CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Combining Theories and Their Solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

$$
a=b+2 \wedge A \doteq \operatorname{write}(B, a, 4) \wedge(\operatorname{read}(A, b+3) \doteq b-2 \vee f(a-b) \neq f(b+1))
$$

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like

$$
a=b+2 \wedge A \doteq \operatorname{write}(B, a, 4) \wedge(\operatorname{read}(A, b+3) \doteq b-2 \vee f(a-b) \neq f(b+1))
$$

Solving that formula requires reasoning over

- the theory of integer arithmetic ($\mathcal{T}_{\text {LIA }}$)
- the theory of arrays $\left(\mathcal{T}_{\mathrm{A}}\right)$
- the theory of uninterpreted functions ($\mathcal{T}_{\text {EUF }}$)

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like
$a=b+2 \wedge A \doteq \operatorname{write}(B, a, 4) \wedge(\operatorname{read}(A, b+3) \doteq b-2 \vee f(a-b) \neq f(b+1))$

Solving that formula requires reasoning over

- the theory of integer arithmetic ($\mathcal{T}_{\text {LIA }}$)
- the theory of arrays $\left(\mathcal{T}_{\mathrm{A}}\right)$
- the theory of uninterpreted functions (TEUF)

Given solvers for each theory, can we combine them modularly into one for a theory that combines $\mathcal{T}_{\text {LIA }}, \mathcal{T}_{\mathrm{A}}$ and $\mathcal{T}_{\text {EUF }}$?

Need for Combining Theories and Solvers

Recall: Many applications give rise to formulas like
$a=b+2 \wedge A \doteq \operatorname{write}(B, a, 4) \wedge(\operatorname{read}(A, b+3) \doteq b-2 \vee f(a-b) \neq f(b+1))$

Solving that formula requires reasoning over

- the theory of integer arithmetic ($\mathcal{T}_{\text {LIA }}$)
- the theory of arrays $\left(\mathcal{T}_{\mathrm{A}}\right)$
- the theory of uninterpreted functions (ȚTEF

Given solvers for each theory, can we combine them modularly into one for a theory that combines $\mathcal{T}_{\text {LIA }}, \mathcal{T}_{\mathrm{A}}$ and $\mathcal{T}_{\text {EUF }}$?

The answer is yes, under certain conditions

First-order theories and their combination

Recall: A theory \mathcal{T} is a pair (Σ, S), where:

- Σ is a signature, consisting of a set Σ^{S} of sort symbols and a set Σ^{F} of function symbols
- S is a class of \sum-interpretations closed under variable re-assignment

We limit interpretations of Σ-formulas to those in S

First-order theories and their combination

Recall: A theory \mathcal{T} is a pair (Σ, S), where:

- Σ is a signature, consisting of a set Σ^{S} of sort symbols and a set Σ^{F} of function symbols
- S is a class of \sum-interpretations closed under variable re-assignment

Two signatures Σ_{1} and Σ_{2} are compatible if each of their shared function symbols, those in $\Sigma_{1}^{F} \cap \Sigma_{2}^{F}$, has the same rank in both Σ_{1} and Σ_{2}

First-order theories and their combination

Recall: A theory \mathcal{T} is a pair (Σ, S), where:

- Σ is a signature, consisting of a set Σ^{S} of sort symbols and a set Σ^{F} of function symbols
- S is a class of \sum-interpretations closed under variable re-assignment

Two signatures Σ_{1} and Σ_{2} are compatible if each of their shared function symbols, those in $\Sigma_{1}^{F} \cap \Sigma_{2}^{F}$, has the same rank in both Σ_{1} and Σ_{2}

The combination of two compatible signatures Σ_{1} and Σ_{2}, is the signature

$$
\Sigma_{1} \oplus \Sigma_{2}=\left(\Sigma_{1}^{S} \cup \Sigma_{2}^{S}, \Sigma_{1}^{F} \cup \Sigma_{2}^{F}\right)
$$

First-order theories and their combination

Recall: A theory \mathcal{T} is a pair (Σ, S), where:

- Σ is a signature, consisting of a set Σ^{S} of sort symbols and a set Σ^{F} of function symbols
- S is a class of \sum-interpretations closed under variable re-assignment

Two signatures Σ_{1} and Σ_{2} are compatible if each of their shared function symbols, those in $\Sigma_{1}^{F} \cap \Sigma_{2}^{F}$, has the same rank in both Σ_{1} and Σ_{2}

The combination of two compatible signatures Σ_{1} and Σ_{2}, is the signature

$$
\Sigma_{1} \oplus \Sigma_{2}=\left(\Sigma_{1}^{S} \cup \Sigma_{2}^{S}, \Sigma_{1}^{F} \cup \Sigma_{2}^{F}\right)
$$

Note: Signatures with no shared function symbols are trivially compatible

First-order theories and their combination

Recall: A theory \mathcal{T} is a pair (Σ, S), where:

- Σ is a signature, consisting of a set Σ^{S} of sort symbols and a set Σ^{F} of function symbols
- S is a class of Σ-interpretations closed under variable re-assignment

Let $\mathcal{T}_{1}=\left(\Sigma_{1}, S_{1}\right)$ and $\mathcal{T}_{2}=\left(\Sigma_{2}, S_{2}\right)$ be two theories with compatible signatures

First-order theories and their combination

Recall: A theory \mathcal{T} is a pair (Σ, S), where:

- Σ is a signature, consisting of a set Σ^{S} of sort symbols and a set Σ^{F} of function symbols
- S is a class of Σ-interpretations closed under variable re-assignment

