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Abstract. In this paper we extend the applicability of our combination
method for decision procedures for the word problem to theories shar-
ing non-collapse-free constructors. This extension broadens the scope of
the combination procedure considerably, for example in the direction of
equational theories axiomatizing the equivalence of modal formulae.

1 Introduction

The word problem for a theory E is concerned with the question of whether
two terms are equal in all models of E. In [4] we provided modular decidability
results for the word problem in the case of unions of equational theories with
possibly non-disjoint signatures, subsuming previous well-known results on the
decidability of the word problem for the union of equational theories with disjoint
signatures [12, 11, 13]. Our results were achieved by assuming that the function
symbols shared by the component theories were constructors in a appropriate
sense.

The notion of constructors presented in [4] was modeled after one first in-
troduced in [14], and generalized that in [5]. Its formulation is based on the
observation that some equational theories are such that the reducts of their
free models to a subset Σ of their signature are themselves free. We would call
constructors the symbols in Σ. The actual definition in [4], however, incorpo-
rated the restriction that the equational theory of the constructors had to be
collapse-free.1 This restriction was essentially technical, as it was used to provide
a syntactic characterizations of the generators of the free Σ-reducts in terms of
a certain set G of terms, which was then utilized in various proofs in the paper.

In the present paper, by using a more general way of defining the set G above,
we remove the collapse-freeness restriction and show that all the combination
results given in [4] continue to hold without it.
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1 In other words, no non-variable term over the constructor symbols could be equiva-

lent in E to one of its variables.



In [4] we used a rule-based procedure for combining in a modular way a
procedure deciding the word problem for a theory E1 and a procedure deciding
the word problem for a theory E2 into a procedure deciding the word problem for
the theory E1 ∪ E2. As mentioned, the main requirement was that the symbols
shared by E1 and E2 were constructors for each of them. In this paper, we
obtain the generalized combination results by using a proper modification of the
procedure, which does not rely anymore on the assumption that the constructor
theory is collapse-free.

The net effect of lifting the collapse-freeness restriction is a considerable
expansion of the scope of our combination results. A lot more equational theories
obtained as a conservative extension of a core Σ-theory are now such that Σ is a
set of constructors for them. Which means, potentially, that a lot more theories
built as conservative extensions of a same Σ-theory can be combined with our
method.2

One particularly interesting class of such theories includes the equational
axiomatizations of some (propositional) modal logics, on which we give more
details in Sect. 2.2. A fair amount of research has been done on the combination
of modal logics. We believe that our results for the word problems can now be
used to contribute to this research by recasting the combination of two modal
logics as the union of their corresponding equational theories. However, we have
not yet had the time to explore these possibilities in more depth. We are working
on this in a joint project with modal logicians.

For now, we present and discuss our generalized notion of constructors, and
provide some examples of theories admitting constructors in the new sense but
not in the old one, including an equational theory corresponding to a modal logic.
Then, we describe the modified version of the combination procedure, provide
a sketch of its correctness proof, and show how that leads to exactly the same
results given in [4], but of course with the wider scope provided by the new
definition of constructors. Because of space limitations, we refer the reader to
the longer version of this paper [3] for detailed proofs of our results.

2 Word Problems and Satisfiability Problems

We will use V to denote a countably infinite set of variables, and T (Ω, V ) to
denote the set of all Ω-terms , that is, terms over the signature Ω with variables in
V . An equational theory E over the signature Ω is a set of (implicitly universally
quantified) equations between Ω-terms. We use s ≡ t to denote an equation
between the terms s, t. For an equational theory E, the word problem is concerned
with the validity in E of equations between Ω-terms. Equivalently, the word
problem asks for the (un)satisfiability of the disequation s 6≡ t in E—where
s 6≡ t is an abbreviation for the formula ¬(s ≡ t). As usual, we write “s =E t”
to express that the formula s ≡ t is valid in E. An equational theory E is
collapse-free iff x 6=E t for all variables x and non-variable terms t.

2 The qualification “potentially” is mandatory, of course, because we still need to
impose some additional computability requirements on the theories to combine.



Given an Ω-term s, an Ω-algebra A, and a valuation α (of the variables in s
by elements of A), we denote by [[s]]Aα the interpretation of s in A under α. Also,
if Σ is a subsignature of Ω, we denote by AΣ the reduct of A to Σ. An Ω-algebra
A is a model of E iff every equation in E is valid in A. The equational theory
E over the signature Ω defines an Ω-variety , i.e., the class of all models of E.
When E is non-trivial , i.e., has models of cardinality greater than 1, its variety
contains free algebras for any set of (free) generators. If A is a free algebra in
E’s Ω-variety with a set X of generators we say that A is free in E over X .

