
FMICS 2004 Preliminary Version

Efficient Proof Engines for
Bounded Model Checking of Hybrid Systems

Martin Fränzle 1,3

Informatics and Mathematical Modelling, The Technical University of Denmark,
Richard Petersens Plads, Bldg. 322, DK-2800 Kgs. Lyngby, Denmark

Christian Herde 2,3

Department of Computing Science, Carl-von-Ossietzky Universität Oldenburg,
P.O. Box 2503, D-26111 Oldenburg, Germany

Abstract

In this paper we present HySat, a new bounded model checker for linear hybrid
systems, incorporating a tight integration of a DPLL–based pseudo–Boolean SAT
solver and a linear programming routine as core engine. In contrast to related
tools like MathSAT, ICS, or CVC, our tool exploits all of the various optimizations
that arise naturally in the bounded model checking context, e.g. isomorphic repli-
cation of learned conflict clauses or tailored decision strategies, and extends them
to the hybrid domain. We demonstrate that those optimizations are crucial to the
performance of the tool.

Key words: verification, bounded model checking, hybrid
systems, infinite-state systems, decision procedures, satisfiability.

1 Introduction

During the last ten years, formal verification of digital systems has evolved
from an academic subject to an approach accepted by the industry, with
dozens of commercial tools now available and used by major companies. Among
the most successful methods in formal verification of discrete systems is bounded
model checking (BMC), as suggested by Groote et al. in [17] and by Biere et
al. in [9]. The idea of BMC is to encode the next–state relation of a system as

1 Email: mf@imm.dtu.dk
2 Email: christian.herde@informatik.uni-oldenburg.de
3 This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Fränzle and Herde

a propositional formula, unroll this to some given finite depth k, and to aug-
ment it with a corresponding finite unravelling of the tableau of (the negation
of) a temporal formula in order to obtain a propositional SAT problem which
is satisfiable iff an error trace of length k exists. Enabled by the impressive
gains in performance of propositional SAT checkers in recent years, BMC can
now be successfully applied even to very large finite-state designs.

Though originally formulated for discrete transition systems only, the basic
idea of BMC to reduce the search for an error path to a satisfiability problem
of a formula also applies to hybrid discrete–continuous systems. However, the
BMC formulae arising from such systems are no longer purely propositional,
but usually comprise complex Boolean combinations of arithmetic constraints
over real-valued variables, thus entailing the need for new decision procedures
to solve them.

Our tool HySat provides a decision procedure that is tailored to fit the
needs of BMC of infinite–state systems with piecewise linear variable updates,
e.g. of linear hybrid automata. HySat tightly integrates a state–of–the–art
Davis–Putnam style SAT solver for pseudo–Boolean constraints with a linear
programming routine, combining the virtues of both methods: Linear pro-
gramming adds the capability of solving large conjunctive systems of linear
inequalities over the reals, whereas the SAT solver accounts for fast Boolean
search and efficient handling of disjunctions.

The idea to combine algorithms for SAT with decision procedures for con-
junctions of numerical constraints in order to solve arbitrary Boolean com-
binations thereof has been pursued by several groups. A tight integration of
a resolution based SAT checker with linear programming has first been pro-
posed and successfully applied to planning problems by Wolfman and Weld
[30]. More recently, Audemard et al. [3] have followed up with MathSAT,
a tool combining SAT solving with a Bellman–Ford algorithm for difference
logic constraints and a simplex algorithm for general linear constraints, used
for applications in the context of temporal reasoning and model checking of
timed automata. Tools supporting a more general class of formulae are CVC
[6] and ICS [15], both integrating decision procedures for various theories, in-
cluding Boolean logic, linear real arithmetic, uninterpreted function symbols,
functional arrays, and abstract data types.

However, except for HySat, all tools mentioned above lack some or all of
the particular optimizations that arise naturally in the bounded model check-
ing context. As observed by Shtrichman [26], BMC yields SAT instances that
are highly symmetric as they comprise a k–fold unrolling of the systems tran-
sition relation. This special structure can be exploited to accelerate solving,
e.g. by copying the explanation for a conflict which was encountered during
the backtrack search performed by the SAT solver, to all isomorphic parts
of the formula in order to prune similar conflicts from the search tree. This
technique, in the following referred to as isomorphy inference, has been shown
to yield considerable performance gains when performing BMC with propo-

2

Fränzle and Herde

sitional SAT engines. To the best of our knowledge, HySat is the first solver
that extends isomorphy inference accross transitions, as well as other domain–
specific optimizations described in [26], to the hybrid domain. We will show
that, compared to purely propositional BMC, similar or even higher perfor-
mance gains can be accomplished within this context. The reason is that an
inference step in the hybrid domain is computationally much more expensive
than in propositional logic, as now richer logics have to be dealt with.

The paper is organized as follows. In the following two sections we explain
the logical language solved by our SAT checker and review briefly how a linear
hybrid automaton can be translated into a predicative formula suitable for
bounded model checking. In section 4 we explain in detail the algorithmic
ingredients of HySat. In particular, we discuss the BMC–specific optimizations
implemented in our tool. In section 5 we report some experimental results,
and section 6 draws conclusions and describes directions for future research.

2 The logics

As we are aiming at automated state-exploratory analysis of linear hybrid au-
tomata [20,19] without prior finite-state abstraction, HySat addresses satisfia-
bility problems in a two-sorted logics entailing Boolean-valued and real-valued
variables. When encoding properties of linear hybrid automata, the Boolean
variables are used for encoding the discrete state components, while the real
variables represent the continuous state components.