Let $\mathcal{T}_{1}=\left(\Sigma_{1}, S_{1}\right)$ and $\mathcal{T}_{2}=\left(\Sigma_{2}, S_{2}\right)$ be two theories with compatible signatures
The combination of \mathcal{T}_{1} and \mathcal{T}_{2} is the theory

$$
\mathcal{T}_{1} \oplus \mathcal{T}_{2}=(\Sigma, S)
$$

where $\Sigma=\Sigma_{1} \oplus \Sigma_{2}$ and $S=\left\{I \mid I^{\Sigma_{1}} \in S_{1}\right.$ and $\left.I^{\Sigma_{2}} \in S_{2}\right\}$

First-order theories and their combination

Recall: A theory \mathcal{T} is a pair (Σ, S), where:

- Σ is a signature, consisting of a set Σ^{S} of sort symbols and a set Σ^{F} of function symbols
- S is a class of Σ-interpretations closed under variable re-assignment

Let $\mathcal{T}_{1}=\left(\Sigma_{1}, S_{1}\right)$ and $\mathcal{T}_{2}=\left(\Sigma_{2}, S_{2}\right)$ be two theories with compatible signatures
The combination of \mathcal{T}_{1} and \mathcal{T}_{2} is the theory

$$
\mathcal{T}_{1} \oplus \mathcal{T}_{2}=(\Sigma, S)
$$

where $\Sigma=\Sigma_{1} \oplus \Sigma_{2}$ and $S=\left\{I \mid I^{\Sigma_{1}} \in S_{1}\right.$ and $\left.I^{\Sigma_{2}} \in S_{2}\right\}$
Recall: the reduct I^{Ω} of a Σ-interpretation \mathcal{I} to a subsignature Ω of Σ is an Ω-interpretation defined exactly as I over the symbols in Ω

Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers for the individual theories

Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers for the individual theories

This is easier to do when individual theories are convex

Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers for the individual theories

This is easier to do when individual theories are convex

A \mathcal{T}-theory \mathcal{T} is convex if for all sets \lceil of \mathcal{T}-literals over the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ with $n>0$

$$
\left\ulcorner\models _ { \mathcal { T } } x _ { 1 } \doteq y _ { 1 } \vee \cdots \vee x _ { n } \doteq y _ { n } \quad \text { iff } \quad \left\ulcorner\models_{\mathcal{T}} x_{k} \doteq y_{k} \quad \text { for some } k \in 1, \ldots, n\right.\right.
$$

Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Convex Theories: Examples

Linear real arithmetic is convex
This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance
$x \doteq 1, y \doteq 2,1 \leq z, z \leq 2 \models$ LIA $z \doteq x \vee z \doteq y$ holds, while neither
$x=1, y=2,1 \leq z, z \leq 2 \models_{\text {LIA }} z=x$ nor
$x=1, y=2,1 \leq z, z \leq 2 \models_{\text {LIA }} z=y$ holds

Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance
$x \doteq 1, y \doteq 2,1 \leq z, z \leq 2 \quad=$ LIA $z \doteq x \vee z \doteq y$ holds, while neither
$x=1, y=2,1 \leq z, z \leq 2$ FLIA $z=x$ nor
$x=1, y=2,1 \leq z, z \leq 2=_{\text {LIA }} z=y$ holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with other theories, as we will see

Combining Theory Solvers

Let S_{1} and S_{2} be two theory solvers deciding the satisfiability of sets of literals in theories \mathcal{T}_{1} and \mathcal{T}_{2}, respectively

Combining Theory Solvers

Let S_{1} and S_{2} be two theory solvers deciding the satisfiability of sets of literals in theories \mathcal{T}_{1} and \mathcal{T}_{2}, respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $\mathcal{T}_{1} \oplus \mathcal{T}_{2}$ by modularly combining S_{1} and S_{2}

Combining Theory Solvers

Let S_{1} and S_{2} be two theory solvers deciding the satisfiability of sets of literals in theories \mathcal{T}_{1} and \mathcal{T}_{2}, respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $\mathcal{T}_{1} \oplus \mathcal{T}_{2}$ by modularly combining S_{1} and S_{2}

A popular procedure that achieves this combination consists of four main steps:

1. Purification. Purify L into a set L_{1} of Σ_{1}-literals and a set L_{2} of Σ_{2}-literals
2. Propagation. Exchange entailed equalities between variables shared by L_{1} and L_{2}
3. Decision. If either \mathcal{T}_{1} or \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables. Go to 2
4. Check. Check the satisfiability of L_{i} locally in \mathcal{T}_{i} for $i=1,2$

Combining Theory Solvers: Step 1 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

1. Purify and partition input set

Combining Theory Solvers: Step 1 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

1. Purify and partition input set
$L=\left\{\begin{array}{l}f(f(x)-f(y)) \doteq a \\ f(0)>a+2 \\ x \doteq y\end{array} \longrightarrow\left\{\begin{array}{l}f\left(v_{1}-v_{2}\right) \doteq a, v_{1} \doteq f(x), v_{2} \doteq f(y) \\ f\left(v_{3}\right)>a+2, v_{3} \doteq 0 \\ x \doteq y\end{array}\right.\right.$

Combining Theory Solvers: Step 1 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

