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1. INTRODUCTION

Equational theories, that is, theories defined by a set of (implicitly universally
quantified) equational axioms of the form s = ¢, and their appropriate treatment in
theorem provers play an important role in research on automated deduction. On
the one hand, equational axioms occur in many axiom sets handled by theorem
provers since they define common mathematical properties of operators (such as
associativity, commutativity). On the other hand, the straightforward approach
for treating equality (namely, axiomatizing the special properties of equality, and
adding these axioms to the input axioms of the prover) often leads to unsatisfactory
results. This explains the interest in developing special inference methods and
decision procedures for handling equational theories.

The word problem, the problem of whether an equation s = ¢ is entailed by a
given equational theory E, is the most basic decision problem for equational theo-
ries. It is, of course, undecidable, as exemplified by the undecidability of the word
problem for finitely presented semigroups [16]. Nevertheless, there are decidability
results for certain classes of equational theories (such as theories defined by a finite
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set of ground equations [18]), and there are general approaches for tackling the
word problem (such as Knuth-Bendix completion [14], which tries to generate a
confluent and terminating term rewriting system for the theory).

The present paper is concerned with the question of whether the decidability of
the word problem is a modular property of equational theories: given two equational
theories F; and E, with decidable word problems, is the word problem for E; U Es
also decidable? In this general formulation, the answer is obviously no, with the
word problem for semigroups again providing a counterexample. In fact, consider a
finitely presented semigroup with undecidable word problem. The set of equational
axioms corresponding to the semigroup’s presentation can be seen as the union of
a set A axiomatizing the associativity of the semigroup operation, and a set G of
ground equations corresponding to the defining relations of the presentation. The
word problem for G is decidable, since G is a finite set of ground equations, and
it is quite obvious that the word problem for A is decidable as well. But the word
problem for AU G is just the word problem for the presented semigroup, which is
undecidable by assumption.

The theories A and G of this example share a function symbol—the binary
semigroup operation. What happens if we assume that there are no shared symbols,
that is, the theories to be combined are built over disjoint signatures? In this case,
decision procedures for the word problem can be combined (independently of where
these decision procedures come from); that is, if E; and E» are equational theories
over disjoint signatures, and both have a decidable word problem, then E; U E» has
a decidable word problem as well. This combination result was first proved in [21]
using results from universal algebra. It was more recently rediscovered in the term
rewriting and automated deduction community [24, 23, 19, 13]. Surprisingly, even
these more recent presentations do not appear to be widely known in the computer
science community, possibly because the result was obtained and presented as a
side result of the research on combining matching and unification algorithms. As
a matter of fact, although the result in principle follows from a technical lemma,
in [24], it is not explicitly stated there; in [23, 13] it is stated as a corollary, but
not mentioned in the abstract or the introduction; only [19] explicitly refers to
the result in the abstract. The combination methods used in all these papers are
essentially identical, the main differences lying in their proofs of correctness. They
all directly transform the terms for which the word problem is to be decided, by
applying collapse equations® and abstracting alien subterms. This transformation
process must be carried on with a rather strict strategy (in principle, going from the
leaves of the terms to their roots) and it is not easy to describe and comprehend.

In this paper, which combines the results first reported in [3], [6] and [7], we
present a method for combining decision procedures for the word problem that
works on a set of equations rather than terms. It is based on transformation rules,
which can be applied in arbitrary order, that is, no strategy is needed. Thus, the
difference between this new approach and the old ones is similar to the difference
between Martelli and Montanari’s transformation-based unification algorithm [15]
and Robinson’s original one [22]. We claim that, as in the unification case, this
difference makes the method more flexible, easier to describe and comprehend, and
thus also easier to generalize. This claim is supported by the fact that the approach
is not restricted to the disjoint signature case: the theories to be combined are
allowed to share function symbols that are “constructors” in a sense to be made

3

i.e., equations of the form z = ¢, where z is a variable occurring in the non-variable term ¢.



more precise later.

The only previous work that presents a combination method for the word prob-
lem in the union of non-disjoint theories is [9], where the problem of combining
algorithms for the unification, matching, and word problem is investigated for the-
ories sharing so-called “constructors.” The combination method for the word prob-
lem described in [9] is not rule-based since it is an extension of the algorithms for
the disjoint case, as described in [21, 23, 19, 13]. We will show that the notion
of a constructor introduced in [9] is a strict subcase of our notion, and that the
combination result for the word problem presented in [9] can also be obtained with
our rule-based approach.

A recent work [10], inspired by our results in [6], presents an alternative com-
bination approach for the word problem in the non-disjoint case. The combination
method in [10] is based on rewriting techniques and is shown correct by means of
category theoretic arguments. As we briefly discuss in Subsection 7.3, although the
results in [10] generalize those presented in [6], they are equivalent to our own more
general results, first introduced in [7] and now presented here in detail.

It is a common misconception that combining decision procedures for the word
problem in the disjoint signature case is a special case of Nelson and Oppen’s
combination method [17]. At first sight, the idea is persuasive: the Nelson-Oppen
method combines decision procedures for the validity of quantifier-free formulae
in first-order theories, and the word problem is concerned with the validity of
quantifier-free formulae of the form s = ¢ in equational theories. Considered more
closely, this idea is incorrect and for two reasons. First, Nelson and Oppen require
the single theories to be stably infinite, and equational theories need not satisfy
this property.* Second, although we are only interested in the word problem for
the combined theory, the Nelson-Oppen method generates validity problems in the
single theories that are strictly more general than the word problem. Thus, just
knowing that the word problem in each of the single theories is decidable is not
sufficient. Nevertheless, our method for combining decision procedures for the word
problem follows a similar approach to Nelson and Oppen’s. Like them, we use a
restricted form of constraint propagation between the decision procedures for the
single theories to solve the validity problem in question in the combined theory.
More details on the similarity between the two methods can be found in [3].

Outline of the paper. We start in the next section by introducing some neces-
sary notation. In Section 3, we present a first version of our combination procedure
for the word problem, which works for equational theories over disjoint signatures.
Before we can extend this procedure to the non-disjoint combination of equational
theories, we must establish (in Section 4) some general model-theoretic results
for combined equational theories (Subsection 4.1) and introduce our notion of a
constructor (Subsection 4.2) together with some properties enjoyed by unions of
theories that share constructors (Subsection 4.3). In Section 5, we describe the
extended combination procedure for theories sharing constructors, and prove its
correctness. In Section 6, we show that our notion of constructors is modular in
the sense that the union of two equational theories sharing a certain set ¥ of con-
structors again has ¥ as a set of constructors. This property is important since it
entails that the application of our combination results can be iterated. We start

41t turns out, however, that they satisfy a somewhat weaker property, which in principle suffices
to apply their method— see [3] for details.



Section 7 by relating this work to our previous work on the same topic. Next, we
briefly compare our modularity results for the decidability of the word problem
with some related modularity results from term rewriting. Then we illustrate in
detail the connection between our notion of constructors and the one introduced in
[9]. Finally, we compare our results with those presented in [10].

2. FORMAL PRELIMINARIES

Throughout the paper, we will consider only functional signatures, that is, sig-
natures containing only function symbols—with constants being functions symbols
of zero arity. Thus, the only predicate symbol available is the equality symbol,
which we will denote by =. All the signatures will be countable and will be usually
denoted by the symbols ¥ and {2, possibly with subscripts.

We will denote by V' a fixed countably infinite set of variables and by T'(%,V)
the set of X-terms over V. We will use the symbols ¢, r, s,t to denote terms, and
the symbols z,y,u,v,w, z to denote variables. With a common abuse of notation
we will also use z,y,u,v,w, z as the actual variables in our examples. If ¢ is a term,
we will denote by t(€) the top symbol of ¢t and by Var(t) the set of all variables
occurring in ¢. Similarly, if ¢ is a formula, Var(yp) will denote the set of free
variables of ¢.

Where @ is a tuple of variables without repetition, we will write ¢() to say that
U lists all the variables of ¢t. Also, if 7 is a tuple of terms with the same length as
¥, we will denote by #(7) the term obtained from #(7) by replacing each variable of
¥ with the corresponding element of 7. When convenient, we will treat a tuple 7 of
terms as the set of its elements.

As usual, for all functional signatures X, we say that a X-formula ¢ is valid in a
Y-theory I' and write ' |= ¢ iff it holds in all models of T, i.e., iff for all X-algebras
A that satisfy I and all valuations « of the free variables of ¢ by elements of A
we have A4, |= ¢. Since a formula is valid in T iff its negation is unsatisfiable in
I', we can turn the validity problem for T' into an equivalent satisfiability problem:
we know that a formula ¢ is not valid in T iff there exist a Y-model A of T and a
valuation a such that A, a = —¢.

Given a function symbol f € ¥ and a X-algebra A, we denote by f# the
interpretation of f in A. This notation can be extended to terms in the obvious
way: if s is a Y-term containing n distinct variables, we denote by s* the n-ary
term function induced by the term s in A. Given a ¥-term s, a X-structure A,
and a valuation « (of the variables in s by elements of A), we denote by [s]2 the
interpretation of the term s in 4 under the valuation a. Using the term function
induced by s, the interpretation [s]A may also be written as sA(a), where a is the
tuple of values that « assigns to the variables in s.

An equational theory E over the signature X is a set of universally quanti-
fied equations between Y-terms. As usual, we will omit the universal quantifiers;
for example, we will denote the equational theory C' axiomatizing the commuta-
tivity of the binary function symbol f by C := {f(z,y) = f(y,z)} instead of
C = {Vz,y.f(z,y) = f(y,z)}. For an equational theory E, the word problem
is concerned with the validity in E of quantifier-free formulae of the form s = ¢.
Equivalently, the word problem asks for the (un)satisfiability of the disequation
s #Z tin E—where s Z t is an abbreviation for the formula —(s = t). As customary,
we write s =g t to express that the formula s = ¢ is valid in E. We say that a term



t is collapsing in E iff v =g t for some variable v. We say that E is collapse-free iff
no non-variable term is collapsing in E.

An equational theory E over the signature ¥ defines a X-variety, the class of all
models of E. When E is non-trivial i.e., has models of cardinality greater 1, this
variety contains free algebras for any set of generators. We will call these algebras
E-free algebras. More precisely, if A is a free algebra in E’s Y-variety with a set X
of free generators we will say that A is free in E over X, or also, that A is a free
model of E over X. Given a set of generators (or variables) X, the E-free algebra
with generators X can be obtained as the quotient term algebra 7(X, X)/=pg. The
following is a well-known characterization of free algebras (see, e.g., [11]):

PROPOSITION 2.1. Let E be an equational theory over & and A a X-algebra.
Then, A is free in E over some set X iff the following holds:

1. A is a model of E;
2. X generates A;

3. forall s,t € T(X,V), if A,a = s =t for some injection a of Var(s = t) into
X, then s =g t.

In this paper, we are interested in combined equational theories, that is, equa-
tional theories E of the form FE := E; UE,, where E; and E» are equational theories
over two (not necessarily disjoint) functional signatures ¥; and ¥5. The elements
of ¥ := ¥; N X, are called shared symbols.

We call (strict) 1-symbols the elements of ¥; (X1 \ ¥) and (strict) 2-symbols the
elements of ¥, (X2 \ X). Note that shared symbols are both 1- and 2-symbols, and
that they are strict for neither signature.

Atermt € T(X;UX,, V) is an i-term iff t(e) € VUX,, i.e., if it is a variable or
has the form ¢ = f(t1, ..., t,) for some i-symbol f (i = 1,2). Notice that variables
and terms t with t(e) € 31 N X2 are both 1- and 2-terms. For i = 1,2, an i-term
s is pure iff it contains only i-symbols and variables. Notice that every X;-term is
a pure i-term and vice versa. An equation s = t is pure iff there is an 4 such that
both s and ¢ are pure i-terms.

Most combination procedures produce pure terms and equations by abstracting
“alien” subterms (i.e., replacing them by new variables and adding appropriate
new equations). Intuitively, an alien subterm of an i-term ¢ is a maximal subterm
of t such that its top symbol does not belong to ¥;. For the case of disjoint
signatures, this intuition can be straightforwardly transformed into the following
formal definition: a subterm s of an i-term ¢ is an alien subterm of ¢ iff it is not an
i-term and every proper superterm of s in ¢ is an i-term.

If the signatures X1 and ¥s are not disjoint, however, this definition is ambiguous
since a term ¢ starting with a shared symbol is both a 1- and a 2-term. Then, what
counts as an alien subterm of ¢ depends on whether ¢ is considered to be a 1-term
or a 2-term. For example, assume that f is a strict 1-symbol, g a strict 2-symbol,
and h a shared one. If ¢ := h(f(z),g(x)) is considered to be a 1-term, then g(x)
is its (only) alien subterm; if ¢ is considered to be a 2-term, then f(z) is its (only)
alien subterm. One might think that, to avoid such non-determinism, one could
just fix (arbitrarily) that terms starting with a shared symbol are considered to be
1-terms in the definition of alien subterms. However, this would lead to unnecessary
abstractions, as exemplified by the term h(g(x), g(z)), which would then have the
subterms g(z) as alien subterms although it is a pure term. Also, in the (non-pure)



term h(g(f(z)), g(x)), we would like to have f(x) as alien subterm rather than the
two terms g(f(z)) and g(z).

The definition of alien subterms given below takes care of all the problems
mentioned above.

DEFINITION 2.2 (Alien subterms). Let t € T(X; UX2, V). If the top symbol of
t is a strict i-symbol, then a subterm s of ¢ is an alien subterm of ¢ iff it is not an
i-term and it is maximal with this property, i.e., every proper superterm of s in ¢
is an i-term.

If the top symbol of t is a shared symbol, then we consider the set S of all
proper maximal subterms of ¢ starting with a non-shared symbol. Let S = S; U S,
be the partition of S into the terms starting with a strict 1-symbol (S;) and the
terms starting with a strict 2-symbol (.S2).

e If S; # 0, then t is considered to be a 1-term, i.e., a subterm s of ¢ is an alien
subterm of t iff it is not a 1-term and it is maximal with this property.

e If S = 0 and Sy # 0, then t is considered to be a 2-term, i.e., a subterm s
of t is an alien subterm of t iff it is not a 2-term and it is maximal with this

property

e If S U Sy = 0, then t is pure and so it has no aliens subterms.

3. A COMBINATION PROCEDURE FOR THE WORD PROBLEM:
THE DISJOINT CASE

In the following, we will present a decision procedure for the word problem in
an equational theory of the form F; U F» where each E; is a non-trivial equational
theory of signature ¥; with decidable word problem. To simplify the exposition,
we will start by first considering in this section the case in which the signatures
of E; and E, are disjoint. Here our results coincide with the known ones in [21,
24, 23, 19, 13]. What is new is that our combination procedure is based on a
number of transformation rules. We will be able to extend the procedure to the
non-disjoint signatures case in Section 5 by simply introducing additional rules. As
a consequence, almost all the proofs we give in this section will carry over unchanged
to Section 5. There, we will only need to take care of changes introduced by the
new rules. Of course, to allow non-disjoint signatures will require some additional
constraints on the theories to be combined. These constraints will be introduced
in Section 4.

To decide the word problem for E := FE; U E», we consider the satisfiability
problem for quantifier-free formulae of the form sg Z to, where sg and to are terms
in the signature of E, ¥; U ¥5. As in the Nelson-Oppen procedure [17], the first
step of our procedure transforms a formula of this form into a conjunction of pure
formulae by means of variable abstraction. To define in more detail the purification
process and the result it produces, we need to introduce a little more notation and
some new concepts. Since the same notation and concepts will also be employed
in the case of non-disjoint signatures, the following subsection does not assume ¥,
and ¥, to be disjoint.



3.1. Abstraction Systems

We will often use finite sets of formulae in place of conjunctions of such formulae,
that is, we will treat a finite set S of formulae as the formula A .5 . We will then
say that S is satisfiable in a theory iff the conjunction of its elements is satisfiable
in that theory.

We can define a procedure which, given a disequation sqg # ty with sg,t9 €
T(31 UX,,V), produces a set AS(sg Z to) consisting of pure equations and dise-
quations such that so Z to and AS(sp Z to) are “equivalent” in a sense to be made
more precise below.

The purification procedure starts with the set So := {z Z y,z = s0,y = to},
where x,y are distinct variables not occurring in sg, to, if sg and to are not variables.
If so (to) is a variable, the procedure uses so in place of z (tp in place of y), and
omits the corresponding (trivial) equation. Assume that a finite set S; consisting
of  # y and equations of the form u = s, whereu € V and s € T(E; UE,, V) \V,
has already been constructed. If S; contains an equation u = s such that s has
an alien subterm ¢ at position p, then S;;1 is obtained from S; by replacing u = s
by the equations u = s’ and v = ¢, where v is a variable not occurring in S;, and
s' is obtained from s by replacing ¢ at position p by v. Otherwise, if none of the
equations in S; contains an alien subterm, all terms occurring in S; are pure, and
the procedure stops and returns S;.

It is easy to see that this process terminates and yields a set AS(so Z to) which
is satisfiable in E iff so # to is satisfiable in E. The set AS(so # to) satisfies
additional properties (see Proposition 3.3 below), whose importance will become
clear later on.

DEFINITION 3.1. Let T be a set of equations of the form v = ¢t where v € V
and t € T(3; U X3, V)\V. The relation < on T is defined as follows for all
u=s,v=teT:

u=s)<@w=t) ff veVar(s).

By <% we denote the transitive and by <* the reflexive-transitive closure of <.
The relation < is acyclic if there is no equation v = ¢t in T such that (v = ¢) <T
(v=t).

Notice that, when < is acyclic, <* is a partial order, and <71 is the corre-
sponding strict partial order.

DEFINITION 3.2 (Abstraction System). The set {z #Z y} UT is an abstraction
system with disequation x Z y iff z,y € V and the following holds:

1. T is a finite set of equations of the form v =t wherev € V and t € (T(X1,V)U
T(32,V)\V;

2. the relation < on T is acyclic;
3. forall (u=s),(v=t)eT,

(a) if u = v then s = ¢;
(b) if u=s)<(v=t)and s € T(X;,V) with ¢ € {1,2} then t ¢ T'(%;,V).



Condition 1 above states that T consists of equations between variables and
pure non-variable terms; Condition 2 implies that for all (u = s),(v =t) € T, if
(u=s) <* (v=t) then u & Var(t); Condition 3a implies that a variable cannot
occur as the left-hand side of more than one equation of T'; Condition 3b implies,
together with Condition 1, that the elements of every <-chain of T" have strictly
alternating signatures (..., Y1, ¥s, X1, Xo,...). In particular, when ¥; and X, have
a non-empty intersection X, Condition 3b entails that if (u = s) < (v = t) neither
s nor ¢ can be a X-term: one of the two must contain symbols from ¥; \ ¥ and the
other must contain symbols from ¥, \ 2.

We will call the variables occurring in an abstraction system S as the left-hand
side of an equation the left-hand side variables of S. Similarly, we will call the
terms occurring in an abstraction system S as the right-hand side of an equation
the right-hand side terms of S.

The following proposition is an easy consequence of the definition of the purifi-
cation procedure and the definition of alien subterms.