We are interested in combined equational theories, that is, equational theories
E of the form E := E1 ∪ E2, where E1 and E2 are equational theories over two
signatures Σ1 and Σ2. We call the elements of Σ := Σ1 ∩ Σ2, if any, shared
symbols. We call 1-symbols the elements of Σ1 and 2-symbols the elements of
Σ2. A term t ∈ T (Σ1 ∪ Σ2, V ) is an i-term iff its top symbol t(ε) ∈ V ∪ Σi.
Note that variables and terms t with t(ε) ∈ Σ1 ∩Σ2 are both 1- and 2-terms. A
subterm s of a 1-term t is an alien subterm of t iff it is not a 1-term and every
proper superterm of s in t is a 1-term. Alien subterms of 2-terms are defined
analogously. A term over the joint signature Σ1 ∪ Σ2 is called a shared term if
it is a Σ-term, and a pure term if it is a Σi-term for i ∈ {1, 2}, Similarly, an
equation s ≡ t is a pure equation if s and t are both Σi-terms for i ∈ {1, 2}.

A given disequation s 6≡ t between (Σ1 ∪ Σ2)-terms s, t can be transformed
into an equisatisfiable formula ϕ1∧ϕ2, where ϕi is a conjunction of pure equations
and disequations. This can be achieved by the usual variable abstraction process
in which alien subterms are replaced by new variables (see the long version of
[4] for a detailed description). Obviously, if ϕ1 ∧ ϕ2 is satisfiable in a model A
of E1 ∪E2, each ϕi is then satisfiable in the reduct AΣi , which is a model of Ei

(i = 1, 2). However, if each ϕi is satisfiable in a model Ai of Ei, there may be no
model of E in which ϕ1 ∧ϕ2 is satisfiable. One case in which there always is one
is described by the proposition below (see the long version of [4] for a proof).

Proposition 1. Let Ai be a model of Ei, ϕi a first-order Σi-formula (i = 1, 2),
and Σ := Σ1 ∩ Σ2. Assume that A1

Σ and A2
Σ are both free in the same Σ-

variety over respective sets of generators Y1 and Y2 with the same cardinality.
If ϕi is satisfiable in Ai with the variables in Var(ϕ1) ∩ Var(ϕ2) taking distinct
values over Yi for i = 1, 2, then ϕ1 ∧ ϕ2 is satisfiable in a model of E1 ∪ E2.

As mentioned in the introduction, we will be interested in free models of E1

and of E2 whose reducts to their shared signature are themselves free. In general,
the property of being a free algebra is not preserved under signature reduction.
The problem is that the reduct of an algebra may need more generators than
the algebra itself and these generators need not be free. Nonetheless, there are
free algebras admitting reducts that are also free, although over a possibly larger
set of generators. These algebras are models of equational theories that admit
constructors in the sense defined in the next subsection.



2.1 Theories Admitting Constructors

In the following, Ω will be an at most countably infinite signature, and Σ a
subset of Ω. We will fix a non-trivial equational theory E over Ω and define the
Σ-restriction of E as EΣ := {s ≡ t | s, t ∈ T (Σ, V ) and s =E t}.

Definition 2 (Constructors). The subsignature Σ of Ω is a set of construc-
tors for E if for every Ω-algebra A free in E over a countably infinite set X,
AΣ is free in EΣ over a set Y including X.

As we will see, this new definition of constructors is a proper generalization
of the definition given in [4], which also requires EΣ to be collapse-free. Contrary
to the one above, that definition does not require the generators of AΣ to include
those of A; but this is always the case when EΣ is collapse-free.

It is immediate that the whole signature Ω is a set of constructors for the the-
ory E. Similarly, the empty signature is a set of constructors for E, as any model
of E is free over its whole carrier in E∅, which is axiomatized by {v ≡ v | v ∈ V }.
If E is the union of two theories over disjoint signatures, Σ1, Σ2 respectively, then
each Σi is a set of constructors for E. This is not immediate, but it can be shown
as a consequence of some results in [2].

In the following, we provide a more concrete, syntactic characterization of
theories admitting constructors. For that we will introduce the concept of a
Σ-base. But first, some more notation will be needed.

Given a subset G of T (Ω, V ), we denote by T (Σ, G) the set of terms over
the “variables” G. More precisely, every member t of T (Σ, G) is obtained from
a term s ∈ T (Σ, V ) by replacing the variables of s with terms from G. We will
denote such a term t by s(r̄) where r̄ is the tuple made, without repetitions, of the
terms of G that replace the variables of s. Notice that this notation is consistent
with the fact that G ⊆ T (Σ, G). In fact, every r ∈ G can be represented as
s(r) where s is a variable of V . Also notice that T (Σ, V ) ⊆ T (Σ, G) whenever
V ⊆ G. In this case, every s ∈ T (Σ, V ) can be trivially represented as s(v̄)
where v̄ are the variables of s.

Definition 3 (Σ-base). A set G ⊆ T (Ω, V ) is a Σ-base of E iff the following
holds:

1. V ⊆ G.
2. For all t ∈ T (Ω, V ), there is an s(r̄) ∈ T (Σ, G) such that t =E s(r̄).
3. For all s1(r̄1), s2(r̄2) ∈ T (Σ, G),

s1(r̄1) =E s2(r̄2) iff s1(v̄1) =E s2(v̄2),

where v̄1, v̄2 are fresh variables abstracting r̄1, r̄2 so that two terms in r̄1, r̄2

are abstracted by the same variable iff they are equivalent in E.