1. Purify and partition input set
$L=\left\{\begin{array}{l}f(f(x)-f(y)) \doteq a \\ f(0)>a+2 \\ x \doteq y\end{array} \longrightarrow\left\{\begin{array}{l}f\left(v_{1}-v_{2}\right) \doteq a, v_{1} \doteq f(x), v_{2} \doteq f(y) \\ f\left(v_{3}\right)>a+2, v_{3} \doteq 0 \\ x \doteq y\end{array}\right.\right.$
$\longrightarrow\left\{\begin{array}{l}f\left(v_{4}\right) \doteq a, v_{4} \doteq v_{1}-v_{2}, v_{1} \doteq f(x), v_{2} \doteq f(y) \\ v_{5}>a+2, v_{5} \doteq f\left(v_{3}\right), v_{3} \doteq 0 \\ x \doteq y\end{array}\right.$

Combining Theory Solvers: Step 1 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

1. Purify and partition input set
$L=\left\{\begin{array}{l}f(f(x)-f(y)) \doteq a \\ f(0)>a+2 \\ x \doteq y\end{array} \longrightarrow\left\{\begin{array}{l}f\left(v_{1}-v_{2}\right) \doteq a, v_{1} \doteq f(x), v_{2} \doteq f(y) \\ f\left(v_{3}\right)>a+2, v_{3} \doteq 0 \\ x \doteq y\end{array}\right.\right.$
$\longrightarrow\left\{\begin{array}{l}f\left(v_{4}\right) \doteq a, v_{4} \doteq v_{1}-v_{2}, v_{1} \doteq f(x), v_{2} \doteq f(y) \\ v_{5}>a+2, v_{5} \doteq f\left(v_{3}\right), v_{3} \doteq 0 \\ x \doteq y\end{array}\right.$
$L_{1}=\left\{f\left(v_{4}\right) \doteq a, v_{1} \doteq f(x), v_{2} \doteq f(y), v_{5} \doteq f\left(v_{3}\right), x \doteq y\right\}$
$L_{2}=\left\{v_{4} \doteq v_{1}-v_{2}, v_{5}>a+2, v_{3} \doteq 0\right\}$

Combining Theory Solvers: Step 1

An i-term is a non-variable term of signature \sum_{i} for $i=1$ or $i=2$

Purification: Given a set L of $\Sigma_{1} \oplus \Sigma_{2}$-literals:

1. Find an i-term t that is a subterm of a non- Σ_{i}-literal $l \in L$
2. Replace t in / with a fresh variable v, and add $v \doteq t$ to L
3. Repeat Steps 1 and 2 until every literal is pure (i.e, is either a Σ_{1} - or a Σ_{2}-literal)
4. Partition L into a set L_{1} of Σ_{1}-literals and a set L_{2} of Σ_{2}-literals

Combining Theory Solvers: Step 1

An i-term is a non-variable term of signature \sum_{i} for $i=1$ or $i=2$

Purification: Given a set L of $\Sigma_{1} \oplus \Sigma_{2}$-literals:

1. Find an i-term t that is a subterm of a non- Σ_{i}-literal $l \in L$
2. Replace t in / with a fresh variable v, and add $v \doteq t$ to L
3. Repeat Steps 1 and 2 until every literal is pure (i.e, is either a Σ_{1} - or a Σ_{2}-literal)
4. Partition L into a set L_{1} of Σ_{1}-literals and a set L_{2} of Σ_{2}-literals

Note: L is equisatisfiable with $L_{1} \cup L_{2}$ in $\mathcal{T}_{1} \oplus \mathcal{T}_{2}$

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

\[

\]

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

\[

\]

$$
L_{1} \models E \text { EUF } v_{1} \doteq v_{2}
$$

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

\[

\]

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

\[

\]

$$
L_{2} \models \mathrm{LRA} \quad V_{3}=V_{4}
$$

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

\[

\]

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

\[

\]

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

\[

\]

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

L_{1}	L_{2}	
$f\left(v_{4}\right) \doteq a$	$v_{4} \doteq v_{1}-v_{2}$	
$v_{1} \doteq f(x)$	$v_{5}>a+2$	
$v_{2} \doteq f(y)$	$v_{3} \doteq 0$	
$v_{5} \doteq f\left(v_{3}\right)$	$v_{1} \doteq v_{2}$	
$x \doteq y$		$a \doteq v_{5}$
$v_{3} \doteq v_{4}$		

3. If either \mathcal{T}_{1} or \mathcal{T}_{2} is non-convex, ...

No action because both theories are convex

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

L_{1}	L_{2}	
$f\left(v_{4}\right) \doteq a$	$v_{4} \doteq v_{1}-v_{2}$	
$v_{1} \doteq f(x)$	$v_{5}>a+2$	
$v_{2} \doteq f(y)$	$v_{3} \doteq 0$	
$v_{5} \doteq f\left(v_{3}\right)$	$v_{1} \doteq v_{2}$	
$x \doteq y$		$a \doteq v_{5}$
$v_{3} \doteq v_{4}$		

4. Check for satisfiability of L_{1} and of L_{2} locally $L_{1} \not \vDash_{\text {EUF }} \perp \quad$ and $\quad L_{2} \models_{\text {LRA }} \perp$

Combining Theory Solvers: Step 2-4 Example

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LRA }}
$$

2. Propagate entailed equalities between the shared variables $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, a$

L_{1}	L_{2}
$f\left(v_{4}\right) \doteq a$	$v_{4} \doteq v_{1}-v_{2}$
$v_{1} \doteq f(x)$	$v_{5}>a+2$
$v_{2} \doteq f(y)$	$v_{3} \doteq 0$
$v_{5} \doteq f\left(v_{3}\right)$	$v_{1} \doteq v_{2}$
$x \doteq y$	
$v_{3} \doteq v_{4}$	