The formulae are actually propositional, being conjunctions of linear zero-

one constraints [16] (also known as pseudo-Boolean constraints [7]) for the
Boolean part and of guarded linear constraints [30] for the real-valued part:

formula ::= {clause ∧}∗clause

clause ::= linear ZO constraint | boolean var =⇒ linear constraint

Here, linear constraint denotes a conjunction of linear inequalities over real-

valued variables, i.e. the constraint part of an arbitrary linear program, while
linear ZO constraint denotes a linear inequality over Boolean-valued vari-
ables. The reason for using linear zero-one constraint clauses instead of, e.g.,
disjunctive clauses (like in conjunctive normal forms) is that linear zero-one
constraints are much more concise than disjunctive clauses and that we have a
very efficient SAT solver —called “Goblin” [16]— for such constraint systems,
yielding the base engine for HySat.

2.1 Zero-one linear constraints

Rewriting arbitrary propositional formulae to conjunctive normal form (CNF)
yields a worst-case exponential blowup in formula size if the number of propo-
sitional variables is to be preserved. To avoid this, all practical verification
environments take advantage of satisfiability-preserving transformations that
yield linear-size encodings through introduction of a linear number of auxil-

3

Fränzle and Herde

iary variables [27,25,28]. The price for introducing a linear number of auxil-
iary variables is, however, a worst-case exponential blow-up in the size of the
search tree upon backtrack search. Yet, it has been observed that both causes
of blow-up can often be avoided, as the Davis-Putnam-Loveland-Logemann
search procedure for satisfying valuations generalizes smoothly to zero-one
linear constraint systems (ZOLCS), which are the constraint parts of zero-one
linear programs [7,29,2,16]. Zero-one linear constraint systems are expressive
enough to facilitate a linear-size encoding of, e.g., gate-level netlists without
use of auxiliary variables.

In a zero-one linear constraint system or linear pseudo-Boolean constraint

systems, formulae are conjunctions of linear zero-one constraints. A linear

zero-one constraint is of the form a1x1 + a2x2 + . . . anxn ≥ k, where the xi

are literals, i.e. positive or negated propositional variables, the ai are natu-
ral numbers, called the weights of the individual literals, and k ∈ N is the
threshold.

Given a Boolean valuation of the propositional variables, a zero-one con-
straint is satisfied iff its left hand side evaluates to a value exceeding the
threshold when the truth values false and true of the literals are identified
with 0 and 1, respectively. Zero-one constraints can represent a wide class
of monotonic Boolean functions, e.g. 1a + 1b + 1c + 1d ≥ 1 is equivalent
to a ∨ b ∨ c ∨ d, 1a + 1b + 1c + 1d ≥ 4 is equivalent to a ∧ b ∧ c ∧ d, and
1a+1b+3c+1d ≥ 3 is equivalent to c =⇒ (a∧ b∧d). Consequently, ZOLCS
can be exponentially more concise than CNF: a CNF expressing that at least
n out of k variables should be true requires

(
n

k

)
disjunctive clauses of length n

each, i.e. is of size O
((

n

k

)
n
)
, whereas the corresponding ZOLCS has size linear

in k and logarithmic in n.

Formally, the syntax of linear zero-one constraints is

linear ZO constraint ::= linear term ≥ threshold

linear term ::= {weight literal +}∗weight literal

weight ::∈ N

literal ::= boolean var | boolean var

boolean var ::∈ BV

threshold ::∈ N

where BV is a countable set of Boolean variable names.

Zero-one constraints are interpreted over Boolean valuations σB : BV
total
−→ B of

the propositional variables. σB satisfies a constraint a1x1 +a2x2 + . . . anxn ≥ k
iff a1χσB

(x1) + a2χσB
(x2) + . . . anχσB

(xn) ≥ k, where

χσB
(x) =

0 if x ∈ V and σB(x) = false,

1 if x ∈ V and σB(x) = true,

1 − χσB
(y) if x ≡ y for some y ∈ V.

4

Fränzle and Herde

2.2 Guarded linear constraints

Zero-one constraints can only express constraints on Boolean variables. A sec-
ond kind of clauses in our logics is Boolean-guarded linear constraints which
express (linear) constraints between real-valued variables, as well as their in-
terdependence with the Boolean valuation. A guarded linear constraint simply
is an implication

boolean var =⇒ linear constraint

between a Boolean variable and a linear constraint over real-valued variables,
i.e. a conjunction of linear inequations. Such a guarded linear constraint is

interpreted over a valuation σ = (σB, σR) ∈ (BV
total
−→ B)× (RV

total
−→ R), where

RV is the set of real variables occurring in linear constraints. The guarded
linear constraint v =⇒ c is satisfied by σ = (σB, σR) iff σR satisfies the linear
constraint c or if σB(v) = false.

2.3 Satisfaction of formulae

A formula φ is a conjunction of linear zero-one constraints and of guarded
linear constraints and is thus interpreted over valuations

σ = (σB, σR) ∈ (BV
total
−→ B) × (RV

total
−→ R) .

Obviously, φ is satisfied by σ = (σB, σR), denoted σ |= φ, iff all linear zero-one
constraints in φ are satisfied by σB and all guarded linear constraints in φ are
satisfied by (σB, σR).

