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Abstract

This paper addresses the following combination problem: given two equa-
tional theories F; and F> whose positive theories are decidable, how can one
obtain a decision procedure for the positive theory of E; U E,? For theories over
disjoint signatures, this problem was solved by Baader and Schulz in 1995. Our
main new contribution is to extend this result to the case of theories sharing
so-called constructors (and satisfying certain additional conditions). Since there
is a close connection between positive theories and unification problems, this
also extends to the non-disjoint case the work on combining decision procedures
for unification modulo equational theories.

Keywords: Combination of positive theories, decision procedures, unification
procedures.



Contents

1

Introduction
Preliminaries
Theories with Constructors

Combining Decision Procedures

4.1 The Combination Procedure . . . . . . . . ... .. ... ........
4.2 Decidability Results . . . . .. ... ... . o o oL
43 Anexample . . . ... e
4.4 Correctness of the Procedure . . . . ... ... ... ..........

Related and Further Research

13
14
15
18
23

34



1 Introduction

Built-in decision procedures for certain types of theories (like equational theories)
can greatly speed up the performance of theorem provers. In many applications,
however, the theories actually encountered are combinations of theories for which
dedicated decision procedure are available. Thus, one must find ways of combining
the decision procedures for the single theories into one for their combination. In the
context of equational theories over disjoint signatures, this combination problem has
thoroughly been investigated in the following three instances:'! the word problem,
the validity problem for universally quantified formulae, and the unification prob-
lem. For the word problem, i.e., the problem whether a single (universally quantified)
equation s = t follows from the equational theory, the first positive solution to the
combination problem was given by Pigozzi [Pig74] in 1974. The problem of combin-
ing decision procedures for universally quantified formulae, i.e., arbitrary Boolean
combinations of equations that are universally quantified, was solved by Nelson and
Oppen [NOT9] in 1979. Work on combining unification algorithms also started in
the seventies with Stickel’s paper [Sti81] on unification of terms containing several
associative-commutative and free symbols. The first general result on how to com-
bine decision procedures for unification was published by Baader and Schulz [BS92]
in 1992. Tt turned out that decision procedures for unification (with constants) are
not sufficient to allow for a combination result. Instead, one needs decision proce-
dures for unification with linear constant restrictions in the theories to be combined.
In 1995, Baader and Schulz [BS95] described a modified version of their combina-
tion procedure that applies to positive theories, i.e., positive Boolean combinations
of equations with an arbitrary quantifier prefix. They also showed [BS96] that the
decidability of the positive theory is equivalent to the decidability of unification with
linear constant restrictions.

Since then, the main open problem in the area has been how to extend these
results to the combination of theories having symbols in common. In general, the
existence of shared symbols may lead to undecidability results for the union theory
(see, e.g., [DKR94, BT02] for some examples). This means that a controlled form of
sharing of symbols is necessary. For the word problem and for universally quantified
formulae, a suitable notion of shared constructors has turned out to be useful. In
[BT02], Pigozzi’s combination result for the word problem was extended to theories
all of whose shared symbols are constructors. A similar extensions of the Nelson-
Oppen combination procedure for universally quantified formulae can be found in

[TR02].

! Actually, some of the work mentioned below can also handle more general theories. To simplify
the presentation, we restrict our attention in this paper to the equational case.



In a similar vein, we show in this paper that the combination results in [BS95]
for positive theories (and thus for unification) can be extended to theories sharing
constructors. We do that by extending the combination procedure in [BS95] with an
extra step that deals with shared symbols and proving that the extended procedure
is sound, complete and, under some assumptions on the equational theory of the
shared symbols, also terminating.

The paper is organized as follows. Section 2 contains some formal preliminaries.
Section 3 defines our notion of constructors and presents some of their properties,
which will be used later to prove the correctness of the combination procedure. Sec-
tion 4 describes our extension of the Baader-Schulz procedure to component theories
sharing constructors. It then shows under what conditions it is possible to use the
procedure to decide the positive consequences of their union, and gives an example
of a theory satisfying these conditions. Finally, it proves that the procedure is sound
and complete. Section 5 concludes the paper with a comparison to related work and
suggestions for further research.

2 Preliminaries

In this paper we will use standard notions from universal algebra such as formula,
sentence, algebra, subalgebra, reduct, entailment, model, homomorphism and so on.
Notable differences are reported in the following.

We will consider only first-order theories (with equality) over a functional signa-
ture. A signature X is a set of function symbols, each with an associated arity, an
integer n > 0. A constant symbol is a function symbol of zero arity. We use the let-
ters 3, €, A to denote signatures. Throughout the paper, we fix a countably-infinite
set V' of variables, disjoint with any signature ¥. For any X C V, T(3, X) denotes
the set of X-terms, i.e., first-order terms with variables in X and function symbols
in ¥. Formulae in the signature ¥ are defined as usual. We use = to denote the
equality symbol.

We also use the standard notion of substitution, with the usual postfix notation.
We call a substitution a renaming iff it is a bijection of V' onto itself. We say that
a subset T of T(X,V) is closed under renaming iff to € T for all terms ¢ € T and
renamings o.

If A is a set, we denote by A* the set of all finite tuples made of elements of A. If
a and b are two tuples, we denote by a, b the tuple obtained as the concatenation of
a and b. In general, if h is a map from a set A to a set B and a = (a1,...,a,) € A*
we denote by h(a) the tuple (h(a1),...,h(ay)) € B*.

If ¢ is term or a formula, we denote by Var(y) the set of ¢’s free variables. We



will often write ¢(v) to indicate, as usual, that v is a tuple of variables with no
repetitions and all elements of Var(y) occur in v.

A formula is positive iff it is in prenex normal form and its matrix is obtained from
atomic formulae using only conjunctions and disjunctions. A formula is ezistential,
or an 3-formula, iff it has the form Ju p(u,v) where p(u,v) is a quantifier-free
formula.

If A is an algebra of signature , we denote by A the universe of A and by A*
the reduct of A to a given subsignature 3 of 2. If ¢ € A and X C A we say that a
is (Q2-)generated by X in A iff a is an element of the subalgebra of A generated by
X; if B and X are sets or tuples of elements of A, we say that B is (2-)generated
by X in A iff every element of B is 2-generated in A by the elements of X. If p(v)
is an Q-formula and « is a valuation of v into A, we write (A, a) = ¢(v) iff ¢(v)
is satisfied by the interpretation (\A, @). Equivalently, where a = a(v), we may also
write A = p(a). If t(v) is an Q-term, we denote by [t]2 the interpretation of ¢ in
A under the valuation « of v. Similarly, if T is a set of terms, we denote by [T
the set {[t]4 | t € T}. If a = a(v), we may also write t*(a) instead [t] when
convenient.

A theory of signature €2, or an ()-theory, is any set of {2-sentences, that is, of closed
Q-formulae. An algebra A is a model of a theory T, or models T, iff each sentence in
T is satisfied by the interpretation (A, o) where « is the empty valuation. Let 7 be
an (-theory. We denote by Mod(T) the set of all Q-algebras that model 7. We say
that 7 is satisfiable if it has a model, and trivial if it has only trivial models, that
is, models of cardinality 1. For all sentences ¢ (of any signature), we say as usual
that 7 entails ¢, or that ¢ is valid in T, and write T = ¢, iff the theory T U {—¢}
is unsatisfiable. We call (ezistential) positive theory of T the set of all (existential)
positive sentences that have the signature of 7 and are entailed by T.

An equational theory is a set of (universally quantified) equations. We will mostly
consider equational theories in this paper. If F is an equational theory of signature (2
and ¥ is an arbitrary signature, we denote by E* the set of all (universally quantified)
Y-equations entailed by E. Note that E and E* are logically equivalent whenever
¥ = Q. When % C Q we call E* the X-restriction of E. For all Q-terms s(v), t(v),
we write s =g t and say that s and t are equivalent in E iff E |=Vvs=t.

Lemma 2.1 Let T be any theory and -y any sentence in prenex normal form. Let
4 be the 3-sentence obtained from ~y by Skolemizing its universal quantifiers. Then,

TEYif TEA.

Proof. To prove the claim we show that 7 U {—v} is satisfiable iff 7 U {—} is
satisfiable.



By the usual, well-known results about the satisfiability of Skolemized sets of
formulae, we know that 7 U {—vy} (T U {—%}) is satisfiable iff the set obtained by
Skolemizing the existential quantifiers in every formula of 7 U {—y} (T U {—%}) is
satisfiable. To prove our claim then it is enough to show that —y and —% can be
Skolemized into the same formula. But this is an easy consequence of the fact that
—4’s prenex normal form is a universal formula and that all the existential variables
in —’s prenex normal form are universal in ¥’s prenex normal form. ad

We will later appeal to the two basic model theory results below about subalge-
bras (see [Hod93] among others).

Lemma 2.2 Let B be a X-algebra and A a subalgebra of B. For all quantifier-
free formulae @(v1,...,v,) and individuals ai,...,a, € A, A E p(a1,...,a,) iff
B |: QO(al, s ,G,n).