4. Check for satisfiability of L_{1} and of L_{2} locally $L_{1} \not \forall_{\text {EUF }} \perp \quad$ and $\quad L_{2} \models_{\text {LRA }} \perp \quad$ Report UNSAT

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

\[

\]

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

\[

\]

Note: No entailed equalities, but $L_{2} \models{ }_{\mathrm{LIA}} x \doteq v_{1} \vee x \doteq v_{2}$

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

\[

\]

Consider each case of $x \doteq v_{1} \vee x \doteq v_{2}$ separately

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

\[

\]

Case 1) $x \doteq v_{1}$

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

\[

\]

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

$$
\begin{aligned}
& \begin{array}{rr}
L_{1} & L_{2} \\
f\left(v_{1}\right) \doteq a & 1 \leq x
\end{array} \\
& f(x) \doteq b \quad x \leq 2 \\
& f\left(v_{2}\right) \doteq v_{3} \quad v_{1} \doteq 1 \\
& f\left(v_{1}\right) \doteq v_{4} \quad a \doteq b+2 \\
& x \doteq v_{1} \quad v_{2} \doteq 2 \\
& v_{3} \doteq v_{4}+3 \\
& a \doteq v_{4} \\
& x \doteq v_{1}
\end{aligned}
$$

$L_{1} \models_{\text {EUF }} a \doteq b$ but $L_{2}, a \doteq b \models_{\text {LIA }} \perp$

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

\[

\]

Case 2) $x=v_{2}$

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

$$
\begin{aligned}
& \begin{array}{rr}
L_{1} & L_{2} \\
f\left(v_{1}\right) \doteq a & 1 \leq x
\end{array} \\
& f(x) \doteq b \quad x \leq 2 \\
& f\left(v_{2}\right) \doteq v_{3} \quad v_{1} \doteq 1 \\
& f\left(v_{1}\right) \doteq v_{4} \quad a \doteq b+2 \\
& x \doteq v_{2} \quad v_{2} \doteq 2 \\
& v_{3} \doteq v_{4}+3 \\
& a \doteq v_{4} \\
& x \doteq v_{2}
\end{aligned}
$$

Combining Theory Solvers: Step 3 Example (non-convex case)

$$
\text { Let } \mathcal{T}_{1}=\mathcal{T}_{\text {EUF }} \text { and } \mathcal{T}_{2}=\mathcal{T}_{\text {LIA }}
$$

3. Since \mathcal{T}_{2} is non-convex, guess non-entailed equalities and disequalities between the shared variables

\[

\]

The Combination Method

Bare-bones, non-deterministic, non-incremental version:

The Combination Method

Bare-bones, non-deterministic, non-incremental version:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of \mathcal{T}_{i}-literals
Output: SAT or UNSAT

The Combination Method

Bare-bones, non-deterministic, non-incremental version:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of \mathcal{T}_{i}-literals
Output: SAT or UNSAT

1. Guess an arrangement A, i.e., a set of equalities and disequalities over the variables V shared by L_{1} and L_{2} such that

$$
u \doteq v \in A \text { or } u \neq v \in A \text { for all } u, v \in V
$$

The Combination Method

Bare-bones, non-deterministic, non-incremental version:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of \mathcal{T}_{i}-literals
Output: SAT or UNSAT

1. Guess an arrangement A, i.e., a set of equalities and disequalities over the variables V shared by L_{1} and L_{2} such that

$$
u \doteq v \in A \text { or } u \neq v \in A \text { for all } u, v \in V
$$

2. If $L_{i} \cup A$ is unsatisfiable in \mathcal{T}_{i} for $i=1$ or $i=2$, return UNSAT

The Combination Method

Bare-bones, non-deterministic, non-incremental version:

Input: $\quad L_{1} \cup L_{2}$ with L_{i} finite set of \mathcal{T}_{i}-literals
Output: SAT or UNSAT

1. Guess an arrangement A, i.e., a set of equalities and disequalities over the variables V shared by L_{1} and L_{2} such that

$$
u \doteq v \in A \text { or } u \neq v \in A \text { for all } u, v \in V
$$

2. If $L_{i} \cup A$ is unsatisfiable in \mathcal{T}_{i} for $i=1$ or $i=2$, return UNSAT
3. Otherwise, return SAT

Correctness of the Combination Method

```
Theorem 1 (Refutation Soundness)
If the method returns UNSAT for every arrangement, the input is unsatisfiable in
T
```

Proof.
Because unsatisfiability in $T_{1} \oplus T_{2}$ is preserved.

Correctness of the Combination Method

```
Theorem 1 (Refutation Soundness)
If the method returns UNSAT for every arrangement, the input is unsatisfiable in
T
```


Proof.

Because unsatisfiability in $T_{1} \oplus T_{2}$ is preserved.

```
Theorem 2 (Solution Soundness)
If \mp@subsup{\Sigma}{1}{F}\cap\mp@subsup{\Sigma}{2}{F}=\emptyset\mathrm{ and }\mp@subsup{T}{1}{}\mathrm{ and }\mp@subsup{T}{2}{}\mathrm{ are stably infinite over }\mp@subsup{\Sigma}{1}{S}\cap\mp@subsup{\Sigma}{2}{S}\mathrm{ , when the method}
returns SAT for some arrangement, the input is satisfiable in T}\mp@subsup{T}{1}{}\oplus\mp@subsup{T}{2}{}\mathrm{ .
```

Proof.
Because satisfiability in $T_{1} \oplus T_{2}$ is preserved for stably infinite theories.