PROPOSITION 3.3. The set S := AS(so Z to) obtained by applying the purifi-
cation procedure to the disequation so Z to is an abstraction system. Furthermore,
39.5 < (so # to) is logically valid, where U are all the left-hand side variables of S.

In particular, the second part of the proposition implies that a disequation
S0 Z to is satisfiable in E iff AS(sg # to) is satisfiable in E. However, the statement
in the proposition is considerably stronger: if A is a (X; U X3)-algebra and « a
valuation that satisfies so Z to in A, then there exists a valuation o’ that coincides
with a on Var(sgp #Z to) and satisfies AS(so # to), and vice versa. In fact, the
left-hand side variables in AS(sg Z to) are fresh variables that do not occur in
S0 # to, and all the newly introduced variables are left-hand side variables. Thus,
the variables in Var(sg Z to) are the free variables of both sqg # o and 9.5,
which means that they are (implicitly) universally quantified on the outside in
the equivalence 30.5 ¢ (sg # to). We will appeal to this stronger statement in
Section 6.

Abstraction Systems as Directed Acyclic Graphs

Every abstraction system {z # y}UT induces a graph G whose set of nodes is T'
and whose set of edges consists of all the pairs (a1,a2) € T x T such that a1 < az.
According to Definition 3.2, G is in fact a directed acyclic graph (or dag).> For
notational convenience, we will sometimes identify an abstraction system with the
graph induced by it.

Assuming the standard definition of path between two nodes and of length of
a path in a dag, we define below a notion of height of a node, which measures the
longest possible path from a “root” of the graph to the node. This notion will be
used in this section to define the combination procedure, and will also be important
in Section 5 to prove the termination of the procedure’s extension to the case of
equational theories with non-disjoint signatures.

DEFINITION 3.4 (Node Height). Let G := (N,E) be a dag with finite sets of
nodes and edges. A node a € N is a root of G iff there is no a’ € N such that
(a',a) € E.5 The function h: N — N is defined as follows. For all a € N,

50Observe that G need not be a tree or even be connected.
SBecause of the acyclicity condition, any finite dag has at least one root.



Input: (So,to) € T(El @] EQ,V) X T(El U ZQ,V)
1. Let S:= AS(so # to)-

2. Repeatedly apply (in any order) Colll, Coll2, Ident1, Simpl to S until
none of them is applicable.

3. Succeed if S has the form {v #Z v} UT, and fail otherwise.

FIG. 1 The Combination Procedure.

e h(a) =0, if a is a root of G;

e h(a) equals the maximum of the lengths of all the paths from the roots of G
to a, otherwise.”

3.2. The Combination Procedure

Let now ¥; and X2 be two disjoint (functional) signatures, and assume that
FE; is a non-trivial equational theory over ¥; with decidable word problem, for
1 = 1,2. Figure 1 describes a procedure that decides the word problem for the theory
E := E; U E> by deciding, as we will show, the satisfiability in E of disequations
of the form sg # to where sg,to are (X1 U Xo)-terms. This procedure repeatedly
applies the transformation rules of Figure 2 until no more rules apply.

The main idea of the procedure is to see whether the disequation between the
two input terms is satisfiable in E by turning the disequation into an abstraction
system, and then propagating some of the equations between variables that are
valid in one of the single theories. The transformations the initial system goes
through will eventually produce an abstraction system whose initial formula has
the form v # v iff the initial disequation sg Z to is unsatisfiable in E (that is, iff
S0 =k to)-

During the execution of the procedure, the set S of formulae on which the
procedure works is repeatedly modified by the application of one of the derivation
rules defined in Figure 2. We describe these rules in the style of a sequent calculus.
The premise of each rule lists all the formulae in S before the application of the
rule, where T stands for all the formulae not explicitly listed. The conclusion of
the rule lists all the formulae in S after the application of the rule. It is understood
that any two formulae explicitly listed in the premise of a rule are distinct.

In essence, Colll and Coll2 remove from S collapse equations that are valid
in Fy or Fs, and identify throughout S the variable in their left-hand side with
the variable their right-hand side collapses to. Ident1 identifies any two variables
equated to equivalent ¥;-terms and then discards one of the corresponding equa-
tions. The ordering restriction in the precondition of Ident1 is on the heights that
the two equations involved have in the dag induced by S. It is there to prevent the
creation of cycles in the relation < over S.

We have used the notation t[y] to express that the variable y occurs in the term
t, and the notation T'[z/t] to denote the set of formulae obtained by substituting

"This maximum exists because G is finite and acyclic.



T uZwv =ty y=r
Tlx/r]  (u#v)[z/y] y=r

if teT(E;,V)andy=pg,tfori=1o0ri=2.

Colll

T z = t[y]
Coll2
Tlz/y]
if teT(X;,V)andy=g,tfori=1ori=2,
and

thereisno (y =r) € T.

r=Ss

T y=t
Ident1
T[z/y] y=t

if s,te T(E;,V)and s=g,tfori=1o0ri=2,
and
h(z =s) <h(y=t).

. T xz=t
Simpl T

if z¢&Var(T).

FIG. 2 The Transformation Rules.
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every occurrence of the variable z by the term ¢ in the set 7.8

Simpl eliminates those equations that have become unreachable along a <-path
from the initial disequation because of the application of previous rules. As we will
see, this rule is not essential but it reduces clutter in S by eliminating equations
that do not contribute to the solution of the problem anymore. It can be used to
obtain optimized, complete implementations of the combination procedure.

We prove in Section 3.3 that this combination procedure decides the word prob-
lem for E by showing that the procedure is partially correct (i.e., sound and com-
plete) and terminates on all inputs.

3.3. The Correctness Proof

In the following, we will denote by Sy the abstraction system AS(sq Z to)
obtained by applying the purification procedure to the input disequation, and by
S; (j > 1) the set S of formulae generated by the combination procedure at the j
iteration of Step 2. If Step 2 is iterated only n times, we will define S; := S, for
all j > n. Correspondingly, for all § > 0, we will denote by <; the relation < on
the equational part of S; (cf. Definition 3.1).

We first show that all sets S; obtained in correspondence of one run of the
combination procedure are in fact abstraction systems. The proof of acyclicity
(Condition 2 in Definition 3.2) will be facilitated by the following lemma, whose
simple proof is omitted.

LEMMA 3.5. Let < be a binary relation on o finite set A, and a,b € A be such
that b ¢£* a. We denote the restriction of < to A\ {a} by <,,° and consider the
relations

< o= <gU{{dye)|d<a,b<e}
<y = <, U{(d, b) | d<al.

If < is acyclic, then <1 and <5 are acyclic as well.

Since the proof of the next lemma will be re-used also in the case of non-disjoint
signatures, we will not assume in this proof that ¥ := ¥; N 35 is empty.

LEMMA 3.6. S is an abstraction system for all j > 0.

Proof. We prove the claim by induction on j. The induction base (j = 0) is
immediate by definition of Sy and Proposition 3.3. Thus, assuming that j > 0
and S;_; is an abstraction system, consider the following cases, labeled by the
derivation rule applied to S;_; to obtain S;.'°

Colll. By the rule’s definition, S;_; and S; must have the following form:

Si1 = {u#v} U {s=d)} U {y=r} U T
S; = {uZvlz/y] U {y=r} U Tlz/7]

Let u' # ¢ := (u # v)[z/y]. We show that S; is an abstraction system with
disequation u' Z v'.

8Notice that other authors, especially in programming languages theory, would denote the
same substitution by T'[t/z] instead. We prefer our convention because we find it more intuitive,
especially in the case of composed substitutions.

9That is, <q := < N (A4\ {a})2.

10Tgnoring the trivial case in which S; coincides with S;_1.
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If we take <;j_1 to be the relation < of Lemma 3.5, x =t to be a, and y = r
to be b, it is easy to see that a < b and <; coincides with <; (as defined in the
lemma). Now, < is acyclic by induction and b £* a because a < b. By Lemma 3.5
then, <; is acyclic. This shows that Condition 2 of Definition 3.2 holds.

Since applying the substitution [z/r] does not change the left-hand sides of
equations in T, it is immediate that Condition 3a of Definition 3.2 holds as well.

Finally, observe that x can appear in T only in an equation of the form z =
s[z] and that (2 = s) <j_1 (z = t) <j_1 (y = r). By induction, we know that
there is an ¢ € {1,2} such that s and r are both in T(%2;,V)\ T(X,V); therefore,
the replacement of z by r in T occurs only inside terms in T(%;,V)\ T(Z,V)
and produces terms still in T'(X;,V)\ T(X,V). It follows that S; satisfies both
Condition 1 and 3(ii) of Definition 3.2.

Coll2. The proof is essentially a special case of the one above, with r replaced
by y. The proof of Condition 2 of Definition 3.2 is, however, easier in this case. If
we take z =t to be a and <;_; to be the relation <, then <; coincides with <, as
defined in Lemma 3.5. If < is acyclic, then its subrelation <, is acyclic as well.

Ident1. By the rule’s definition, S;_; and S; must have the following form:

Siz1 = TU{u#v} U {z=s} U {y=t}
Sj (TU{u#v})e/y] U {y=t},

Moreover, it is not the case that (y = t) -<j71 (z = s), otherwise we would have
that h(y = ¢) < h(z = s). It is not difficult to see that this time <; is derivable
from <;_; in the same way < is derivable from < in Lemma 3.5, where z = s
is a and y = t is b. Again, the preconditions of the lemma are satisfied, and it
follows that <; satisfies Condition 2 of Definition 3.2. By induction, we know that
x appears as the left-hand side of no equations in 7', and so it is immediate that
S; satisfies Condition 3a. It is also immediate that S; satisfies Condition 1.

Finally, to see that S; also satisfies Condition 3a, notice that T is obviously
unchanged if x does not occur in T'. Also, if the height of y = ¢ in S;_; is zero,
then the height of = s is also zero, which means that z does not occur in 7. If
h(y =t) > 0 and z occurs in T, both s and ¢ are elements of T(Z;,V)\ T(Z,V).
But then we can argue that Condition 3b holds for S; exactly as we did in the case
of Colll. It follows that S; is an abstraction system with disequation (u # v)[z/y].

Simpl. Immediate consequence of the easily provable fact that, if {u Zv}UT’
is an abstraction system, then {u # v} UT is also an abstraction system for every
TCT'.

Next, we show that the combination procedure always terminates.
LEMMA 3.7. The combination procedure halts on all inputs.

Proof. As mentioned above, the purification procedure used in Step 1 of the
combination procedure terminates. In addition, since every equivalence test in the
derivation rules can be performed in finite time because of the decidability of the
word problems in E; and in FEs, every execution of Step 2 also needs only finite
time. All we need to show then is that the procedure performs Step 2 only finitely
many times. For j > 0, let N; be the number of left-hand side variables of S;.
Looking at each derivation rule, it is easy to see that Ny > N; > N, ..., which
means that the total number of repetitions of Step 2 is bounded by Ny.

The next two lemmas show that the derivation rules preserve satisfiability.
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LEMMA 3.8. For all j > 0 let vj_1 be a sequence consisting of the left-hand side
variables of Sj_1 and v; be a sequence consisting of the left-hand side variables of
Sj. Then, 31_11'_1.5]'_1 s 31‘)]-.5]- is valid in E.

Proof. We can index all the possible cases by the derivation rule applied to S;_;
to obtain S;. Let A be any model of E.

First assume that S; has been produced by an application of Colll. We know
that S;_1 and S; have the form

Sj-1 = {u#v} U {z=tlylt U {y=r} U T
S; = {uZv}z/y] U {y=r} U Tlz/r]

and that y =g, t fori =1or ¢ = 2.

Let a be a valuation of V satisfying S;_; in A. It is enough to show that there
exists a valuation o' that satisfies S; in A and coincides with a on the free variables
of 3’1_11‘71.5]‘71 L4 31_)]'.5]'.

Since y = t is valid in E, for being valid in F;, & must assign both z and y with
[t]4, i.e., the interpretation of the term ¢ in A under the valuation a. In addition,
since «a satisfies S;_1, we know that a(y) = [rJA. It follows immediately that o
satisfies S; in A. Thus, we can take o/ := a.

Now, assume that the valuation « satisfies S; in the model A of E. Again, we
must show that there exists a valuation o' that satisfies S;_; in A and coincides
with o on the free variables of 3v;_,.5;_1 <+ 39;.5;.

Observe that, since S;_; is an abstraction system, & does not occur in y = r,
and as a consequence it does not occur in S; at all. Let o be the valuation defined
by o'(z) := a(z) for all z # z and &/(z) := a(y). It is immediate that o' satisfies
theset T :i=TU{z=r}U{uZv}U{z=y}U{y =r}in A. Since A is a model
of E and the equation y = ¢ is valid in E, it is also immediate that o' satisfies
the set Ty := {x =t} in A. It follows that o' satisfies S;_1, which is a subset of
Ty UTy. Since o and o differ only w.r.t. the value they assign to z, and z is a
left-hand side variable in S;_; and does not occur in Sj, this completes the proof
that 3’[_)]'71.5_7'71 — 3’17]'.5]' is valid in E.

The proof for Coll2 can be derived as a special case of the one for Colll with
r replaced by y. Identl can be treated similarly.

When S; is generated by an application of Simpl, S;_; and S; have the form

ijl = T U {xEt}
S, =T

with « ¢ Var(T). It immediate that if S;_; is satisfied by a valuation « in A,
so is S;. Conversely, assume that S; is satisfied in A by some valuation a. Let
o' be a valuation coinciding with « on all variables except z. For the variable z,
let o (z) := [t]2. From the assumptions and the fact that S;_; is an abstraction
system, we know that x is not in Var(¢t)UVar(T). This, together with the definition
of a'(z), implies that o' satisfies S;_;1. In addition, o and o' coincide on the free
variables of 37;_;.5;_; <> 39;.5; since z is a left-hand side variable in S;_; and
does not occur in S;.

The lemma above immediately entails the following weaker lemma (see the com-
ment following Proposition 3.3).

LEMMA 3.9. For all j > 0, the abstraction system S; is satisfiable in E iff S;_1
is satisfiable in E.
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It is now easy to show that the combination procedure is sound.

PROPOSITION 3.10 (Soundness). If the combination procedure succeeds on an
input (so,1t0), then so =g to.

Proof. Let {S; | j =0,...,n} be the sequence of abstraction systems generated
by the procedure on input (sg,%o). By the procedure’s definition we know that, if
the procedure succeeds, S, = {v Z v} UT. Since S, is clearly unsatisfiable in E,
we can conclude by a repeated application of Lemma 3.9 that Sy = AS(so Z to) is
also unsatisfiable in E. By Proposition 3.3, it follows that s # t¢ is unsatisfiable
in E, which means that sg =g tg.

Finally, the combination procedure is also complete.

PROPOSITION 3.11. The combination procedure succeeds on input (so,to) if S0 =E
to.

A simple proof of Proposition 3.11 can be found in [4]. It is based on the same
basic satisfiability result used in [25] to prove the correctness of the Nelson-Oppen
combination procedure. In the context of this section, that result states that the
union S; U Sy of a set S; of Xi-equations and disequations and a set Sy of ¥o-
equations and disequations is satisfiable in Ey U Es whenever S; U A is satisfiable in
E; for i = 1,2, where A is the set of all disequations between the variables shared
by S1 and S,.

Since this satisfiability result applies only if £; and E5 have disjoint signatures,
the proof of Proposition 3.11 in [4] does not lift to the more general case treated
in Section 5. As a consequence, we will provide a completeness proof only for the
extension of our combination procedure to that case. The claim in Proposition 3.11
will then follow from the fact that the extended procedure reduces exactly to the
procedure seen in this section whenever E; and E, have disjoint signatures.

Combining the results of this section, which show total correctness of the pro-
cedure, we obtain the known modularity result for the word problem in the case of
component theories with disjoint signatures.

THEOREM 3.12. Fori=1,2, let E; be a non-trivial equational theory of signa-
ture X; such that X1 N Xy = (. If the word problem is decidable for Ey and for Es,
then it is also decidable for E1 U Fs.

A closer look at the termination proof and the definition of the purification
procedure reveals that, modulo the complexity of the decision procedures for the
word problem for the single theories, our combination procedure is polynomial.

COROLLARY 3.13. Let Ey and E5 be non-trivial equational theories over dis-
joint signatures whose word problems are decidable in polynomial time. Then, the
word problem for Ey U Es is also decidable in polynomial time.

4. COMBINING NON-DISJOINT EQUATIONAL THEORIES

The rest of this paper is concerned with the question of how the combination
result stated in Theorem 3.12 can be lifted to the combination of equational theo-
ries whose signatures are not disjoint. As shown in the introduction, in that case
the union of equational theories with decidable word problem need not have a de-
cidable word problem. Thus, one needs appropriate restrictions on the theories
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to be combined. The purpose of this section is to introduce such restrictions and
establish some useful properties of theories satisfying them. Some of the results in
Subsections 4.1 and 4.2 below are closely related to results first described in [26].
We will discuss this relationship in more detail in Section 7.

4.1. Fusions of Algebras

In the following, given an -algebra 4 and a subset ¥ of €2, we will denote by
A% the reduct of A to the subsignature . Furthermore, we will use the symbol A
to denote the carrier of A.

When proving properties of a theory E obtained by putting together component
theories it is often convenient to use models of E obtained by amalgamating models
of the component theories. A simple type of amalgamated model is what [26] calls
a fusion.

DEFINITION 4.1 (Fusion). A (X;UZX5)-algebra F is a fusion of a X -algebra A;
and a Yy-algebra A, iff F>1 is ¥;-isomorphic to A; and F>2 is ¥p-isomorphic to

As.

In essence, a fusion of A; and As, if it exists, is an algebra that is identical to
A; when seen as a ¥;-algebra, and identical to A2 when seen as a ¥s-algebra. Let
us denote by Fus(Aj, As2) the set of all the fusions of A; and 4. By the above
definition, it is immediate that Fus(A;, A2) = Fus(Az, A1) and that Fus(A;, As)
is closed under (¥; U X3)-isomorphism.!?

Fusions of algebras have indeed a close link with unions of theories, which we
will exploit later.

ProrosiTION 4.2. If E1, Es are two equational theories of signature Xp,Ys,
respectively, and F is a fusion of a model of E; and a model of E2, then F is a
model of Fy U Es.

Proof. By the definition of fusion it is immediate that 7*' models every sentence
in E; while F>2 models every sentence in FE»; therefore, F models every sentence
of E1 U E2. 1

Not every two algebras have fusions. We show below that they do exactly when
they have the same cardinality and interpret in the same way the symbols shared
by their signatures.

PROPOSITION 4.3. Let A be a X1-algebra, B a Xo-algebra, and ¥ := X1 N Xs.
Then, Fus(A,B) # 0 iff A* is S-isomorphic to B>.

Proof. (=) Let F € Fus(A,B). By definition we have that 4 = F*' and
B =2 F*2. From the fact that ¥ C £; and ¥ C I, it follows immediately that
A® = F* and B® = F* which implies that A* = B=.