Lemma 2.3 For all equational theories E, the set Mod(FE) is closed under subalge-
bras.

Similarly to [BS95], our procedure’s correctness proof will be based on free alge-
bras.

Definition 2.4 (Free Algebra) Given a class K of ¥-algebras and a set X, a -
algebra A is free for K over X iff

1. A is generated by X;

2. every map from X into the universe of an algebra B € K extends to a (neces-
sarily unique) homomorphism of A into B.

We say that A is free in K over X (or free over X in K) if A is free for K over X
and A € K. In either case, we call X a basis of A.

For convenience, given an equational Y-theory E, we will say that A is free in
E over X, if A is free in Mod(E) over X. In that case, we will also say that A is a
free model of E (with basis X ).2 A Y-algebra is absolutely free (over a set X) iff it is
free (over X) in the empty 3-theory, that is, in the theory consisting in an empty set
of Y-equations. We will implicitly appeal to following result, providing a sufficient
condition for the existence of free models with countably infinite basis.

*Note that for A to be a free model of E it is not enough that A is a model of E free for some
class. It must be free for the class Mod(E).



Proposition 2.5 Fvery non-trivial equational theory E admits a free model with a
countably infinite basis.>

Free models have the following well-known characterization (see, e.g., [Hod93)):

Proposition 2.6 Let E be a X-theory and A a X-algebra. Then, A is free in E over
some set X iff the following holds:

1. A is a model of E;
2. A is generated by X;

3. for all s,t € T(X,V) and injections o of Var(s =t) into X, if (A,0) Es=t
then s =g t.

We will rely on the following result from [BS95] about free algebras and positive
formulae.

Lemma 2.7 Let B be a free Q-algebra over a countably infinite set X. For all
positive Q-formulae o(v1,Va, ..., Vom_1,Von) the following are equivalent:

1. BEVYvy vy« YVom—1 Ivom. ©(V1, Ve, ...y Vom—_1, Vom);

2. there exist tuples x1,...,%Xy, € X* and by,...,b,, € B* and finite subsets
Ziy.uy Zm of X such that

(a) B E ¢(x1,b1,...,Xm,bm),

(b) all components of x1,...,%X, are distinct,

(c) for alln € {1,...,m}, all components of b,, are generated by Z, in B,
(d) for allm € {1,...,m — 1}, no components of X1 are in Zy U ---U Z,.

We will also use the following result from [BS95].

Lemma 2.8 For every equational theory E having a countable signature and a free
model A with a countably infinite basis, the positive theory of E coincides with the
set of positive sentences true in A.

One consequence of Lemma 2.8 is that the set of logically valid positive formulae
over an infinite (functional) signature is decidable.

3This free model can be obtained as the quotient term algebra T(%,V)/=x.



Proposition 2.9 Let E be the empty Q-theory for some infinite signature . Then,
the positive theory of E is decidable.

Proof. In [Mah88], Maher shows that the class of locally absolutely free Q-algebras*
is axiomatizable and that the corresponding theory 7 is complete. To prove this
result he uses a quantifier-elimination procedure that can also be used to decide the
validity in 7 of first-order 2-sentences (and so, in particular, of positive {2-sentences).

Now, let A be an absolutely free Q-algebra with a countably infinite basis. Tt is
easy to show that A is locally absolutely free and so it is a model of 7. From the
completeness of 7 it follows that an Q-sentence is true in A iff it is valid in 7. The
claim then follows by Lemma 2.8, given that A is free in E by definition. O

In this paper, we will deal with combined equational theories, that is, theories
of the form FE; U E3, where F; and Ey are two component equational theories of
(possibly non-disjoint) signatures ¥; and X, respectively.

Where . := 31 N X9, we call shared symbols the elements of 3 and shared terms
the elements of T'(X,V). Notice that when 37 and X are disjoint, the only shared
terms are the variables. We call (strict) 1-symbols the elements of ¥; (£;\X) and
(strict) 2-symbols the elements of ¥y (¥2\X). Shared symbols are both 1- and
2-symbols, and they are strict for neither signature.

A term t € T(X; U3, V) is an i-term iff its top symbol is in V U X;, i.e., if it is
a variable or has the form ¢ = f(y,...,t,) for some i-symbol f (i = 1,2). Variables
and terms ¢ with top symbol in ¥; N X9 are both 1- and 2-terms. For ¢ = 1,2, an
i-term is pure iff it contains only i-symbols and variables.

Most combination procedures, including the one described in this paper, work
with (31 UX,)-formulae by first “purifying” them into a set of ¥;-formulae and a set
of ¥g-formulae. The purification process is achieved by replacing “alien” subterms by
new variables and adding appropriate new equations. Intuitively, an alien subterm of
an ¢-term ¢ is a maximal subterm of ¢ that is not itself an i-term. When the signatures
31 and ¥, are disjoint the formal definition of alien subterm is straightforward. For
the general case of possibly non-disjoint signatures, however, the definition gets more
involved because one has to decide how to treat shared function symbols (see [BT02]
for a detailed discussion). We adopt the following definition, among a number of
possible ones.

Definition 2.10 (Alien subterms) Lett € T(X; U X9, V). If the top symbol of t
is a strict i-symbol, then a subterm s of t is an alien subterm of t iff it is not an

4An Q-algebra is locally absolutely free iff all of its finitely-generated subalgebras are absolutely
free.



i-term and it is mazimal with this property, i.e., every proper superterm of s in t is
an i-term.

If the top symbol of t is a shared symbol, then for i = 1,2, let S; be the set of all
(proper) mazimal subterms of t whose top symbol is a strict i-symbol.

e IfS1 #0, then t is considered to be a 1-term, i.e., a subterm s of t is an alien
subterm of t iff it is not a 1-term and it is mazimal with this property.

e If Sy =0 and Sy # 0, then t is considered to be a 2-term, i.e., a subterm s
of t is an alien subterm of t iff it is not a 2-term and it is mazimal with this
property.5

We extend the definition of alien subterm from terms to atomic formulae by
treating the equality symbol as if it was a shared function symbol.

There is a standard purification procedure that when 3; and X4 are disjoint can
convert any set S of equations of signature X1 U 35 into a set of pure equations (see
[BS95] among others). With the definition of alien subterm above, this procedure
applies unchanged even when ¥; and Y9 are not disjoint.

The gist of the procedure is to abstract by a fresh variable v, each alien subterm
s of an equation in S and add the equation vs = s to S. This abstraction process
is applied repeatedly to S until no more subterms can be abstracted. It is not hard
to prove that the purification procedure always terminates, and produces a set of
equations that is satisfiable in a (31 U 39)-algebra A iff the original set is satisfiable
in A.

3 Theories with Constructors

In the next section we show how the combination procedure described in [BS95]
generalizes to some cases of component theories with non-disjoint signatures. The
main requirement for this generalization will be that the symbols shared by the two
theories are constructors as defined in [BT02, TR02]. We start this section then by
providing a formal definition of constructors and related notions, plus a few results
on them that will be useful in proving the correctness of the generalized combination
procedure.

For the rest of the section, let E be a non-trivial equational theory of signature
Q. Also, let X be a subsignature of ).

5If S; = and S» = 0, then t is pure and so it has no aliens subterms.



Definition 3.1 (Constructors [BT02]) The signature ¥ is a set of constructors
for E iff for every free model A of E with a countably infinite basis X, A™ is a free
model of E* with a basis Y including X.

It is easy to show that the both empty signature and the whole signature (2
are always a set of constructors for E. Consequently, our combination results are a
generalization of the known results for the disjoint case. For non-empty and proper
subsignatures of ), however, it is usually non-trivial to show that they are a set
of constructors for £ by using just the definition above. Instead, using a syntactic
characterization of constructors given in terms of certain subsets of T'(€2, V') is usually
more helpful. We provide this characterization below because we will use it in some
of our proofs. Before that though we need a little more notation.

Given a subset G of T(Q,V), we denote by T'(3,G) the set of terms over the
“variables” G. More precisely, every member of T'(3,G) is obtained from a term
s € T(%,V) by replacing the variables of s with terms from G. To express this
construction we will denote any such term by s(r) where r is a tuple collecting the
terms of G that replace the variables of s. Note that this notation is consistent with
the assumption G C T(X, @). In fact, every r € G can be represented as s(r) where
s is a variable of V. Also note that T(X,V) C T(X2,G) whenever V C G. In that
case, every s € T(X, V) can be trivially represented as s(v) where v are the variables
of s.

Definition 3.2 (X-base) A subset G of T(2,V) is a X-base of E iff the following
holds:

1. VCG.

2. For allt € T(Q,V), there is an s(r) € T(X,G) such that
t =g S(I').
3. For all s1(ry),s2(re) € T(Z,G),

s1(r1) =g sa(r2) iff si1(vi) =g s2(va),

where vi and vo are tuples of fresh variables abstracting the terms of ri,ro
so that two terms in ri,ro are abstracted by the same wvariable iff they are
equivalent in E.