Correctness of the Combination Method

Theorem 3 (Termination)

The method is terminating.
Proof.
Because there is only a finite number of arrangements to guess.

Correctness of the Combination Method

Theorem 3 (Termination)

The method is terminating.

Proof.

Because there is only a finite number of arrangements to guess.

Theorem 4 (Decidability)
If $\Sigma_{1}^{F} \cap \Sigma_{2}^{F}=\emptyset, T_{1}$ and T_{2} are stably infinite over $\Sigma_{1}^{S} \cap \Sigma_{2}^{S}$, and the satisfiability of quantifier-free formulas in \mathcal{T}_{i} is decidable for $i=1,2$, then the satisfiability of quantifier-free formulas in $\mathcal{T}_{1} \oplus \mathcal{T}_{2}$ is decidable.

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Many interesting theories are stably infinite:

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Many interesting theories are stably infinite:

- Theories of an infinite structure (e.g., integer/real arithmetic)

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Many interesting theories are stably infinite:

- Theories of an infinite structure (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Many interesting theories are stably infinite:

- Theories of an infinite structure (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)

Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Other interesting theories are not stably infinite:

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

Stably Infinite Theories

Let \mathcal{T} be a theory or signature Σ, let $S \subset \Sigma^{S}$
\mathcal{T} is stably-infinite with respect to S if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T}-interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on S.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

The combination method has been extended to over the years to various classes of non-stably infinite theories

Why the combination method needs stably infiniteness

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this theory cannot be stably-infinite.

Example: Consider $T_{\text {array }}$ where both indices and elements are of the same sort bv, so that the sorts of $T_{\text {array }}$ are \{array, bv\}, and a theory $T_{b v}$ that requires the sort bv to be interpreted as bit-vectors of size 1.

- Both theories are decidable and we would like to decide the combination theory in a Nelson-Oppen-like framework.
- Let a_{1}, \ldots, a_{5} be array variables and consider the following constraints: $a_{i} \neq a_{j}$, for $1 \leq i<j \leq 5$.
- These constraints are entirely within $T_{\text {array }}$. Array theory solver is given all constraints and the bit-vector theory solver is given none.
- Problem: Array solver tells us these constraints are SAT, but there are only four possible different arrays with elements and indices over bit-vectors of size 1.

SMT Solving with Multiple Theories

Let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be theories with respective solvers S_{1}, \ldots, S_{n}

How can we integrate all of them cooperatively into a single SMT solver for $\mathcal{T}=\mathcal{T}_{1} \oplus \cdots \oplus \mathcal{T}_{n}$?

SMT Solving with Multiple Theories

Let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be theories with respective solvers S_{1}, \ldots, S_{n}

How can we integrate all of them cooperatively into a single SMT solver for $\mathcal{T}=\mathcal{T}_{1} \oplus \cdots \oplus \mathcal{T}_{n}$?

Quick Solution:

1. Combine S_{1}, \ldots, S_{n} into a theory solver for \mathcal{T}
2. Build a $\operatorname{CDCL}(\mathcal{T})$ solver as usual

SMT Solving with Multiple Theories

Let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ be theories with respective solvers S_{1}, \ldots, S_{n}

How can we integrate all of them cooperatively into a single SMT solver for $\mathcal{T}=\mathcal{T}_{1} \oplus \cdots \oplus \mathcal{T}_{n}$?

Better Solution:

1. Extend $\operatorname{CDCL}(\mathcal{T})$ to $\operatorname{CDCL}\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}\right)$
2. Lift combination method to the $\operatorname{CDCL}\left(X_{1}, \ldots, X_{n}\right)$ level
3. Build a $\operatorname{CDCL}\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}\right)$ solver

Modeling $\operatorname{CDCL}\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}\right)$ Abstractly

- Let $n=2$, for simplicity
- Let \mathcal{T}_{i} be of signature Σ_{i} for $i=1,2$, with $\Sigma_{1} \cap \Sigma_{2}=\emptyset$
- Let C be a set of fresh constants
- Assume wlog that each input literal has signature $\left(\mathcal{T}_{1} \cup C\right)$ or $\left(\mathcal{T}_{2} \cup C\right)$ (no mixed literals)
- Let $\left.\mathrm{M}\right|_{i} \stackrel{\text { def }}{=}\left\{\Sigma_{i \cup c}\right.$-literals of M and their complement $\}$
- Let $\mathrm{I}(\mathrm{M}) \stackrel{\text { def }}{=}\left\{c=d \mid c, d\right.$ occur in $C,\left.M\right|_{1}$ and $\left.\left.M\right|_{2}\right\} \cup$ $\left\{c \neq d \mid c, d\right.$ occur in $C,\left.M\right|_{1}$ and $\left.\left.\mathrm{M}\right|_{2}\right\}$
(interface literals)

Abstract CDCL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Abstract CDCL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)

Decide $\frac{l \in \operatorname{Lits}(F) \cup \mathrm{I}(\mathrm{M}) \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} \bullet l}$
Only change: decide on interface equalities as well

