)=@+y)+z z+y=y+z, z+s(y)=s(z+y), z+0==x.

It can be shown that the signature X := {0,s} is a set of constructors for E; in
the sense of Definition 2. The proof in [3] uses the fact that orienting the third
and fourth equation from left to right yields a canonical term rewrite system
modulo the first two equations. Note that the restriction of E; to X (i.e., the
theory E;~ ) is the syntactic equality of X-terms.

Ezample 9. Consider the signature Xy := {0, 1, rev, -} and the equational theory
FE> axiomatized by the equations below:

z-(y-2)

=(z-y)- 2 rev(0)
rev(z -y) = r

=0, rev(l)=1,

ev(y) - rev(z), rev(rev(z)) = x.

3 Otherwise, we apply an appropriate renaming that produces a normal form of ¢
satisfying such disjointness condition.



The signature X’ := {0,1,-} is a set of constructors for Ey in the sense of
Definition 2. The proof in [3] depends on the fact that orienting the equations
from left to right yields a canonical term rewriting system. This example differs
from the previous one in that the restriction of the theory to the constructor
signature is no longer syntactic equality: By expresses associativity of “.”.

Combination of Theories Sharing Constructors

For the next results, in which we go back to the problem of combining equational
theories, we will consider two non-trivial equational theories F, Fs with respec-
tive countable signatures X'y, X5 such that X := Xy N Y5 is a set of constructors
for F; and for F5, and Elz = Ezz.

The proposition below—which is important in the proof of correctness of our
combination procedure—is an easy consequence of Proposition 1 and Corollary 5.

Proposition 10. Fori=1,2, let A; be an E;-free X;-algebra with a countably
infinite set X; of generators, and let Y; := {[r] | r € Gg(%;,V)}, where oy
s any bijective valuation of V onto X;. Let 1,2 be conjunctions of equations
and disequations of respective signature Xy,Xs. If ¢; is satisfiable in A; with
Var(p1) N Var(ps) taking distinct values over Y; for i = 1,2, then ¢1 A pa is
satisfiable in Fy U Fs.

The following theorem shows that being a set of constructors is a modular
property. Thus, the application of the combination procedure described in the
next section can be iterated.

Theorem 11. Let Fy, FEy be two non-trivial equational theories with respective
signatures X1, Xy such that X := X1 N Xy is a set of constructors for Ey and
for Es, E¥ = Ey¥ | the word problem for E; is decidable, and normal forms are
computable for X and E; for i =1,2. Then, the following holds:

1. X is a set of constructors for E := E; U F,.
2. E¥ = B\¥ = Ey”.
8. Normal forms are computable for X and FE.

The (quite involved) proof in [3] shows that the three conditions in Theorem 4
are satisfied. It depends on an appropriate characterization of Gg(X, V). Modulo
E, this set is identical to the set G’ defined below.

Definition 12. For i = 1,2, let G; := Gg,(X,V). The set G' is inductively
defined as follows:

1. Every variable is an element of G', that is, V C G'.
2. Assume that r(v) € G; fori € {1,2} and T is a tuple of elements of G' such
that the following conditions are satisfied:
(a) r(V) #g v for all variables v € V;
(b) () & X; for all components ry, of 7;
(c) the tuple T consists of all variables of r without repetitions;



(d) the tuples v and 7 have the same length;
(e) T #E 7o if T, ¢ occur at different positions in the tuple T.

Then r(7) € G'.

Notice that G; C G’ for 7 = 1,2 because the components of 7 above can also be
variables. Also notice that no element r of G’ can have a shared symbol as top
symbol since r is either a variable or a term “starting” with an element of G;.

4 A Combination Procedure for the Word Problem

In this section, we will present a combination procedure that allows us to derive
the following decidability result for the word problem in the union of equational
theories sharing constructors:

Theorem 13. Let Fy, F5 be two non-trivial equational theories of signature Xy,
X5, respectively, such that X := X1 N X5 is a set of constructors for both Fy and
Es, and E1¥ = E,”. If fori=1,2,

— normal forms are computable for X and FE;, and
— the word problem in E; is decidable,

then the word problem in E1 U E5 is also decidable.