Theorem 4 (Characterization of constructors). The signature Σ is a set
of constructors for E iff E admits a Σ-base.



The proof of the theorem—which can be found in [3]—provides a little more
information than stated in the theorem.

Corollary 5. Let G be a Σ-base of E, A an Ω-algebra free in E over a countably
infinite set X, and α a bijective valuation of V onto X. Then AΣ is free in EΣ

over the set Y := {[[r]]Aα | r ∈ G}, and X ⊆ Y .

An interesting question is whether the condition that X ⊆ Y in the definition
of constructors is really needed. Does this condition always hold whenever the
Σ-reduct of any algebra A free in E over the countably infinite set X is itself
free? It can be easily shown that AΣ can be free in EΣ only over a set Y that is
countably infinite. The question is: can Y always be chosen so that it includes
X? When EΣ is collapse-free, Y is unique and it does include X , so one needs
not worry [4]. When EΣ is not collapse-free, however, AΣ may be free in EΣ

over more than one set of generators, not all of which include X .
For instance, consider the Ω-theory E := {g(g(x)) = x} and let Σ := Ω. Let

A be an Ω-algebra free in E over some set X and α a bijective valuation of V
onto X . It is easy to see that A, which is free in EΣ over X of course, is also
free over the set {[[g(v)]]Aα | v ∈ V }, disjoint from X . Now, this example causes
no problems because one can always choose Y := X in this case. For the general
case, however, the question remains open.

As shown in Cor. 5, a Σ-base of a theory E really denotes the set of free
generators of a certain free model of EΣ . Clearly, there may be many Σ-bases
for the same theory E. For instance, if G is a Σ-base of E, any set obtained
from G by replacing one of its terms by an E-equivalent term is also a Σ-base
of E. Also, for any bijective renaming π of V onto itself, the set {π(r) | r ∈ G}
is a Σ-base of E as well.

One may wonder then if it is possible for E to have Σ-bases that are not just
syntactic variants of one another. We know that this is not possible when EΣ

is collapse-free. In that case in fact, all Σ-bases, if any, denote the unique set
Y over which the Σ-reduct of the infinitely generated free model of E is free.
As it turns out, then E has a Σ-base GE(Σ, V ) which is closed under bijective
renaming of variables and under equivalence in E, and as such includes all the
Σ-bases of E. In [4] and [14], where the definition of constructors includes the
requirement that EΣ be collapse-free, this maximal Σ-base is defined as follows:

GE(Σ, V ) := {r ∈ T (Ω, V ) | r 6=E t for all t ∈ T (Ω, V ) with t(ε) ∈ Σ}.

Modulo equivalence in E, GE(Σ, V ) is made of Ω-terms whose top symbol is
not in Σ, from which it is immediate that GE(Σ, V ) is closed under bijective
renaming and under equivalence in E. To summarize, the following holds for
GE(Σ, V ) [4].

Proposition 6. Whenever EΣ is collapse-free,

– every Σ-base of E, if any, is included in GE(Σ, V );
– Σ is a set of constructors for E iff GE(Σ, V ) is a Σ-base of E.



Examples of theories admitting (collapse-free) constructors can be found in
[4]. We provide below an example of an equational theory admitting non-collapse-
free constructors, that is, constructors in the more general sense of Definition 2.
But first, it is instructive to look at at least one counterexample.

Let E := {f(g(x)) ≡ f(f(g(x)))} and Σ := {f}. Since EΣ is clearly collapse-
free, we know that every Σ-base of E, if any, is included in the set GE(Σ, V )
defined earlier. It is easy to see that GE(Σ, V ) = V ∪ {g(t) | t ∈ T (Ω, V )}
and that conditions (1) and (2) of Definition 3 hold for GE(Σ, V ). However,
condition (3) does not since f(g(x)) =E f(f(g(x))), although f(y) 6=E f(f(y)).
In conclusion, Σ is not a set of constructors for E.

Example 7. Consider the signature Σ := {0, s, p,−} and the equational theory E
of the integers with zero, successor, predecessor, and unary minus, axiomatized
by the equations:

x ≡ s(p(x)), x ≡ p(s(x))
−0 ≡ 0, −s(x) ≡ p(−x), −p(x) ≡ s(−x), −(−x) ≡ x.

The signature Σ := {0, s, p} is a set of constructors for E. This is proven in [3]
by showing that the set G := V ∪ {−v | v ∈ V } is a Σ-base of E.

Many more examples of theories with constructors can be found in the usual
axiomatizations of abstract data types. In the next subsection, we point out
another, perhaps less obvious, class of examples for which our combination ap-
proach could provide fresh insights and results.