Abstract CDCL Modulo Multiple Theories

Propagate, Conflict, Explain, Backjump, Fail (unchanged)
$\operatorname{Decide} \frac{l \in \operatorname{Lits}(F) \cup \mathrm{I}(\mathrm{M}) \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} \bullet l}$
Only change: decide on interface equalities as well
\mathcal{T}-Propagate $\begin{aligned} & l \in \operatorname{Lits}(\mathrm{~F}) \cup \mathrm{I}(\mathrm{M}) \quad i \in\{1,2\} \quad \mathrm{M} \vDash \models_{\mathcal{T}_{i}} l \quad l, \bar{l} \notin \mathrm{M} \\ & \mathrm{M}:=\mathrm{M} l\end{aligned}$
Only change: propagate interface equalities as well, but reason locally in each \mathcal{T}_{i}

Abstract CDCL Modulo Multiple Theories

T-Conflict

$$
\frac{C=n o \quad l_{1}, \ldots, l_{n} \in \mathrm{M} \quad l_{1}, \ldots, l_{n} \models_{\mathcal{T}_{i}} \perp \quad i \in\{1,2\}}{C:=\bar{I}_{1} \vee \cdots \vee \bar{I}_{n}}
$$

τ-Explain

$$
\frac{C=I \vee D \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \not \models_{\tau_{i}} \bar{l} \quad i \in\{1,2\} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \prec_{M} \bar{l}}{C:=l_{1} \vee \cdots \vee I_{n} \vee D}
$$

Only change: reason locally in each \mathcal{T}_{i}

Abstract CDCL Modulo Multiple Theories

T-Conflict

$$
\mathrm{C}=\mathrm{no} \quad l_{1}, \ldots, l_{n} \in \mathrm{M} \quad l_{1}, \ldots, l_{n} \not \models_{-} \perp \quad i \in\{1,2\}
$$

\mathcal{T}-Explain

$$
\frac{C=I \vee D \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \models \mathcal{T}_{i} \bar{l} \quad i \in\{1,2\} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \prec_{\mathrm{M}} \bar{l}}{C:=l_{1} \vee \cdots \vee I_{n} \vee D}
$$

Only change: reason locally in each \mathcal{T}_{i}
I-LEARN
$\frac{\models_{\mathcal{T}_{i}} l_{1} \vee \cdots \vee I_{n} \quad l_{1}, \ldots,\left.I_{n} \in \mathrm{M}\right|_{i} \cup \mathrm{I}(\mathrm{M}) \quad i \in\{1,2\}}{\mathrm{F}:=\mathrm{F} \cup\left\{I_{1} \vee \cdots \vee I_{n}\right\}}$
New rule: for entailed disjunctions of interface literals

Example - Convex Theories

$$
\begin{gathered}
\Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{x=y}_{4} \wedge \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{2}=v_{3}}_{6} \underbrace{v_{5}=v_{4}}_{8} a \underbrace{a=v_{5}}_{9}
\end{gathered}
$$

Example - Convex Theories

$$
\begin{aligned}
& \Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{x=y}_{4} \wedge \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{5}>a+2}_{7} \\
& \underbrace{v_{2}=v_{3}}_{8} \underbrace{v_{1}=v_{4}}_{9} \underbrace{a=v_{5}}_{10} \\
& \begin{array}{llll}
\text { M } & \Delta & \text { C } & \text { rule } \\
& \Delta_{0} & \text { no } &
\end{array}
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& \Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{x=y}_{4} \wedge \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{5}>a+2}_{7} \\
& \underbrace{v_{2}=v_{3}}_{8} \underbrace{v_{1}=v_{4}}_{9} \underbrace{a=v_{5}}_{10} \\
& \begin{array}{llll}
\mathrm{M} & \Delta & \text { C } & \text { rule } \\
& \Delta_{0} & \text { no } &
\end{array} \\
& 01234567 \Delta_{0} \text { no by Propagate }{ }^{+}
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& \Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{x=y}_{4} \wedge \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{5}>a+2}_{7} \\
& \underbrace{v_{2}=v_{3}}_{8} \underbrace{v_{1}=v_{4}}_{9} \underbrace{a=v_{5}}_{10} \\
& \text { M } \Delta \quad \text { C rule } \\
& 01234567 \Delta_{0} \text { no by PROPAGATE }{ }^{+} \\
& 012345678 \Delta_{0} \quad \text { no } \quad \text { by } \mathcal{T} \text {-Propagate }\left(1,2,4 \models_{\text {euf }} 8\right)
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& \Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{v_{2}=v_{3}}_{4} \underbrace{v_{1}=y}_{8} \wedge \underbrace{v_{1}=v_{4}}_{9} \underbrace{a=v_{5}}_{10}
\end{aligned} \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{5}>a+2}_{7}
$$