We say that E admits a 3-base if some subset G of T(Q,V) is a X-base of E.

10



Theorem 3.3 (Characterization of constructors) The signature ¥ is a set of
constructors for E iff E admits a 3-base.

From the definition of ¥-base and the proof of the theorem above it is possible
to show the following.

Corollary 3.4 Where A is a free model of E with a countably-infinite basis X, let
a be an arbitrary bijection of V onto X. If G is a X-base of E then A” is free in
E* over the superset [G]2 of X.

A proof of both the theorem and the corollary can be found in [BT02].

In the following, we will assume that the theories we consider admit ¥-bases
closed under renaming. This assumption is necessary for technical reasons, as it
is used in the proof of soundness of the combination procedure we describe later.
Although it is not clear if it can be made with no loss of generality, it seems to be
satisfied by all “sensible” examples of theories admitting constructors.® Also note
that the same technical assumption was needed in our work on combining decision
procedures for the word problem [BT02].

A general class of theories admitting ¥-bases closed under renaming, which we
will use later, is described in the following lemma.

Lemma 3.5 Let F be a non-trivial equational theory of signature ¥ and let F' be
the empty A-theory for some signature A disjoint with 3. The (XUA)-theory FUF'
admits a X-base closed under renaming.

Proof. Let E := F U F'. We prove that the set G below, which is clearly closed
under renaming, is a Y-base of E:

G = VU{te T(EUA,V) |t starts with a A-symbol}.

It is immediate that G satisfies Point 1 and Point 2 in the definition of ¥-base
(Definition 3.2). To prove that G satisfies Point 3 it is enough to show the following:
if s1, 89 are X-terms and o is a substitution that maps distinct variables to non-F-
equivalent terms of GG, then s; #pg so implies s10 #g s20. For that we will appeal to
some results in [BS96] on the union of non-trivial and signature-disjoint equational
theories.

Applying unfailing completion to E yields a (possibly infinite) ordered term
rewriting system R. By arguing as in [BS96] (page 222) one can show that R is

5Theories admitting X-bases not closed under renaming are easy to construct. The open question
is whether there are theories none of whose X-bases are closed under renaming.

11



confluent and terminating’ and coincides with the union of the term rewriting sys-
tems Rp and Rpr obtained respectively by applying unfailing completion to F' and
F'. In our special case, where F' is the empty theory, the system Rp is empty,
which means that no A-symbols occur in R. It follows that the R-normal form of a
(2 U A)-term starting with a A-symbol also starts with a A-symbol (the same one).

We say that a substitution o into (X U A)-terms is R-normalized iff vo is irre-
ducible by R for all v € V. Let s1, s be two X-terms. Lemma 4.1 in [BS96] states
that for all R-normalized substitutions o,

s10 =g sqo iff (Sla)ﬂ =g (820)7r (1)

where 7 is an “abstraction” function that replaces variables and subterms starting
with a A-symbol by new variables so that two terms are replaced by the same variable
iff they have the same R-normal form.

Now assume that s; #g s2 and consider a substitution ¢ into terms of G that
maps distinct variables to non-FE-equivalent terms of G. Clearly, for all distinct
u,v € V, uo and vo start with a A-symbol and have distinct R-normal forms. We
can assume that o is R-normalized. In fact, for all variables v for which ve € V C G,
vo is already R-irreducible; for all variables v for which vo € G\ V, the R-normal
form of vo (which is E-equivalent to vo) starts with a A-symbol, as observed earlier,
and so it too is in G. Therefore, we can consider in place of ¢ the substitution that
maps every v € V to the R-normal form of vo without loss of generality. It is easy
to show then that for i = 1,2, (s;0)™ = s;p for some renaming substitution p. This
entails that (s10)" =g (s20)™ iff s1 =g s2. Since s1 #g s9 by assumptions, it follows
from (1) that s10 #g sq0. O

It is shown in [BT02] that, under the right conditions, constructors and the
property of having Y-bases closed under renaming are modular with respect to the
union of theories.

Proposition 3.6 For i = 1,2 let E; be a non-trivial equational ¥;-theory. If ¥ :=
31 N 39 is a set of constructors for Eyv and for Fo and the Y-restrictions of Ej
and of Ey coincide (i.e. E> = EQE), then X is a set of constructors for Fy U Es.
Furthermore, if both F1 and Eo admit a X-base closed under renaming, then F1U Es
also admits a X-base closed under renaming.

A useful consequence of Proposition 3.6 for us will be the following.

"Strictly speaking, R is terminating only on ground terms. However, we can consider instead of
F' the empty (A UV)-theory F” where V is treated as a set of constant symbols. It is immediate
that all terms t1,t, € T(ZUA,V) are also in T(XUAUYV, D) and that t1 =pyp: t2 iff t1 =pypr to.

12



Proposition 3.7 Let E be an Q-theory and let E' be the empty A-theory for some
signature A disjoint with Q. If X C Q is a set of constructors for E, then it is a set of
constructors for EU E'. Furthermore, if E admits a X-base closed under renaming,
then so does EU E'.

Proof. Let F be the Y-theory E*, which is certainly non-trivial (otherwise E would
be trivial too). By Lemma 3.5, F U E' admits a X-base closed under renaming. By
Proposition 3.3, this entails in particular that ¥ is a set of constructors for F' U E'.
It is easy to see that F' U E' is non-trivial. By construction of F, the theories F
and F U E' have the same Y-restriction. It follows from Proposition 3.6 that X is a
set of constructors for E U (F U E'), and that E U (F U E') admits a ¥-base closed
under renaming whenever E does. The claim then follows from the fact that £ U E’
is logically equivalent to EUFUE' = EUE*UE'. |

4 Combining Decision Procedures

In this section we present a variant of the Baader-Schulz procedure for combining
decision procedures for the validity of positive formulae in equational theories. Ex-
tending Baader and Schulz’s results in [BS95], our variant applies to two non-trivial
equational theories that may share function symbols as long as these symbols are
constructors for both theories and are defined in the same way in each of them.

More precisely, we will consider two theories F; and E5 that satisfy the following
assumptions for 7 = 1,2, which we fix for the rest of the section:

e F; is a non-trivial equational theory of some countable signature 3;;
e Y := 3 NXs is a set of constructors for E;;

o E1¥ = By

e FE; admits a -base closed under variable renaming.

Let E := E; U Ey. It is proven in [BT02] that, under the assumptions above,
E* = E1” = E>”. In the following then, we will also use E* to refer indifferently to
E12 or EQE.

The combination procedure will use two kinds of substitutions that we call, after
[TRO2], identifications and X-instantiations. Given a set of variables U, an identifi-
cation of U is a substitution defined by partitioning U, electing a representative for
each block in the partition, and mapping each element of U to the representative in
its block. A X-instantiation of U is a substitution that maps some elements of U to

13



non-variable ¥-terms and the other elements to themselves. For convenience, we will

assume that the variables occurring in the terms introduced by a X-instantiation are

always fresh.

4.1

The Combination Procedure

The combination procedure takes as input a positive existential (31 U ¥5)-formula

Jw. p(w) and outputs, non-deterministically, a pair of sentences: a positive ¥;-

sentence and a positive Yg-sentence. The procedure consists of the following steps.

1.

Convert into DNF.
Convert the input’s matrix ¢ into the disjunctive normal form iy V --- V 1,
and choose a disjunct ;.

Convert into Separate Form.

Let S be the set obtained by purifying as described in Section 2 the set of
all the equations in ;. For i = 1,2, let ¢;(v,u;) be the conjunction of all
Y;-equations in S, with v listing the variables in Var(p1) N Var(pz) and u;
listing the remaining variables of ;.

Instantiate Shared Variables.
Choose a Y-instantiation p of Var(v) = Var(p1) N Var(p2).

Identify Shared Variables.
Choose an identification & of Var(p1p) N Var(p2p) = Var(vp). For i = 1,2, let

¥ = pipt.
Partition Shared Variables.
Group the elements of Vi := Var(vpl) = Var(¢|) N Var(y)) into the tuples

Vi, ..., Vom, with 2 < 2m < |V;| + 1, so that each element of V; occurs exactly
once in the tuple vq,...,vopy.?

Generate Output Pair.
Output the pair of sentences

E|V1 VVQ s E|V2m_1 VVQm 3111. (p’l,
Vv1 E|V'2 e VVmel E|V2m 3112. (p’2

Ignoring inessential differences and our restriction to functional signatures, this

combination procedure differs from the one by Baader and Schulz [BS95] only for

8Where X-equations are considered arbitrarily as either 31- or Xs-equations.
9Note that some of the subtuples v; may be empty.
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the presence of Step 3. Note however that for component theories with disjoint
signatures, the case considered in [BS95], Step 3 is vacuous because ¥ is empty. In
that case then the procedure above reduces to that in [BS95]. Correspondingly, our
requirements on the two component theories also reduce to that in [BS95], which
simply asks that F£; and Es be non-trivial. In fact, as observed earlier, when ¥ is
empty it is always a set of constructors for E; (i = 1,2), with the whole T(%;,V)
being a ©-base closed under renaming. Moreover, E;” is equal to Es” because they
both coincide with the theory {v =v | v € V}.