Normal Forms According to Definition 3, if a set G is a Σ-base of E, every
Ω-term t is equivalent in E to a term s(r̄) ∈ T (Σ, G). We call s(r̄) a G-normal
form of t in E.3 We say that a term t is in G-normal form if it is already of the
form t = s(r̄) ∈ T (Σ, G). Because V ⊆ G, it is immediate that Σ-terms are in
G-normal form, as are terms in G.

We will make use of normal forms in our combination procedure. In partic-
ular, we will consider normal forms that are computable in the following sense.

Definition 8 (Computable Normal Forms). For any Σ-base G of E we
say that G-normal forms are computable for Σ and E if there is a computable
function NFΣ

E : T (Ω, V ) −→ T (Σ, G) such that NFΣ
E (t) is a G-normal form of

t, i.e., NFΣ
E (t) =E t.

Note that, unless EΣ is collapse-free, the terms of G may as well start with
a Σ-symbol themselves. This means that, for any given term t in G-normal
form, it may not be possible to effectively identify those terms r̄ of G such that
t = s(r̄) for some Σ-term s. Now, in the combination procedure shown in Sect. 3
sometimes we will need to first compute the normal form of a term and then
decompose that into its components s and r̄. To be able to do this it will be
enough to assume (in addition to the computability of normal forms) that G is
a recursive set, thanks to the proposition below.
3 Notice that in general a term may have more than one G-normal form.



Proposition 9. Let G be a Σ-base of E and t ∈ T (Σ, G). If G is recursive,
there is an effective way of computing a term s(v̄) ∈ T (Σ, V ) and a sequence r̄
of terms in G such that t = s(r̄).

2.2 Constructors and Modal Logics

For all normal modal logics [9], equivalence of formulae is a congruence relation
on formulae that is closed under substitution [9]. For example, consider the
basic modal logic K. Here, the signature ΣK contains the Boolean operators (∧,
∨, ¬), the Boolean constant > (for truth), and the unary (modal) operator

�
.

Equivalence of formulae in K can be axiomatized [10] by the equational theory
EK, which consists of the equational axioms for Boolean algebras, and the two
additional equational axioms

�
(x ∧ y) ≡

�
(x) ∧

�
(y) and

�
(>) ≡ >.

It is easy to see that satisfiability (and validity) of modal formulae in K is decid-
able iff the word problem for EK is decidable. For example, a formula ϕ is valid
iff ϕ =EK

>. Since satisfiability in K is indeed decidable4 the word problem for
EK is also decidable.

The problem of combining modal logics has been thoroughly investigated
(see, e.g., [6, 8]). In particular, there are very general results on how decidability
of the component logics transfers to their combination (called fusion in the lit-
erature). We are interested in the question of whether these combination results
can also be obtained within our framework for combining decision procedures for
the word problem. This line of research appears to be promising for the following
two reasons.

First, it follows from results in [9] (Chap. 4.2) that equivalence in the fusion
of two modal logics is axiomatized by the union of the equational theories axiom-
atizing equivalence in the component logics. In this union, the shared symbols
are the Boolean symbols, i.e., ∧, ∨, ¬, and >. Since the axioms for Boolean
algebras contain collapse axioms (e.g., x ∧ x ≡ x), it is clear that we will really
need the generalized version of constructors introduced in this paper.

Second, the requirement that the reduct of the free algebra to the shared
symbols be free is always satisfied for modal logics closed under the Boolean op-
erations ∧, ∨, and ¬. For example, let Σ be the subsignature of ΣK that consists
of ∧, ∨, ¬, and >. It is easy to show that the Σ-reduct AK

Σ of the EK-free alge-
bra AK over countably infinitely many generators is a countably infinite atomless
Boolean algebra. Since the free Boolean algebra over countably infinitely many
generators is also a countably infinite atomless Boolean algebra, and since all
countably infinite atomless Boolean algebras are known to be isomorphic [7], we
can deduce that the reduct AK

Σ is in fact free. For our combination method to
apply, however, this is not sufficient. We need additional conditions; e.g., that
normal forms are computable. Unfortunately, it is not even clear how a Σ-base

4 In fact, it is a well-known PSPACE-complete problem.



could look like in this case. This would depend on an appropriate characteriza-
tion of the generators of AK

Σ , which appears to be a non-trivial (and, to the
best of our knowledge, not yet solved) problem.

For this reason, we restrict our attention in the example below to a certain
sublogic of K. Such a sublogic, which is not Boolean closed, is particularly inter-
esting because the current combination results in modal logic are restricted to
Boolean closed modal logics.

Example 10. Let us consider just the conjunctive fragment of K. In equational
terms, this amounts to restricting the signature ΣK to the subsignature Σ0

K
:=

{∧,>,
�
} and consider only terms (i.e., modal formulae) built over this signature.

In [1], it is shown5 that equivalence of such formulae is axiomatized by the
theory E0

K
, which consists of the axioms

x ∧ (y ∧ z) ≡ (x ∧ y) ∧ z, x ∧ y ≡ y ∧ x, x ∧ x ≡ x, x ∧ > ≡ >
�
(x ∧ y) ≡

�
(x) ∧

�
(y),

�
(>) ≡ >.