(<) Let h be an arbitrary Y-isomorphism of A* onto BX. Consider a (X;UXs)-
algebra F whose carrier is the carrier B of B, and which interprets the function
symbols of ¥;UY, as follows: for all g € ¥1UXs of arityn > O0and all by,... ,b, € B,

_ f h(gATE(by), ... hTH(b,))) i g € (B1\ T2)
g]:(bla . abn) = { gB.%bl, . 7bn) if g € 22

1Byt note that Fus(A1,.42) may contain non-isomorphic algebras.
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Intuitively, F interprets ¥o-symbols as B does. For X;-symbols that are not also
Ys-symbols, the isomorphism h is used to transfer their interpretation from A to
B.

By construction of F, it is immediate that B and F>2 are ¥s-isomorphic (with
the identity mapping as isomorphism). We prove below that h is a ¥ -isomorphism
of A onto F>1. It will then follow from Definition 4.1 that F is a fusion of 4 and
B.

Since we already know that h is a bijection, it remains to be shown that it is a
¥i-homomorphism. If g is an n-ary function symbol of ¥; \ ¥z and a4,... ,a, € A,
then

hgi(ai,... ,an)) = h(gA(h~*(h(a1)),...,h~ (h(ay)))) (by def. of inverse)
= g7 (h(ar),--. ,h(an)) (by def. of g%).

If g is an n-ary function symbol of ¥ = ¥, N ¥, and aq, ... ,a, € A, then

h(gtay,... ,an)) = g¢B(h(a1),...,h(ay)) (since h is a ¥-hom.)
= g7 (Ma1),-.. ,h(as)) (by def. of g%).

The proof of the proposition above also shows that every (X-)isomorphism be-
tween the Y-reducts of two algebras A4; and Az to their common signature ¥ induces
a canonical fusion of A; and A;. We will use this sort of fusion in many of the
proofs to follow.

COROLLARY 4.4. Let X1 and X2 be two functional signatures with intersection
Y: =31 N%y. Fori=1,2let A; be a ¥;-algebra. Then, for every isomorphism h
of A1~ onto .AQE, there is a fusion A of A1 and Az such that

o h is a I1-isomorphism of Ay onto A*1,

e the identity mapping on Ay is a Lo-isomorphism of Ay onto A>2.

4.2. Theories Admitting Constructors

In the rest of the paper we will focus on equational theories whose free models
over infinitely many generators have certain reducts that are themselves free. Now,
in general, the property of being a free algebra is not preserved under signature
reduction. The problem is that the reduct of an algebra may need more generators
than the algebra itself. For example, consider the signature Q := {p,s} and the
equational theory F axiomatized by the equations

E:={z =p(s(z)), z =s(p(x))}. (1)

The integers Z are a free model of E over a set of generators of cardinality 1 when
s and p are interpreted as the successor and the predecessor function, respectively.
In fact, any singleton set of integers is a set of free generators for Z. The number
zero, for instance, generates all the positive integers with the successor function and
all the negative ones with predecessor function. Now, for ¥ := {s}, Z¥ is definitely
not free because it does not even admit a non-redundant set of generators,'? which
is a necessary condition for an algebra to be free.

12 A set of generators for an algebra A is redundant if one of its proper subsets is also a set of
generators for A.
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Nonetheless, there are free algebras some of whose reducts, although requiring a
possibly larger set of generators, are still free. In that case, we say that their equa-
tional theory admits constructors. A formal definition of this notion of constructors
is given below.

In the following, Q will be a countable functional signature, and ¥ a subset of
Q. We will fix a non-trivial equational theory E over {2 and define the X-restriction
of Eas E* :={s=t|s,te T(X,V) and s =p t}.

DEFINITION 4.5 (Constructors). The subsignature X of Q is a set of construc-
tors for E iff for every Q-algebra A free in E over a countably infinite set X, A*
is free in E* over a set Y including X.

It is immediate that the whole signature (2 is a set of constructors for the theory
E. Similarly, the empty signature is a set of constructors for F, as any model of
E is free over its whole carrier in the restriction E?, which is just {v =v | v € V}.
The constant symbols of () are easily shown to be a set of constructors for E. Also,
when E is axiomatized by the union of two theories Fi, Fy of respective, disjoint
signatures, X1, %5, ¥; (1 = 1,2) is a set of constructors for E. This is not immediate
but it can be shown as a consequence of some results in [2].

The abstractness of Definition 4.5 may make it difficult to say for a given theory
E and signature ¥ whether X is a set of constructors for E. For this reason we
provide in the following a more concrete, syntactic characterization of theories
admitting constructors. But first, some more notation is necessary.

Given a subset G of T(Q,V), we denote by T(X,G) the set of terms over the
“variables” G. More precisely, every member ¢ of T'(X,G) is obtained from a term
s(v) € T(X,V) by replacing the variables ¢ of s with terms from G. In accordance
with our notational conventions, we will denote such a term ¢ by s(7) where 7 is
the tuple made, without repetitions, of the terms of G that replace the variables
0. We will refer to these terms as the G-variables of t. Notice that the notation is
consistent with the fact that G C T(X, G). In fact, every r € G can be represented
as s(r) where s is a variable of V. Also notice that T(X,V) C T(%,G) whenever
V C @G. In this case, every s € T(X,V) can be trivially represented as s(#) where
¥ are the variables of s.

DEFINITION 4.6 (¥-base). A subset G of T(Q,V) is a T-base of E iff the fol-
lowing holds:

1. V CG.
2. For all t € T(Q,V), there is an s(F) € T(X,G) such that
t =g s(F).
3. For all s1(71),52(72) € T(%,G),
s51(F1) =p s2(72) i 51(01) =g 52(02),

where @1, 7y are fresh variables abstracting 71,7, so that two terms in 7,7
are abstracted by the same variable iff they are equivalent in F.

We say that E admits a X-base if some subset G of T(2,V) is a X-base of E.

THEOREM 4.7 (Characterization of constructors). The signature ¥ is a set of
constructors for E iff E admits a X-base.
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Proof. Let A be an Q-algebra free in E over some countably infinite set X, and
« any bijective valuation of V onto X.13

(=) Assume that ¥ is a set of constructors for E, which implies that A is free
in E* over some set Y such that X C Y. First notice that, since A is generated
by X, for every element y of Y there is a term r in T(Q,V) such that y = [r]2.
Then let

G = {reT(Q,V)|[r]ieY}.

We show that G is a ¥-base of E.

Since X C Y, it is immediate that every v € V is in G, which means that G
satisfies the first condition in Definition 4.6. The second condition easily follows
from the fact that A* is X-generated by Y. Similarly, the third condition follows
from Point 3 of Proposition 2.1.

(<) Where G is any Y-base of E, let

Y = {2 |reG}.

Since V' C G by definition of X-base, it is immediate that X C Y. We show that
A% is free in E* over Y.

Let us start by observing that, since A is a model of E, its reduct A* is a model
of E*. Next, we show that A* is generated by Y. In fact, let a be an element of
A—which is also the carrier of A¥. We know that, as an Q-algebra, A is generated
by X; thus there exists a term ¢ € T/(Q,V) such that a = [¢t]. By Condition 2 of
Definition 4.6, the term t € T(Q2,V) is equivalent in E to a term s(7) € T(Z, G).
Since A is a model of E, this implies that a = [t]4 = [s(7)]4, from which it easily
follows by definition of Y that a is X-generated by Y.

The above entails that A satisfies the first two conditions of Proposition 2.1.
To show that it is free in E* then it is enough to show that it also satisfies the
third condition of the same proposition.

Thus, let s1(01),52(92) € T(X,V) and assume that A¥ o' | 51(01) = s2(2)
for some injection o' of Vy := Var(si(91) = s2(02)) into Y. By definition of ¥
we know that, for all v € Vj, there is a term r, € G such that o'(v) = [r,]2.
Using these terms we can construct two tuples 71 and 72 of terms in G such that,
for ¢ = 1,2, the term s;(7;) is obtained from s;(7;) by replacing each variable v in
Var(s;(9;)) by the term r,, and A, a = 51(F1) = s2(72). Since A is free in E over
X and « is injective as well we can conclude by Point 3 of Proposition 2.1 that
s1(71) =g s2(T2).

Because of the assumption that o' is injective, we know that r, #g r, for
distinct variables u,v € Vj. Thus, considered the other way around, the equation
51(01) = s2(¥2) can be obtained from s, (71) = s2(72) by abstracting the terms 7y, 7
so that two terms are abstracted by the same variable iff they are equivalent in E.
By Point 3 of Definition 4.6 then we obtain that s;(71) =g $2(72). Considering that
the terms s1(71), $2(02) are X-terms, this is the same as saying that s,(9,) =g=
S92 (@2). ]

We will use sets such as the set Y defined in the proof of the if-direction above

often enough to justify the following notation. If T is a subset of T(Q,V), A an
Q-algebra free in E over a countably-infinite set X, and « a bijective valuation of

13Such a valuation a exists since V is assumed to be countably infinite.
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V onto X we will denote by [T]4 the set of element of A denoted by the terms of
T,ie., [T]2 = {[t]} |t € T}.

From the proof of Theorem 4.7 we can also conclude that a ¥-base actually
denotes a set of generators for the Y-reduct of the E-free algebra.

COROLLARY 4.8. Let G be a X-base of E, A an Q-algebra free in E over a
countably infinite set X, and a a bijective valuation of V onto X. Then, A” is free
in E* over the set Y := [G]4, and X C Y.

o’

It should be clear that a theory E with constructors ¥ admits many X-bases.
For instance, if G is a X-base of E, any set equal to G modulo equivalence in E
is also a X-base of E. It is still an open question, however, whether a theory may
have essentially different ¥-bases.!* For now, we only know that this is impossible
if the theory’s restriction to X is collapse-free.

PROPOSITION 4.9. Assume that ¥ is a set of constructors for E and E* is
collapse-free. Then, every X-base of E is equal modulo equivalence in E to the set

Ge(Z,V) = {reTQ,V)|r#gt foralte T(Q,V) with t(e) € E}.

Proof. Let G be a X-base of E. We prove the claim by showing that (a) every
element of G is in Gg(X,V) and (b) every element of Gg(X,V) is equivalent in E
to some element of G.

(a) Let r € G and t € T(Q,V) with ¢(¢) € X. It is enough to show that r #g t.
Assume the contrary. Then, since G is a X-base of E and t(e) € X, there is a
term s(7) € T(X,G) with s non-variable such that r =g s(¥). By Condition 3
of Definition 4.6 then, there is a variable v and a tuple ¥ of variables such that
v =p s(¥). But this contradicts the assumptions that FE is non-trivial and E* is
collapse-free.

(b) Let t € Gg(%,V). By Condition 2 of Definition 4.6, there is a term s(7) €
T(X,G) such that t =g s(7). Since ¢ is equivalent in E to no terms starting with
a Y-symbol, s is necessarily a variable and 7 is actually the one-element tuple (r)
for some r € G. It follows that t =g r.

Proposition 4.9 also entails that, whenever ¥ is a set of constructors and E*
is collapse-free, the set Gg(X,V) above is the largest ¥-base of E. That it is one
follows from the fact that, in this case, £ admits a ¥-base G, and that this X-base
is equal to G modulo equivalence in E by the proposition. That it is the largest is
just what we have shown in part (a) of the above proof.

Ezxamples

We provide below some examples of equational theories admitting constructors
in the sense of Definition 4.5. But first, let us consider some immediate counter-
examples:

e The signature ¥ := {s} is not a set of constructors for the theory E axiom-
atized by {z = p(s(z)), =z = s(p(z))}. As argued at the beginning of this
section for the case of one generator, in constrast with the definition of con-
structors, the ¥-reduct of any free model of E over a countably infinite set is
not itself free, because it does not admit a non-redundant set of generators.

1411 the sense of not denoting the same set Y in Corollary 4.8.
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e The signature ¥ := {f} is not a set of constructors for the theory E ax-
iomatized by {g(z) = f(g9(z))}. In fact, since E* is clearly collapse-free we
know that any ¥-base of E, if any, is included in the set Gg(2,V) defined in
Proposition 4.9. But Gg(X2,V) is simply V in this case, and it is immediate
that no subset of V' satisfies Condition 2 of Definition 4.6.

e Finally, the signature ¥ := {f} is not a set of constructors for theory E
axiomatized by {f(g(z)) = f(f(g()))}. Again, E* is clearly collapse-free.
Moreover, Gg(X,V) =V U{g(t) |t € T(Q,V)}. It is easy to see that Condi-
tions 1 and 2 of Definition 4.6 hold for Gg(X,V). However, Condition 3 does

not since f(g(x)) =g f(f(9(x))), although f(y) #& f(f(¥))-

ExXAMPLE 4.1. The theory of the natural numbers with addition is the most
immediate example of a theory with constructors. Consider the signature ¥; :=
{0,s,+} and the equational theory E; axiomatized by the equations below:

z+@y+z) = (z+y) +2,
T+y = y+tuzo, 2)
z+s(y) = s(@+y),
z+0 = =z
The signature ¥ := {0,s} is a set of constructors for E; in the sense of Defini-

tion 4.5. A direct proof of this can be found in [4]. Here, we will obtain it later as
a consequence of a more general result discussed in Section 7.2.

The next example differs from the previous one in that the restriction of the
theory to the constructor signature is no longer syntactic equality.

EXAMPLE 4.2. Consider the signature Yo := {0,1,rev,-} and the equational
theory E» axiomatized by the equations below:

z-(y-2) = (x-y) 2

rev(0) = 0,

rev(l) = 1, 3)
rev(iz -y) = rev(y) -rev(z),
rev(rev(z)) = =.

Note that orienting the equations from left to right yields a canonical term rewriting
system R,. Let us denote the normal form of a term ¢ w.r.t. this rewrite system by
tlg,- It is easy to see that the restriction of E» to ¥' := {0,1,-} is axiomatized by
the first equation above.

We show that the signature ¥' is a set of constructors for Fy in the sense of
Definition 4.5, by showing that the set

G = VU{rev(v) |veV}

is a X/-base of E,.

It is immediate from the definition of G that V' C G, and thus Condition 1 of
Definition 4.6 is satisfied by E» and ¥'. To see that Condition 2 is satisfied, it is
sufficient to show that the Rp-normal form of any term ¢t € T'(22, V) is of the form

tiRQZ("'((Tl'TQ)'T3)' -T’k)
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where r; € {0,1} UV U{rev(v) | v € V'}. This can be easily proved by showing that,
to any term not in this form, one of the rules of Rs applies.

To see that Condition 3 of Definition 4.6 holds, we consider a term s(7) €
T(Y', G)—where s(¥) is a X'-term and every element of 7 belongs to G. It is easy
to see that the Ry-normal form of s(7) can be obtained by computing the normal
form of s(¥) w.r.t. the rewrite rule = - (y - z) = (x - y) - 2z, and then inserting into
this term the terms in 7. Now, Condition 3 of Definition 4.6 is an easy consequence
of this fact.

In the examples above, the restriction of each theory to the constructor symbols
is collapse-free. That is not the case for the theory in the next example.

EXAMPLE 4.3. Consider the signature ¥35 := {0,p,s,—} and the equational
theory E3 axiomatized by the equations:
s(p(z)) = =
p(s(z)) = =
-0 = 0,
~(2) = =, @
—s(z) = p(-2),
—p(z) = s(—=).

The signature ¥ := {0, p,s} is a set of constructors for E3. To prove it we show
that the set G :=V U {—v|v € V} is a ¥'-base of E;.

By definition, V' C G. To show the remaining two conditions of Definition 4.6,
note that orienting the axioms above from left to right produces a confluent and
terminating rewrite system Rs. Thus, two terms are equal modulo FEjs iff their
Rs-normal forms are syntactically identical.

Now, Condition 2 of Definition 4.6 is satisfied since, given an ¥s-term, its Rs-
normal form is in 7(X"”,G). This is an immediate consequence of the fact that
(because of the last four rules of R3) any term containing a minus symbol in front
of —, 0, p, or s is Rg-reducible. Therefore, in Rz-normal forms, minus can only
occur in front of variables.

All we need to show then is that Condition 3 of Definition 4.6 is also satisfied.
Thus, let s1(71), s2(F2) be terms in T(X",G) such that s;(F1) =g, s2(72). Since
R3 is confluent and terminating, there exists a term t such that s (7;) =g, t and
s9(F2) R, t. Since in the terms s; (%), s2(72) (as well as in any term occurring
in the reduction chains) the minus symbol can only occur in front of variables,
the reduction chains make use of the first two rules of R3 only. Consequently,
s1(71) and s2(72) are equal modulo the first two axioms of E3. Given that these
axioms do not contain the minus symbol, it is easy to see that this implies that
51(01) =g, $2(02). Since the other direction of the bi-implication of Condition 3 is
trivial, this completes the proof that G =V U{—v | v € V} is a ¥"-base of Ej.

More examples of theories with constructors can be found in the usual axioma-
tizations of abstract data types.

Normal Forms

Let us now assume that E is an equational theory over the signature {2, which
has a set of constructors X.. Let G be a X-base for E.
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According to Definition 4.6, every Q-term ¢ is equivalent in E to a term s(7) €
T(Z,G). We call s(F) a G-normal form of t in E.'> We say that a term t € T(Q,V)
is in G-normal form if it is already of the form ¢ = s(7) € T'(X,G). Because V C G,
it is immediate that X-terms are in G-normal form, as are terms in G. We will say
just normal form instead of G-normal form whenever the Y-base G in question is
clear from the context or irrelevant.

We will make use of normal forms in the combination procedure given later.
In particular, we will consider normal forms that are computable in the following
sense.

DEFINITION 4.10 (Computable Normal Forms). We say that G-normal forms
are computable for 3 and E if there is a computable function

NFg: T(Q,V) — T(Z,G)
such that NFg(t) is a G-normal form of ¢, i.e., NFg(t) =g t.

Note that the terms of G may as well start with a ¥-symbol themselves.'6
This means that, for any given term ¢ in G-normal form, it may not be possible
to effectively identify its G-variables, i.e., those terms 7 of G such that ¢ = s(F)
for some ¥-term s. Now, in the combination procedure introduced in Section 5,
sometimes we will need to first compute the normal form s(7) of a term and then
decompose this normal form into its components s and 7. To be able to do this it
will be enough to assume (in addition to the computability of normal forms) that
G is a recursive set, thanks to the proposition below.

PROPOSITION 4.11. When G is recursive, for every t € T(X,G) there is an
effective way of computing from t a term s(v) € T(X,V) and a sequence T of terms
in G such that t = s(F).

Proof. Let t € T(X,G). We prove by structural induction that we can identify
a Y-term s(?) and a tuple 7 of terms in G such that ¢t = s(7).!7

(Base Case) If t € V the claim is trivially true because t € G by the definition
of Y-bases.