When solving satisfiability problems of formulae with Davis-Putnam-like
procedures, we will build valuations incrementally such that we have to reason

about partial valuations ρ ∈ (BV
part.
−→ B) × (RV

part.
−→ R) of variables. We say

that a variable v ∈ BV ∪RV is unassigned in ρ iff v 6∈ dom(ρB)∪dom(ρR). A
partial valuation ρ is called consistent for a formula φ iff there exists a total

extension σ : (BV
total
−→ B) × (RV

total
−→ R) of ρ that satisfies φ. Otherwise, we

call ρ inconsistent for φ. Furthermore, a partial valuation ρ is said to satisfy

φ iff all its total extensions satisfy φ. As this definition of satisfaction agrees
with the previous one on total valuations, we will use the same notation ρ |= φ
for satisfaction by partial and by total valuations.

3 Predicative encoding of linear hybrid automata

A linear hybrid automaton A = (Σ, T, R, inv , l, u, m, g, ass, init), as depicted
in Fig. 1, consists of

• a finite set Σ of locations,
• a finite set T of transitions,
• a finite set R of continuous state components,

5

Fränzle and Herde

x

t

5

0
5 10 15 20

x ≥ 4

lx = −∞
ux = −2

lx = 1
ux = 1
x ≤ 10 x = 5/x′ = 0

true/x′ = 10

4.5 < x false

Fig. 1. A linear hybrid automaton and a sample trajectory. lx and ux denote the
lower and upper bounds on the slope of x in the corresponding states, while x ≤ 10
and x ≥ 4 are state invariants constraining x itself.

• a family inv = (invσ)σ∈Σ of state invariants, where each state invariant invσ

is a linear predicate over R which constrains the valuations of the continuous
state components when control resides in the discrete location σ,

• two families l = (lσ,x)σ∈Σ,x∈R and u = (uσ,x)σ∈Σ,x∈R assigning two each
location σ ∈ Σ and each continuous state component x ∈ R the minimum

and maximum slope of x while control resides in location σ. The individual
lσ,x are constants in Q ∪ {−∞} and similarly uσ,x ∈ Q ∪ {∞}.

• a mapping m : T
total
−→ Σ2 assigning to each transition the pair of source and

sink state of the transition,
• a family g = (gt)t∈T assigning to each transition a transition guard enabling

that transition, where the transition guard is a linear predicate over R,
• a family ass = (ass t)t∈T assigning to each transition a (possibly nondeter-

ministic) assignment which is a linear predicate over R and R′, where R′

denotes primed variants of the state components in R. The interpretation
is that undecorated state components x ∈ R refer to the state immediately
before the transition, while the primed variant x′ ∈ R′ refers to the state
immediately thereafter.

• a family init = (initσ)σ∈Σ of initial state predicates, where each initσ is a
linear predicate over R which constrains the valuations of the continuous
state components when control resides initially in the discrete location σ. 4

Hybrid automata engage in an alternation of continuous evolutions and dis-
crete transitions. A continuous evolution of A = (Σ, T, R, inv , l, u, m, g, ass, init)
can be represented by a tuple (σ, x, δ, x′) consisting of a discrete state σ ∈ Σ

the automaton resides in, a source continuous state x ∈ (R
total
−→ R) and a

target continuous state x
′ ∈ (R

total
−→ R), as well as a duration δ ∈ R≥0.

Such a tuple is a continuous evolution of A iff for each y ∈ R it holds that
x
′(y) ≥ x(y)+lσi,y ·δ and x

′(y) ≤ x(y)+uσi,y·δ, and both x and x
′ satisfy invσ.

Thus, δ represents the duration of A residing in state σ, and all continuous
variables y evolve according to their slope bounds, and the invariant is true in
the start and the end state (and thus, by convexity, in between). Similarly, an
immediate transition can be represented by a tuple (σ, x, σ ′, x′) consisting of
a discrete source state σ ∈ Σ and a discrete target state σ ′, plus a continuous

4 A discrete location σ not to be taken initially takes the predicate initσ = false.

6

Fränzle and Herde

source state x ∈ (R
total
−→ R) and a continuous target state x

′ ∈ (R
total
−→ R).

Such a tuple is an immediate transition iff there is a transition t ∈ T with
m(t) = (σ, σ′) such that x satisfies gt and such that ass t is satisfied if x is
substituted for the variables in R and x

′ is substituted for the variables in R′.

A run r = 〈(σ0, x0, δ0, x′0), . . . , (σn, xn, δn, x′n)〉 ∈ (Σ×(R
total
−→ R)×R≥0×

(R
total
−→ R))∗ is a sequence of continuous evolutions of A linked by immediate

transitions and grounded in a viable initial state. I.e., a run r satisfies the
following properties:

• Initialization: x
0 satisfies initσ0 .

• Progression by continuous evolution: for all i, the tuple (σi, xi, δi, x′i) is a
continuous evolution of A.

• Progression by immediate transitions: the tuple (σi, x′i, σi+1, xi+1) is an
immediate transition of A for all i < n.

In order to perform bounded model checking (BMC) [9] with HySat, i.e.
checking of validity of temporal properties on finite unrollings of a transition
system, we need to encode all runs of a given length k ∈ N in HySat’s logics.
There are various ways of doing this, all with specific strengths and weak-
nesses. Yet all the reasonable ones share the property of featuring a plethora
of structurally similar sub-formulae stemming from the iterated application of
the transition relation and from the iterated continuous evolution in the k-fold
unrolling. In order to exemplify this, we present here one particular form of
such an unrolling which is very similar to the one used by Audemard et al. for
MathSAT-based BMC of linear hybrid automata [4] and by Bemporad et al.
for MILP-based BMC of linear hybrid automata [8].