We claim that Σ0 := {∧,>} is a set of constructors in our sense. In fact, the set

G := {
� n(v) | n ≥ 0 and v ∈ V }

can be shown to be a Σ0-base of E0
K
. This is an easy consequence of the no-

tion of concept-based normal form introduced in [1] and the characterization
of equivalence proved in the same paper. The concept-based normal form of
a formula is obtained by exhaustively applying the rewrite rules

�
(x ∧ y) →

�
(x) ∧

�
(y),

�
(>) → >, x ∧ > → x, > ∧ x → x. It is easy to see that this

normal form can be computed in polynomial time, and that any formula in nor-
mal form is either > or a conjunction of elements of G. Thus, the concept-based
normal form is also a G-normal form. Since the set G is obviously recursive and
closed under variable renaming, the additional prerequisites (see below) for our
combination approach to apply to E0

K
are satisfied as well.

Interestingly, if we consider the conjunctive fragment of the modal logic S4

in place of K, we obtain a quite different behavior: the reduct of the free algebra
to Σ0 is not free (see [4]). This is surprising as, in the Boolean closed case, S4

behaves like K in the sense that the reduct of the corresponding free algebra is
still free (for the same reasons as for K).

2.3 Combination of Theories Sharing Constructors

To conclude this section we go back to the problem of combining theories and
consider two non-trivial equational theories E1, E2 with respective signatures
Σ1, Σ2 such that Σ := Σ1 ∩ Σ2 is a set of constructors for E1 and for E2.
Moreover, we assume that E1

Σ = E2
Σ.

5 Note, however, that [1] employs description logic syntax rather than modal logic
syntax for formulae.



For i = 1, 2, let Ai be a Σi-algebra free in Ei over some countably infinite
set Xi, and Yi := {[[r]]Ai

αi
| r ∈ Gi} where Gi is any Σ-base of Ei and αi any

bijection of V onto Xi. From Prop. 1 and Cor. 5, we then have the following:

Proposition 11. Let ϕ1, ϕ2 be two first-order formulae of respective signature
Σ1, Σ2. If ϕi is satisfiable in Ai with the elements of Var(ϕ1) ∩ Var(ϕ2) taking
distinct values over Yi for i = 1, 2, then ϕ1 ∧ ϕ2 is satisfiable in E1 ∪ E2.

An immediate consequence of this result is that the theory E1 ∪ E2 above
is non-trivial. To see that, since ϕ1 and ϕ2 in the proposition are arbitrary
formulae, it is enough to take both of them to be the disequation x 6≡ y between
two distinct variables.

In the rest of the paper we show that, under the above assumptions on E1

and E2, the combined theory E1 ∪ E2 in fact has much stronger properties:
whenever normal forms are computable for Σ and Ei (i = 1, 2) with respect to
a recursive Σ-base closed under renaming, the decidability of the word problem
is a modular property, as is the property of being a set of constructors.

3 A Combination Procedure for the Word Problem

In the following, we present a decision procedure for the word problem in an
equational theory of the form E1 ∪ E2 where each Ei is an equational theory
with decidable word problem. Such a procedure will be obtained as modular
combination of the procedures deciding the word problem for E1 and for E2. We
will restrict our attention to equational theories E1, E2 that satisfy the following
conditions for i = 1, 2:

1. Ei is a non-trivial equational theory over the (countable) signature Σi;
2. Σ := Σ1 ∩ Σ2 is a set of constructors for Ei and E1

Σ = E2
Σ;

3. Ei admits a Σ-base Gi closed under bijective renaming of V ;
4. Gi is recursive and Gi-normal forms are computable for Σ and Ei;
5. the word problem for Ei is decidable.

As already mentioned, the word problem for E := E1 ∪ E2 can be reduced
to the satisfiability problem (in E) for disequations of the form s0 6≡ t0, where
s0, t0 are (Σ1 ∪ Σ2)-terms. By variable abstraction it is possible to transform
any such disequation into a a set AS(s0 6≡ t0) consisting of pure equations and
a disequation between two variables such that s0 6≡ t0 and AS(s0 6≡ t0) are
“equivalent” in a sense to be made more precise below. The set AS(s0 6≡ t0) is
what we call an abstraction system. To define abstraction systems formally we
will need some more notation.

To start with, we will use finite sets of formulae in place of conjunctions of
such formulae, and say that a set S of formulae is satisfiable in a theory iff the
conjunction of its elements is satisfiable in that theory. Now, let T be a set of
equations of the form v ≡ t where v ∈ V and t ∈ T (Σ1∪Σ2, V ) \V . The relation
≺ on T is defined as follows: (u ≡ s) ≺ (v ≡ t) iff v ∈ Var(s).



By ≺+ we denote the transitive and by ≺∗ the reflexive-transitive closure
of ≺. The relation ≺ is acyclic if there is no equation v ≡ t in T such that
(v ≡ t) ≺+ (v ≡ t).