(Inductive Step) Let ¢ be the term f(¢1,...,t,) with f € Q. If ¢ is in G, which
we can effectively check because G is recursive, we can choose any s € V and let 7 be
made of just ¢ itself. If ¢ is in not in G, then f must be a ¥-symbol since t € T(Z, G)
by assumption. Also, the terms ¢1,...,%, must belong to T(X,G) or else ¢t would
not be an element of T'(X,G). For j € {1,...,n}, let s;(7;) be an appropriate
decomposition of the term ¢; into a ¥-term s; and a tuple 7; of elements of G.
This decomposition is computable by induction. Let f(s1,...,s,)(0) be the term
obtained from t by replacing with fresh variables o all the occurrences in t of the
terms in 7y,... ,7, so that identical occurrences are replaced by the same variable.
Where 7 consists, in order, of the terms of G abstracted by 7, it is immediate that
s(0) = f(s1,...,8,)(0) € T(X,V), T is a tuple of elements of G, and ¢t = s(7). 1

If aterm ¢t € T(Q,V) is equivalent in E to a Y-term s, then s is a normal form
of t. On the other hand, not every normal form of ¢ needs to be a X-term. In our

5Notice that in general a term may have more than one G-normal form.

16Unless E~ is collapse-free (cf. Proposition 4.9).

17Note that this decomposition of ¢ need not be unique since terms in G may start with a X
symbol.
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combination procedure, however, it will be convenient to assume that every given
normal form function returns a X-term whenever its input term is equivalent to
one. The following lemma implies that this assumption can be made without loss
of generality.

LeMMA 4.12. Let the word problem for E be decidable and G-normal forms
computable for ¥ and E. Then, for all t € T(Q,V) it is decidable whether t is
equivalent in E to a X-term. If this is the case, o term s € T(X,V) such that
t =g s is effectively computable from t.

Proof. Let us say that a term ¢ is independent in E from one of its variables
v if substituting v by a fresh variable (i.e., a variable not occurring in t) yields
a term equivalent to t in E. Now, let t € T(Q,V) and s(F) = NFg(t) with
7= (ry,...,Tm). Since the word problem for E is decidable, we can assume with
no loss of generality that all the elements in 7 are pairwise inequivalent in F—
otherwise we can effectively replace by a single representative term all those that
are not.

Let s(v) with o = (v1,... ,vm) be the ¥-term obtained from s(7) by replacing
the occurrences of 7; in s(F) by a fresh variable v; for every j € {1,... ,m}. Then
let § :== (q1,... ,qm) where, for each j € {1,... ,m}, g; := u; if u; is a variable such
that u; =g r;, g¢j := vj if s(9) is independent from v; in E, and g¢; := r; otherwise.
Since E is non-trivial and has a decidable word problem, the tuple § is effectively
constructible. Moreover, its elements are pairwise inequivalent and each of them is
equivalent in E to a variable only if it is one.

Now consider the term s(g) € T(X,G) obtained from s(7) by substituting v;
by g; for all j € {1,...,m}. By construction, we have s(q) =g s(r) =g t. We
prove below that whenever ¢ is equivalent in E to a X-term, each element of g is
in fact a variable and so s(q) € T(%,V). Conversely, if s(g) € T(X,V), then ¢ is
obviously equivalent to a ¥-term. Since s(q) is effectively computable from ¢, this
will conclude our proof.

Assume that t =g s2(72) for some s2(72) € T(X,V). Since t is equivalent in
E to s(g), we have that s(q) =g s2(72). Given that G is a X-base of E, we also
have that s(7:1) =g $2(72), for some tuples 71,2 of fresh variables abstracting the
elements of ¢, 7, as in Condition 3 of Definition 4.6. Recalling that only equivalent
terms get abstracted by the same variable, we can then conclude that ¢ contains
only variables. In fact, let g¢; be an element of ¢ and let vy, be the variable of v;
abstracting g;. If vy, occurs in 72, it is because g; is equivalent in E to an element
of 75. Since every element of 75 is a variable, it follows by construction of ¢ that
g; is a variable. If vy; does not occur in 7, the equivalence s(?;) =g s2(72) entails
that s(v1) is independent from vy, in E. Now, 0, is just a bijective renaming of o
given that the elements of § are pairwise inequivalent in E. It follows that s(v) is
independent from v;, the variable corresponding to v,; in the renaming. But then
g; = v; by construction of g.

From now on, we will make the following assumptions on the functions comput-
ing normal forms.

Assumption 4.1. The computed normal form s(7) of a term ¢ is always in
T(X,V) if ¢ is equivalent to a Y-term in the theory E in question. Moreover,
the elements of 7 are pairwise inequivalent in E, with the non-variable ones non-
collapsing in E.
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As we have seen above, all these assumptions can be made without loss of
generality whenever E is non-trivial, normal forms are computable and the word
problem is decidable in E.

We are interested in theories admitting constructors because, under the right
conditions, the decidability of the word problem is modular with respect to their
union. We start looking at these conditions and some of their implications in the
next subsection.

4.3. Combination of Theories Sharing Constructors

Going back to the problem of combining theories, let us now consider two non-
trivial equational theories Fy, E» with respective signatures X1, Y such that, for
i=1,2

e 3 := 3, N, is a set of constructors for F;;
[ ] E12 = E2E;
e F; admits a recursive ¥-base G; closed under bijective renaming of V;

e (G;-normal forms are computable for ¥ and E; by a function NF; that satisfies
Assumption 4.1.

e the word problem for E; is decidable.

Of the above assumptions on FE;, only the closure of G; under bijective renaming
has not been mentioned before. We need this assumptions for technical reasons
in the remainder of this paper, but we have not been able to show so far that it
is without loss of generality. Even if it is a real restriction, however, it appears
to be a rather mild one, which is satisfiable in all the examples of theories with
constructors we can think of, including those given above.

As before, let

E = E{UE,.

In the rest of this section, we prove a number of important facts about E. We will
use these facts in the next two sections to show that, under the above assumptions
on F; and F,, FE has a decidable word problem and admits a recursive ¥-base with
computable normal forms. A very useful tool for our proofs will be a specific model
of E, obtained by a fusion of the free models of E; and E» as described below.

In what follows, if S is any set, Card(S) will denote the cardinality of S.

A Fusion Model for E

For 1 = 1,2, let us fix a ¥;-algebra A; free in F; over a countably infinite set
X;. Let us also fix an arbitrary bijective valuation «; of V onto X;, and consider
the set

Y, = [Gila -

We know from Corollary 4.8 that X; C Y; and A; is free in E;> over Y;. Observe
that A; is countably infinite, given our assumption that X; is countably infinite
and ¥; is countable. As a consequence, Y; is countably infinite as well.
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X=%

FIG. 3 The Fusion A of A; and As.

Now let Z; 5 := Y;\ X; for i = 1,2, and let {Z;1,Z:} be a partition of X;
such that Z; is countably infinite and Card(Z;;) = Card(Zs5).'® Similarly, let
{Z2,1, Z>} be a partition of X, such that Card(Z,,) = Card(Z, ) and Z, is count-
ably infinite. Then consider 3 arbitrary bijections

hi:Zip — Za1, ho:Zy — Zy, hs: Z11 — Za 2,

as shown in Figure 3. Observing that {Z; 1, Z;, Z; 2} is a partition of ¥; for { = 1,2,
it is immediate that h; U he U hs is a well-defined bijection of Y7 onto Y;. This
bijection induces a fusion of 4; and As, whose main the properties are listed in the
lemma below.

LEMMA 4.13. The algebras Ay and Az admit o fusion A such that:

1. A*' s free in Ey over X| := Zso U Zs;

2. A*¥2 is free in Ey over X} := Zs1 U Zs;

3. A® is free in Fy¥ = Fx” over Yo = Zy1 U Zo U Zo 5.

4. Y, = [[61‘2]];,“‘:2 = [Glﬂf:ojl, for some T-isomorphism h of A1> onto Ax”.

Proof. Since E:¥ = E>” and both Y; and Vs are countably infinite, A;® and
As” are both free in the same S-variety over sets with the same cardinality. By well-
known results from Universal Algebra!® then, the bijection Ay Uhy U hz: Y] — Vs
can be extended to a X-isomorphism h of A1~ onto Ay>. Tt follows from Corol-
lary 4.4 that there is a fusion A of A; and Ay such that the identity on the carrier
of Ay is a Yy-isomorphism of A, onto A>2, and h is a ¥;-isomorphism of 4; onto
A*1

The first three points then are an immediate consequence of the construction of
h and the choice of A.

18This is possible because Z» o is countable (possibly finite).
19See, e.g., [1], Theorem 3.3.3.
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Now, Y3 = [[GQ]];;‘Q2 * because Ay and A*? coincide by construction of A and
Y, = [G2]42 by definition.
Finally, we show that for each r € G; we have [[r]]AEl = h([r]JZ"). This implies

hoa
then that [[Gl]]hAf;1 = h([G1]2) = h(Y1) = Y. Thus, let 7(v) € G1. We have?®
[[7'(17)]],?:;1 = 27 (h(eq () (by definition of term function)
= A 1A (h(e1(®)))))  (since h is a bijection)
= h(r*(a:(9))) (since h=1 is a ¥;-isomorphism)
= W([r@)])

For being a fusion of a model of E; and a model of E», the algebra A above is
a model of E = E; U E> by Proposition 4.2. The first interesting fact we can prove
about E using A is that E is a conservative extension of both E; and Es.

PROPOSITION 4.14. For all j € {1,2} and t1,t, € T(X%;,V)
t1 =g, t2 iff t1 =g ta-

Proof. The implication from left to right is immediate since E; C E. For the
converse, assume that j = 2 (the proof for j = 1 follows by symmetry), and let
t1,t2 € T(EQ,V) such that ¢t; =g t».

Consider then the algebra A as described in Lemma 4.13, and recall that A>2
is free in E, over X)}. Since t; =g t2 and A is a model of E, we have that
A,a =t = ty for any valuation « of Var(t; = t) into A. In particular, we can
choose a to be an injection into Xj. Observing that t1,ts are Yo-terms we then
have that A>2,«a = t1 = t2. It follows by Proposition 2.1 that t; =g, t2. 1

The following is an immediate consequence of the above result.
COROLLARY 4.15. E is non-trivial and E*> = E;* = By~

Another important property of E is represented by the interpolation result in
Lemma 4.18 below. To prove that result we will need some more properties of the
algebra A defined in the proof of Lemma 4.13.

LEMMA 4.16. Leti € {1,2} and r a term of G; \ V non-collapsing in E. Then,
[ € Za.i
for every injective valuation o of Var(r) into X].

Proof. First let 4 = 2 and so let r € G2\ V be non-collapsing in E. We start
by showing that [r]2 € Ys. Since a is an injective valuation of Var(r) into X},
and the valuation ay is a bijection of V' into X}, there is a term 7' obtained by a
bijective renaming of the variables in r such that [r]7 = [r']42. Since G is closed
under renaming by our assumptions, we have that ' € G5, and thus [r’ ]]ﬁ,j €Y, by
definition of 3. Now we prove by contradiction that [r]A ¢ X5. If [r]2 € X3, it is
easy to show that there is a v € V' and an injective valuation « of Var(v = r) into
X} such that A,y £ v = r. Recalling that A2 is free in E5 over X} we then obtain

20In the identities below, an expression like a1(%) should be read as an abbreviation for
(a1(v1)y ... ya1(vm)) where 0 = (vi,... ,om).
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by Proposition 2.1 that v =g, r, against the assumption that r is non-collapsing in
E. 1t follows that [r] € Zo» = Y5\ X}.

Now let 4 = 1 and so let » € G1\V be non-collapsing in E. Again, first we
show that [[r]]ﬁ € Y3. Let B1 := hoay, as in Lemma 4.13. Since « is an injective
valuation of Var(r) onto Xj, B is a bijective valuation of V onto X], there is a
term 7' obtained by a bijective renaming of the variables in r such that [r]2 =
|Ir’]]§‘121. Again, r' € G7 as G is closed under renaming, and thus [[r']]gl::1 €Y, by
Lemma 4.13. As in the previous case, using the fact that 4! is free in E; over
X!, we can prove that [r]4 & X|. It follows that [r]{ € Zo1 = Yo\ X{. 1

LEMMA 4.17. Fori=1,2, lett; € T(X;,V) and let a be an injective valuation
of Var(t1) U Var(ts2) into Yo = X{ U X§ such that a(v) € X| for all v € Var(t;). If
[t ]2 = [t2]2 then t1 =g ta.

Proof. Let s;(7;) := NF;(t;) for i = 1,2 and assume without loss of generality
that « is defined on all the variables of s;(7;) and maps them into X/.?! From the
assumptions and the equivalence in E of s;(7;) with ¢; it follows that

[s:(r)]2 = [s20m2)]% - (5)

Since every non-variable element r of 75 is a non-collapsing term of G5 by Assump-
tion 4.1, and « is an injection of Var(r) into X}, we have by Lemma 4.16 that
[[7']]'&4 S Z272 g X{

Now, we modify s,(72) as follows: every non-variable component r of the tuple
75 is replaced by a variable. To be more precise, let a := [r]Z. We replace r by the
variable v,, where v, is a fresh variable if a is not in the image of a, and v, is the
variable v satisfying a(v) = a otherwise. Let s(7) be the X-term obtained this way.
We extend a to an injection 8 by defining (v, ) := a for all the fresh variables v,.
By construction, we have [[51(771)]]34 = [s1(7F1)]A = [s2(72)]2 = [[3(17)]]“;, and thus
AP, B = s1(r1) = (D).

Recalling that A>! is free in F; over X}, we can conclude by Proposition 2.1
that s1(F1) =g, s(0). By Assumption 4.1 this entails that all the elements of 7; are
variables.

In a completely symmetric way we can prove that all the elements of 7 are
variables as well. From equation (5) above then we have that A* a = s = s with
a injecting Var (s = s2) into Y2. Since A* is free in E* over Y, this entails that
s1 =g s2. Given that each t; is equivalent to s; = NF;(t;) in E;, and so in E, we
obtain that t; =g t2, as claimed. 1

LEMMA 4.18 (Interpolation Lemma). For i = 1,2 let t; € T(X;,V) such that
t1 =g to. Then, there is a term s € T(X,V) such that

t1 =g, s and s=g, ts.

Proof. Let a be a valuation of Var(t;) U Var(tz) as in Lemma 4.17. Notice
that such a valuation can alway be constructed, for instance, by injecting Var(t1)U
Var(ty) into the (infinite) set Zo = X; N X). From t; =g t» and the fact that A is
a model of E we have that [t;] = [t2]Z. Exactly as in the proof of Lemma 4.17
then, we can show that there is a ¥-term s such that ¢t; =g, s. The equivalence
s =g, ta then follows from the fact that s =g t; =g t2 and Proposition 4.14.

210therwise, we extend « so that it maps the extra variables of s;(7;) to new distinct elements
of the infinite set Zy = X N XJ.
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Input: (So,to) € T(El @] EQ,V) X T(El U ZQ,V).
1. Let S:= AS(so # to)-

2. Repeatedly apply (in any order) Colll, Coll2, Identl, Ident2, Simpl,
Sharl, Shar2 to S until none of them is applicable.

3. Succeed if S has the form {v #Z v} UT and fail otherwise.

FIG. 4 The Extended Combination Procedure.

The interpolation lemma above already provides a partial result on the decid-
ability of the word problem in the combined theory E.

PROPOSITION 4.19. Letty,t2 be two pure terms, i.e., t1,t2 € T(X1, VIUT(Z2,V).
Then, the equivalence of t1 and ty in E is decidable.

Proof. By Proposition 4.14 the claim is trivial if ¢;,¢2 are both X;- or both
Ya-terms. Therefore assume that for i = 1,2, t; € T(X;,V), say.

By Lemma 4.18, ¢t; and to are equivalent in E iff they are equivalent in their
respective theories to a same YX-term. By Assumption 4.1, their normal form is
itself a ¥-term whenever they are equivalent to a ¥-term. This entails that the
problem of proving that ¢; =g t2 can be reduced to the problem of verifying that
NF;(t1), say, is a E-term and then proving that NF;(t1) =g, t2. The claim then
follows from the assumption that NF; is computable and the word problem in FEs
is decidable. 1

In the next section, we lift this result to arbitrary terms in T(%; U X5, V) by
using an extension of the combination procedure in Section 3.

5. AN EXTENDED COMBINATION PROCEDURE

In the following, we show that the combination procedure introduced in Sec-
tion 3 can be extended to solve the word problem for unions of theories sharing
constructors. More precisely, we will consider an equational theory FE := E; U FE,
where, for i = 1,2,

e Y := 31 NXsis a set of constructors for E;;
o B)” = By
e F; admits a recursive X-base G; closed under bijective renaming of V;

e (G;-normal forms are computable for ¥ and E; by a function NF; that satisfies
Assumption 4.1.

e the word problem for E; is decidable.

In Section 4, we would have represented the normal form of a term in T'(%;,V)
(1 = 1,2) as s(7) where s was a term in T(X,V) and ¢ a tuple of terms in G;.
Considering that G; contains V', we will now use a more descriptive notation. We
will distinguish the variables in g from the non-variable terms and write s(g, )
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uZzv u=s v=t

vEU

if seT(X;,V)andte T(X;,V) with {i,j} = {1,2},
and s =g t.

Ident2

Sharl

T
Tlz/s(g,2)th/F1]] Z=F u#v =z
if z € Var(T),
te T(%;,V)\Gifori=1lori=2,
NF;(t) = s(g,7) € T(%,G:i)\ 'V,
7 nonempty and 7 C G; \ T(Z,V),
Z fresh variables with no repetitions,
71 € Var(s(g,7)) and
(x =s(g,7) <(y=r)forno (y=r)eT.

AAA,{?AA
TLaeLzZeE

D

T uZzv T=t
Tlz/s[gi/m]] uwZv x=s[f/r]

=3I
[

Shar2

Q|
~
i

if (a) =ze€Var(T),

b) te T(X;,V)\G;fori=1ori=2,
c) NE@{)=seT(X,V)\V,

d) @1 CVar(s),

e) (z=s)<(y=r)forno(y=r)eT.

FIG. 5 The New Transformation Rules.
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instead, where § collects the elements of ¢ that are in V' and 7 those that are in
Gi\V.

The extended combination procedure is described in Figure 4. Its only difference
with the previous one is the presence of three new derivation rules, Ident2, Sharl
and Shar2, which apply when ¥; and ¥, are not disjoint, i.e., when the shared
signature ¥ is nonempty. The new rules are used to propagate the constraint
information represented by shared terms.

The goal of Ident?2 is to identify the variables in the system’s disequation when-
ever they are equated to terms that have different signature but are both equivalent
to the same shared term.?? By Lemma 4.18 this occurs exactly when the two terms
are equivalent in F, a condition that, as explained in Proposition 4.19, is decidable
because it reduces (thanks to Assumption 4.1) to checking that NF;(s) =g, t.

The goal of both Sharl and Shar2 is to push shared function symbols towards
lower positions of the <-chains they belong to so that they can be processed by
other rules. To do that, the rules replace the right-hand side ¢ of an equation z = ¢
by its normal form, and then plug the “shared part” of the normal form into all
equations whose right-hand sides contain z. The exact formulation of the rules is
somewhat more complex since we must ensure that the rules do not apply repeatedly
to the same equation and the resulting system is again an abstraction system.
In particular, the rules must preserve the “alternating signature” requirement in
Condition 3b of Definition 3.2.