From Theorem 11 it follows that, given the right conditions, the combination
procedure applies immediately by recursion to more than two theories:

Corollary 14. Let X be a signature and E1, ... , Ey, be n equational theories of
signature X1, ... , Xy, respectively, such that X' = X; N XY, and E*Y = E]‘E for
all distinct i,j € {1,...,n}. Also, assume that X is a set of constructors for

every F;. If for alli € {1,... ,n},

— normal forms are computable for X and E;, and
— the word problem in FE; is decidable,

then the word problem in F1 U---U E, is decidable and normal forms are com-
putable for X and E;U---UE,.

As shown in Section 2, the word problem for E := E; U E5 can be reduced to
the satisfiability problem for disequations of the form sy # tg, where sg and ¢y are
(X1 U Xy)-terms. By variable abstraction, this disequation can be transformed
into an equisatisfiable formula ¢; A 3, where ¢; is a conjunction of i-pure
equations and disequations (i = 1,2). We will use finite sets of (dis)equations
in place of conjunctions of such formulae, and say that a set of (dis)equations
is satisfiable in a theory iff the conjunction of its elements is satisfiable in that
theory. Tt turns out that the finite set of (dis)equations obtained by applying
variable abstraction is what we call an abstraction system. Before we can define
this notion, we must introduce some notation.



Let z,y € V and T be a set of equations of the form v = ¢t where v € V
and t € T(X; U Xy, V)\ V. The relation < is the smallest binary relation on
{z £y} UT such that, forallu=s,v=teT,

(xZy) < (v=t)iffv e {z,y},
(u=s) < (v=t)iff v € Var(s).

By <1 we denote the transitive and by —<* the reflexive-transitive closure
of <. The relation < is acyclic if there is no equation v = ¢ in T such that
(v=t) <t (v=t).

Definition 15 (Abstraction System). The set S := {x # y} UT is an ab-
straction system with initial formula z #Z y iff x,y € V' and the following holds:

1. T is a finite set of equations of the form v = t where v € V and t €
(T(Z1,V)UT(Z, V)\V;

2. the relation < on S is acyclic;

3. foral (u=s),(v=t)eT,
(a) if u=v then s =t;
(b) if wu=s)<(v=t) and s € T(X;,V) with i € {1,2} then t(e) & X;.

Condition (1) above states that T consists of equations between variables and
pure non-variable terms; Condition (2) implies that for all (u = s),(v=1t) € T,
if (u=s) <* (v=t) then u € Var(t); Condition (3a) implies that a variable
cannot occur as the left-hand side of more than one equation of T'; Condition (3b)
implies, together with Condition (1), that the elements of every <-chain of T
have strictly alternating signatures (..., Xy, Yo, X1, X5, ...).

Every abstraction system .S induces a finite graph Gg := (5, <) whose set of
nodes is S and whose set of edges consists of all pairs (ny,n3) € S x S such that
ny < ng. According to Definition 15, Gg is in fact a directed acyclic graph (or
dag). Assuming the standard definition of path between two nodes and of length
of a path in a dag, the height h(n) of the node n is the maximum of the lengths
of all the paths in the dag that end with n.*

We say that an equation of an abstraction system S is reducible iff its right-
hand side is FEj-reducible (i.e., not in normal form) for ¢ = 1 or ¢ = 2. The
disequation in S is always irreducible. In the previous section, we would have
represented the normal form of a term in T(X;,V) (i = 1,2) as s(q) where s
was a term in T(X,V) and ¢ a tuple of terms in Gg,(X,V). Considering that
Gg,(X,V) contains V because of the assumption that X' is a set of constructors,
we will now use a more descriptive notation. We will distinguish the variables
in g from the non-variables terms and write s(7,7) instead, where § collects the
elements of ¢ that are in V and 7 those that are in Gg,(X,V)\V.