Definition 12 (Abstraction System). A set {x 6≡ y} ∪ T is an abstraction
system with disequation x 6≡ y iff x, y ∈ V and the following holds:

1. T is a finite set of equations of the form v ≡ t where v ∈ V and t ∈
(T (Σ1, V ) ∪ T (Σ2, V )) \V ;

2. the relation ≺ on T is acyclic;
3. for all (u ≡ s), (v ≡ t) ∈ T ,

(a) if u = v then s = t;
(b) if (u ≡ s) ≺ (v ≡ t) and s ∈ T (Σi, V ) with i ∈ {1, 2} then t 6∈ T (Σi, V ).

The above is a generalization of the definition of abstraction system in [4]
in that now the right-hand side of any equation in T can start with a shared
symbol. As before, Condition (2) implies that for all (u ≡ s), (v ≡ t) ∈ T ,
if (u ≡ s) ≺∗ (v ≡ t) then u 6∈ Var(t); Condition (3a) implies that a variable
cannot occur as the left-hand side of more than one equation of T ; Condition (3b)
implies, together with Condition (1), that the elements of every ≺-chain of T
have strictly alternating signatures (. . . , Σ1, Σ2, Σ1, Σ2, . . . ). In particular, when
Σ1 and Σ2 have a non-empty intersection Σ, Condition (3b) entails that if
(u ≡ s) ≺ (v ≡ t) neither s nor t can be a Σ-term: one of the two must contain
symbols from Σ1 \Σ and the other must contain symbols from Σ2 \Σ.

Proposition 13. The set S := AS(s0 6≡ t0) is an abstraction system. Further-
more, where v̄ is the tuple that collects all the variables in the left-hand side of
an equations of S, the formula ∃v̄.S ↔ (s0 6≡ t0) is logically valid.

Every abstraction system {x 6≡ y} ∪ T induces a finite graph GS := (T,≺)
whose set of edges consists of all pairs (n1, n2) ∈ T × T such that n1 ≺ n2.
According to Definition 12, GS is in fact a directed acyclic graph (or dag). As-
suming the standard definition of path between two nodes and of length of a
path in a dag, the height h(n) of the node n is the maximum of the lengths of
all the paths in the dag that end with n.6

In the previous section, we would have represented the normal form of a term
in T (Σi, V ) (i = 1, 2) as s(q̄) where s was a term in T (Σ, V ) and q̄ a tuple of
terms in Gi. Considering that Gi contains V , we will now use a more descriptive
notation. We will distinguish the variables in q̄ from the non-variables terms and
write s(ȳ, r̄) instead, where ȳ collects the elements of q̄ that are in V and r̄ those
that are in Gi \V .

The combination procedure described in Fig. 1 decides the word problem for
the theory E := E1 ∪ E2 by deciding the satisfiability in E of disequations of
the form s0 6≡ t0 where s0, t0 are (Σ1 ∪ Σ2)-terms. During the execution of the
procedure, the set S of formulae on which the procedure works is repeatedly
modified by the application of one of the derivation rules defined in Fig. 2. We

6 Since GS is acyclic and finite, this maximum exists.



Input: (s0, t0) ∈ T (Σ1 ∪ Σ2, V ) ×T (Σ1 ∪ Σ2, V ).

1. Let S := AS (s0 6≡ t0).
2. Repeatedly apply (in any order) Coll1, Coll2, Ident, Simpl, Shar1, Shar2 to

S until none of them is applicable.
3. Succeed if S has the form {v 6≡ v} ∪ T and fail otherwise.

Fig. 1. The Combination Procedure.

Coll1
T u 6≡ v x ≡ t[y] y ≡ r

T [x/r] (u 6≡ v)[x/y] y ≡ r

if t ∈ T (Σi, V ) and y =Ei
t for i = 1 or i = 2.

Coll2
T x ≡ t[y]

T [x/y]

if t ∈ T (Σi, V ) and y =Ei
t for i = 1 or i = 2, and

there is no (y ≡ r) ∈ T .

Ident
T x ≡ s y ≡ t

T [x/y] y ≡ t

if s, t ∈ T (Σi, V ) and s =Ei
t for i = 1 or i = 2,

x 6= y, and h(x ≡ s) ≤ h(y ≡ t).

Simpl
T x ≡ t

T
if x 6∈ Var(T ).

Shar1
T u 6≡ v x ≡ t ȳ1 ≡ r̄1

T [x/s(ȳ, z̄)[ȳ1/r̄1]] z̄ ≡ r̄ u 6≡ v x ≡ s(ȳ, r̄) ȳ1 ≡ r̄1

if (a) x ∈ Var(T ),
(b) t ∈ T (Σi, V ) \Gi for i = 1 or i = 2,
(c) NFΣ

Ei
(t) = s(ȳ, r̄) ∈ T (Σ, Gi) \V ,

(d) r̄ nonempty and r̄ ⊆ Gi \T (Σ, V ),
(e) z̄ fresh variables with no repetitions,
(f) ȳ1 ⊆ Var(s(ȳ, r̄)) and

(x ≡ s(ȳ, r̄)) ≺ (y ≡ r) for no (y ≡ r) ∈ T .