In the description of the rules, an expression like Z = 7 denotes the set {z; =
Tiy,...y2n = T} where Z = (21,...,2,) and ¥ = (r1,...,7,), and s(7, 2) de-
notes the term obtained from s(y,7) by replacing the subterm r; with z; for each
j € {1,...,n}. Observe that this notation also accounts for the possibility that ¢
reduces to a non-variable term of G;. In that case, s will be a variable, § will be
empty, and 7 will be a tuple of length 1. Substitution expressions containing tuples
are to be interpreted accordingly; e.g., [Z/7] replaces the variable z; by r; for each
je{l,...,n}

We make one assumption on Sharl and Shar2 that is not explicitly listed in
their preconditions.

Assumption 5.1. We assume that NF; (i = 1,2) is such that, whenever the set
Vo := Var(NF;(t)) \ Var(t) is non-empty,?® each variable in V; is fresh with respect
to the current set S.

Such an assumption can be made without loss of generality. In fact, since
each G; is closed under bijective variable renaming, applying any such renaming to
NF;(t) yields a term still in T(X2,G;). In particular, we can choose a renaming that
fixes the variables in Var(t) and moves those in Vj to fresh variables. This process
is clearly effective and yields a term also equivalent to ¢ in E;.

In both Shar rules it is required that the normal form of ¢ be a non-variable
term—a consequence of Condition (c¢) in both rules. The reason for this restriction
is that the rules Colll and Coll2 already take care of the case in which a ¥;-term
is equivalent in E; to a variable. Notice that Sharl excludes the possibility that
the normal form of the term ¢ is a shared term. It is Shar2 that deals with this
case. The reason for a separate case is that we want to preserve the property that

228trictly speaking then, Ident2 can apply even if £1 and X2 are disjoint provided that the
terms ¢1 and t2 in its premise are equivalent to the same variable. But in that case, its effect can
be also achieved by Colll and Coll2.

23This might happen because Definition 4.10 and Assumption 4.1 do not entail that all the
variables of NF,(t) occur in t.
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every <-chain is made of equations with alternating signatures (cf. Condition 3b
of Definition 3.2). When the equation £ = ¢ has immediate <-successors, the
replacement of ¢ by the 3-term s may destroy the alternating signatures property
because x = s, which is both a 3;- and a ¥s-equation, may inherit some of these
successors from x = ¢.2* Shar2 restores this property by merging into 2 = s all of
its immediate successors—which are collected, if any, in the set ; = 7 thanks to
Condition (e) in the rule. The replacement of §; by 7, in Shar1 is done for similar
reasons.

In both Shar rules the condition z € Var(T') is necessary to ensure termination.

We prove below that the new combination procedure decides the word problem
for E = E; U E» again by showing that the procedure terminates on all inputs and
is sound and complete.

5.1. The Correctness Proof

In this subsection, we will consider a countable family S := {S; | j > 0} such
that Sp is an abstraction system and for all j > 0, S; is either identical to S;_; or
is derived from S;_; by an application of Colll, Coll2, Simpl, Identl, Ident2,
Sharl, or Shar2. In particular, & may correspond to the family generated by
one execution of the combination procedure, defined in the same way as in Subsec-
tion 3.3. In general, however, the first element of S may be an arbitrary abstraction
system, not necessarily one produced by the purification procedure described in
Section 3.1. As before, we will denote by <; the restriction of < to S;.

We start by showing that all the elements of S are in fact abstraction systems.

LEMMA 5.1. S is an abstraction system for all j > 0.

Proof. We prove the claim by induction on j. The induction base (j = 0) is
immediate by assumption. The induction step is proved exactly as in Lemma 3.6
for the cases in which S; is derived from S;_; by an application of Colll, Coll2,
Simpl, or Identl. Since the Ident2 case is trivial, we show below that S; is an
abstraction system also when it is derived by Sharl or Shar2.

Sharl. We know that S;_; and S; have the following form:

Sj_l =T U {u ;_r_é ’U} U {JI t} @] {:ljl 771}
Sj =Tz/s@2)m/m]]u{z=rt U{uZv} U{z=s(y,7)} U {tr =n}

To see that S; satisfies Condition 1 of Definition 3.2, first notice that s(g,7) is not
a variable by precondition (c) of the rule, and that the terms in 7 are also non-
variable terms. Because S;_; is assumed to be an abstraction system, it satisfies
the alternating signature assumption, and thus the terms in 7y are X,-terms with
v € {1,2}\ {i}. Since s(g,2) is a E-term, we know that s(g,Zz)[g1/71] is also a
Y,-term. The alternating signature assumption for S;_; also implies that any term
in T containing z is a ¥,-term, and so the replacement of z by s(y, 2)[g1/71] does
not generate mixed terms.

Condition 3a is satisfied because Z consists of fresh variables with no repetitions.
Condition 3b is satisfied because

e every right-hand side #'[z] of T, which is a term in T(X,,V)\ T(X,V) by
induction hypothesis (cf. observation after Definition 3.2), is replaced by the
term t'[x/s(g, Z)[g1/71]], which is also in T(%,,V)\ T(Z,V) by the above;

24As explained above, we assume that the variables in Var(s)\ Var(t) do not occur in the
abstraction system. Thus, the equations in §; = 71 are in fact successors of x = t.
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e the elements of 7 are not Y-terms, have the same signature as ¢, and every
immediate <-predecessor of an equation in Z = 7 has the signature of the
immediate predecessors of z = ¢ in S;_q;

e all the immediate successors of z = s(7,7) are inherited from z = t because,
thanks to our assumptions on the variables of normal forms, the variables in
Var(s(y,7)) \ Var(t) do not occur in S;_; (and without loss of generality also
not in z);

e s(y,7) is not a X-term because the tuple 7 is non-empty and made of non-¥-
terms;

e if an equation z' = t'[z] in T is replaced by z' = t'[s(

z

new successor of such an equation is an equation in
an equation in g; = 7.

Z)[y1/71]], then any
7 or a successor of

?

To show that Condition 2 is satisfied, we first prove that T; := S; \ {Z = 7} gives
rise to an acyclic graph. This graph has essentially the same nodes (i.e., equations)
as S;j_1, although the right-hand sides of the equations may have changed. Even
if there are possibly new edges, it is easy to see that there are no new connections
between nodes, since any connection achieved by such a new edge in T} can be
achieved by a path in S;_;. Since S;_; induces an acyclic graph by assumption,
this implies that the graph corresponding to T} is acyclic as well. The additional
nodes in S; (i.e., the equations in Z = 7) cannot cause a cycle either since any path
through one of these nodes comes from a predecessor of z = ¢[g] in S;_1 and goes
to a successor of z = ¢[g] in S;_;. Thus, the cycle would have already been present

in S]‘_l.
Shar2. We know that S;_; and S; have the following form:
Sj_l = T U {’U/.,;é’l)} U {.’EEt} U {:IhEFl}
S = Tle/slp/n]] U {ugv} U {z=sli/nly U {r=n}

We can show that S; satisfies Conditions 1, 2, 3a, and 3b of Definition 3.2 essentially
in the same way as in the Shar1l case. For Condition 3a, additionally observe that
we cannot use £ = s in S; because s is a shared term. By using z = s[f; /7]
instead, where the terms of 7; are non-shared by induction, we make sure that any
successors of this equation is a successor of an equation in g; = 7;. Since every
equation in g1 = 74 is a successor of z = t in S;_1,?® and S;_; satisfies Condition 3a
by induction, all the equations in §; = 71 have the same signature, which is also the
signature of z = s[g;/71]. Thus, Condition 3a for « = s[g; /7] and its successors in
S, is satisfied since it is satisfied for the equations in ; = r; and their successors
in S;_;. If the tuple §; is empty, then s[g:/71] = s is a shared term, but this is not
a problem since in this case the equation x = s does not have any predecessors or
successors in Sj.

Termination

The extended combination procedure as well halts on all inputs, but to prove it
we will need a more sophisticated argument that uses an appropriate well-founded
ordering?® on abstraction systems, defined in the following.

25Recall again that the variables in Var(s) \ Var(t) do not occur in S;_;.
26 A strict ordering > is well-founded if there are no infinitely decreasing chains a1 > a2 > a3z >
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Let >; denote the lexicographic ordering over the set P := N x {0, 1} obtained
from the standard strict ordering over N and its restriction to {0,1}. Where M(P)
denotes the set of all finite multisets of elements of P, we will denote by 1 the
multiset ordering induced by >, that is, the relation on M(P) defined as follows—
where €,C, =, \,U are to be interpreted as multiset operators (see [8] for more
details).

DEFINITION 5.2 (J). For all M,N € M(P), M 1 N iff there exist X,Y €
M(P) such that

e ) AXCM,
e N=(M\X)UY, and
e for all y € Y there is an z € X such that  >; y.

It is possible to show that J is a well-founded total ordering on M(P) [8].
Intuitively, this ordering says that a multiset M is reduced by removing one or more
elements from M, and replacing them by a finite number of >;-smaller elements.
As customary, we will denote by 3 the reflexive closure of 1.

In Section 3, we saw that the equations of an abstraction system can be consid-
ered as the nodes of a graph whose edges are induced by the relation <. In what
follows we will use a notion of reducibility for such nodes.

DEeFINITION 5.3 (Node Reducibility). Let (T, <) be the dag induced by an ab-
straction system {z # y} UT and let e € T. We say that e is irreducible, or that
its reducibility is 0, and write r(e) = 0, if the right-hand side of e is a member of
G1 or G5 (the X-bases of Ey, Es, respectively). We say that e is reducible, or that
its reducibility is 1, and write r(e) = 1, otherwise.

Now, for all j > 0 let h; and r; be the height (cf. Definition 3.4) and the
reducibility function on the nodes of the dag induced by the abstraction system .S;.
These functions can be used to associate a finite multiset to S;: the multiset M;
consisting of the pairs (h;(e),r;(e)) for every equation e in S;. Notice that M; is
indeed a multiset: if S; contains m irreducible nodes with height n, M; contains
m occurrences of the pair (n,0). Similarly, if S; contains m reducible nodes with
height n, M; contains m occurrences of the pair (n,1).

Our interest in the multiset ordering J is motivated by the fact that each
application of a derivation rule in the procedure reduces, with respect to 1, the
multiset associated with the current abstraction system. To show that, we will
appeal to the following easily provable properties of the height functions h;.

LEMMA 5.4. The following holds for every finite dag G and associated height
function h.

1. For all nodes a,b of G, if there is a non-empty path from a to b then h(a) <
h(b).

2. Adding an edge from a node of G to another of greater height does not change
the height of any node of G.

3. Removing an edge in G does not increase the height of any node of G (although
it may decrease the height of some).
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4. Removing a node and relative edges from G does not increase the height of the
remaining nodes (although it may decrease the height of some).

LEMMA 5.5. For all j > 0, M; 1 M1 whenever Sjy1 is generated from S; by
an application of Colll, Coll2, Simpl, Identl, Ident2, Sharl, or Shar2.

Proof. We consider only the application of Colll, Ident1, Sharl, and Shar2.
The proof for Coll2 is very similar to that for Colll, and the proof for Ident2 and
Simpl is trivial.

Colll. We can think of S;;, as being derived from S; by applying the inter-
mediate steps below.

S; = T U {u#v} U {vi=sifv2]} U {v2 = s2}
S = Twun/s2] U {uZo}vi/ve] U {1 =sifve]} U {v2 = s2}
Sivr = Tvi/s2] U {uZv}vr/va] U {v2 = 52}

As in the proof of Lemma 5.1 we can easily show that S is an abstraction system
as well. Then, where M is the multiset associated to S, we show that M; J M T
Mjia.

(M; 3 M) If v; does not occur in T then M; = M, as the equational parts
of S; and S coincide. If v; occurs in T, since S; is an abstraction system, it will
necessarily occur in the right-hand side of some equations. Let vy = sg be any such
equation. Since

(vo = so[v1]) <5 (v1 = s1v2]) <5 (V2 = 52) (6)

we know from Point 1 of Lemma 5.4 that every v = ¢ in S such that (v = s2) <
(v =) has a greater height in S; than vy = s¢. The replacement of v; by s, adds
an edge from vy = sg only to nodes v = t like the one above. This means that,
going from S; to S, the only new edges are from a node of S; to one that is already
higher. By Point 2 of Lemma 5.4 then no node in S; moves to a greater height in
S because of such edge additions. Now, vg = so[v1] above becomes vy = so[v1/52]
in S, hence it may become reducible even if it was irreducible before. If n is the
height of vg = sg in S, then a pair of the form (n,0) may be replaced by the larger
pair (n,1) when going from M; to M. This, however, is not a problem because at
least one greater pair, (n+1,r;(vi = s1)), is replaced by a smaller one. To see this
observe that, since v; does not occur in S\ {v; = s1}, the height of v; = s; in §
is 0, whereas it was n + 1 > 0 before. By definition of 7, we can conclude that
S; M.

(M 3 Mj41) As Sj4q is obtained from S by removing the node v; = s, we
can use Point 4 of Lemma 5.4 to conclude that the pairs corresponding to the
remaining nodes do not increase. Since one pair (the one corresponding to v1 = s1)
is removed, we have that M 3 M;44.

Identl. We have that S; = TU{z = s,y =t} and S;;1 = T[z/y]U {y = t},
where h(z = s) < h(y =t) in S;.

The graph induced by S;41 can be obtained from the one induced by S; as
follows. First, add edges from the immediate predecessors in S; of z = s to y =+t.
Since the height of y = ¢ is at least the height of z = s, and thus larger than the
height of these predecessors, Point 2 of Lemma, 5.4 shows that this does not change
the height of any node. Then, remove the node x = s. By Point 4 of Lemma, 5.4,
this does not increase the height of any of the remaining nodes.

By applying the substitution [z/y] to the equations in T', the reducibility of a
node containing x may change from 0 to 1. However, these nodes’ height is smaller
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than the height of z = s. Thus, an increase in the pair associated to such a node
in the multiset is compensated by the fact that the pair associated to z = s is
removed. This shows that M; 3 M;,,.

Sharl. We know that S; and S;; have the following form:

Sj =T U{u;_:_éU}U{.Z'Et} U{glEfl}
Sjv1 =Tlx/s(@2) /Ml U{z=rt U{uZ v} U{z=s(@,7)} U {l =7}

Observe that there may be more nodes in S;1 than in S;: those corresponding to
the equations in Z = 7. Let n be the height of x = ¢ in S, which is at least 1 as x
occurs in T by assumption. We start by showing that the height of the new nodes
in Sj41 cannot be greater than n.

Going from S; to Sji1, the new equations 2 = r are introduced while each
occurrence of z in the right-hand side of an equation is replaced by s(¥, Z)[g1 /71].
Consider any equation z = r in Z = 7. Observing that z occurs in the tuple Z and
does not occur in the tuple g1, we then obtain that

ple/s(@, D) /Ml < (z=7)

for all equations ¢ (and only those) such that ¢ <; (z = t). Using the fact that <;
is acyclic, it is easy to see that no such equation ¢ changes its height when going
from S; to S;y1. As a consequence, z = r has in S;;; the height that = ¢ had in
S, namely, n.

The new node z = r may also have outgoing edges. Since the variables in
Var(s(g,7)) \ Var(t) do not occur in S;, however, these edges will go only into old
nodes ¢ such that x =t <; ¢. In other words, all the edges out of z = r will end
in nodes whose height was already > n in Sj.

Similarly, the replacement of z by s(§, Z)[g1/71] in T may introduce new edges
in Sj41 between old nodes,?” but it is again easy to see that each of these edges
will go from a node to one with already greater height. Finally, and again because
the variables in Var(s(y, 7)) \ Var(t) do not occur in S;, the replacement of ¢ by
s(9,7) in the node x = t will possibly remove some edges from Sj 1, but will not
introduce new ones.

By Points 1 and 3 of Lemma 5.4 then some old nodes may move to a smaller
height in S;41 but none will move to a greater height after the mentioned replace-
ments. In conclusion, we can say that the number of nodes at heights > n will not
increase from S; to S;41. In addition, the reducibility value of these nodes will not
change (since their right-hand sides are not modified).

Now, if some node with height > n in S; moves to a smaller height in S;;4,
we can already conclude that M; O Mjy;. If, on the other hand, all the nodes
at height > n keep the same height, to prove that M; 1 M;; we argue that the
number of reducible nodes at height n decreases. To see that it is enough to make
the following three observations. First, it is possible that the replacement of z
by s(g,z) alters the reducibility of some nodes to 1, but as shown above this will
happen only at heights < n. Second, when no old node at height > n moves to
a smaller height, the number of nodes at height n increases only because of the
presence of the new nodes in Z = 7, whose reducibility is 0, as each r € 7 is in
G;. Third, the node z =t of S}, which by assumption had height n > 0 and was

27Specifically, between a node of the form zo = to[x] and a successor node of one of the equations
in g3 =71.
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reducible, is replaced by the node x = s(y,7) whose height in S;; is 0, because
occurs in no right-hand side of Sjy;.
Shar2. We know that S; and S;; have the following form:

;g =T U {uzv} U {z=t} U {m=nr}
Sipr = Tla/slp/ml] U {uZo} U {z=slp/n]} U {n=n}

Let n be the height of x = ¢t in S;. As in the Sharl case we can show that the
number of nodes at height > n does not increase going from S; to S;41, and the
reducibility value of these nodes does not change. It is enough to show then that the
number of reducible nodes at height n decreases by one. But this is an immediate
consequence of the fact that the node z = ¢ in S;, which by assumption had height
n > 0 and was reducible, is replaced by the node z = s[g:1/71] whose height in S;44
is 0.

PROPOSITION 5.6 (Termination). The combination procedure halts on all in-
puts.

Proof. By Lemma 5.5 and the well-foundedness of 7 we are guaranteed that
the procedure applies the various rules only finitely many times. As in the proof of
Proposition 3.7 then, all we need to show is that the preconditions of each rule can
be tested in finite time. We already know this to be true for the rules in Figure 2.
Thanks to Proposition 4.19, it also true for Ident2.

For Sharl, it should be clear that the test on the preconditions (a), (e) and (f)
is effective. The test on conditions (b) and (d) is effective because G; is recursive by
assumption. The computation of the normal form of ¢ in (c) is effective because G;-
normal forms are computable for i = 1,2 by assumption; its decompositions into
the terms s, 7 is effective by Proposition 4.11 because G; is recursive. A similar
argument applies to the preconditions of Shar2.

Soundness

The next two lemmas show that the derivation rules preserve satisfiability.

LEMMA 5.7. Let U;_1 be a sequence consisting of the left-hand side variables of
Sj—1 and U; be a sequence consisting of the left-hand side variables of S;. Then,
3171'_1.5]'_1 s 3171'.5]‘ 1s valid in E.

Proof. As before, we can index all the possible cases by the derivation rule
applied to S;_; to obtain S;. The cases Colll, Coll2, Identl, Simpl are proved
exactly as in Lemma 3.9. Below we give a proof of the Ident2 and the Shar1 case.
The proof for Shar2 is almost identical to that for Sharl.