Let A = (Σ, T, R, inv , l, u, m, g, ass, init) be a linear hybrid automaton. In
order to encode a transition sequence of A of some given length k ∈ N, we
proceed as follows:

(i) For each discrete state σ ∈ Σ we take k + 1 Boolean variables σi, with
0 ≤ i ≤ k. The value of σi encodes whether the automaton A is in state
σ in step i. Here, we take “one-hot” encoding, i.e. σi = true iff A is in
state σ in step i. With one-hot encoding, there consequently is, for any
i ≤ k, exactly one σ ∈ Σ such that σi holds, which is enforced in the
BMC formula by the 2k + 2 linear zero-one constraints

k∧

i=0

(
∑

σ∈Σ

1σi ≤ 1

)
∧

k∧

i=0

(
∑

σ∈Σ

1σi ≥ |Σ| − 1

)

(ii) For each transition t ∈ T we take k Boolean variables ti, with 1 ≤ i ≤ k.
The value of ti encodes via one-hot encoding whether the ith move in
the run is transition t. Wellformedness of the unrolling in the sense that
exactly one transition is taken in each step is guaranteed by conjunctively

7

Fränzle and Herde

adding the 2k linear zero-one constraints

k∧

i=1

(
∑

t∈T

1ti ≤ 1

)
∧

k∧

i=1

(
∑

t∈T

1ti ≥ |T | − 1

)

to the formula.

(iii) For each continuous state component x ∈ R we take k + 1 real-valued
variables xi and another k + 1 real-valued variables x′i, with i ≤ k. The
value of xi encodes the value of x immediately after the ith transition in
the run, whereas x′i represents the value immediately before transition
(i + 1). For each i ≤ k we do, furthermore, take one real-valued variable
δi representing the time spent in the ith state of the run. This allows us
to formalize the continuous evolutions by conjoining the guarded linear
constraint

σi =⇒ (x′i ≥ xi + lσ,xδ
i ∧ x′i ≤ xi + uσ,xδ

i)

for each σ ∈ Σ and each i ≤ k to the formula. 5 Furthermore, we have
to keep track of the state invariants, which are enforced by the guarded
linear constraints

σi =⇒ (invσi [xi
1, . . . , x

i
n/x1, . . . , xn] ∧ invσi [x′i

1 , . . . , x
′i
n/x1, . . . , xn]) ,

where {x1, . . . , xn} = R.

(iv) The interplay between discrete states and transitions requires that ti

implies σi−1 and σ̃i for (σ, σ̃) = m(t). With linear zero-one constraints,
this can be expressed by a single constraint

2ti + 1σi−1 + 1σ̃i ≥ 2

for each t ∈ T and each 1 ≤ i ≤ k. Furthermore, enabledness of the
transition, i.e. validity of the transition guard, is enforced through the
guarded linear constraint

ti+1 =⇒ gt[x
′i
1 , . . . , x′i

n/x1, . . . , xn] .

Likewise, assignments are dealt with by

ti+1 =⇒ asst[x
i
1, . . . , x

i
n/x1, . . . , xn][x′i

1 , . . . , x′i
n/x′

1, . . . , x
′
n]

(v) Finally, we have to add constraints describing the allowable initial states
through the guarded linear constraint system

∧

σ∈Σ

(
σ0 =⇒ initσ

)

5 If lσ,x = −∞ or uσ,x = ∞, the corresponding part of the constraint is left out.

8

Fränzle and Herde

Satisfying valuations of the formula thus obtained are in one-to-one correspon-
dence to the runs of A of length k. As in BMC [9], satisfaction of temporal
properties on all runs of depth k can thus be checked by adding to the formula
the k-fold unrolling of a tableaux of the (negated) property, then checking the
resulting formula for unsatisfiability. Using standard techniques from pred-
icative semantics [18], the translation scheme can be extended to both shared
variable and synchronous message-passing parallelism, thereby yielding for-
mulae of size linear in the number of parallel components.

Note that, except for step (v) of above encoding scheme, all steps generate
multiple copies of the same basic formula, where the k or k + 1 individual
copies differ just in a consistent renaming of the variables. Therefore, a sat-
isfiability checker tailored towards BMC of hybrid automata should exploit
such isomorphies between subformulae for accelerating satisfiability checking,
which is the distinguishing feature of HySat. In order to simplify detection of
isomorphic copies, HySat is in fact fed with just a single copy of the transition
and evolution predicates and performs the unrolling itself.

4 Ingredients of HySat

The predicative encoding outlined above yields formulae which are Boolean
combinations of linear arithmetic contraints. To deal with such formulae,
HySat’s main components are

• the solver core, consisting of a tight integration of a SAT solver with a
linear programming routine, described in section 4.1, and enhanced with
domain-specific optimizations for BMC, as explained in section 4.2,

• an API to the solver core, providing methods for formula generation, sim-
plification, common subexpression eliminiation, and for rewriting the re-
sulting formula into a conjunctive form, namely a conjunction of zero-one
linear constraints and guarded linear constraints, which is the input format
of the solver core,

• a frontend, consisting of HySat’s input language and a bounded model
checker, which performs the unwinding of the transition relation and con-
trols the solver core via API calls.

To fit the needs of BMC, which involves checking the same system on different
unrolling depths, the solver core and the API are designed to work in an
incremental fashion in the sense that they allow to add (as well as delete)
successively sets of constraints to (from) an existing problem and then redo
the satisfiability check without starting SAT search from scratch each time.