The combination procedure described in Fig. 1 decides the word problem for
the theory F := E; U E5 by deciding the satisfiability in F of disequations of
the form sg # to where sg, tg are (X7 U X3)-terms. During the execution of the

4 Since Gs is acyclic and finite, this maximum exists.



Input: (So,to) € T(El U X, V) X T(El U X, V)

1. Let S be the abstraction system obtained by applying variable abstraction to
so Z to.

2. Repeatedly apply (in any order) Colll, Coll2, Ident, Simpl, Sharl, Shar2 to
S until none of them is applicable.

3. Succeed if S has the form {v #Z v} UT and fail otherwise.

Fig. 1. The Combination Procedure.

procedure, the set S of formulae on which the procedure works is repeatedly
modified by the application of one of the derivation rules defined in Fig. 2. We
describe these rules in the style of a sequent calculus. The premise of each rule
lists all the formulae in S before the application of the rule, where 7' stands
for all the formulae not explicitly listed. The conclusion of the rule lists all the
formulae in S after the application of the rule. It is understood that any two
formulae explicitly listed in the premise of a rule are distinct.

In essence, Colll and Coll2 remove from S collapse equations that are valid
in F; or Ey, while Ident identifies any two variables equated to equivalent X;-
terms and then discards one of the corresponding equations. The restriction that
the height of y = ¢ be not smaller than the height of = = s is there to preserve
the acyclicity of <. In these rules we have used the notation ¢[y] to express that
the variable y occurs in the term ¢, and the notation T[z/t] to denote the set
of formulae obtained by substituting every occurrence of the variable x by the
term ¢ in the set 1.

Simpl eliminates those equations that have become unreachable along a <-
path from the initial disequation because of the application of previous rules.
This rule is not essential but it reduces clutter in S by eliminating equations
that do not contribute to the solution of the problem anymore. It can be used
to obtain optimized, complete implementations of the combination procedure.

The main idea of Sharl and Shar2 is to push shared symbols towards lower
positions of the <-chains they belong to so that they can be processed by other
rules. To do that the rules replace the reducible right-hand side ¢ of an equation
x =t by its normal form, and then plug the “shared part” of the normal form
into all equations whose right-hand sides contain z. The exact formulation of
the rules is somewhat more complex since we must ensure that the resulting
system is again an abstraction system. In particular, the “alternating signature”
condition (3b) of Definition 15 must be respected.

In the description of the rules, an expression like Z = 7 denotes the set

{#z1 =7r1,...,2n =rp} where Z = (21,...,2,) and 7 = (r1,...,7), and s(g, Z)
denotes the term obtained from s(§,7) by replacing the subterm r; with z; for
each j € {1,...,n}. Observe that this notation also accounts for the possibility

that ¢ reduces to a non-variable term of Gg,(X,V). In that case, s will be a
variable, § will be empty, and 7 will be a tuple of length 1. Substitution expres-



T uZEv =ty y=r
Tlz/r] (u# v)[z/y] y=r

if t is an i-term and y =g, t for i =1 or ¢ = 2.

Colll

T z = t[y]
Coll2 (—————=
Tlz/y]
iftis an i-term and y =g, tfori =1or i =2
and thereisno (y=r) € T.

T r=s y=t

Tlz/y] y=t

if s, are i-terms and s =g, t fori =1 ori=2
and z # y and h(z = s) < h(y =¢t).

Ident

T z=t
T
if x & Var(T).

Simpl

T uZzv r=t ="
Tlx/s(@,2)[n/M]] Z2=T7 vZv =s(5,7) =N

if (a) t is an Ej;-reducible i-term for ¢ =1 or ¢ = 2,

(b) NFE, (1) = s(5,7) ¢ V,

(c) 7 non-empty,

(d) z fresh variables with no repetitions,

(e) 71 irreducible (for both theories),

(f) 51 € Var(s(g,7)) and (x = s(y,7)) < (y=7r) forno (y=r) € T.

Sharl

|

uZEv r=t J1 =71
Tfsln/ml] wZv = sf/m] Bi=7
if (a) t is an Ej;-reducible i-term for ¢ =1 or ¢ = 2,
(b) NFE,(t) = s € T(£,V)\V,
(c¢) 71 irreducible (for both theories),
(d) 1 CVar(s) and (x=s) < (y=r)forno (y=r) €T.

Shar2

Fig. 2. The Derivation Rules.

sions containing tuples are to be interpreted accordingly; e.g., [Z/7] replaces the
variable z; by r; for each j € {1,... ,n}.