Ident2. We know that S;_; and S; have the form

Sj—l
S;

T U {uv} U {u=s} U {v=t}
{v # v}

It is then enough to show that S;_; is unsatifiable in every model of E. But this

is immediate, given that s and ¢ are equivalent in E.
Sharl. We know that S;_; and S; have the form

ijl = T @] {uiv} @] {.’I:Et} U {ﬂl
S; Tle/s(g,2)n/m]] U {z=7} U {u#v} U {z=s@@n} U {h
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Let A be any model of E. First, assume that some valuation o of V satisfies S;
in A. Since S; contains the equation « = s(¢,7) and t =g s(§,7), we know that
a(z) = [t]#. In addition, since S; also contains the equations §; = 7 and Z = 7,
we also know that a(z) = [s(7, 2)[#1/71]]2. Obviously, this implies that « satisfies
Sj_l in .A

Conversely, assume that some valuation a satisfies S;_; in A. Let o' be a
valuation coinciding with « on all variables except those in Z. For each component
2z = r; of 2 = 7 we define o/(2;) := [r;]A. As above, it is easy to show that
o(7) = a(@) = [s7,M]4 and o'(z) = [(7,)[g1/7]]A- This implies that o
satisfies S; in A. Since the variables in Z are left-hand side variables of S;, which
do not occur in S;_;, the valuations a and o' coincide on the free variables of
3’(_)]'71.5_7',1 > 317]-.5‘]-. 1

Again, we immediately have the following weaker lemma.

LEMMA 5.8. For all j > 0, the abstraction system S; is satisfiable in E iff S;_;
is satisfiable in E.

Exactly as we did in Section 3.3 we can now prove that the extended combination
procedure is sound.

PROPOSITION 5.9 (Soundness). If the combination procedure succeeds on an in-
put (80,t0), then so =g to.
Completeness

To show completeness we will prove that, if the combination procedure fails on
input (so,t0), then so #g to. The following lemma provides important information
on the structure of the final abstraction system obtained by a failed run of the
procedure.

LEMMA 5.10. Let S, be the final abstraction system S, generated by a failed
ezecution of the combination procedure and h,, the height function defined over the
dag induced by S,. Then, S, can be partitioned into the sets

D :={z1 £ >} Ty = {vj =7} }jen
T:={v=teS,|h,(v=t)=0} T := {’U?ET?}]'EJQ
where
1. 1 and x> are distinct, and J, and Jo are finite;
2. v occurs ezactly once in S, \ D for everyv =t € T;

3. 1}; occurs exactly once as a left-hand side of S,, for everyi € {1,2} and j € J;,
and the height of the corresponding equation is non-zero;

4. 1i € G for every i € {1,2} and j € J;.

Proof. To start with, for ¢ = 1,2, let T; be the set of all the X;-equations of S,
that are not in 7. As S,, is an abstraction system, it is immediate that D,T,T}
and Ty form a partition of S,,. Now, Point 1 is trivial because the procedure has
failed and S,, is finite. Point 2 and Point 3 are again an immediate consequence of
the fact that S,, is an abstraction system.
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To prove Point 4, let i = 1, j € Ji, and consider the equation v; = 7} of T
(the case for 7 = 2 is analogous). First notice that the variable vjl- must occur in
the right-hand side of a term in S,,, or else the height of v} =r} in S,, would be 0,
making the equation a member of 7' instead. Then assume by contradiction that
r} is not an element of G;. But then, it is not difficult to see that one of Colll,
Coll2, Sharl, Shar2 applies to vjl- = rl, against the assumption that S, is the

J
final abstraction system. 1

LemMMA 5.11. The final abstraction system S, generated by a failed execution
of the combination procedure is satisfiable in E.

Proof. We prove the claim by constructing a valuation « that satisfies .S,, in the
model A of E introduced in Lemma 4.13. Consider the sets

D :={z; # x5} T, := {v]l = 'r;}jejl
T:={v=teS,|h,(v=t)=0} T := {U?ET?}jeJQ

from Lemma 5.10 partitioning S,. Let U be a set made of all the elements of
Var(Sy \ D) that are not a left-hand side variable of S,,, and let V; := {v}}jes, for
i =1,2. Observe that UUV; UVa C Var(TUT; UT5) and that for each v =t € S,
all the variables of t are in U UV; U V,.28

Now, where «aq is an arbitrary injective valuation of U into Z> (cf. Figure 3),
we define a over Var(T UT; UT3) as follows:

| av) ifvelU
a(v) '_{ [[t?]ﬁ ifv=tes,

Because of its recursive definition we first need to prove that « is well-defined. We
will do this by induction on the “inverse height” of equations in S,,. Where M is
the maximum of the heights of all nodes in T'UTj U T, let k be the function from
Var(T UT; UT,) into the non-negative integers defined as follows:

K(v) = 0 ifvelU
Tl M+1) —h,(v=t) fv=teSs,

Note that the only variables v with x(v) = 0 are the elements of U. In addition,
if v =t is an equation of S, then x(v) > 0 and k(v) > &(u) for all variables u
occurring in .

The well-definedness of a can now be easily proved by induction on . If k(v) =
0, then v € U and a is obviously well-defined on U. If k(v) > 0, then v is the
left-hand side of some equation v = ¢ of S,,. By induction hypothesis, a is well-
defined on every variable u occurring in ¢ because x(v) > k(u) as mentioned above.
Consequently, a(v) = [t]4 is also well-defined.

Next, we show that the restriction of a to U U V; U V4 is an injective extension
of ag such that [[v;]]a4 € Zy; for all i € {1,2} and j € J;. This is again done by
induction on k.

Consider a variables vj- in V1 UV; and the corresponding equation v§ = r; Since
Sy is an abstraction system, we know that each variable v of rj- is in U UV}, with

28The only variables in Var(T U T1 U T») not contained in U U V; U V are the left-hand side
variables of equations in 7T'.
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k # i, and that k(v) < Ii(’l};) We can conclude by induction hypothesis that « is
an injection of Var(r?) into Zy U Zs = X].

To see that [vi]4 € Z, simply observe that 7 is non-collapsing in E, since
otherwise it would be collapsing in F; by Proposition 4.14. But then, either Colll
or Coll2 would apply to vj- = rj-, against the fact that S, is the final abstraction
system. The claim then holds directly by Lemma 4.16 since r§ is in G, as seen in
Point 4 of Lemma, 5.10.

To see that « is injective over U U V3 U V5 it suffices to show by induction that
a(v}) # a(v) for every variable v of UUV; UV, other than v} such that x(v) < &(v})
Let v be any such variable.

If v € U, then a(v}) # a(v) because a(vi) € Zy; as seen above, a(v) € Z,
by definition of ag, and Z,; N Z, = (. Similarly, if v is in V} with k # ¢, then
a(v) # a(v) because a(v) € Zay and Zz; N Zzy, = 0. Finally, if v is in V, i.e.
v = v for some £ € J;, assume by contradiction that a(v}) = a(v). Then, we have
that A¥, a |= 7% = rj. Now, each variable u of r} = r} belongs to U UV, and
#(u) < K(v}) if u occurs in r} and k(u) < k(v) < K(v}) if w occurs in rj. Thus,
by the induction hypothesis, the variables of 74 = r} are mapped by « to distinct
values of Z» U Zs . Since A¥i is free in E; over X! = Z» U Z,, we obtain by
Proposition 2.1 that r% =g, r}. But this is impossible because otherwise the rule
Ident1 would apply to v} = 7% and vj = r}.

In conclusion, we have shown that « is a well-defined valuation of Var(TUT; UT>)
into A which, in addition, is injective over U U V; U V2 and maps each variable
of UU Vg into Zo U Zy, = X] for all i,k € {1,2},i # k. By construction, a
satisfies T UT; U T in A. We show below that it satisfies, or can be extended
to satisfy, the disequation {z; # =z} as well, which will prove the claim that
Sp = {z1 Z 22} UT UT; UTy is satisfiable in E.

Clearly, if « is undefined for z; or 2 or both,?° since A has an infinite carrier,
« can be trivially extended so that it satisfies z1 #Z x2. Therefore, assume that « is
defined for both z; and z2. We distinguish four cases, depending on where x, x5
occur in S,.

(a) Neither z; nor x5 is a left-hand side variable of S,,. Then, they must both
be (distinct) elements of U. In that case, 1 # o is immediately satisfied by «
because « is injective over U.

(b) z1 is a left-hand side variable of S,, while x5 is not. Then, 1 must occur in
an equation of the form z; = t; and z2 must be in U. Let i,k € {1,2} with i # k
and assume that ¢, is a ¥;-term. Now assume by contradiction that a(z;) = a(z2),
which means that A¥i, a = 2 = t1. Because of the alternating signature property
of S,, all the variables of #; are in U U V. From the above then we know that
a maps Var(z2 = t;) to distinct elements of X}. Since A is free in E; over X/,
we can conclude that zo =g, t1. But again this is impossible because then either
Colll or Coll2 applies to x; = t1, contradicting the assumption that S,, is the
final abstraction system.

(¢) x2 is a left hand side variable of S,, while z; is not. Symmetrical to the
previous case.

(d) Both z; and z, are a left-hand side variable of S,. Then, z; must occur
in an equation of the form z; = ¢; for j = 1,2. Again, assume by contradiction
that a(z;) = a(z;), which means that [t,]2 = [t]A. If ¢, and ¢, have the same

29The variables 1,2 need not occur in Var(T UTy UT»).
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signature ¥; for some i € {1,2}, we can argue as in case (b) that t; =g, t2, which
is impossible because then Ident1 applies to 1 = t; and z3 = t5. If 1 and ¢ do
not have the same signature, we can use Lemma 4.17 to show that t; =g t2. But
this is also impossible because then Ident2 applies to 1 = t; and z2 = 3.

With the above lemma, proving the completeness of the combination procedure
is now straightforward.

PROPOSITION 5.12 (Completeness). The combination procedure succeeds on in-
put (s0,t0) if s0 =E to-

Proof. By Lemma 5.6 the procedure either succeeds or fails; therefore, we can
prove the claim by proving that whenever the procedure fails on input (sg, %), the
formula sg Z to is satisfiable in E. Thus, assume that the procedure fails and let S,
be the abstraction system generated by the last rule application. Given Lemma 5.8
and the construction of Sy, it is enough to show that S, is satisfiable in E. But
this is true by Lemma 5.11. 1

As an aside, we would like to point out that nowhere in the proof of Propo-
sition 5.12 (and of the lemmas that it uses) did we use the fact that Simpl can
no longer be applied. Thus, the proof also shows that the modified procedure ob-
tained by removing the rule Simpl is complete. Obviously, this modified procedure
is sound and terminating as well.

Combining the results of this section, we obtain the following modularity result
for the decidability of the word problem.

THEOREM 5.13. Let E;, Es be two non-trivial equational theories of signature
Y1, X9, respectively, such that ¥ := Y1 N 3Xs is a set of constructors for both Fy and
E», and E;” = E»”. Let G1,G- be T-bases of E1, Es, respectively. If fori=1,2,

e (G; is closed under bijective renaming of V and recursive,
o G;-normal forms are computable for 3. and E;, and
o the word problem in E; is decidable,

then the word problem in E; U Es is also decidable.

This result (properly) extends the result for the disjoint-signatures case given
in Theorem 3.12. In fact, whenever the set ¥ of symbols shared by E; and FEs
is empty, it is trivially a set of constructors for both E; and F,. In that case, a
¥-base G; of E; is the whole set T'(X;,V). Clearly, G; is recursive, closed under
renaming and, given that every ¥;-term is in G;, admits computable normal forms.
Furthermore, E,” and E»” are the same because they both coincide with the set
{v=v|veV}.

The decidability result of Theorem 5.13 is actually extensible to the union of
any (finite) number of theories, all (pairwise) sharing the same signature ¥ and
satisfying the same properties as E; and Es above. The reason is that, remarkably,
all the needed properties are modular with respect to theory union, as we show in
the next section.

We conclude this section by pointing out that, in contrast with the termination
proof for the disjoint case, the termination argument employed in Lemma 5.5 does
not provide us with an upper-bound on the complexity of the combination proce-
dure. The actual complexity of the procedure will crucially depend on the normal
forms computed by the functions NF;.
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6. MODULARITY OF CONSTRUCTORS

In this section, we will see that the property of being a set of constructors
is preserved by the union of theories. We will also see that normal forms are
computable in a union theory whenever they are computable in its component
theories and the word problem is decidable for those theories.

Again, we fix two non-trivial equational theories Ey, F» with respective signa-
tures Xq, X9 such that, for i = 1,2

e Y := 3, NXsis a set of constructors for E;;
[ ] EIE = EQE;
e F; admits a recursive X-base G; closed under bijective renaming of V;

e (G;-normal forms are computable for ¥ and E; by a function NF; satisfying
Assumption 4.1;

e the word problem for E; is decidable.

We will show that ¥ is a set of constructors for £ := FE; U E, by explicitly
constructing a ¥-base G* of E out of the given ¥-base G; and G» of E; and Es. In
the course of proving that G* is a ¥-base of E we will also prove that it is recursive,
closed under bijective renaming, and such that G*-normal forms are computable.

DEFINITION 6.1 (G*). For i = 1,2 let G} := |J,—, G? where {G? | n > 0} is
the family of sets defined as follows:

e =V

G?+1 = G?U{T(Tla"' er) | T(vla"' Jvm) € G’L\VJ
r non-collapsing in F,
r; € Gy forall j =1,... ,m with k # 1,
r; #g rj for all distinct j,j' =1,...,m}

The set G* is the union G7 U G5.

It is easy to see that, for i = 1,2, the set G} defined above consists of all the
variables and the non-variable terms of G; that are non-collapsing in E;. Further-
more, for each r € G* there is an ¢ € {1,2} and a smallest n > 0 such that r € G.
We call n the number of layers of r. The reason is that, for n > 0 every element
of G? has a stratified recursive structure. A term in G} \ G? has just one layer. A
term 7(r) in G? \ G?~! has n layers. Layer 1, the top layer, is made of the term r
only; layer 2 is made of all the terms that are at layer 1 in an element of 7; and so
on. Furthermore, terms in the same layer all belong to either G; or G2, and if the
terms in one layer are in GG; then the non-variable terms in the next layer are not
in G,

Like each G;, G* is clearly closed under bijective variable renaming. We show
below that it is recursive as well.

PROPOSITION 6.2. It is decidable whether a (X1 U Xa)-term is in G* or not.

Proof. Let t € T(X1UZX,,V). Recalling that G* := G} UG%, we prove the claim
by proving by term induction the stronger claim that, for ¢ = 1,2, it is decidable
whether ¢ is in G} or not. Let i,k € {1,2} with i # k.
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Input: Abstraction system S.

1. Repeatedly apply (in any order) Colll, Coll2, Identl, Ident2, Simpl,
Sharl, Shar2 to S until none of them is applicable.

2. Succeed if S has the form {v # v} UT and fail otherwise.

FIG. 6 A variant of the combination procedure

(Base case) If ¢ is a variable, the claim is trivial because all variables are in G}
by construction.

(Induction Step) If ¢ is not a variable, then we can effectively compute the set of
all decompositions of ¢ into a term (v, ... ,v,) € T(Z;, V) \V and distinct terms
T1,---,Tm € T(X1 UX5, V) such that ¢ = r(ry,... ,rn). Note that this set may
be empty (if ¢(€) ¢ ¥;) or may be of cardinality greater than 1, but it is clearly
always finite. From Definition 6.1 it is easy to see that ¢t € G} iff there is such a
decomposition of ¢ such that

e r; #g r; for all distinct j,j' € {1,...,m},
e ris in GG; and is non-collapsing in F, and
er;eGyforal j=1,..., m.

Now, the first condition above is decidable because the word problem for E is
decidable by Theorem 5.13; the second condition is decidable because G; is recursive
by assumption, E is non-trivial for being a conservative extension of E;, and the
word problem for E is decidable; the third condition is decidable by induction
hypothesis.

We now show that every (31 U Xo)-term can be effectively reduced to an E-
equivalent term in T(X,G*). To do that we will appeal to the correctness of a
slight modification of the combination procedure of Section 5. The only significant
change in the new procedure, shown in Figure 6, is that its input is an abstraction
system instead of a pair of terms. In the same way as in Section 5.1, one can show
that the procedure is correct in the following sense:

PROPOSITION 6.3. The procedure in Figure 6 terminates for all inputs S and
succeeds iff S is unsatisfiable in E.

The following property of the procedure is also an immediate consequence of
the results proved in Section 5.1.

LEMMA 6.4. The final set S, generated by the procedure on some input Sy is
an abstraction system. Furthermore,

E |= Jv9.S0 & 30,.5,

where U; is a sequence consisting of the left-hand side variables of S;, for j € {0,n}.
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We have seen that, from every disequation s Z t with s,t € T(X1 UX», V), it is
possible to produce an equivalent abstraction system. Specifically, one can use the
purification procedure described in Subsection 3.1 to produce a system S such that

E = (s#t) 375, (7)

where ¢ are the left-hand side variables of S. An inverse sort of process is also
possible: given an abstraction system S, one can produce a disequation s Z ¢t such
that (7) above holds.

In fact, if S = {& # y} UT is an abstraction system, the relation < on T is
acyclic. This means that its transitive closure <% is a strict partial ordering on
the finite set 7', and so it can be extended to a strict total ordering < on 7. Let

MN=t <=ty << v =1

be the enumeration of T along this total ordering. We define 65 to be the substitu-
tion obtained by the composition3©

[v1/t1][va/ta] - - - [Uk /ti]-

In the following, we will call s the substitution induced by S.

LEMMA 6.5. Let S = {x # y} UT be the abstraction system above and U a
sequence consisting of the left-hand side variables of S. Then, E |= (26s # ybs) <
35.S.

Proof. For having been generated from an abstraction system, s is easily shown
to have the form s := [v1/¢1][v2/t2] - - - [vk/tk] Where v; does not occur in ¢; for all
j>iand i€ {1,...,k}. The claim then follows from the general fact that

E E ou/t]e v(pAv=t)

for every formula ¢, term ¢, and variable v not occurring in ¢.

It is useful to notice that, for all v; = ¢; € S, the term v;0s coincides with the
term ¢;0s, which in turn is obtained essentially by “plugging in” into ¢; all the terms
1)j05 such that v; = tj eSandv; =t; < v; = tj.

LEMMA 6.6. Let S, be the final abstraction system generated by the procedure
in Figure 6 on some input So. Let h, be the height function over S, and 6, the
substitution induced by S,. Then, the following holds for oalli =1,2 and x = r,y =
t €S, such that r,t € T(X;,V):

1. if z #y, then 26, #g yb,;

2. x6, is non-collapsing in E;
3. if hp(z =7r) >0, then 26, € G}.

Proof. Leti € {1,2} and z =r,y =t € S, with r,t € T(Z;,V).

To prove Point 1, assume that x # y and consider the abstraction system
S = {z £ y} UT obtained from S,, by replacing its disequation by z # y. Since
S’s equational part coincides with S,,’s, we have that s, the substitution induced

30Note that #5 does not depend on which total extension of <1 we take.
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by S, coincides with 6,. It follows that z6, = z6s and y6, = yfs. By Lemma 6.5
then, 6, # y6, is satisfiable in E iff S is satisfiable in E.

Now observe that no derivation rules apply to S. In fact, the rule Ident2 does
not apply to x = r and y = ¢ because s and ¢ have the same signature. The other
rules do not apply because otherwise, as S and S,, have exactly the same equations,
they would apply to S,,, which is impossible. Given that x and y are distinct, we
can conclude that the procedure in Figure 6 fails on input S. By Proposition 6.3
then, S is satisfiable in E, which then entails that z6, #g y6,.