Example - Convex Theories

$$
\begin{aligned}
& \Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{x=y}_{4} \wedge \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{5}>a+2}_{7} \\
& \underbrace{v_{2}=v_{3}}_{8} \underbrace{v_{1}=v_{4}}_{9} \underbrace{a=v_{5}}_{10} \\
& \text { M } \Delta \quad \text { C rule } \\
& 01234567 \Delta_{0} \text { no by PROPAGATE }{ }^{+} \\
& 012345678 \quad \Delta_{0} \quad \text { no } \quad \text { by } \mathcal{T} \text {-Propagate }\left(1,2,4 \models_{\text {euf }} 8\right) \\
& 0123456789 \quad \Delta_{0} \quad \text { no } \quad \text { by } \mathcal{T} \text {-Propagate }(5,6,8 \neq \text { LRA } 9) \\
& 012345678910 \Delta_{0} \text { no by } \mathcal{T} \text {-Propagate }\left(0,3,9 \models_{\text {euf }} 10\right)
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& \Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{x=y}_{4} \wedge \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{5}>a+2}_{7} \\
& \underbrace{v_{2}=v_{3}}_{8} \underbrace{v_{1}=v_{4}}_{9} \underbrace{a=v_{5}}_{10} \\
& \text { M } \Delta \quad \text { C rule } \\
& 01234567 \Delta_{0} \text { no by PROPAGATE }{ }^{+} \\
& 012345678 \quad \Delta_{0} \quad \text { no } \quad \text { by } \mathcal{T} \text {-Propagate }\left(1,2,4 \models_{\text {euf }} 8\right) \\
& 0123456789 \Delta_{0} \quad \text { no } \quad \text { by } \mathcal{T} \text {-Propagate }(5,6,8 \neq \operatorname{lRA} 9) \\
& 012345678910 \Delta_{0} \text { no by } \mathcal{T} \text {-Propagate }\left(0,3,9 \models_{\text {euf }} 10\right) \\
& 012345678910 \quad \Delta_{0} \quad \overline{7} \vee \overline{10} \quad \text { by } \mathcal{T} \text {-Conflict }\left(7,10=_{\text {LRA }} \perp\right)
\end{aligned}
$$

Example - Convex Theories

$$
\begin{aligned}
& \Delta:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=v_{2}}_{1} \wedge \underbrace{f(y)=v_{3}}_{2} \wedge \underbrace{f\left(v_{4}\right)=v_{5}}_{3} \wedge \underbrace{x=y}_{4} \wedge \underbrace{v_{2}-v_{3}=v_{1}}_{5} \wedge \underbrace{v_{4}=0}_{6} \wedge \underbrace{v_{5}>a+2}_{7} \\
& \underbrace{v_{2}=v_{3}}_{8} \underbrace{v_{1}=v_{4}}_{9} \underbrace{a=v_{5}}_{10} \\
& \text { M } \Delta \quad \text { C rule } \\
& 01234567 \Delta_{0} \text { no by PROPAGATE }{ }^{+} \\
& 012345678 \quad \Delta_{0} \quad \text { no } \quad \text { by } \mathcal{T} \text {-Propagate }\left(1,2,4 \models_{\text {euf }} 8\right) \\
& 0123456789 \Delta_{0} \quad \text { no } \quad \text { by } \mathcal{T} \text {-Propagate }(5,6,8 \neq \operatorname{lRA} 9) \\
& 012345678910 \Delta_{0} \text { no by } \mathcal{T} \text {-Propagate }\left(0,3,9 \models_{\text {eUf }} 10\right) \\
& 012345678910 \Delta_{0} \overline{7} \vee \overline{10} \text { by } \mathcal{T} \text {-Conflict }\left(7,\left.10\right|_{\text {LRA }} \perp\right) \\
& \text { UNSAT by FAIL }
\end{aligned}
$$

Example - Non-convex Theories

$$
\begin{aligned}
& \Delta_{0}:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=b}_{1} \wedge \underbrace{f\left(v_{2}\right)=v_{3}}_{2} \wedge \underbrace{f\left(v_{1}\right)=v_{4}}_{3} \wedge \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{v_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{v_{2}=2}_{8} \wedge \underbrace{v_{3}=v_{4}+3}_{9} \\
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

Example - Non-convex Theories

$$
\begin{gathered}
\Delta_{0}:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=b}_{1} \wedge \underbrace{f\left(v_{2}\right)=v_{3}}_{2} \wedge \underbrace{f\left(v_{1}\right)=v_{4}}_{3} \wedge \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{v_{1}=1}_{6} \wedge \underbrace{a=b+2}_{1} \wedge \underbrace{v_{1}}_{7} \wedge=2=\underbrace{v_{2}}_{8} \wedge \underbrace{v_{3}=v_{4}+3}_{10} \\
\underbrace{a=\underbrace{x=v_{1}}_{11}}_{1=v_{4}} \begin{array}{l}
x=v_{2} \\
a=b
\end{array}
\end{gathered}
$$

M	Δ	C rule
	Δ_{0}	no

Example - Non-convex Theories

$$
\begin{aligned}
& \Delta_{0}:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=b}_{1} \wedge \underbrace{f\left(v_{2}\right)=v_{3}}_{2} \wedge \underbrace{f\left(v_{1}\right)=v_{4}}_{3} \wedge \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{v_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{v_{2}=2}_{8} \wedge \underbrace{v_{3}=v_{4}+3}_{9} \\
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	Δ	C rule	
		Δ_{0}	no
$0 \cdots 9$	Δ_{0}	no by PROPAGATE ${ }^{+}$	

Example - Non-convex Theories

$$
\begin{aligned}
& \Delta_{0}:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=b}_{1} \wedge \underbrace{f\left(v_{2}\right)=v_{3}}_{2} \wedge \underbrace{f\left(v_{1}\right)=v_{4}}_{3} \wedge \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{v_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{v_{2}=2}_{8} \wedge \underbrace{v_{3}=v_{4}+3}_{9} \\
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	Δ	C rule	
	Δ_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by $\operatorname{PROPAGATE}^{+}$
$0 \cdots 910$	Δ_{0}	no	by $\mathcal{T}-\operatorname{PROPAGATE}(0,3 \Vdash$ EUF 10$)$