4.1 Integration of DPLL-SAT and Linear Programming

Before addressing the integration of a propositional SAT solver with linear
programming, we first briefly review some basics of the individual methods.

9

Fränzle and Herde

4.1.1 Boolean SAT

The best currently known procedures for deciding Boolean SAT problems im-
plement variants of the classical Davis-Putnam-Loveland-Logemann (DPLL)
procedure [12] and are based on backtracking in the space of partial value
assignment. Given a Boolean formula Φ in conjunctive normal form (CNF)
and a partial valuation ρ, which is empty at the start, the DPLL procedure
incrementally extends ρ until either ρ |= φ holds or ρ turns out to be incon-
sistent for φ, in which case another extension is tried through backtracking.
Extensions are constructed by performing decision steps, which entail select-
ing an unassigned variable “blindly” and assigning a truth-value to it, each
followed by a deduction phase, involving the search for propagating clauses

that enforce certain assignments to preserve satisfiability, where execution of
the latter might cause the need for further such assignments, in this context
also referred to as implications. However, deduction may also yield a con-

flicting clause which has all its literals assigned false, indicating the need for
backtracking.

Like all pure backtracking algorithms, the classical DPLL procedure suffers
from thrashing, i.e. repeated failure due to the same reason. To overcome this
problem, modern SAT solvers implement a technique called conflict-driven

learning [31], which attempts to derive sufficiently general reasons for con-
flicts being encountered and stores them for future guidance of the search.
The standard scheme traces the reason back to a small (ideally minimal)
number of assignments that triggered the particular conflict, and stores this
reason by adding the negation of that assignment as as clause, termed con-

flict clause, to the clause database. Besides learning, state-of-the-art SAT
solvers, as the one being integrated in HySat, enhance the basic DPLL pro-
cedure by sophisticated heuristics for selecting the assignment performed at
decision steps [22,24], and add various algorithmic refinements, among them
non-chronological backtracking [23,24], random restarts [5] and lazy clause
evaluation [24], to accelerate the proof search.

A pecularity of HySat’s SAT solver is its ability to directly handle linear
zero-one constraint systems, a considerably more concise language than CNF.

4.1.2 Linear programming

Linear programming deals with finding extreme values of a linear function
when the variables are constrained by linear (in)equalities, i.e. with problems
that can be put in the general form

maximize c
T
x

subject to Ax ≤ b

(1)

where x is the vector of variables to be solved for, and A, b and c are given
matrices or vectors of known coefficients. The linear expression c

T
x is called

the objective function, (1) is referred to as a linear program.

10

Fränzle and Herde

HySat uses LP as a black-box method to decide the feasibility of a set
of linear constraints, i.e. to check whether for a given system of inequalities
Ax ≤ b the set of solutions {x ∈ R | Ax ≤ b} is non-empty. Linear
programming is known to be polynomial. Commercial codes like CPLEX
tackle instances with more than 106 variables. In HySat, however, we use
the free LP library glpk 6 by Andrew Makhorin which provides a simplex
solver, an interior point solver, and a solver supporting mixed integer linear
programming (MILP), where some of the variables are required to be integer.

4.1.3 Coupling SAT and LP

The basic idea of the integration is to guard each non-propositional constraint
occuring in the input formula with a new Boolean variable and to pass the
corresponding constraint to the linear programming routine whenever the SAT
solver assigns that variable to true. In turn, constraints are removed from the
LP-solver’s database when their guard variables are unassigned again due to
backtracking.

After each deduction phase in which no Boolean conflict was encountered,
the SAT solver checks if new constraints have been added to the linear pro-
gramm since its last evaluation. If so, the linear programming routine is called
to decide the feasibility of the set of constraints residing in its database. If the
linear program turns out to be inconsistent, a conflict is reported to the SAT
solver. Otherwise the SAT solver can proceed with the next decision step.

In case of a conflict, however, HySat invokes a conflict-analysis routine that
extracts an irreducible infeasible subsystem (IIS) from the linear program 7 ,
i.e. a subset of constraints which itself is infeasible, but becomes feasible if any
one constraint is removed. The IIS, providing a minimal (however in general
not unique) reason for the conflict, is communicated back to the SAT solver,
which uses the guard variables of the linear constraints involved to construct
a conflict clause which prevents that particular combination of constraints to
be investigated again. The resulting interaction between DPLL proof search
and feasibility check via LP is illustrated in Figure 2.

4.2 Optimizations for BMC

Compared to related tools like ICS which aim at being general-purpose de-
cision procedures suitable for arbitrary formulae, HySat’s decision procedure
has been tuned to exploit the unique characteristics of BMC formulae.

As observed by Shtrichman [26], the highly symmetric structure of the k-
fold unrolling as shown in section 3 as well as the incremental nature of BMC
can both be exploited for various optimizations in the underlying decision pro-
cedure. Currently, HySat implements three optimizations which are described

6 http://www.gnu.org/software/glpk/glpk.html
7 See [10] and [11] for surveys of methods for doing so. Our current implementation of
HySat employs the Deletion-Filter method for isolating IISs.

11

http://www.gnu.org/software/glpk/glpk.html

Fränzle and Herde

Linear Programming

y

x

Davis Putnam

Davis Putnam

y

x

Davis Putnam Linear Programming

y

x

Linear Programming

DeduceDeduce from conflict clause
Deduce

Deduce

Davis Putnam

y

x

Linear Programming

D

C

Davis Putnam Linear Programming

y

x

D

C

Davis Putnam Linear Programming

y

x

B
C

A D

Conflict !