Shar2
T u 6≡ v x ≡ t ȳ1 ≡ r̄1

T [x/s[ȳ1/r̄1]] u 6≡ v x ≡ s[ȳ1/r̄1] ȳ1 ≡ r̄1

if (a) x ∈ Var(T ),
(b) t ∈ T (Σi, V ) \Gi for i = 1 or i = 2,

(c) NFΣ

Ei
(t) = s ∈ T (Σ,V ) \V ,

(d) ȳ1 ⊆ Var(s),
(e) r̄1 ⊆ Gι with ι ∈ {1, 2} \ {i}, and

(x ≡ s) ≺ (y ≡ r) for no (y ≡ r) ∈ T .

Fig. 2. The Derivation Rules.



describe these rules in the style of a sequent calculus. The premise of each rule
lists all the formulae in S before the application of the rule, where T stands
for all the formulae not explicitly listed. The conclusion of the rule lists all the
formulae in S after the application of the rule.

The procedure and the rules are almost identical to those given in [4]. The
only difference is that the rules Shar1 and Shar2 have a different set of pre-
conditions to account for the generalization of the notion of normal form caused
by the new definition of constructors.

As before, Coll1 and Coll2 remove from S collapse equations that are valid
in E1 or E2, while Ident identifies any two variables equated to equivalent
Σi-terms and then discards one of the corresponding equations. The ordering
restriction in the precondition of Ident is on the heights that the two equations
involved have in the dag induced by S. It is there to prevent the creation of
cycles in the relation ≺ over S. We have used the notation t[y] to express that
the variable y occurs in the term t, and the notation T [x/t] to denote the set
of formulae obtained by substituting every occurrence of the variable x by the
term t in the set T .

The rule Simpl reduces clutter in S by eliminating those equations that have
become unreachable along a ≺-path from the initial disequation because of the
application of previous rules.

The rules Shar1 and Shar2, which only apply when Σ1 and Σ2 are non-
disjoint, are used in essence to propagate the constraint information represented
by shared terms. To do that, the rules replace the right-hand side t of an equation
x ≡ t by its normal form, and then plug the “shared part” of the normal form
in all those equations whose right-hand side contains x. In the description of
the rules, an expression like z̄ ≡ r̄ denotes the set {z1 ≡ r1, . . . , zn ≡ rn} where
z̄ = (z1, . . . , zn) and r̄ = (r1, . . . , rn), and s(ȳ, z̄) denotes the term obtained from
s(ȳ, r̄) by replacing the subterm rj with zj for each j ∈ {1, . . . , n}. This notation
also accounts for the possibility that t reduces to a non-variable term of Gi. In
that case, s will be a variable, ȳ will be empty, and r̄ will be a tuple of length
1. Substitution expressions containing tuples are to be interpreted accordingly;
also, tuples are sometimes used to denote the set of their components.

We make one assumption on Shar1 and Shar2 which is not explicitly listed
in their preconditions. We assume that NFΣ

Ei
(i = 1, 2) is such that, whenever the

set V0 := Var(NF Σ
Ei

(t)) \ Var(t) is not empty,7 each variable in V0 is fresh with
respect to the current set S. As explained in [3], this assumption can be made
without loss of generality whenever Gi is closed under renaming of variables.

By requiring that r̄ be non-empty, Shar1 excludes the possibility that the
normal form of the term t is a shared term. It is Shar2 that deals with this case.
The reason for a separate case is that we want to preserve the property that every
≺-chain is made of equations with alternating signatures (cf. Definition 12(3b)).
When the equation x ≡ t has immediate ≺-successors, the replacement of t by
the Σ-term s may destroy the alternating signatures property because x ≡ s,

7 This might happen if Ei is non-regular because then Definition 8 does not necessarily
entail that all the variables of NFΣ

Ei
(t) occur in t.



which is both a Σ1- and a Σ2-equation, may inherit some of these successors from
x ≡ t.8 Shar2 restores this property by merging into x ≡ s all of its immediate
successors, if any. Condition (e) in Shar2 makes sure that the tuple ȳ1 ≡ r̄1

collects all these successors. The replacement of ȳ1 by r̄1 in Shar1 is done for
similar reasons. In Shar2, the restriction that the terms in r̄1 be elements of Gi

is necessary to ensure termination, as is the condition x ∈ Var(T ) in both rules.

A Sketch of the Correctness Proof

The total correctness of the combination procedure can be proven more or less
in the same way as in [4]. We can first show that an application of one of the
rules of Fig. 2 transforms abstraction systems into abstraction systems, preserves
satisfiability, and leads to a decrease with respect to a certain well-founded order-
ing. This ordering can be obtained as follows: every node in the dag induced by
the abstraction system S is associated with a pair (h, r), where h is the height
of the node, r is 1 if the right-hand side of the node is neither in G1 nor in
G2, and 0 otherwise. The abstraction system S is associated with the multiset
M(S) consisting of all these pairs. Let � be the multiset ordering induced by
the lexicographic ordering on pairs.