Point 2 can be proven similarly to Point 1 by considering, for any variable v
of z6,, the abstraction system obtained from S, by replacing its disequation by
x # v.3! Again, the argument is based on the fact that v is distinct from , which
this time is a consequence of the fact that < is acyclic over S,. Also note that
the acyclicity of S, and the definition of 6, imply that v, = v for all variables v
occurring in z6,.

Finally, we prove Point 3 by induction on the “inverse height” of equations in
Sy, similarly to what we did in the proof of Lemma 5.11. Where M is the maximum
of the heights of all the equations in S,,, let k¥ be the function from the left-hand
side variables of S, into the non-negative integers such that

k() = M —h,(v=gq)

for each v = ¢ € S,,. Note that if v1 = ¢;,vs = ¢ are equations of S,, such that
(v1 = q1) < (v2 = @2), then k(v1) > K(v2). Assume that h,(z =7) > 0.

(Base case) If k(z) = 0 then z = r is maximal in S,, w.r.t. <, which entails that
z6, = r. Asin Lemma 5.10(4), we can show that r is in G; \ V. For z6, to be in G}
then it is enough for it to be non-collapsing in E. But this is the case by Point 2
above.

(Induction Step) If k(xz) > 0, let z1,...,z;, be r’s variables. Then, z6, has
the form r(z16,, ... ,zmb,). We can argue exactly as in the base case that r is an
element of G; \ V and is non-collapsing in E.

Now let k € {1,2} with k # i. We show that x;6, is an element of G}, for every
Jj € {1,...,m}. In fact, if 2; is not in the domain of 6, then z;6, = z;, which
is trivially in Gj,. If z; is in the domain of §,, then 2,6, = t;8, for some term
t; € T(Xg,V) such that ; = t; € S,. From the fact that (z = r) < (2; < t;)
because z; € Var(r), we can conclude both that h,(z; = ¢;) > 0 and &(z) > k(z;).
It follows by induction hypothesis that z;6, € G}.

In conclusion, to show that 26, = r(z16,,... ,xnb,) belongs to G it is enough
to show that all the components of 7 := (£16,,... ,%,0,) are pairwise inequivalent
in E. Using the argument above about the form of of each z;6,, one can prove that
a variable and a non-variable term of 7 are inequivalent by Point 2 whereas pairs
of non-variable terms are inequivalent by Point 1. Finally, pairs of variable terms
are inequivalent because E is non-trivial.

We can now show that, given any term in T'(X; U ¥5,V), it is possible to find
an equivalent term in T'(X,G*).

PROPOSITION 6.7. For every term t € T(X; U Xs,V), there is a term t' €
T(2,G*), effectively computable from t, such that t =g t'.

31The rule Ident2 does not become applicable by this change of the disequation because v is
not a left-hand side variable of Sy.
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Proof. Since V. C G* by construction, we only need to consider the case in
which ¢ is not a variable. Hence, assume that t € T(X; UX,, V) \ V.

Let v be a variable not in Var(t) and let S, be the final abstraction system
generated by the procedure in Fig. 6 on input So := AS(v Z t). Then let x Z y be
the disequation of S, and 8, the substitution induced by S,,. We start by showing
that ¢ =E y0n

By construction, Sy has the form {v # v} UT with v not occurring in 7'. From
the definition of the derivation rules used by the procedure it is easy to see that v
is never replaced by other variables, which means that the disequation of S, is in
fact v # y and that v6, = v. Then, by Proposition 3.3, Lemma 6.4 and Lemma 6.5
above it follows that the formulae:

(v#t) ¢ 300.S0, I00.Sp © Fn.Sn, In.Sn < (v Z yb,),

where ©; are the left-hand side variables of S; for j € {0,n}, are all valid in E.
This entails that E |= (v = t) + (v = yb,), from which it follows that t =g yb,.

Now notice that S, has the form {v # y,y = t,} U R where t,, € T(3;,V) for
i =1or =2, and that y6, = t,6,. Let s(F) = NF;(t,) and t' := s(76,). As
tn, =g, s(7), it is immediate that

t =g yb, = t,0, =g s(76,) =t

It is also immediate that ¢’ is effectively computable from y#6,, which was in turn
computed from ¢. To prove the claim then it is enough to show that t' € T(X,G*).
We do that by showing that r6, € G* for all components r of 7.

Let k € {1,2} with k # 4. First consider the case is which r is some variable v.
If v is not in the domain of ,, v, is trivially in G*. If v is in the domain of §,,
it must occur in the (3;-)term t,, because of our usual assumption that the extra
variables of a normal form, if any, are fresh. Moreover, v must be the left-hand
side of a ¥j-equation of S, with non-zero height. In that case, vf, € G C G* as
a consequence of Lemma 6.6(3).

Now suppose that r is a non-variable term of G; and let vy,...,v, be its
variables. By Assumption 4.1 we know that r is non-collapsing in FE;, and so non-
collapsing in E as well by Proposition 4.14. Using again the fact that every variable
of r that is in the domain of 8, must occur in ¢,, we can argue as in the previous
case that v;6, € Gy, for all i € {1,... ,m}. As in the proof Lemma 6.6 then, we can
show that r(vi6,,... ,vmb,) satisfies all the conditions to be in G}, which means
that 76, = r(vi6,,... ,v,6,) is in G*.

It follows that t' = s(76,) is an element of T'(X,G*). 1

From what we have seen so far, G* satisfies the first two requirements in Defi-
nition 4.6 to be a X-base of E. To show that it satisfies the third, we will use the
following additional result about the model A of E constructed in Subsection 4.3
as a fusion of the countably infinitely generated E;-free algebras A; (i = 1,2).

LEMMA 6.8. Where A is the algebra given in Lemma 4.13, let a be an arbitrary
bijective valuation of V' onto Zy. Then, for all i =1,2 and all t1,t2 € GF\V,

1. [[tl]]'él S Z27z'.

2. t1 =g ts if [t1]=[t2]2.
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Proof. Let i € {1,2} and consider two terms t1,t2 € GF \ V. We prove both
claims simultaneously by induction on the number of layers of ¢; and t2 (cf. obser-
vation after Definition 6.1).

(Base case) If both ¢; and t» have just one layer, we know that they are non-
collapsing terms of G;\ V. Then, Point 1 holds by Lemma 4.16 as Z, C X]. To
prove Point 2, assume that [t;]A = [t2]A. Since both ¢; and t, are ;-terms, this
means that A” a = t; = t» where A% is free in E; over X by Lemma 4.13 and o
is an injection of Var(t1 = t2) into X by construction. It follows by Proposition 2.1
that r =g, t, and so r =g t.

(Induction step) Let k € {1,2}, k # i. If either ¢; or ¢» (or both) has more than
one layer, then, for + = 1,2, ¢, has the form

T.L (’ljb7 FL)

where 7, € G;\V, 9, CV and 7, C G} \ V—with either 9, or 7, possibly empty.
Let b, be the tuple of values that « assigns, in order, to the variables in 9,, and ¢,
the tuple consisting, in order, of all the elements [r] with r € 7,.

To prove Point 1, first notice that b, C Z, by definition of @ and & C Zop,
by induction hypothesis. It is immediate that b, contains no repetitions and has
no elements in common with ¢,.32 We claim that ¢ contains no repetitions ei-
ther. In fact, if [r]J4 = [']£ for two distinct 7' € 7,, we know by induction
hypothesis that » =g r’. But this contradicts the fact that the tuple 7, satisfies
Definition 6.1. From the above it is now easy to see that there is a bijective renam-
ing 7} of r, and an injective valuation o' of Var(r)) into X} = Z, j U Z5 such that
[tJA = [r.(o,,7)]2 = [r']2A . The claim that [t;]} € Z2,; then follows again by
Lemma 4.16.

To prove Point 2, assume that [t;]4 = [t2]2 and therefore

.A,Oé |= 7'1(’171,7‘1) = 7‘2(172,?2) .

Let u1,u2 be tuples of variables abstracting 71,72 in the equation above so that
E-equivalent terms are abstracted by the same variable. From the proof of Point 1,
it is clear that there is an injective valuation § into X = Zs ; U Z such that

.A,,B ': Tl(’l_Jl,ﬂl) = 7“2(’1—)2,’&2) .
Since 7y (01, 11 ),72(0s,@2) are both ¥;-terms and A is free in E; over X}, we can
conclude that r (1_)1, ﬂl) =E; T2 (1_)2, ﬂz), and so r (1_)1,17,1) =F T9 (1_)2, 1_12). From this
it easily follows that
t1 =71(01,71) =p 12(02,T2) =ty
as well.
We are now finally ready to prove that ¥ is a set of constructors for E as well.

PROPOSITION 6.9. G* is a X -base of E.

Proof. We show that G*, E, and X satisfy Definition 4.6.

Now, Condition 1 of Definition 4.6 is a consequence of the definition of G*,
whereas Condition 2 holds by Proposition 6.7. To prove Condition 3 consider again
the algebra A and the valuation a of the previous lemma.

32Recall that Z3 and Zj j, are disjoint.

46



Let s1(71),s2(F2) be terms in T(X,G*) and s1(01), s2(02) the terms obtained
from them by abstracting E-equivalent terms in 7,7 with the same variable.
Clearly s1(71) =g s2(02) implies s1(71) =g s2(72). Therefore, suppose that s1(71) =g
s2(72). Since A is a model of E, s1(71) =g s2(72) entails that

A, a = s1(F1) = s2(72).

Recall that A* is free in E* over Yo = Z51UZ2UZ5 » and notice that, by Lemma 6.8,
[FJA € Y; for all » € G*. From this it is again easy to see that there is an
injective valuation 8 of the variables of @1, 7, into the generators of A> such that
Az,ﬂ '= 81(171) = 52(’1_)2). It follows by Proposition 2.1 that 81(1_)1) =Eg= 82(172),
which implies immediately that s1(01) =g s2(02).

To sum up, we have obtained the following strong modularity result:

THEOREM 6.10. Let Ey, Es be two equational theories with respective signatures
1,32 such that, fori=1,2

e X :=31 Ny is a set of constructors for E;;
e E; is non-trivial and E1E = EQE;
o E; admits a recursive X-base G; closed under bijective renaming of V';
o G;-normal forms are computable for > and E;;
e the word problem for E; is decidable.
Then the following holds:
1. ¥ is a set of constructors for E := E; U Es.
2. E is non-trivial and E* = E,> = E»>.
3. E admits a recursive X-base G* closed under bijective renaming of V;
4. G*-normal forms are computable for ¥ and E;
5. The word problem for E is decidable.

Proof. Point 1 holds by Proposition 6.9 and Theorem 4.7; Point 2 holds by
Corollary 4.15; Point 3 holds by Proposition 6.2, Proposition 6.9, and the definition
of G*; given Point 3, Point 4 holds by Proposition 6.7; finally, Point 5 holds by
Theorem 5.13. 1

Because of its complete modularity, the above result extends immediately by
iteration to the combination of more than two theories, all pairwise sharing the
same set of constructors ¥ and having the same Y-restriction.

7. RELATED WORK

Before comparing this paper with work by others, we briefly comment on its
origins. The notion of a fusion is taken straight from a joint work [26] of the
second author with Christophe Ringeissen, where it is given for arbitrary first-
order structures, not just for algebras (see [27] for an up-to-date account of this
work). Proposition 4.2 and Proposition 4.3 were also first proved in [26], again in
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the more general setting of first-order logic, not just equational theories. We have
provided an explicit proof of Proposition 4.3 here both because it is simpler for
algebras, and because we need the fusion construction employed in that proof to
obtain the algebra A in Lemma 4.13.

The notion of constructors presented here is a generalization (for the case of
equational theories) of a notion developed in [26] in the more general context of
first-order theories.>® There, constructors are given a syntactical definition which
states, in the terminology of this paper, that a signature X is a set of constructors
for an equational theory E iff the set Gg(X,V) defined in Proposition 4.9 is a
Y-base of E. In [26] it is also proved that a necessary condition for ¥ to be a
set of constructors for E in the sense just described is that E* is collapse-free
and the X-reduct of each free model of E over a countably infinite set X is a free
model of E* over a set including X. We were able to prove that this condition
is also sufficient, and we adopted it as the (algebraic) definition of constructors in
[4, 6], providing the syntactical version as an additional characterization. In [5, 7],
we were then able to remove altogether the collapse-freeness requirement from the
algebraic definition, and provide a syntactical characterization in terms of ¥-bases,
as described in this paper.

The rule-based combination procedure described in this paper was first developed
in [3] for the case of disjoint signatures. It was then extended to the case of theories
sharing collapse-free constructors in [6], and finally to theories sharing constructors
as described in this paper in [7]. Unfortunately, the combination procedures in
[6, 7] were incomplete since the rule Ident2 was missing. The completeness proofs
given in [4, 5] contained an error,3* which we have corrected in the present paper
by providing a new completeness proof.

In the rest of this section we compare our modularity result on the decidability
of the word problem with the few existing results in the literature for the case of
component theories with symbols in common.

7.1. Combination of term rewriting systems

A finite, complete (i.e., confluent and terminating) term rewriting system for an
equational theory E immediately yields a decision procedure for the word problem
for E: one simply rewrites the two terms to be proven equivalent into normal form
and then checks whether the produced normal forms are identical.

It follows that, whenever an equational theory E is the union of two theories
both having a finite and complete term rewriting system, the word problem for E is
decidable if the union of the two theories’ term rewriting systems is itself complete.
Therefore, the question arises whether the completeness of term rewriting systems
is preserved under union.

Such modularity properties of term rewriting systems over disjoint signatures
have been studied in detail. It has been shown that confluence is modular [29]
whereas termination is not. In fact, in [28] it is shown that there exist two conflu-
ent and terminating rewrite systems over disjoint signatures whose union is non-
terminating. Thus, in general the union of two complete term rewriting systems
need not be complete. However, it can be shown that it is at least semi-complete

33That notion was in turn inspired by that in [9], which we discuss in more detail in Subsec-
tion 7.2.

341n both proofs it is said that one “can restrict the attention to the case i = 1, as the other
case (which is even simpler) can be treated analogously”, which unfortunately is not true.
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(i-e., confluent and normalizing3?®), which is actually sufficient to obtain a decision
procedure for the word problem.

This result has been extended to the non-disjoint case, again using an appropri-
ate notion of constructors. In the literature on the modularity properties of term
rewriting systems, a constructor is a function symbol not occurring at the top of a
rule’s left-hand side. For term rewriting systems sharing constructors in this sense,
it can be shown that semi-completeness is a modular property (see, e.g., [20] for
details).

In [27] it is shown that for semi-complete term rewriting systems this notion of
constructors is in fact a special case of ours; therefore, the combination results for
decision procedures for the word problem obtainable from the work on modularity
properties of term rewriting systems are subsumed by those presented here.

Our results are, however, more general in two respects. First, the notion of
constructors is strictly more general, and second we do not assume that the word
problem in the component theories is decided by a (semi-)complete term rewriting
system. The applicability of our approach does not depend on whether the decision
procedures for the component theories are based on term rewriting or not.

7.2. Combination of theories sharing DKR-constructors

As mentioned in the introduction, the first work to present explicit combination
results for the word problem in the case of equational theories with symbols in
common was [9]. There too the shared symbols are required to be constructors in
a certain sense.

In this subsection, we investigate the connection between the notion of con-
structors presented here and the one presented in [9]. We show that that notion is
a special case of ours, and that the combination result for the word problem in [9)
(Theorem 14) can be obtained as a corollary of our Theorem 5.13.

To be able to define the notion of constructors according to [9], called DKR-
constructors in the following, we need to introduce some notation. An ordering on
T(Q,V) is called monotonic if s > ¢ implies f(...,s,...) > f(...,t,...) for all
s,t € T(Q,V) and all function symbols f € Q. Notice that it is always possible
to construct a well-founded and monotonic (total) ordering on T(Q,V) for any
functional signature .3

In the rest of the subsection, we will consider a non-trivial equational theory E
of signature (2 and a subsignature ¥ of ().

DEFINITION 7.1. Let > be a well-founded and monotonic ordering on T(Q2, V).
The signature ¥ is a set of DKR-constructors for E w.r.t. > iff

1. the =g congruence class of any term t € T(f,V) contains a least element
w.r.t. >, which we denote by ¢|7, and

2. f(te,...,toa)lp = f(tidm, ... ,tnlp) for all f € ¥ and Q-terms tq,... ,t,.

We will call t|7 the DKR-normal form of ¢, and then say that ¢ is in DKR-normal
form whenever ¢t = t|7. The following are some easy consequences of Definition 7.1.

35A term rewriting system is normalizing if every term has a normal form. See, e.g., [1],
Theorem 9.2.1 for the (simple) proof that this property is modular for term rewriting systems
over disjoint signatures.

36For instance, one can take the lexicographic path ordering induced by a total well-founded
precedence on Q UV (see [1]), where the variables are treated as constants—which is admissible
as the ordering is not required to be closed under substitutions.
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LEMMA 7.2. Let X be set of DKR-constructors for E w.r.t. >.
1. Forall s,t € T(Q,V), s=gt iff slp=tln.

2. Forall s,t € T(X,V), s=gt iff s=t,
i.e., B> is the theory of syntactic equality on X-terms.

3. If t is in DKR-normal form, then all its subterms are also in DKR-normal
form.

4. If f(s1,-.. ,8m) =5 g(t1,... ,tn) for some constructors f,g € ¥ and terms
S1yev 38my tlyenn ytn € T(Q,V) then f =g (and thus n = m) and s; =g t;
forallie{1,... ,m}.

ExXAMPLE 7.1. We show that, for the theory E; in Example 4.1, the signature
Y is a set of DKR-constructors w.r.t. an appropriate well-founded and monotonic
ordering >1.

First observe that the first two equations of E; define the associativity and
commutativity of +. Let us call the theory axiomatized by these two equations
AC. Tt is easy to show (and well-known) that orienting the other equations in
E; from left to right yields a canonical term rewriting system R modulo AC. Here
“modulo AC” means that, instead of syntactic matching, AC-matching is used when
determining whether a rule is applicable (see, e.g., [12] for details). We denote by
— g, Ac the rewrite relation induced by R modulo AC. The normal form of a term
t w.r.t. =g ac (i-e., the irreducible term reached by applying — g ac as long as
possible starting with t) is unique only modulo AC.

To obtain an appropriate well-founded and monotonic ordering >;, we cannot
simply take the transitive closure of the rewrite relation =g ac. The problem is
that normal forms are unique only modulo AC, i.e., an Fj-equivalence class may
contain different normal forms, although they can be transformed into each other
using equations from AC. We can, however, take an arbitrary total, monotonic,
and well-founded ordering > on X;-terms, and define >; to be the lexicographic
product of 5 R,Ac with >. The effect of this is that the ordering > “picks” a least
representative out of the AC-equivalent — g ac-normal forms in each E;-equivalence
class. Therefore, Condition 1 of Definition 7.1 is satisfied. That Condition 2 is also
satisfied is an easy consequence of the fact that no element of ¥ occurs on the top
of a left-hand side in R, and that the same is true both for left- and right-hand
sides of equations in AC.