In both Shar rules it is assumed that the normal form is not a variable. The
reason for this restriction is that the case where an i-term is equal modulo E; to
a variable is already taken care of by the rules Colll and Coll2. By requiring
that 7 be non-empty, Sharl excludes the possibility that the normal form of the
term t is a shared term. It is Shar2 that deals with this case. The reason for
a separate case is that we want to preserve the property that every <-chain is
made of equations with alternating signatures (cf. Definition 15(3b)). When the
equation x = t has immediate <-successors, the replacement of ¢t by the X-term



s may destroy the alternating signatures property because x = s, which is both a
¥- and a Y»-equation, may inherit some of these successors from z = ¢.°> Shar2
restores this property by merging into s all the immediate successors of x = s—
which are collected, if any, in the set 3 = 7;. Condition (d) in Shar2 makes
sure that the tuple ;3 = 71 collects all these successors. The replacement of g
by 71 in Sharl is done for similar reasons. In both Shar rules, the restriction
that all the terms in 77 be in normal form is necessary to ensure termination.

A sketch of the Correctness Proof

As a first step to proving the correctness of the combination procedure, we can
show that an application of one of the rules of Fig. 2 transforms abstraction
systems into abstraction systems, preserves satisfiability, and leads to a decrease
w.r.t. a certain well-founded ordering. This ordering can be obtained as follows:
every node in the dag corresponding to the abstraction system S is associated
with a pair (h,r), where h is the height of the node, and r is 1 if the corre-
sponding (dis)equation is reducible, and 0 otherwise. The abstraction system S
is associated with the multiset M (S) consisting of all these pairs. Let 1 be the
multiset ordering [5] induced by the lexicographic ordering on pairs.

Lemma 16. Assume that S’ is obtained from S by an application of one of the
rules of Fig. 2.

1. If S is an abstraction system, then so is S'.
2. S is satisfiable in E1 U Ey iff S’ is satisfiable in F1 U Ey .
3. M(S)a M(S").

The second point of the lemma implies soundness of our combination proce-
dure, that is, if the combination procedure succeeds on an input (sg,%o), then
S0 =E,uE, to- Since the multiset ordering T is well-founded, the third point
implies that the procedure always terminates. The first point implies that the
final system obtained after the termination of the procedure is an abstraction
system. This fact plays an important role in the proof of completeness of the
procedure. The completeness of the combination procedure, meaning that the
procedure succeeds on an input (sg,%g) whenever sy =g, UE, to, can be proved
by showing that Proposition 10 can be applied (see [3] for details).

5 Related work

In this section, we investigate the connection between our notion of constructors
and the one introduced in [6]. Before we can define the notion of constructors
according to [6], called DKR-constructors in the following, we need to introduce

5 Recall that we assume, without loss of generality, that the variables in Var(s) \ Var(t)
do not occur in the abstraction system (cf. the remark after Definition 6). Thus, the
equations in § = T are in fact successors of x = t.



the notion of a monotonic ordering. An ordering on T'(§2, V) is called monotonic
if s > ¢ implies f(...,s,...) > f(...,t,...) for all s,¢t € T(§2,V) and all
function symbols f € (2. In the rest of the section, we will consider a non-trivial
equational theory F of signature {2 and a subsignature X' of (2.

Definition 17. Let > be a well-founded and monotonic ordering on T(£2,V).
The signature X is a set of DKR-constructors for E w.r.t. > if

1. the =g congruence class of any term t € T(§2,V) contains a least element
w.r.t. >, which we denote by tlz, and
2. f(tr, .- s to)lp = f(tidm,--- ,talp) for all f € X and 2-terms ty,... ,t,.

We will call t}7 the DKR-normal form of ¢, and then say that ¢ is in DKR-normal
form whenever t = t|5. For the theory E; in Example 8, it is not hard to show
that the signature X' is set of DKR-constructors for E; w.r.t. an appropriate
well-founded and monotonic ordering.

Example 9 shows that a set of constructors in the sense of Definition 2 need
not be a set of DKR-constructors. In fact, as shown in [6], the definition of DKR-~
constructors implies that, if X is a set of DKR-constructors for E, then E¥ is
the theory of syntactic equality on Y-terms. This implies that, in Example 9,
the signature X’ is not a set of DKR-constructors for Fs.

To show that the notion of DKR-constructors is a special case of our notion
of constructors, we need a representation of the set Gg(X, V).