Example - Non-convex Theories

$$
\begin{aligned}
& \Delta_{0}:=\underbrace{f\left(v_{1}\right)=a}_{0} \wedge \underbrace{f(x)=b}_{1} \wedge \underbrace{f\left(v_{2}\right)=v_{3}}_{2} \wedge \underbrace{f\left(v_{1}\right)=v_{4}}_{3} \wedge \underbrace{1 \leq x}_{4} \wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{v_{1}=1}_{6} \wedge \underbrace{a=b+2}_{7} \wedge \underbrace{v_{2}=2}_{8} \wedge \underbrace{v_{3}=v_{4}+3}_{9} \\
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \underbrace{a=b}_{13}
\end{aligned}
$$

M	\triangle	C	rule
	\triangle_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-PROPAGATE $(0,3 \models$ euf 10$)$
$0 \cdots 910$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-LEARN $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	\triangle	C	rule
	$\triangle{ }_{0}$	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-Propagate ($\left.0,3 \models_{\text {eUf }} 10\right)$
0...9 10	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-LEARN $(\models$ LIA $\overline{4} \vee \overline{5} \vee 11 \vee 12)$
$0 \cdots 910 \cdot 11$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	Δ	C	rule
	Δ_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-Propagate $\left(0,3 \models_{\text {eUf }} 10\right)$
$0 \ldots 910$	$\triangle_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-LEARN $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \cdot 11$	$\triangle_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$\triangle_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate $\left(0,1,11 \models_{\text {euf }} 13\right)$

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	\triangle	C	rule
	\triangle_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-Propagate ($\left.0,3 \models_{\text {euf }} 10\right)$
$0 \cdots 910$	$\triangle_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-Learn $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \cdot 11$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate ($\left.0,1,11 \models_{\text {euf }} 13\right)$
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	$\overline{7} \vee 13$	by \mathcal{T}-Conflict $(7,13 \mid=$ eUF \perp)

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	Δ	C	rule
	Δ_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-Propagate ($\left.0,3 \models_{\text {euf }} 10\right)$
$0 \cdots 910$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-LEARN $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \cdot 11$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate ($\left.0,1,11 \models_{\text {euf }} 13\right)$
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T}-Conflıct $(7,13 \mid=$ euf \perp)
$0 \cdots 91013$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by BackJump

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \quad \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	\triangle	C	rule
	\triangle_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-Propagate ($\left.0,3 \models_{\text {euf }} 10\right)$
$0 \cdots 910$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-Learn $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \cdot 11$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate ($\left.0,1,11 \models_{\text {euf }} 13\right)$
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T}-Conflict $(7,13 \mid=$ eUF \perp)
$0 \cdots 910 \overline{13}$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by BackJump
$0 \cdots 910 \overline{13} \overline{11}$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate $\left(0,1,\left.\overline{13}\right\|_{\text {euf }} \overline{11}\right)$

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	Δ	C	rule
	Δ_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \ldots 910$	Δ_{0}	no	by \mathcal{T}-Propagate ($\left.0,3 \models_{\text {eUf }} 10\right)$
$0 \cdots 910$	$\triangle_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-Learn $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \cdot 11$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate ($\left.0,1,11 \models_{\text {euf }} 13\right)$
$0 \cdots 910 \cdot 1113$	$\triangle_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T}-Conflict $\left(7,13 \models_{\text {eUf }} \perp\right)$
$0 \cdots 910 \overline{13}$	$\triangle_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Backuump
$0 \cdots 910 \overline{13} \overline{11}$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate $\left(0,1, \overline{13} \models_{\text {euf }} \overline{11}\right)$
$0 \cdots 910 \overline{13} \overline{11} 12$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Propagate

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	Δ	C	rule
	Δ_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-Propagate $\left(0,3 \models_{\text {euf }} 10\right)$
$0 \cdots 910$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-LEARN $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \cdot 11$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate ($\left.0,1,11 \models_{\text {euf }} 13\right)$
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T}-Conflict $\left(7,13=_{\text {euf }} \perp\right.$)
$0 \cdots 910 \overline{13}$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by BackJump
$0 \cdots 910 \overline{13} \overline{11}$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate $\left(0,1, \overline{13} \models_{\text {euf }} \overline{1 / 1}\right)$
$0 \cdots 910 \overline{13} \overline{11} 12$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Propagate (exercise)

Example - Non-convex Theories

$$
\begin{aligned}
& \underbrace{a=v_{4}}_{10} \underbrace{x=v_{1}}_{11} \quad \underbrace{x=v_{2}}_{12} \quad \underbrace{a=b}_{13}
\end{aligned}
$$

M	\triangle	C	rule
	Δ_{0}	no	
$0 \cdots 9$	Δ_{0}	no	by Propagate ${ }^{+}$
$0 \cdots 910$	Δ_{0}	no	by \mathcal{T}-Propagate ($\left.0,3 \models_{\text {euf }} 10\right)$
$0 \cdots 910$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by I-LEARN $\left(\models_{\text {LIA }} \overline{4} \vee \overline{5} \vee 11 \vee 12\right)$
$0 \cdots 910 \cdot 11$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Decide
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate ($\left.0,1,11 \models_{\text {euf }} 13\right)$
$0 \cdots 910 \cdot 1113$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T}-Conflict $(7,13 \mid=$ eUF \perp)
$0 \cdots 910 \overline{13}$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Backuump
$0 \cdots 910 \overline{13} \overline{11}$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by \mathcal{T}-Propagate $\left(0,1, \overline{13} \models_{\text {euf }} \overline{11}\right)$
$0 \cdots 910 \overline{1311} 12$	$\Delta_{0}, \overline{4} \vee \overline{5} \vee 11 \vee 12$	no	by Propagate (exercise)
UNSAT	\ldots	\cdots	by FAIL