In contrast, the signature X' is not a set of DKR-constructors for the theory Fs
of Example 4.2 since the restriction EQEI of E5 to X' is not the theory of syntactic
equality on X'-terms. The same is true for the signature X" and the theory Ej;
of Example 4.3. Hence, a set of constructors in our sense need not be a set of
DKR-constructors.

Let G be the set of terms defined as follows:

G = {reT(QV)|rlz(e) ¢} ®)

We prove our claim that DKR-constructors are a special case of ours by showing
that G is a X-base of E whenever ¥ is a set of DKR-constructors for £ w.r.t. >.

LEMMA 7.3. If ¥ is a set of DKR-constructors for E w.r.t. >, then G is a X-base
of E.
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Proof. We prove the claim by showing that the set G satisfies the three condi-
tions of Definition 4.6.

(1) Tt is sufficient to show that v}z = v for all variables v € V. Thus, assume
that vz = t # v. Since E is non-trivial, the term ¢ must contain v. However,
then v > vlz = t, in contrast with our assumption that > is well-founded and
monotonic.

(2) Let t be an arbitrary Q-term. Then its DKR-normal form t| can be rep-
resented as s(7), where s(0) is a ¥-term and all terms r in the tuple 7 have top
symbols not in . Since these terms r are subterms of a term in DKR-normal form,
they are also in DKR-normal form, and so belong to G' by definition.

(3) Let s1(r1, ... ,7rx),82(r1, ..., 1) € T(E,G), and assume that sy (vi,... ,vg),
sa(vf,...,vy) are obtained from si(ry,...,7%), s2(ry,... ,7;) by abstracting the
terms 71,...,rk, 7],... ,7; 0O that two terms are replaced by the same variable
iff they are equivalent in E. We must show that si(r1,...,r%) =g s2(ry,..., 7))
implies s1(v1,...,v%) =F s2(v],-.. ,v;) (since the converse is trivial).

If s1(r1,...,r%x) =g s2(rf,...,7}), then their DKR-normal forms coincide (by
Point 1 of Lemma 7.2). By Condition 2 of Definition 7.1 this implies that

Sl(rla .. ,Tk)J,E‘ = Sl(rliia R 77‘ka§') = SQ(T‘IIJIEW LR 7T2J'E) = 52(T17 .. 7rk)*LE'
Since terms in the set {r1lz,... ,7xd% 145, - - - » 7} 5} do not start with a symbol
from ¥ and since two of these terms are syntactically equal iff the correspond-
ing terms in {ry,...,7s,7],...,7,} are equivalent modulo E, this implies that
s1(vi,. .. ,vg) = 82(v), ... ,0)). 1

From Theorem 4.7 we immediately obtain the following:

PROPOSITION 7.4. If ¥ is a set of DKR-constructors for E w.r.t. >, then % is
a set of constructors for E according to Definition 4.5.

Point (2) of the proof of Lemma 7.4 may seem to entail that normal forms for
E and Y are computable in the sense of Definition 4.10. This is not the case, how-
ever, because the argument in (2) actually relies on DKR-normal forms, whose com-
putability is not assured by the sole assumption that ¥ is a set of DKR-constructors
for E wr.t >. In [9], DKR-normal forms are shown to be computable by also
assuming that the so-called symbol matching problem is decidable.

DEFINITION 7.5. We say that the symbol matching problem on ¥ modulo E is
decidable in T'(2, V) iff there exists an algorithm that decides, for all t € T(Q,V),
whether there is a function symbol f € ¥ and a tuple of Q-terms % such that
t =g f(t). We say that t matches onto ¥ modulo E if t =g f(f) for some f € &
and some tuple ¢ of Q-terms.

For the theory F; of Example 4.1, it is easy to see that the symbol matching
problem on ¥ is decidable. In fact, given a ¥;-term ¢, one simply computes the
normal form # of ¢ w.r.t. the corresponding rewrite relation (i.e., =g ac). If ¢ starts
with a symbol f € ¥, then ¢ = f({) for some tuple of Q-terms Z, and thus ¢ matches
onto ¥ modulo E. Otherwise, it is easy to see that ¢ does not match onto ¥ modulo
E. This is again a consequence of the fact that no symbol from ¥ appears at the
top of a left-hand side of a rewrite rule in =g ac.

As pointed out in [9], if the symbol matching problem and the word problem are
decidable for E, then a symbol f € ¥ and a tuple of terms # satisfying t =g f(%)
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can be effectively computed, whenever they exist. In fact, once we know that
an appropriate function symbol in ¥ and a tuple of Q-terms exist, we can simply
enumerate all pairs consisting of a symbol f € ¥ and a tuple £ of Q-terms,?” and test
whether ¢t =g f(f). We call an algorithm that realizes such a computation a symbol
matching algorithm on ¥ modulo E. Using such a symbol matching algorithm, we
can define a function NFg for E and ¥ with the following recursive definition.

DEFINITION 7.6. Assume that ¥ is set of DKR-constructors for E w.r.t. >, the
word problem for £ and the symbol matching problem on ¥ modulo E are decidable,
and let M be any symbol matching algorithm on ¥ modulo E. Then, where G is the
set defined in (8), let NFg be the function defined as follows: For every t € T(Q,V),

1. NFg(t) := f(NFg(t1),-.. , NFg(t,)) if t matches onto ¥ modulo E, and f is
the ¥-symbol and (¢1, ... ,t,) the tuple of Q-terms returned by M on input
t.

2. NFg(t) :=t, otherwise.

LeEMMA 7.7. Under the assumptions of Definition 7.6 the function NFg is well-
defined and satisfies the requirements of Definition 4.10.

Proof. To start with, we know from Lemma 7.3 that G is indeed a X-base of
E. Now, to show that NFg is well-defined, it is sufficient to find a well-founded
ordering on terms such that, in the first case of the definition, the terms t1,... ,t,
are smaller than ¢ w.r.t. this ordering.

We define this ordering using a mapping « from T'(2, V) into the non-negative
integers. For any (-term s, its DKR-normal form can be uniquely represented in
the form sl7 = so(F), where so(7) is a E-term and all terms 7 in the tuple 7
have top symbols not belonging to ¥. Let a(s) be the size of the term s¢(7).
If we define 51 > so iff a(s1) > a(s2), then > is a well-founded ordering on Q-

terms. It remains to be shown that, if t =g f(t1,... ,t,) for some f € X, then
a(t) > a(t;) for all i € {1,... ,n}. But this is an easy consequence of the fact that
tly = flte,...,t.)lz = f(tidzm, ... ,tadz). In conclusion, we have shown that

NFg is well-defined.

By our assumptions, the case distinction in the definition above is effective and
a symbol matching algorithm on ¥ modulo E exists. Therefore, the function NFg
is computable as well.

Now we prove by well-founded induction on > that NFg(t) is a normal form
of t. When the second case of Definition 7.6 applies, t belongs to G by definition,
which entails immediately that NFg(t) = ¢ is in normal form. When the first case
applies, we know that NFg(t) = f(NFg(t1),...,NFg(t,)) for some Y-symbol f
and tuple (t1,...,t,) such that t =g f(t1,... ,t,). As we have seen above, t - t;
for alli € {1,...,n}, which entails by induction that NFg(¢;) is a normal form of ¢;
foreach i € {1,... ,n}. Since f € X, it is immediate that f(NFg(t1),... , NFg(t,))
is in normal form as well. To see that NF;(t) is indeed a normal form of ¢, it is now
enough to observe that t =g f(t1,... ,tn) =5 f(NFg(t1),... , NFg(t,)), where the
last equivalence is a consequence of the induction assumption that t; =g NFg(t;)
for each i € {1,...,n}. 1

We are now ready to show that Theorem 14 in [9] can be obtained as a corollary
of our Theorem 5.13.

37TRecall that our signatures are assumed to be countable, and thus the sets of terms are count-
able as well.

52



COROLLARY 7.8. Let Ey, E5 be non-trivial equational theories of respective sig-
nature X1, Yo such that ¥ := X1 N X5 is a set of DKR-constructors for both E; and
Es. If fori=1,2,

e the symbol matching problem on ¥ modulo E; is decidable, and
e the word problem in E; is decidable,
then the word problem in Ey U Ey is also decidable.

Proof. We show that the prerequisites of Theorem 5.13 are satisfied. By Propo-
sition 7.4, ¥ is a set of constructors according to Definition 4.5 for both E; and
FE>. By Point 2 of Lemma 7.2, E1* = E,~ since both coincide with the syntactic
equality on X-terms. Finally, normal forms are computable for ¥ and E; (i = 1,2)
by Lemma 7.7. 1

The notion of constructors presented in this paper is considerably more general
than the one introduced in [9]: it has no restrictions for E* whereas that in [9]
imposes the very strong restriction that E* must coincide with syntactic equality
on X-terms. Another anvantage of our notion of constructors is that it has an
abstract algebraic definition whereas the definition of DKR-constructors is rather
technical and depends strongly on the chosen ordering >.

7.3. Combination of theories constructible over a common subtheory

In this subsection, we compare our results to those published in a recent work
by Fiorentini and Ghilardi. In [10], they introduce a method for combining decision
procedures for the word problem that differs significantly from both the one in [9]
and the one in this paper. Their declared goal is to improve on the work in [9]
and our previous work in [6] by providing a method that manipulates terms using
rewriting techniques, as done in [9], but at the same time has the same flexibility as
our own in requiring no particular strategy in the application of the rewrite rules.

As in our work, the contributions of [10] can be decomposed in principle into
three3® parts:

1. Provide appropriate restrictions on the theories to be combined.
2. Describe a combination algorithm.

3. Prove that the combination algorithm is correct for all theories satisfying the
restrictions introduced in 1.

Both the combination algorithm and the proof of correctness given in [10] differ
considerably from ours. The algorithm is based on rewriting techniques and its
correctness is proved within a categorical framework. The restrictions on the the-
ories are also introduced within the categorical framework. However, the authors
do provide an algebraic version of these restrictions and show that they are in fact
more general than those we presented in [6]—which already subsumed those in [9].

38 Actually, our own work contains a fourth contribution: the proof that the restrictions on the
theories are themselves modular (Section 6). Fiorentini and Ghilardi do not explicitly provide
such a modularity result in [10]. In principle, however, it should be possible to produce it in the
framework of [10] as well.
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It can be shown, however, that they are just as general as the results presented
here.3?

The main restriction introduced in [10] is that the component theories E; and
E5 are constructible over a common subtheory in the shared signature. This no-
tion of constructibility is intimately related to our notion of constructors, as they
point out in [10] and we are going to illustrate below. The actual definition of
constructibility given in [10] involves category theory concepts, such as factoriza-
tion systems and left extensions, which are out of the scope of this paper but are
essential to prove the confluence and termination of the rewrite system used in
the combination algorithm. Fortunately, [10] also contains a characterization of
constructibility in algebraic terms (Proposition 10.4), which will be good enough
for this paper. For comparison’s sake, we paraphrase it here in the terminology of
this paper, and use it as an algebraic definition of constructibility. With a slight
abuse of notation, we will write E = E' for two equational theories E, E' if the two
theories entail exactly the same equations.

DEFINITION 7.9 (Constructibility). Let Ey be a non-trivial equational theory
of signature X, and E an equational theory of signature Q D ¥ such that E* = Ej.
Then, E is constructible over Ey iff the ¥-reduct of every free model A of E over
some set X of generators is a free model of Ej over a set of generators Y such that

«XCY,

e Y is invariant under all Q-automorphisms of A that are an extension of a
bijection of X onto itself.

It is shown in [10] that the notion above strictly subsumes the notion of con-
structors we used in [6] (where we required the restriction of the theory to the
constructor signature to be collapse-free). However, this is not true anymore for
the more general notion of constructors we already had in [5, 7], and also use in this
paper, as one can easily see by comparing the definition above with Definition 4.5.

Fiorentini and Ghilardi provide a syntactical characterization of constructibility
as well in [10]. As it turns out, this characterization is substantially equivalent to
our own syntactical characterization of constructors in Theorem 4.7. On the surface,
their syntactical conditions seem more restrictive than ours. First, the sets that in
[10] correspond to our X-bases?C are all closed under renaming of variables. Second,
the normal forms of terms over these sets must satisfy more conditions than we have
in Definition 4.6(2). As the authors themselves show, however, these conditions are
just technical restrictions that simplify proofs; they can be assumed without loss
of generality. As for the closure under renaming, although we do not embed it into
our definition of a ¥-base, we do need it anyway for our combination results. In
conclusion, Fiorentini and Ghilardi’s constructibility can be characterized in terms
of our X-bases as follows.

PROPOSITION 7.10. Let Ey be a non-trivial equational theory of signature %,
and E an equational theory of signature Q O ¥ such that E* = Ey. Then, E is
constructible over Ey iff E admits a X-base closed under bijective renaming of V.

For their decidability results, Fiorentini and Ghilardi use the notion of effective
constructibility. In our terms, the theory E above is effectively constructible over

39Reportedly, at the time of their writing of [10], the authors were not aware of our own more
general results, which we first reported in [5] and then published in [7].
40Namely, the sets denoted by E’ in Proposition 10.1 of [10].
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the theory Ej iff it is constructible over Ey and admits a ¥-base G (closed under
renaming) such that, for every term ¢t € T(Q, V), one can effectively compute a term
s(v) € T(X,V) and a tuple 7 of terms in G such that ¢ =g s(7). It is not difficult
to show that, for theories E with decidable word problem, effective constructibility
corresponds exactly to computability of normal forms in our sense with respect to
recursive X-bases closed under renaming.

Effective constructibility of component theories over the same subtheory yields
the following main combination result in [10].

THEOREM 7.11. Let ¥1,%5 be two signatures and let ¥ := X1 NXy. Let Ey be
a non-trivial equational theory of signature 2 and, for i = 1,2, let E; be equational
theories with signature ¥; and decidable word problem such that E;* = E,. If both
E, and E> are effectively constructible over Egy, then Ey U E> has a decidable word
problem.

Now, this results has exactly the same scope as our corresponding result in
Theorem 5.13. In fact, consider two equational theories E;, Es of signature ¥, X,
respectively, both with decidable word problem. Let ¥ := ¥; N 3.

First assume that E;, E, are equational theories satisfying the assumptions of
Theorem 7.11. We show that the assumptions of Theorem 5.13 are satisfied as well.

Clearly, E; (for i € {1,2}) is non-trivial since Fy = E;* was assumed to be non-
trivial. By assumption, the word problem for E; is decidable. By Proposition 7.10,
FE; admits a X-base G; closed under bijective renaming of V. From what we observed
earlier, we can assume that G; is recursive and G;-normal forms are computable.
Finally, E1* = Ey = E»>, which shows that all the prerequisites for Theorem 5.13
are satisfied.

Conversely, assume that, for i = 1,2, ¥ is a set of constructors for E;, E; is
non-trivial and admits a recursive ¥-base G; closed under bijective renaming of V/,
and G;-normal forms are computable. Furthermore, assume that E® = B> It
follows that Theorem 5.13 applies. We show that Theorem 7.11 also applies.

Let i € {1,2} and Ey := E,” = E»”. Clearly, Ey is non-trivial as well. With
Proposition 7.10 and Proposition 4.11 we can now conclude that E; is effectively
constructible over Ejy.

In conclusion, we can say that the approach employed in [10], although based on
completely different techniques and proofs, produces the same modularity result as
ours on the decidability of the word problem in the combination of two equational
theories with (possibly) non-disjoint signatures.

At the moment, it is not clear which approach to prefer. Both yield the same
results, and also with about the same effort (like our paper, [10] is also fairly long).
For the readers from the automated reasoning community, our approach (based on
universal algebra) may be more accessible than the categorical approach used in
[10], but probably this is a matter of taste. The main test case for both approaches
will be whether they can be extended to more general combination problems, such
as the combination of unification algorithms.

8. CONCLUSION AND OPEN QUESTIONS
In this paper, we have described a rule-based procedure that combines in a mod-

ular fashion decision procedures for the word problem. The procedure’s main idea,
propagation of equality constraints between the component decision procedures, is
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similar in spirit to the Nelson-Oppen combination method [17], a general method
for combining decision procedures for the validity of quantifier-free formulae in the-
ories over disjoint signatures. Its specifics, however, are essentially different because
the word problem is a rather restricted kind of validity problem.

We have first presented (in Section 3) a procedure that can deal with equational
theories over disjoint signatures, and then extended this procedure (in Section 5)
to treat theories sharing symbols that we called constructors. This extension was
achieved simply by adding three new rules for handling the constructor symbols.
The reasons for a two-step presentation of the procedure were mainly didactic. The
proof of correctness of the procedure for the disjoint case is simpler than the one
for the extended procedure, but has a very similar structure. Thus, it prepares the
reader for the more complex proof in the general case.

As mentioned in the introduction, the modularity of the decidability of the word
problem in the disjoint case has been known for quite some time [21, 24, 23, 19,
13]. Our main goal in Section 3 was the development of a rule-based combination
procedure, which we believe is simpler and more flexible than the known ones
because it uses rules that can be applied in arbitrary order.

This not only provides for more transparent proofs, as we think we have demon-
strated, but it also leads to a rather general extension of the procedure to the
non-disjoint case.

To our knowledge, the only other combination results for the word problem in
the case of component theories with symbols in common are those presented in [9]
and [10]. We have argued that our method is more flexible than the one presented
in [9], and shown that, in addition, it applies to a more general class of theories than
those considered in [9]. Furthermore, we believe that our algebraic approach yields
a less technical, and hence more transparent, definition of this class. The approach
followed in [10] is very flexible too, and applies to the same class of theories as
ours, as we have shown. Most likely then, preferring one approach over the other
should be a matter of personal background and taste: our combination method is
based on (what is essentially) a derivation calculus, whereas that in [10] is based
on a rewrite system; our semantical arguments are drawn from universal algebra,
whereas those in [10] are drawn from category theory.

It should be noted that while the present paper (like [10]) is concerned only
with the word problem, [9] also contains combination results for unification and
matching, Thus, one direction for future research would be to extend our approach
to the combination of decision procedures for the matching and the unification
problem as well. Whether and how easily this is possible may be one of the main
criteria for deciding whether to prefer our approach or the one in [10].

A further generalization would come from lifting our results to the case of many-
sorted equational logic. This should not be very difficult, but from a practical point
of view it would considerably increase the class of theories to which our approach
applies. For instance, many examples from algebraic specification (such as lists of
natural numbers, etc.) make sense only in a sorted environment.

Finally, we would like to point out that the results presented here depend on
two technical requirements. One is the requirement in the definition of constructors
(Definition 4.5) that the set X of generators of the free algebra A be included in
the set of generators of the reduct A%, and the other is the requirement in the
(extended) combination procedure that the X-bases of the component theories be
closed under renaming. In all the examples we have found so far, these requirements
are either immediately satisfied or can be assumed to be satisfied with no loss of
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generality. Nonetheless, the question of whether they can be removed altogether is
still open. To this regard it is interesting to notice that the authors of [10], who
arrived at their results independently from us and through a completely different
approach, need both requirements as well. This seems to indicate that there is
indeed a fundamental (non-technical) reason for them.
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