Lemma 14. Assume that S ′ is obtained from the abstraction system S by an
application of one of the rules of Fig. 2. Then the following holds:

1. M(S) � M(S′).
2. S′ is an abstraction system.
3. ∃v̄.S ↔ ∃v̄′.S′ is valid in E, where v̄ lists all the left-hand side variables of

S and v̄′ the left-hand side variables of S ′.

Since the multiset ordering � is well-founded, the first point of the lemma implies
that the derivation rules can be applied only finitely many times. Given that the
preconditions of each rule are effective because of the computability assumptions
on the component theories and of Prop. 9, we can then conclude that the combi-
nation procedure halts on all inputs. The last point of the lemma together with
Prop. 13 implies that the procedure is sound, that is, if it succeeds on an input
(s0, t0), then s0 =E t0. The second point implies that the final system obtained
after the termination of the procedure is an abstraction system, which plays an
important rôle in the completeness proof. We can prove that the combination
procedure is complete, that is, succeeds on an input (s0, t0) whenever s0 =E t0,
by showing that Prop. 11 can be applied (see [3] for details). To sum up, this
shows the overall correctness of the procedure, and thus:

Lemma 15. Under the given assumptions, the word problem for E := E1 ∪ E2

is decidable.

8 As explained above, we assume that the variables in Var(s) \ Var(t) do not occur
in the abstraction system. Thus, the equations in ȳ1 ≡ r̄1 are in fact successors of
x ≡ t.



The corresponding result in [4] is indeed a corollary of this one. The difference
there is that we have the additional restriction that Ei

Σ is collapse-free and we
use the largest Σ-base of Ei, namely GEi

(Σ, V ), instead of an arbitrary one
(i = 1, 2). In [4], we do not explicitly assume that GEi

(Σ, V ) is closed under
renaming. But this is always the case, as we mentioned earlier. Also, we do not
postulate that GEi

(Σ, V ) is recursive because that is always the case whenever
GEi

(Σ, V )-normal forms are computable for Σ and Ei.
Similarly to [4], the decidability result of Lemma 15 is actually extensible

to the union of any (finite) number of theories, all (pairwise) sharing the same
signature Σ and satisfying the same properties as E1 and E2 above. The reason
is that, again, all needed properties are modular with respect to theory union.

Theorem 16. For all theories E1, E2 satisfying assumptions(1)-(5) stated at
the beginning of Sect. 3, the following holds:

1. Σ is a set of constructors for E := E1 ∪ E2 and EΣ = E1
Σ = E2

Σ.
2. E admits a Σ-base G∗ closed under bijective renaming of V ;
3. G∗ is recursive and G∗-normal forms are computable for Σ and E;
4. the word problem for E is decidable.

The proof of the first three points is still quite involved (see [3] for details) but
somewhat simpler than the corresponding proof in [4]. It depends on the explicit
construction of the set G∗, given below. There, for all terms r ∈ T (Σ1 ∪Σ2, V ),
we denote by r̂ the pure term obtained from r by abstracting its alien subterms.

Definition 17. The set G∗ is inductively defined as follows:

1. Every variable is an element of G∗, that is, V ⊆ G∗.
2. Assume that r(v̄) ∈ Gi \V for i ∈ {1, 2} and r̄ is a tuple of elements of G∗

with the same length as v̄ such that the following holds:
(a) r(v̄) 6=E v for all variables v ∈ V ;
(b) r̂k 6∈ T (Σi, V ) for all non-variable components rk of r̄;
(c) rk 6=E r` if rk, r` occur at different positions in the tuple r̄.
Then r(r̄) ∈ G∗.

Notice that every non-collapsing term of Gi is in G∗ for i = 1, 2 because the
components of r̄ in the definition above can also be variables. Every non-variable
element r of G∗ then has a stratified structure. Each layer of r is made of terms
all belonging to G1 or to G2. Moreover, if the terms in one layer are in Gi, then
the terms in the layer above and below, if any, are not in Gi.

4 Future Work

The results presented in this paper are preliminary in two respects. First, they
depend on two technical restrictions for which we do not yet know whether
they are necessary. One is the requirement in the definition of constructors that
X ⊆ Y (used to prove the completeness of the combination procedure); the other



is the requirement that the Σ-bases employed in the combination procedure be
closed under renaming (used in the derivation rules and to prove the modularity
results). We are trying to find out whether these restrictions can be removed, or
there is a deeper, non-technical, reason for them.

Second, in order to demonstrate the power of our new combination procedure,
we intend to investigate more thoroughly its applicability to the combination of
decision procedures for modal logics. This probably depends on a deep under-
standing of the structure of the free algebras corresponding to the modal logics
in question.
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