An important thing to notice about Step 3 in the procedure above is that, con-
trary to the other non-deterministic steps of the procedure, its non-determinism is
not finitary. The reason is that in general there are infinitely-many possible -
instantiations to choose from. This means that, without further restrictions, the
combination procedure above cannot be used as a decision procedure. One viable,
albeit strong, restriction for obtaining a decision procedure is described in the next
subsection.

Like the one it extends, this combination procedure is sound and complete in the
following sense.

Theorem 4.1 (Soundness and Completeness) For all possible inputs sentences
Iw. o(w) for the combination procedure, E1 U Ey |= Iw. o(w) iff there is a possible
output (y1,7v2) such that E1 =1 and E3 |= 7.

We will prove this result in Section 4.4. Before, we describe the extended decid-
ability results the new procedure leads to.

4.2 Decidability Results

With our combination procedure we are able to properly extend the following com-
bined decidability results of [BS95].

Theorem 4.2 For i = 1,2, let F; be a non-trivial equational theory of countable
signature ;, where Q1 and Qo are disjoint. If the positive theories of F1 and of Fo
are decidable, then the positive theory of Fy U Fy is also decidable.

The extension of course is obtained by relaxing the requirement that the signa-
tures of the component theories be disjoint. We show in the following that the result
above also applies to theories sharing constructors, provided that the equivalence
relation defined by the theories over the constructor terms is bounded in a sense
described below.
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Definition 4.3 Let E be an equational Q-theory. We say that equivalence in E is
finitary modulo renaming iff there is a finite subset R of T(Q2, V) such that for all
s € T(R,V) there is a term t € R and a renaming o such that s =g to. We call R
a set of E-representatives.

When (2 in the above definition is empty, equivalence in E is trivially finitary—
with any singleton set of variables being a set of F-representatives. The same is true
if Q is a finite set of constant symbols. In that case, a set of E-representatives consists
of one variable and all the constants of 2. For a simple non-trivial example consider
the theory E := {Vz. z = s(s(s(z)))} and Q := {0,s}. One set of E-representatives
is {0,s(0),s(s(0)),v,s(v),s(s(v))} where v is any element of V.

Whenever E*, the Z-restriction of the theories E1 and Ej fixed earlier, is finitary
modulo renaming, the decidability of the positive theories of Fy and of Fs yields the
decidability of the positive theory of E; U Eo. Similarly to [BS95], we will show this
result via a boot-strapping process that starts with a combination result immediately
based on the combination procedure’s soundness and completeness.

Proposition 4.4 Assume equivalence in E* is finitary modulo renaming. If the
positive theories of F1 and of Eo are both decidable, then the positive 3-theory of
FE1 UE, is also decidable.

Proof. Let R be a set of E>-representatives. By Theorem 4.1, the validity in £, U Ey
of a positive 3-sentence Ivp(v) is reducible to the validity in E; of a positive sentence
1 and the validity in E5 of a positive sentence 7,, where (1, 72) is one of the possible
outputs of the combination procedure on input ¢(v). We can prove the claim then
by showing that such a reduction is effective. For that, it is enough to show that each
step of the combination procedure is finitary'? and executable in finite time, which
is easily done for all steps but Step 3. Step 3 is clearly executable in finite time;
but is not finitary when ¥ contains function symbols of non-zero arity because then
there are infinitely-many instantiations into Y-terms. However, since E* is finitary
modulo renaming, Step 3 is readily made finitary without loss of completeness. In
fact, it is enough to choose only instantiations of the shared variables into a variant
of terms in the (finite) set R. Each such variant is obtained from a term ¢t € R by
simply replacing t’s variables with fresh ones. O

Lemma 4.5 Let i € {1,2} and let E3 be the empty X3-theory for some countably-
infinite signature Y3 disjoint with ;. If the positive theory of F; is decidable, then
the positive theory of E; U E3 is also decidable.

10Tn the sense that it can have only finitely many alternative executions—recall that the procedure
is non-deterministic.
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Proof. Assume that positive theory of E; is decidable. We know from Proposition 2.9
that the positive theory of Ej3 is decidable. Since ; and Y3 are disjoint, we can
immediately conclude by Theorem 4.2 that the positive theory of E; U E3 is also
decidable. O

We are now ready for our main decidability result.

Theorem 4.6 For i = 1,2, let E; be a non-trivial equational theory of countable
signature ; such that

e Y :=%1NXs is a set of constructors for F;;

o FE; admits a X-base closed under variable renaming;
« B,C = B,

e equivalence in E;> is finitary modulo renaming.

1If the positive theories of E1 and of Ey are both decidable, then the positive theory of
FE := E1 U Ey is also decidable.

Proof. Assume that the positive theories of F1 and of F» are both decidable. Let X3
be a signature disjoint with both ¥; and ¥ and consisting of (countably) infinitely-
many function symbols of arity n, for all n > 0. Clearly, given any positive (X UX5)-
sentence v, it is possible to Skolemize its universally quantified variables so that its
Skolemized version ¥ is a (X1 U ¥y U X3)-sentence.

Now let ¥, := Y9 UX3 and consider the Xi-theory EY, := E; U E3 where F3 is the
empty theory of signature X3. The theories F; and E} satisfy all the initial assump-
tions satisfied by F; and FE5. In fact, they are both non-trivial equational theories
with a countable signature. The intersection of their signatures, which coincides
with X, is a set of constructors for both, and they both admit a ¥-base closed under
renaming. For E; this holds by assumption; for Ef, it holds by Proposition 3.7.
Finally the S-restrictions of E; and E} coincide, given that E,> = E5”, as one can
easily see.

By Lemma 4.5 we also have that the positive theory of F} is decidable. Therefore,
we can apply Proposition 4.4 to Fy and E and conclude that the positive 3-theory
of the (X1 U (32 UX3))-theory E1 UE) = E1 U (FE2U Ej3) is decidable. The claim then
follows from the fact that, for every positive (31 U Xo)-sentence and its Skolemized
version 4, F1 U Ey | v iff B4 U Es = 4 (by Lemma 2.1) and Fy U Ey | 4 iff
EyUEy U E3 =4 (by construction of 4 and Fs). 0
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4.3 An example

The reader may rightly wonder whether Theorem 4.6 is indeed a proper extension of
Theorem 4.2, as it is not evident that there are in fact component theories satisfying
all the requirements in Theorem 4.6. We discuss a simple but illustrative example of
one such theory in this subsection.

Example 4.7 Consider the signature Q := {0,s,+} and, for some n > 1, the equa-
tional theory E, axiomatized by the identities

(2)

Tty = y+u, (3)

s+sly) = s+, (4)

(5)

(6)

z+ (y+2) (x+y) + =,

zt+0 = =z, 5
s"(z) 6

Z.

where as usual s"(x) stands for the n-fold application of s to z. We show below that,
for Ey and the subsignature ¥ := {0,s} of Q, all the assumptions of Theorem 4.6
are satisfied.

Proposition 4.8 Let ), E,, Y. be as in Example 4.7. Then the following holds.

1. E, is non-trivial.
2. Equivalence in EZ is finitary modulo renaming.
3. X is a set of constructors for E, with a 3-base closed under renaming.

4. The positive theory of E,, is decidable.

Proof. (1) Immediate consequence of the fact that n > 1 and the non-negative
integers modulo n are a model of E,,.

(2) This point follows from the fact that every X-term contains at most one
variable and every term in T'(%, {v}) is equivalent in E,* to a term in

{s™(0) |0 <m<n}U{s™(v) | 0<m < n}

(3) To prove this point we will implicitly appeal to standard results about term
rewriting systems modulo an equational theory. The reader is referred to [JK86,
BN98] for more details about them.

Let AC denote the equational theory defined by the first two axioms of F,. It
is not hard to show that orienting the remaining axioms from left to right yields
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a canonical term rewriting system R modulo AC. Consequently, every (-term ¢
has a computable R-normal form t|, and normal forms of F,-equivalent terms are
equivalent modulo AC. We show that the set

G = {r|reT(Q,V)andr]is a variable or starts with +},

is a X-base for F,. Note that the normal form of each element of G is either a variable
or a sum of variables. If 7 is a renaming and r € T(Q, V), then (r7)] = (r))w. This,
together with the fact that the set {¢ | ¢ is a variable or starts with +} is closed
under renaming, implies that G is closed under renaming.

Now, the first property required by Definition 3.2 is satisfied by G by definition
since vl = v for all v € V. For the second property, let ¢ be an arbitrary Q-
term. Its R-normal form t| is either a ¥-term (and thus a term in T'(X,G)), or
some term s”(r) where 0 < m < n and r starts with +. Since the subterm r of
the normal form % is itself in normal form, we know that » € G. It follows that
t =g, tl =s"(r) € T(3,G).