Davis Putnam Linear Programming

y

Conflict !

xC

D

Minimal infeasible subsystem is

Solver learns conflict clause

DeduceDeduce

Input formula:

Davis Putnam Linear Programming

y

x

Linear ProgrammingDavis Putnam

y

x

B

A D

C

D

∧
(
f → A ∧ B

)

∧
(
f ∨ g ∨ e

)

∧
(
g ∨ f

)

∧ (e → (C ∨ D) ∧ g)

∧ (A → (4x − 2y ≥ 9))

∧ (B → (2x − 4y ≤ −7))

∧ (C → (x + y ≤ 5))

∧ (D → (x ≤ 7))

2e + C + D ≥ 2

2f + A + B ≥ 2

f + g + e ≥ 1

3e + 2g + C + D ≥ 3

g + f ≥ 1

C + D ≥ 2

2f + A + B ≥ 2

f + g ≥ 1

g + f ≥ 1

2g + C + D ≥ 3

g + f ≥ 1

2f + A + B ≥ 2

CC,D

g, f, A,B

D

A + B ≥ 2

g ≥ 1

g ≥ 1

{A,B,C}

A ∨ B ∨ C

A,Bg, g

Φ = (e → C ∧ D)

ee

2f + A + B ≥ 2

f + g ≥ 1

g + f ≥ 1

f f

Fig. 2. Backtrack-search tree arising in a tight integration of DPLL proof search
with linear programming. x and y are real-valued, while e, f, g and A,B,C,D are
Boolean. A,B,C,D are, furthermore, guard variables for arithmetic facts.

below.

4.3 Isomorphy inference

The learning scheme employed in propositional SAT solvers accounts for a sub-
stantial fraction of the solver’s running time as it entails a non-trivial analysis
of the implications that led to an inconsistent valuation. The creation of a
conflict clause is in general even considerably more expensive in a combined
solver like HySat, as the analysis of a conflict involving non-propositional con-
straints requires the computationally expensive extraction of an IIS.

Isomorphy inference uses the (almost) symmetric structure of a BMC for-
mula in order to add isomorphic copies of a conflict clause to the problem,
thus multiplying the benefit taken from the time-consuming reasoning process

12

Fränzle and Herde

which was required to derive the original conflict clause.

The concept is best illustrated using an example. Suppose that while
solving a BMC instance the solver has encountered a conflict which yields the
conflict clause C0 = (xj1

3 ∨ xj2
4 ∨ xj3

9), relating three variables from cycles j1, j2

and j3. The solver then not only adds C0 to φk, but also all possible clauses
Ci = (xj1±i

3 ∨ xj2±i
4 ∨ xj3±i

9), i = 1, 2, . . ., obtained from C0 simply by index
shifting.

Note, however, that BMC is not fully symmetric because of the initializa-
tion properties of runs (clause (v) of the translation scheme of section 3) and
perhaps the verification goal. This implies that only conflict clauses inferred
from facts which are independent from such asymmetric formula parts may
be soundly replicated. Such dependency can be traced cheaply by marking
initialization/goal predicates and dominantly inheriting such marks upon all
inferences, inhibiting isomorphy inference whenever a mark is encountered.

4.3.1 Constraint sharing

When carrying out BMC incrementally for longer and longer unrollings, the
consecutive formulae passed to the solver share a large number of clauses.
Thus, when moving from the k-instance to the (k+1)-instance, we can simply
conjoin the conflict clauses derived when solving k-instance to the formula for
step k +1. However, this is only allowed for conflict clauses that were inferred
from clauses which are common to both instances. We do currently decide this
based on simple syntactic criteria, namely that the conflict clause was inferred
purely from clauses stemming from the automaton. I.e. the inference may
not involve the verification goal, which tends to become a weaker predicate
on longer instances, as it usually entails reachability or recurrence. More
elaborate schemes have, however, been investigated for propositional BMC in
[21].

4.3.2 Tailored decision strategy

When applying general-purpose decision strategies to BMC formulae one can
observe the phenomenon described in [26] that during the SAT search large
sets of constraints belonging to distant cycles of the transition relation are
being satisfied independently, until they finally turn out to be incompatible,
often entailing the need for backtracking over long distances in the search tree.

In HySat we adopt the solution proposed by Shtrichman [26] to avoid this
problem: The heuristics of the SAT solver selects the decision variables in the
natural order induced by the variable dependency graph of the BMC formula,
i.e. either starting with variables from x

0, then from x
1, etc., or vice versa.

This allows conflicts to be detected and resolved more locally, speeding up the
search.

13

Fränzle and Herde

5 Benchmark results

For a first evaluation of HySat we conducted a series of experiments in which
we compared our tool with the ICS solver [13] on BMC problems for hybrid
automata. The unwindings fed to ICS were obtained through either SRI’s
infinite-state BMC frontend to ICS as distributed in the SAL tool-set, or
through Ábrahám et al.’s corresponding frontend [1], yet the latter without
learning across instances, as it was not available when our experiments were
performed. Our benchmarks are the “leaking gas burner” and “water-level

monitor” included in the SAL distribution, as well as various instances of an
elastic approach to distance control of trains running on the same track, sim-
ilar to the car platooning system used in the PATH project. Here, trains can
accelerate or decelerate freely if they do not violate their mutual safety en-
velopes, yet an automatic speed control takes authority over a train if another
train gets close, thereby controlling acceleration proportional (within physical
limits) to the front and/or back proximity of the neighboring trains.