Lemma 18. Let X be a set of DKR-constructors for E w.r.t. >. Then Gg(X,V) =
{reT(R,V)|riz(e) ¢ T}
Using this lemma, it is not hard to show the next proposition.

Proposition 19. If ¥ is a set of DKR-constructors for E w.r.t. >, then X is a
set of constructors for E according to Definition 2.

The definition of DKR-constructors does not assume that DKR-normal forms
are computable. In [6], this is achieved by additionally assuming that the so-
called symbol matching problem is decidable.

Definition 20. We say that the symbol matching problem on X modulo F
is decidable in T(£2,V) if there exists an algorithm that decides, for all t €
T(02,V), whether there exists a function symbol f € X' and a tuple of 2-terms
t such thatt =g f(t). We say that t matches onto X' modulo F if t =g f(t) for
some f € X and some tuple t of 2-terms.

As pointed out in [6], if the symbol matching problem and the word problem
are decidable for E, then a symbol f € X and a tuple of terms % satisfying
t =g f(f) can be effectively computed, whenever it exists. In fact, once we
know that an appropriate function symbol in X~ and a tuple of {2-terms exists,
we can simply enumerate all pairs consisting of a symbol f € X and a tuple
t of 2-terms, and test whether t =g f(f). We call an algorithm that realizes
such a computation a symbol matching algorithm on X modulo E. Using such
a symbol matching algorithm, we can define a function NFfJ for £ and X' with
the following recursive definition.



Definition 21. Assume that X is set of DKR-constructors for E w.r.t. >, the
word problem for E and the symbol matching problem on X modulo E are de-
cidable, and let M be any symbol matching algorithm on X modulo E. Then, let
NF,%J‘ be the function defined as follows: For everyt e T(£2,V),

1. NF3(t) := f(NFg(t1), ... ,NF%(t,)) if t matches onto 5 modulo E and f is
the X-symbol and (t1,... ,t,) the tuple of £2-terms returned by M on input
t.

2. NF%(t) :=t, otherwise.

Lemma 22. Under the assumptions of Definition 21 the function NF% is well-
defined and satisfies the requirements of Definition 6.

This lemma, together with Proposition 19, entails that Theorem 14 in [6] can be
obtained as a corollary of our Theorem 13.

Corollary 23. Let FE1, Fy be non-trivial equational theories of signature Xy, X,
respectively, such that X := X1 NX5 is a set of DKR-constructors for both Fy and
Es. If for i = 1,2, the symbol matching problem on X modulo E; is decidable,
and the word problem in F; is decidable, then the word problem in E; U FEy is
also decidable.

A third notion of constructors has been introduced in term rewriting in the
context of modularity properties for term rewriting systems: a constructor is a
function symbol that does not occur at the top of a left-hand side of a rule.
Tt is easy to see that, for complete (i.e., confluent and strongly normalizing)
term rewriting systems, this notion of constructors is a special case of the notion
of DKR-constructors. A finite complete term rewriting system provides a deci-
sion procedure for the word problem. Although the union of two complete term
rewriting systems sharing constructors need not be complete, this union is at
least semi-complete (i.e., confluent and weakly normalizing), which is sufficient
to obtain a decision procedure for the word problem (see, e.g., [9] for details).
The main difference between this combination result and ours, in addition to
the greater generality of our constructors, is that we do not assume that the
word problem in the component theories can be decided by a complete or semi-
complete term rewriting system, that is, our approach also applies in cases where
the decision procedure is not based on term rewriting.

6 Future Work

As mentioned in the introduction, [6] also contains combination results for uni-
fication and matching, whereas the present paper is concerned only with the
word problem. Thus, one direction for future research would be to extend our
approach to the combination of decision procedures for the matching and the
unification problem as well.

Another direction would be to extend the class of theories even further by
relaxing the restriction that the equational theory over the constructors be



collapse-free. A crucial artifact to our completeness proof is the set Gg(X,V),
which is used to obtain the (countably infinite) set of generators of a certain free
algebra. When the equational theory over the constructors is not collapse-free,
Gg(X,V) is empty, and thus cannot be used to describe this set of generators.
An appropriate alternative characterization of the set of generators might al-
low us to remove altogether the restriction that the equational theory over the
constructors be collapse-free.
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