To prove that G satisfies the third property of 3-bases, it is enough to show the
only-if direction since the if-direction is trivial. Thus, consider two F,-equivalent
elements t,ty of T(X,G). For i = 1,2, t; is either (i) an element of T'(X,0) or (ii) of
the form t; = s™i(r;) where m; > 0 and r; € G. In the second case, ;] is a variable
or a sum of variables. Since a term in T'(X, () obviously cannot be E,,-equivalent to
a term containing variables, either the first case holds for both terms, or the second
case holds for both terms. In the first case, the third property of ¥-bases obviously
holds since nothing is abstracted. In the second case, let v1,v9 be variables such that
vy = v iff 11 =g, To. We must show that s™ (v1) =g, s"2(v2).

To this purpose, we consider the R-normal forms of ¢1,%2. We claim that ¢;] =
s*i(r;]) where k; is the remainder obtained when dividing m; by n. Obviously, this
term can be obtained from ¢; = s™i(r;) by applying the rewrite rules of R. In
addition, since ;] is a variable or a sum of variables, no rule of R applies to s¥(r;|),
which proves the claim. Since %1,y were assumed to be E,-equivalent, their normal
forms are equivalent modulo AC. This implies that k&1 = ko and 71| =a¢ 7ol.
Consequently m; = mg (mod n) and 1 =g, 1l =g, T2} =g, r2. The second
identity implies that v; = v9 and the first that s™ (v1) =g, s"2(v1). This completes
the proof that G satisfies the third property of 3-bases.

In conclusion, we have shown that G satisfies all requirements of Definition 3.2
and so is a X-base of F,,.

(4) From general results in [BS96] on positive theories and unification problems
we know that the positive theory of F, is decidable iff E,-unification with linear
constant restrictions is decidable. We prove this point then by sketching a decision
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procedure for F,-unification with linear constant restrictions. But first, we restrict
our attention to unification with constants.

Assume that ¢, ¢, are two Q-terms containing exactly the variables vy, ..., vy (for
some £ > 0) and additional constant symbols from a set C := {cy,..., ¢y}, disjoint
with Q. It is easy to see that ti,to are E,-unifiable iff there is an E,-unifier ¢ of
t1,t2 such that vjo € T(QUC,0) for all j € {1,...,4}.

Let ¢ be a substitution into ground (2 U C)-terms. Without loss of generality we
may assume that the terms #1,%2 as well as the terms vjo are all in R-normal form.
Under this assumption, it is easy to see that, modulo AC, t; is of the form

¢ A
t; = Sm’(z a; v + Z bi,k Ck)s
j=1 k=1
where a; j v; and b; i ¢, above abbreviate respectively the sum

vj+...+v; and cp+...+¢cp
— ——

a;.j times bi,k times
for some a; ;,b;x > 0.1! Analogously, for every j € {1,...,¢} the term z ;o is of the
form
el
T;0 = sPi (Z dj,k Ck).
k=1

Now consider the term (¢;0)] for i = 1,2, which has the form s"(r;) where r; is either
a single constant from C U {0} or a sum of constants from C. It is not hard to show
that o is an Ej,-unifier of ¢; and t3 iff (1) n; = ny and (2) for each k € {1,...,¢'},
the constant ¢, occurs in 71 the same number of times it occurs in r5. In turn, these
two conditions respectively hold iff

1. the tuple (p1,...,ps) solves the equation
a11Y1+ - Fa1pye+my =ag1Yy1r+ -+ agpye+mo
in the variables y; over the non-negative integers modulo n, and
2. for each k € {1,...,¢'}, the tuple (dik,...,de) solves the equation
a11T1 g+ F a1 Top +b1 g = a1 T+ F a2 T+ bog

in the variables z;; over the non-negative integers.

- : ¢
""When every a;,; is zero, the summation 2_j—1ai,; v; stands for the constant 0.
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Since the solvability of linear equations over the non-negative integers (and over the
non-negative integers modulo n) is decidable, this shows that E,-unification with
constants is decidable.

For unification with (linear) constant restrictions, we must handle additional
unifier constraints of the sort “constant ¢, must not occur in the image of variable
z;”—see [BS96] for more details on unification with (linear) constant restrictions.
Now, a constraint like that is satisfied exactly when d; ; above is zero. Thus, to satisfy
a given set of (linear) constant restrictions one can simply replace the appropriate
variable z;; by zero in the linear equations above before solving them. It follows
then that F,-unification with linear constant restrictions is decidable, and therefore
so is the positive theory of F,,. O

We illustrate the proof of point 4 of the proposition above by showing how it
works on a specific example. Assume we want to unify the terms vy + s(v1) + ¢;
and s(v2) + s(c2) modulo the theory Fs. In addition, assume we have a constant
restriction stating that ¢o must not occur in the image of v. The respective normal
forms of the two terms to be unified are

t] := S(’U1 + v + C1) and t9:= 52(’02 + C2).
Therefore, we must solve three linear equations. One for the constant cy:
211 +1 = z91;

one for the constant cs:
2z19 = 22 + 1;

and finally one (modulo 3) for s:
2y1 +1 =y + 2 (mod 3).

First, let us consider the unification problem without the constant restriction. Then

11 =1, ®o1 =23
is a solution of the first equation;

T12=1, ®2=1
is a solution of the second equation; and

y1=2, y2=0
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is a solution (modulo 3) of the third equation. These solutions yield the substitution
o = {n~ 52(C1 +¢ca), va > c1+ ¢+ ¢y +Col
This substitution is indeed an Fs-unifier of 1, to since

tio = s(s?(cy +co) +5%(cy +c2) + 1)
=g, s(c1+c+c+ et )
=g, s*(c+c+c+ctc)
== tQO'.

Note, however, that this unifier does not satisfy the constant restriction “co must not
occur in the image of v9.” To account for this restriction, we must find a solution of
the equation

2219 = 122 + 1

for which z22 = 0. However, such a solution obviously does not exist in the non-
negative integers. Consequently, the unification problem does not have a solution
under this restrictions.

Finally, let us illustrate the connection to validity of positive formulae in FEj.

” is induced

The single constant restriction “cy must not occur in the image of vy’
by the linear ordering ¢; < vo < ¢y < v1.'2 According to the results in [BS96]
the solvability of the Fjs-unification problem for ¢1,f5 under this linear constant

restriction is equivalent to the validity in F5 of the positive formula
Vwi FvoVwaTvy. s(vy + v +wq) = 52(1;2 + wa).

This formula is obtained from the unification problem by translating free constants
into universally quantified variables and variables into existentially quantified vari-
ables, and ordering the quantifiers according to the linear ordering on the variables
and free constants of the problem. Since, as we have seen, the F3-unification problem
with the linear constant restriction induced by ¢; < v2 < ¢ < v; is not solvable, the
above formula is not valid in F,,. In contrast, the formula

VunYweTvgIvy. s(vy +v1 +wy) = 52(1)2 + wo)

is valid since the corresponding unification problem is the same as the one for the
previous formula but without any constant restriction, and that problem is solvable.

12The linear constant restriction induced by this linear ordering on the variables and free constants
of the problem says that constants that are greater than a variable must not occur in its image.
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4.4 Correctness of the Procedure

We prove below that our combination procedure is sound and complete for the kind
of component theories specified at the beginning of this section. In [BS95], the sound-
ness and completeness proof relies on a particular free model of the union theory.
This model is constructed explicitly, as an amalgamation of a free model of one com-
ponent theory with a free model of the other component theory. The amalgamation
construction and the proofs that use the resulting amalgamated model—called the
free amalgamated product in [BS95]—are fairly complex.

An important technical contribution of this work is to construct an appropriate
free model of the union theory also in the case where the theories share constructors.
For this, it has turned out to be useful to consider first a simpler sort of amalga-
mated model for the union theory: one obtained as a fusion (defined below) of the
free models of the two component theories. Contrary to Baader and Schulz’s free
amalgamated product, our fusion model is not free in the union theory. However, it
admits a subalgebra that is so, which suffices for our purposes.

Definition 4.9 (Fusion [BT02, TR02]) A (2 U Qg)-algebra F is a fusion of a
Q1 -algebra Ay and a Qo-algebra Ay iff F is Qi -isomorphic to A; and F is Q-
isomorphic to As.

It is shown in [TRO2] that two algebras A; and A have fusions exactly when
they are isomorphic over their shared signature. There it is also shown that fusions
of algebra are related to unions of theories as follows.

Proposition 4.10 For i = 1,2, let T; be an Q;-theory. For all (21 U Q9)-algebras
A, A is a model of T1 U Tz iff A is a fusion of a model of T1 and a model of Ts.

A Fusion Model for F; U Ey

In the following, we will construct a model of E = E; U Es as a fusion of the free
models of the theories £ and F» fixed earlier, whose shared signature X was a set
of constructors for both. We start by fixing, for i = 1, 2,

e a free model A; of E; with a countably infinite basis X;,'3
e 3 bijective valuation «; of V onto Xj,
e 3 Y-base G; of E; closed under variable renaming, and

o the set Y} := [[Gz]]?i’ .