The results are shown in Figure 3, with each dot representing a single BMC
instance. As expected, isomorphy inference typically provides performance
benefits, with the merits becoming more evident with increasing unrolling
depth, corresponding to computationally costly SAT instances. An exception
is the extremely deterministic gasburner model, where a strict state alternation
is enforced by the discrete part such that learning of infeasible subsystems
provides negligible extra information.

6 Conclusion and further work

Even though development of HySat is still in an early stage, first experiments
indicate a very competitive performance when used for bounded model check-
ing of linear hybrid systems. A substantial part of this performance gain can
be attributed to inheritance of inference results along the temporal axis, called
isomorphy inference. The pure base engine of HySat without BMC-specific
optimizations exhibits a performance comparable to major other engines like
SAL/ICS [13]. The isomorphy inference scheme along the temporal axis was
inspired by a similar scheme developed by Shtrichman for finite-state BMC
[26]; however such inference-inheritance schemes exhibit an even better payoff
on the two-sorted logics used here, as the price for copying inferences increases
only marginally while the computational cost of individual inferences grows
dramatically in the hybrid-state case.

An interesting aspect of isomorphically copying inference results is that
even extremely costly inferences may amortize, provided that their results
can be reused sufficiently often. Our next step will thus be to implement
more advanced —and computationally more costly— techniques for finding
infeasible subsystems of linear constraint systems. In particular, we will try
to extract and learn multiple different irreducible infeasible subsystems from

14

Fränzle and Herde

a)
HySat [s]

ICS [s]

HySat with Isomorphy Inference

HySat without Isomorphy Inference

Ratio < 200

Ratio < 100

Ratio < 50

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 a’)
HySat with Isom. Inf. [s]

HySat without Isomorphy Inference [s]

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1

b)

Ratio < 10

Ratio < 40Ratio < 20

HySat without Isomorphy Inference

HySat with Isomorphy Inference

ICS [s]

HySat [s] 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 b’)
HySat with Isom. Inf. [s]

HySat without Isomorphy Inference [s]

Ratio < 20Ratio < 10

Ratio < 40

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10

c)

Ratio < 4

Ratio < 8

ICS [s]

HySat [s]

HySat with Isomorphy Inference

HySat without Isomorphy Inference

Ratio < 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 c’)

HySat without Isomorphy Inference [s]

Ratio < 2

Ratio < 4

Ratio < 8

HySat with Isom. Inf. [s]
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

d)

HySat without Isomorphy Inference

HySat with Isomorphy Inference

Ratio < 4

Ratio < 8

HySat [s]

ICS [s]

Ratio < 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 d’)

Ratio < 4

Ratio < 8

HySat without Isomorphy Inference [s]

Ratio < 2

HySat with Isom. Inf. [s]
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

e)

Ratio < 4

Ratio < 8

HySat with Isom. Inf. [s]

HySat without Isomorphy Inference [s]

Ratio < 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 f)

Ratio < 4

Ratio < 8

HySat with Isom. Inf. [s]

HySat without Isomorphy Inference [s]

Ratio < 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

Fig. 3. BMC times for a) gasburner model, b) water-level monitor, and c) – f)
different scenarios of the train distance control model, involving 3 (c and d), 4 (e)
and 5 (f) trains with different parameters. The graphics show the performance of
HySat relative to ICS (a, b, c, d) and the impact of isomorphy inference (a’, b’, c’,
d’, e, f). Computation times of 10000 denote timeouts.

15

Fränzle and Herde

a single conflict encountered. While the cost of finding an actually irreducible
subsystem, and even more so of finding multiple such, is by far the most
expensive inference operation in a combined DPLL-plus-LP solver, doing so
can provide very aggressive proof-tree pruning.

Another direction for future development will be to add inheritance of in-
ference results across similar components in a multi-component system. While
this is in principle similar to inheriting inferences along the temporal axis in
k-bounded model checking, the possible forms of symmetry breaks in multi-
component ensembles are more diverse and thus harder to detect, as witnessed
by the extensive research on symmetry reductions.

Besides exploiting similarity within subformulae for accelerating inference,
there obviously also remains ample opportunity for optimizing the underly-
ing decision procedure for HySat’s base logic. To this end, we will attack
the benchmarks performed by de Moura and Rueß in [14] to obtain a more
profound evaluation of the capabilities of HySat’s core decision procedure.

Acknowledgements. The authors are grateful for the tight cooperation
within the project area “Hybrid Systems” of the Transregional Research Ac-
tion “AVACS” funded by the Deutsche Forschungsgemeinschaft. Special thanks
go to Bernd Becker, Erika Ábrahám, and Felix Klaedtke for their kind hospi-
tality and for many fruitful discussions during research visits to Freiburg.

References

[1] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing bounded
model checking for linear hybrid systems. To be submitted to VMCAI ’05.

[2] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ILP versus
specialized 0-1 ILP: An update. In Proc. ACM/IEEE Intl. Conf. Comp.-Aided
Design (ICCAD), pages 450–457, Nov. 2002.

[3] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani. A
SAT-based approach for solving formulas over boolean and linear mathematical
propositions. In A. Voronkov, editor, Proc. of the 18th International Conference
on Automated Deduction, volume 2392 of Lecture Notes in Artificial Intelligence,
pages 193–208. Springer-Verlag, 2002.