13Such a model exists by Proposition 2.5.
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Figure 1: The Fusion F of A; and Aj.

We know from Corollary 3.4 that X; C Y; and A;” is free in B> = E\° = Ey~
over Y;. Observe that A; is countably infinite, given our assumption that X; is
countably infinite and 3; is countable. As a consequence, Y; is countably infinite as
well.

Now let Z;o := Y;\ X; for i = 1,2, and let {Z; 1, Z1} be a partition of X; such
that Z; is countably infinite and |Z; | = |Z2,2|.14 Similarly, let {Z1,Z2} be a
partition of Xy such that |Z3 1| = |Z1 2| and Z3 is countably infinite (see Figure 1).
Then consider 3 arbitrary bijections

hlz Z1,2 — Zg,l, h2: Zl — ZQ, h3: Zl,l — Z2’2,

as shown in Figure 1. Observing that {Z; 1, Z;, Z; 2} is a partition of ¥; for i = 1,2,
it is immediate that ki U hg U hg is a well-defined bijection of Y; onto Y;. Since A;™
is free in E* over Y; for i = 1,2, we have that h; U hy U hs extends uniquely to a
(X)-isomorphism h of A;* onto Ap>.

The isomorphism h induces a fusion of A; and Ay, whose main the properties
are listed in the following lemma taken from [BT02].

Lemma 4.11 There is a fusion F of Ay and Ay having the same universe as As
and such that

1. his a (£ )-isomorphism of Ay onto F>1;

" This is possible because Z»s is countable (possibly finite).
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2. the identity map of As is a (Xz)-isomorphism of Ay onto F>2;
8. FE' is free in By over X! 1= Zyo U Zo;

4. F¥2 is free in Ey over Xb := Zo1 U Zs;

5. F* is free in E* over Yy = Za1U Zo U Zg9;

6. Yy = [GolZ? = [Gi]T)

hoa *

We will now consider the theory E = E; U Es again, together with the algebras
F, Fi, Fo and A where:

e F is the fusion of A; and As from Lemma 4.11;
o Fi:=F" fori=1,2;1%
e A is the subalgebra of F generated by Zs.

Both F and A are models of E. In fact, F is a model of £ by Proposition 4.10
for being a fusion of a model of F; and a model of Fy, whereas A is a model of F
by Lemma 2.3, as F is equational for being the union of two equational theories.

We prove below that A is a free model of E. To do that we will use the following
sets of terms and their properties.

Definition 4.12 (G{°,G$°,G*®) Fori=1,2let G := |J;2, GI where {G} | n > 0}
is the family of sets defined as follows:

G? =V

G = GPU{r(ri,...,mm) | r(vi,.-.,0m) € Gi\V,
r#g v for allv €V,
ri € Gy with k #1, forallj=1,...,m,
rj #g rj for all distinct j,5' =1,...,m}.

The set G* is the union GT° U G5°.

It is easy to see that, for ¢ = 1,2, the set GZ1 defined above consists of all the
variables plus the terms of G; that are not equivalent in E; to a variable. Every
element of G? has a stratified recursive algebra. A term in G} \GY has just one
layer. A term r(r) in GI'\ G?_l has n layers. Layer 1, the top layer, is made of the
term 7 only; layer 2 is made of all the terms that are at layer 1 in an element of r;
and so on. Furthermore, terms in the same layer all belong to either G; or G, and

'5These algebras are defined just for notational convenience.
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if the terms in one layer are in G; then the non-variable terms in the next layer are
not in Gj.
As proved in [BT02], the sets G5°, G$°, G™ satisfy the following two properties.

Lemma 4.13 Let i € {1,2}. For any bijection o of V onto Zy the following holds:
1. [GP\VIE C Za;
2. for all t1,ta € G\ V, if [t1]2 = [t2]2 then t1 =g to.

Proposition 4.14 The set G* is X-base of E = E1 U Ej.

Note that the above proposition entails by Theorem 3.3 that 3 is a set of con-
structors for E. Using these two properties we can now show that A is a free model
of E.

Proposition 4.15 A is free in E over Z,.

Proof. We have seen that A, the subalgebra of F generated by Z, is a model of F.
Let t1,to € T(X1 U X9, V) such that (A, a) = t1 = t for some injective valuation «
of Var(t, = tg) into Zy. By Proposition 2.6 it is enough to show that t; =g ts.

We know from Lemma 2.2 that (F,a) = t1 = t2 as well because ¢t = to is
a quantifier-free formula and A is a subalgebra of F containing the elements of
a(Var(t; =t2)). Let us assume—with no loss of generality by Proposition 4.14 and
Definition 3.2—that for each i = 1,2, t; has the form s;(r;) where s; is a X-term and
r; consists of elements of G = G° U G5°. Let us also assume that the tuple ry,ro
contains at least one term from G§° (if all the components of ry, ry are from G$° the
proof is symmetrical).

Let ¢} = ¢}, be the ¥;-equation obtained from t; = ¢ by means of the following
abstraction process. For each 1 = 1,2 and 7’ in r;,

o if ' € G3°\ V, then 7’ is replaced by a fresh variable;

e if 7' € G\ V, then ' has the form 7(r1,...,7,) where r; is an element of G$°
for all j € {1,...,n} (cf. Definition 4.12); in that case, each r; € G \V is
replaced by a fresh variable.

Furthermore, the new variables are chosen so that every two abstracted terms are
replaced by the same variable iff they are equivalent in E. By Lemma 4.13, [r']Z €
Zygo and [r']2 # [r"]Z for all abstracted terms r/,r" such that ' #g . It is
then not hard to see that it is possible to extend « to an injective valuation S of
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Var(t) = th) into X] = ZoU Zs o such that (F, ) =t} = ¢,,. With such a 3, we have
that (F1,8) |t} = t), given that ¢t} =t} is a X;-formula.

Recalling that, by Lemma 4.11, F; is free in E; over X, we can conclude by
Proposition 2.6 that t| =g, t5, which entails that ¢} =g ¢, because E = E; U Fs.
Now, it is easy to see that, by construction of t| = ¢}, there is a substitution o such
that ¢t =g t)o and t3 =g tho. From this it follows immediately that ¢; =g t. O

Corollary 4.16 Where « is any bijection of V onto Zs, let Y := [G®]2. Then the
following holds:

1.'Y'§ Ya;
2. A* is free in E* overY;

Proof. (1) Recall that G® := G UGS O V. Let t € G* and observe that
[t]A = [t]Z because A is the subalgebra of F generated by Z, and « is a bijection
of V onto Z5. Now, if t € V then, by construction of a, [[t]]é =at) € Z; CY,. If
t € G°\V then, by Lemma 4.13, [t]2 € Zy,; C Ya.

(2) By Proposition 4.15, Proposition 4.14 and Corollary 3.4. O

For the rest of this section we will fix
e 3 bijection a of V onto Z3 and
e the corresponding set Y := [G®]A.

Then we will consider, for i = 1,2, the family {[G?]2 | n > 0} of subsets of Y. Since
A is the subalgebra of F generated by Zy and « is a valuation of V into Zj, it is
easy to see that [GT]A = [G?]Z for all n > 0. To simplify the notation then, in the
following we will write just [G?] in place of either [GP?]A or [G?]Z.

Observe that [GY] = [GY] = Z» and [G?] C [GIH'] for alln > 0 and i = 1,2.
Given that [G?] \ Z2 C [G?\ V]Z, we can conclude by Lemma 4.13 that [G?] \ Z» C
Z5,.1% By Corollary 4.16 we have that

U @eivies) =1 Gt ueh] = [6° ue] = [6X] =Y.

n>0 n>0

Now consider the family of sets {C7* | n > 0}, depicted in Figure 2 along with
{[G}] | » > 0} and defined as follows:

=[G,
Gt = [GTHINIGH.

'“This entails that [GT"] \ Z2 is disjoint with [G%]\ Z. for all m,n > 0.
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Figure 2: The families {[G}'] | » > 0} and {C}* | n > 0}.

First note that

Uctuey) = aeivies) =v.

n>0 n>0

Then note that, for all n > 0 and ¢ = 1,2, the elements of C}' are individuals of the
algebras F; and F, (which have the same universe). By the above, CT C [GT] C
Za1 U Zy = Xj; in other words, every element of CT is a generator of F». Similarly,
Cy C[GE] C Zyo U Zy = X1, that is, every element of C is a generator of Fj.

The family {C}' | n > 0} satisfies the properties below, which will be useful in
proving the completeness of the combination procedure.

Lemma 4.17 For all distinct m,n > 0 the following holds.
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1. CrNCP =0 foralli=1,2;
2. O™ is 3y -generated by [G3] in Fi;

3. CUtL is Xo-generated by [GT] in Fo.

Proof. Point 1 is immediate by construction of {C]* | n > 0} and earlier observations
on {[G}] | n>0} (i = 1,2). We prove Point 2 only, as the proof for Point 3 is
symmetrical.

Let us start by observing that C**' C [GTT]\[G7] € [GYTH\G}]Z. From
Definition 4.12 we know that for each a € [G7™ \ G}]Z there is a term of the
form r(r) where r € Gy and r € (G%)* such that a = [r(r)]Z. Recalling that
[G3] C Z22U Zy = X and that G; C T(X;,V), we can conclude that a is ;-
generated by [G3] in F and so in Fj. g

To prove the correctness of the combination procedure, that is, to prove Theo-
rem 4.1, we will use Proposition 4.21 below, relating satisfiability in the free model A
of E = E1 U FE, to satisfiability in the free model A; of E; and in the free model Ay
of Fs, introduced at the beginning of this section. To prove Proposition 4.21 though
we need three more lemmas.

Lemma 4.18 Let i € {1,2}. If f is an automorphism of F; such that f(X]) C X/,
then f(X] U X3) C X] UX5.

Proof. We start by considering F; first. Let f be an automorphism of F, such that
f(X%) € X} and let a € X| U X}. We show that f(a) € X| U XJ}.

By Lemma 4.11, X{ U X} = Y5 = [G2]%2 where a5 is a bijective valuation of the
variables V onto X}. This means that there is a term r € G5 such that a = [r]Z2.
Let o be the substitution with domain Var(r) such that vo = ay ' (f(az(v))) for all
v € Var(r). Since f(X}) C X} and ag, f are bijections, o is well-defined and is a
renaming. Since G is closed under renaming by assumption, we then know that
ro € Gy as well, which entails that [ro]]2 € X{ U X}. Let v be a tuple collecting
the variables of r. The claim that f(a) € X] U X} then follows from the fact that

f(a) = f(r72(az(v))) = r72(f(a2(v))) = r™2(az(eg (fe2(v)))) = r72(az(vo)) =

[ro]Zz.
The proof for F; is similar to the one above. It uses the fact that X| U X} =
[[Gl]]f:; o,» again by Lemma 4.11, and Gy is closed under renaming. |

Lemma 4.19 Leti € {1,2}. Leta; € (X{UX})* and let x1 be any tuple of (X])* that
Y;-generates ay in F;. For every X;-formula ©(v1,va) such that F; = Iva p(ai, va),
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there is a X-instantiation p of va, a tuple ag € (X| U X))* and a tuple zo € Z5 such
17

that ay is X;-generated by x1,2z2 in F; and F; = (¢p)(ar,ag).
Proof. Let p(vi,vy) be a ¥;-formula such that F; = 3vy p(ar, vy). Since F> (and
so F;*) is E-generated by Yo = X} U X} by Lemma 4.11, there is a Z-instantiation
p of vy and a tuple by € (X] U X3)* such that F; = (¢p)(ai, ba).

Since by is finite, x; C (X])*, and F; is ¥;-generated by X], there is a tuple
x2 € (X])* disjoint from x; and such that x;,x2 X;-generates by. Recalling that the
subset Z of X is infinite, let fy be any bijection of X onto itself that fixes x; and
moves Xo into Zs.

From the fact that F; is free over X/ by Lemma 4.11 and from standard results
about free algebras [Hod93], we know that every bijection of X onto itself extends
(univocally) to an automorphism of ;. Where f is the automorphism of F; extending
fo, let zg := f(x2) and ay := f(bs). Note that f(a;) = a; because a; is ¥;-generated
by x1 and f is a X;-automorphism that fixes x;.

Since by € (X} U X})*, we have by Lemma 4.18 that as = f(bs) € (X7 U X})*.
Using the fact that f is an automorphism, it is not hard to show that ap is ¥;-
generated by x1,2z2 and F; = (¢p)(ai,as). O

Lemma 4.20 Let 3,5 € {1,2} with i # j, a € X{ U Xy and X C X.. If a is
¥;-generated by X in F;, then a € X U X|.

Proof. Ad absurdum, assume that a ¢ X U X}. Then a € (X U X3)\ (XjUX) =
X\ X. Recalling that X C X, and X] is a set of generators for F;, this entails that
X!\ {a} is also a set of generators for F;. But that is impossible because X}, for
being the basis of the free algebra F;, cannot be a redundant set of generators for
Fi, as one can easily show. O

Proposition 4.21 Let p;(v,u;) be a conjunction of ¥;-equations where v lists the
elements of Var(p1) N Var(pz2) and, for i = 1,2, u; lists the elements of Var(p;) not
in v. The following are equivalent.

1. There is a X-instantiation p of v, an identification & of Var(vp) and a grouping

Vi, ..., Vo of Var(vp€) with each element of Var(vp€) occurring exactly once
M Vi, ..., Von such that
./41 |: E|V1 VVQ et E|V2m_1 VVQm E|U.1. ((plpf) and

A2 ): VVl EIVQ e VVQm_l E]VQm 3112. (ngé)

"The tuple x:1 exists because F; is Yi-generated by X; by Lemma 4.11 and a; is finite. In

(¢p)(a1,a2), az is a tuple of values assigned to the free variables of pp.
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2. A ): E|VE|U13112. ((Pl A (PZ)-
Proof. (1 = 2) Let ¢} := @;p€ for i = 1,2. By Lemma 4.11 we have that

FiE3viVvy -+ Vo1 Yoy Jur. @) (Vi, ..., Vom,u1)  and
.7:2 IZ VV1 E|V2 et VVQm_l E|V2m EIU.Q. <p'2(v1, e 3 VoM, UQ).

By a special case of Lemma 4.19 (in which v; there is empty), we know that there
is a X-instantiation p; of v1, a tuple a; € (X| U X})* and a tuple z; € Z3 such that
a; is Y-generated by z; and

FiEVva -+ Jui. ¢ipi(ar, va,..., wr).

By Lemma 4.20, we also know that every element of a; is in z; U X}, = X}.!8 Since
v1 is universally quantified in ¢}, we have that

fg IZ E|V2 3112. (p'2p1(a1,v2,...,u1).

Now, recall that F; is free over X} which means that a; is Xo-generated by itself in
F>. By Lemma 4.19, there is a X-instantiation py of vo, a tuple ag € (X] U X})* and
a tuple zy € ZJ such that ay is Yo-generated by ai,zo and

Fay =Vvs -+ Jug. phpipa(ar,ag,vs,...,uy).

By Lemma 4.20, every element a of ay is in a;,29 U X| = a; U X{. This means that

every such a is either ¥;-generated by itself in F; (if a € X7) or by z; (if ¢ € a;).

Let a), be a tuple collecting all the elements of as that are generated by themselves.
Since vy is universally quantified in 1; we have that

fl |: E|V3 3111. go'lplpg(al,ag,v;;,... ,111).

By Lemma 4.19, there is a Y-instantiation pg of vs, a tuple ag € (X] U X})* and a
tuple z3 € Z3 such that ag is ¥j-generated by z1,al,z3 (and so by z1,a9,23) in Fy
and

.7:1 ): VV4 . 3111. (p'lplpgpg(al, az,as, ..., 111).

Iterating the argument above one can show that

.7:1 |: E|u1. <p’1p1---p2m(a1,...,agm,ul) and
fz ‘Z E|u2. (p’2p1 .. .pzm(al, . ,azm,UQ)

where, for each k € {1,...,m},

'8 Abusing the notation a little we denote by z1 U X} the union of X} with the set of z1’s compo-
nents. (Similarly, later on.)
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e por_1 and pgy are Y-instantiations of voi 1 and vgy respectively,
® ag, 1 is Yq-generated by z1,a9,...,89_9,%Zo,_1 in F; and
® ay is do-generated by ai,zs, ..., 80,1, Zog in Fo,

[}
Z

and all the elements of the tuples are in Z,.

Let p = p1--- pom. In a similar way one can show that

fl |: go’lpal(al,...,agm,bl) and
Fo = phpoa(ai,. .., a0m, bo)

where

e g1 and o9 are Y-instantiations of u; and us respectively,

e b; is Xj-generated by zq,as,...,2Z2,_1,82y, 22,41 in F; for some z9, 1 € Z3
and
e by is ¥y-generated by aj, zo, ..., a1, Z2m, Zon4+2 in Fy for some zy, 9 € Z3.

In conclusion, recalling that F; = F>i for ¢ = 1,2, we have shown that
F |: g011p0'1(a1, e D T bl) A <p'2p02(a1, I T b2)

By an simple induction argument we can show that the components ofay, ..., as;,,b1,bs
are all (31 U Xg)-generated by Zy in F. Therefore, they are all individuals of A, the
subalgebra of F generated by Zs. Since ¢ po1 A ¢hpos is quantifier-free, we have by
Lemma, 2.2 that

Al ¢ipoi(al,...,a0m,b1) A phpos(ay,. .., am, bs)

from which the claim easily follows.