[4] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial
hybrid systems with MathSAT. ENTCS, 89(4), 2004.

[5] L. Baptista, I. Lynce, and J. Marques-Silva. Complete search restart strategies
for satisfiability. In Proc. of the IJCAI’01 Workshop on Stochastic Search
Algorithms (IJCAI-SSA), August 2001.

[6] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas
by incremental translation to SAT. In 14th International Conference on
Computer-Aided Verification, 2002.

16

Fränzle and Herde

[7] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-
boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut
für Informatik, Saarbrücken, Germany, 1995.

[8] A. Bemporad and M. Morari. Verification of hybrid systems via mathematical
programming. In F. W. Vaandrager and J. H. van Schuppen, editors, Hybrid
Systems: Computation and Control (HSCC’99), volume 1569 of Lecture Notes
in Computer Science, pages 31–45. Springer-Verlag, 1999.

[9] A. Biere, A. Cimatti, and Y. Zhu. Symbolic model checking without BDDs.
In TACAS’99, volume 1579 of Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[10] J. W. Chinneck. Finding a useful subset of constraints for analysis in an
infeasible linear program. INFORMS Journal on Computing, 9(2):164–174,
1997.

[11] J. W. Chinneck and E. W. Dravnieks. Locating minimal infeasible constraint
sets in linear programs. ORSA Journal on Computing, 3(2):157–168, 1991.

[12] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1962.

[13] L. de Moura, S. Owre, H. Ruess, J. Rushby, and N. Shankar. The ICS decision
procedures for embedded deduction. In 2nd International Joint Conference
on Automated Reasoning (IJCAR), volume 3097 of Lecture Notes in Computer
Science, pages 218–222, Cork, Ireland, July 2004. Springer-Verlag.

[14] L. de Moura and H. Rueß. An experimental evaluation of ground decision
procedures. In Proceedings of CAV’04, Lecture Notes in Computer Science.
Springer-Verlag, July 2004.

[15] L. de Moura, H. Rueß, J. Rushby, and N. Shankar. Embedded deduction with
ICS. In B. Martin, editor, HCSS’03—High Confidence Software and Systems
Conference, Baltimore, MD, 1-3 April 2003.

[16] M. Fränzle and C. Herde. Efficient SAT engines for concise logics: Accelerating
proof search for zero-one linear constraint systems. In M. Vardi and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2003), volume 2850 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, 2003.

[17] J. F. Groote, J. W. C. Koorn, and S. F. M. van Vlijmen. The safety
guaranteeing system at station hoorn-kersenboogerd. In Compass ’95: 10th
Annual Conference on Computer Assurance, pages 57–68, Gaithersburg,
Maryland, 1995. National Institute of Standards and Technology.

[18] E. C. R. Hehner. Predicative programming. Communications of the ACM,
27:134–151, 1984.

[19] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: The next generation. In
16th Annual IEEE Real-time Systems Symposium (RTSS 1995), pages 56–65.
IEEE Computer Society Press, 1995.

17

Fränzle and Herde

[20] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on the Theory of Computing, pages 373–382. ACM, 1995.

[21] H. Jin and F. Somenzi. An incremental algorithm to check satisfiability
for bounded model checking. In A. Biere and O. Strichman, editors,
Preliminary Proceeding of BMC’04. ETH Zürich, 2004. Available from
http://bmc04.inf.ethz.ch/JinSomenzi-BMC04-preliminary.pdf.

[22] J. P. Marques-Silva. The impact of branching heuristics in propositional
satisfiability algorithms. In Proc. of the 9th Portuguese Conference on Artificial
Intelligence (EPIA), Sept. 1999.

[23] J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521,
May 1999.

[24] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proc. of the 38th Design Automation
Conference (DAC’01), June 2001.

[25] A. Nonnengart and C. Weidenbach. Computing small clause normal forms.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning.
Elsevier Science B.V., 1999.

[26] O. Shtrichman. Tuning SAT checkers for bounded model checking. In E. A.
Emerson and A. P. Sistla, editors, Computer Aided Verification (CAV 2000),
volume 1855 of Lecture Notes in Computer Science, pages 480–494. Springer-
Verlag, 2000.

[27] G. Tseitin. On the complexity of derivations in propositional calculus. In
A. Slisenko, editor, Studies in Constructive Mathematics and Mathematical
Logics, 1968.

[28] J. P. Warners. A linear-time transformation of linear inequalities into
conjunctive normal form. Information Processing Letters, 68(2):63–69, 1998.

[29] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental
satisfiability engine. In Proc. of the Design Automation Conference (DAC
2001), pages 542–545, Las Vegas (Nevada, USA), June 2001.

[30] S. A. Wolfman and D. S. Weld. The LPSAT engine & its application to resource
planning. In T. Dean, editor, Proc. 16th International Joint Conference on i
Artificial Intelligence, pages 310–315. Morgan Kaufmann Publishers, 1999.

[31] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in a Boolean satisfiability solver. In Proc. of the International
Conference on Computer-Aided Design (ICCAD01), pages 279–285, Nov. 2001.

18

http://bmc04.inf.ethz.ch/JinSomenzi-BMC04-preliminary.pdf

	Introduction
	The logics
	Zero-one linear constraints
	Guarded linear constraints
	Satisfaction of formulae

	Predicative encoding of linear hybrid automata
	Ingredients of HySat
	Integration of DPLL-SAT and Linear Programming
	Optimizations for BMC
	Isomorphy inference

	Benchmark results
	Conclusion and further work
	References