(2 = 1) Assume that A E Jv,ug,us. (p1(v,u1) A p2(v,uz)). Let a be the
bijection of V onto Z and Y the subset of Y> that we fixed after Corollary 4.16.
Since the reduct A* of A is S-generated by Y by Point 2 of the corollary, there
certainly is a Y-instantiation p of v, an identification £ of Var(vp), and an injective
valuation 83 of v/ into Y such that

(A,8) [ Fu,us. (91 (v, w1) A py(v,u2)),

where ¢} := @;p€ for i = 1,2, v’ lists the the variables of vp{. From this, recalling
that A is (X1 U 39)-generated by Z; by construction and Y is included in Y2, we can
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conclude that there is a tuple a of pairwise distinct elements of Y3, all (£; U Xy)-
generated by Zs, such that

A IZ Elula“?- (,0’1(3,111)/\(,0,2(3,112).

Since A is a subalgebra of F and ¢! A ¢} is quantifier-free, it follows by Lemma 2.2
that F = Jug, ue. ¢} (a,ui) A ph(a, uz) as well. Given that each ¢} is a 3;-formula
and u; and uy are disjoint, we have then that

Fi E Ju;. ¢li(a,u;) and Fo | Jus. ¢h(a, uy). (7

We construct a partition of the elements of a that will induce a grouping of v’
having the properties listed in Point 1 of the proposition. For that, we will use the
families {CT | n > 0} and {C3 | n > 0} of Lemma 4.17.

First, let a; be a tuple collecting the components of a that are in C? UC}. Then,
for all n > 1, let a,, be a tuple collecting the components of a that are in C7'. Finally,
for all n. > 0, let b, be a tuple collecting the components of a that are in C%.°

Since a is a (finite) tuple of Y* and Y = |J,;5( (CT U CF) as observed earlier,
there is a smallest m > 0 such that every component of a is in |J_,(C? U C%).
Let n € {0,...,m —1}. By Lemma 4.17(3), by4+1 is Xo-generated by [GT] in Fo.
Let Z,+1 be any finite subset of [G}] that generates b,.1. Now recall that F» is
free over the countably-infinite set X}. We prove that ai,...,an, by,...,b, and
21, ..., Ly satisfy Lemma 2.7.

To start with, we have that a, € (X})* for all n € {1,...,m} because CT C
[G?] € X} by construction of CT. From Lemma 4.17(1) it follows that the tuples
a, and a,; are pairwise disjoint for all distinct n,n' € {1,...,m}, which means that
all components of aj,...,a,, are distinct. Now let n € {1,...,m — 1}. Observe
that the set Z U--- U Z, is included in [G?'] = CYU--- U C?! whereas every
component of a,; belongs to C?‘H. It follows that no components of a, i are
in Zy U---U Z,. Finally, where f is the bijection that maps, in order, the com-
ponents of a to those of v/, let vi,vs,..., Vo, 1, Vo, be the rearrangement of v/
corresponding to aj, by,...,a,, b, according to f. From (7) above we know that
Fo E Fua. vh(ai,by,...,by,an,,us). By Lemma 2.7 we can then conclude that
fg IZ VVl E|V2 re VVQm_l E|V2m E|u2. (p’2.

One can prove almost symmetrically that F, = 3viVvy - - - Fvo,,—1 Vv, Ju;. <p’1.20
The claim then follows from the fact that F; is ¥;-isomorphic to A; for ¢+ = 1,2 by
Lemma 4.11. O

19Fach tuple above is meant to have no repeated components, and may be empty.

20The proof is not completely symmetric to the previous one because to use Lemma 2.7 again one
must consider the tuples bo,ai1,b1,...,bm,am,bm+1 and vo,vi, va,...,Vam—1,Vom, Voam+1 Where
bo, bm+1, Vo and Vam+41 are all empty.
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We can finally prove Theorem 4.1.

Proof of Theorem 4.1. Let 3w. p(w) be a (£; U Xg)-formula taken as input by
the procedure. Recall that A, A; and As are free models E, F; and F,, respectively
and all of them have an infinite basis. Since both Iw. ¢(w) and the sentences
output by the procedure are positive sentences, by Lemma 2.8 it is enough to show
that A = 3w. o(w) iff 4; = and Az = 72 for some possible output (7y1,72) of
the procedure.

Let ¢1(w) V -+ V ¢, (w) be a disjunctive normal form of p(w). Clearly, A =
Iw. p(w) iff A = Iw. ¢;(w) for some j € {1,...,n}. Now, such ¢, is a possible
output of Step 1 of the procedure, so let p1(v,u;) and po(v,uy) be the formulae
produced by Step 2 when given 1); as input.

It is easy to show that A |= Jw. ¥;(w) iff A = Iv Juy Jua. (¢1 A 2). By
Proposition 4.21, A = 3v Ju; Jus. (1 A p2) iff there is a X-instantiation p of

v, an identification £ of Var(vp) and a grouping vy, ..., v, of Vg := Var(vpf) =
Var(p1p€) N Var(p2p€), with each element of V; occurring exactly once in vy, ..., vop,
such that

.A1 IZ E|V1 VVQ T E|V2m_1 VVQm E|u1. ((p1pf) and
.Az IZ Vv1 E|V2 e VVQm_l 3V2m E|u2. ((pgpf).

Since the tuple vi,vo, ..., Von_1, Vo, 18 a permutation of Vg, we can assume without
loss of generality that 2 < 2m < |Vs| + 1. In fact, one can easily show that if
2m > |Vg| + 1 then for some j € {2,...,2m — 1} the tuple v; must be empty. In
that case, v; can be eliminated and the tuples v; 1 and v;;—which have the same
quantifier in each formula above—can be concatenated. To conclude the proof then,
it is enough it observe that the pair

( Elvl VVQ e E|V2m_1 VVQm 3111. ((plpf), VVl E|V2 e Vng_l E]VQm Eluz. ((png) )

is indeed a possible output of the combination procedure. O

5 Related and Further Research

The combination procedure as well as the proof of correctness are modeled on the
corresponding procedure and proof in [BS95]. The only extension to the procedure is
Step 3, which takes care of the shared symbols. In the proof, one of the main obstacles
to overcome was to find an amalgamation construction that works in the non-disjoint
case. Several of the hard technical results used in the proof depend on results from
our previous work on combining decision procedures for the word problem [BT02].
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The definition of the sets G;, which are vital for proving that the constructed algebra
A is indeed free, is also borrowed from there. It should be noted, however, that this
definition can also be seen as a generalization to the non-disjoint case of a syntactic
amalgamation construction originally due to Schmidt-Schau8 [SS89]. As already
mentioned in the introduction, the notion of constructors used here is taken from
[BT02, TRO2].

The only other work on combining unification algorithms in the non-disjoint case
is due to Domenjoud, Ringeissen and Klay [DKR94]. The main differences with our
work are that (i) their notion of constructors is much more restrictive than ours
(as shown in [BT02]); and (ii) they combine algorithms computing complete sets of
unifiers, and thus their method cannot be used for combining decision procedures.

Our combined decidability results are limited to theories sharing constructors
whose equational theory is finitary modulo renaming. We believe that the notion of
constructors is as general as one can get, a conviction that is supported by the work
on combining decision procedures for the word problem and for universal theories
[BT02, TR02]. The stronger limitation on the applicability of our decidability result
is the restriction to constructors whose theory is finitary modulo renaming. Thus, the
main thrust of further research will be to remove or at least relax this restriction. For
example, one could try to replace it by additional algorithmic requirements on the
theories to be combined or on the constructor theory. For this, the work in [DKR94],
which assumes algorithms computing complete sets of unifiers for the component
theory, could be a starting point.

The combination results in [BS95] apply not only to equational theories, but to
arbitrary atomic theories, i.e., theories over signatures containing additional relation
symbols and axiomatized by a set of (universally quantified) atomic formulae. For
simplicity we have considered just equational theories in this paper. However, all
notions, results and proofs given here extend virtually unchanged to atomic theories
sharing at most function symbols. When the theories also share relation symbols,
one needs an appropriate extension of the notion of constructors that takes relation
symbols into account (see [TR02]). By using that extended notion of constructors all
the main results given here should continue to hold, with most of the proofs carrying
over with minimal changes.

It is interesting to observe that the results presented here (as well as those in
[BS95]) extend even beyond atomic theories. Apart from having to share construc-
tor symbols (or no symbols at all), the only essential model-theoretic requirements
on the component theories are that (1) their set of models is closed under substruc-
tures and (2) they admit a free model with countably infinitely-many generators.
The largest class of first order-theories satisfying these two requirements is that of
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non-trivial universal Horn theories [Mak87]. This means that, mutatis mutandis, our
results also apply to the union of non-trivial universal Horn theories sharing construc-
tors. An alternative argument supporting this claim comes from the following two
observations. First, a non-trivial universal Horn theory and its atomic theory have
the same positive consequences. Second, the atomic theory of the union 7; U 73 of
two universal Horn theories 77, 72 sharing constructors is logically equivalent to the
union of the atomic theory of 77 and the atomic theory of 75. The first observation
is an immediate consequence of fact that a Horn theory and its atomic theory have
the same free models, and free models are canonical for positive consequences. The
second one can be proved using a fusion construction like the one in Section 4.4.
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