CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Combining Theories and Their Solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Recall: Many applications give rise to formulas like

 $a = b + 2 \land A \doteq write(B, a, 4) \land (read(A, b + 3) \doteq b - 2 \lor f(a - b) \neq f(b + 1))$

Solving that formula requires reasoning over

- the theory of integer arithmetic (\mathcal{T}_{LIA})
- the theory of arrays (\mathcal{T}_A)
- the theory of uninterpreted functions (*T*_{EUF})

Given solvers for each theory, can we combine them modularly into one for a theory that combines T_{LIA} , T_A and T_{EUF} ?

The answer is yes, under certain conditions

Recall: Many applications give rise to formulas like

 $a = b + 2 \land A \doteq write(B, a, 4) \land (read(A, b + 3) \doteq b - 2 \lor f(a - b) \neq f(b + 1))$

Solving that formula requires reasoning over

- the theory of integer arithmetic (\mathcal{T}_{LIA})
- the theory of arrays (\mathcal{T}_A)
- the theory of uninterpreted functions (\mathcal{T}_{EUF})

Given solvers for each theory, can we combine them modularly into one for a theory that combines T_{LIA} , T_A and T_{EUF} ?

The answer is yes, under certain conditions

Recall: Many applications give rise to formulas like

 $a = b + 2 \land A \doteq write(B, a, 4) \land (read(A, b + 3) \doteq b - 2 \lor f(a - b) \neq f(b + 1))$

Solving that formula requires reasoning over

- the theory of integer arithmetic (\mathcal{T}_{LIA})
- the theory of arrays (\mathcal{T}_A)
- the theory of uninterpreted functions (\mathcal{T}_{EUF})

Given solvers for each theory, can we combine them modularly into one for a theory that combines T_{LIA} , T_A and T_{EUF} ?

Recall: Many applications give rise to formulas like

 $a = b + 2 \land A \doteq write(B, a, 4) \land (read(A, b + 3) \doteq b - 2 \lor f(a - b) \neq f(b + 1))$

Solving that formula requires reasoning over

- the theory of integer arithmetic (\mathcal{T}_{LIA})
- the theory of arrays (\mathcal{T}_A)
- the theory of uninterpreted functions (\mathcal{T}_{EUF})

Given solvers for each theory, can we combine them modularly into one for a theory that combines T_{LIA} , T_A and T_{EUF} ?

The answer is yes, under certain conditions

Recall: A *theory* T is a pair (Σ, S) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- S is a class of Σ -interpretations closed under variable re-assignment

We limit interpretations of Σ -formulas to those in S

Recall: A *theory* T is a pair (Σ, S) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- S is a class of Σ -interpretations closed under variable re-assignment

Two signatures Σ_1 and Σ_2 are *compatible* if each of their *shared* function symbols, those in $\Sigma_1^F \cap \Sigma_2^F$, has the same rank in both Σ_1 and Σ_2

Recall: A *theory* T is a pair (Σ, S) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- S is a class of Σ -interpretations closed under variable re-assignment

Two signatures Σ_1 and Σ_2 are *compatible* if each of their *shared* function symbols, those in $\Sigma_1^F \cap \Sigma_2^F$, has the same rank in both Σ_1 and Σ_2

The *combination* of two compatible signatures Σ_1 and Σ_2 , is the signature

 $\Sigma_1 \oplus \Sigma_2 = (\Sigma_1^S \cup \Sigma_2^S, \Sigma_1^F \cup \Sigma_2^F)$

Recall: A *theory* T is a pair (Σ, S) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- S is a class of Σ -interpretations closed under variable re-assignment

Two signatures Σ_1 and Σ_2 are *compatible* if each of their *shared* function symbols, those in $\Sigma_1^F \cap \Sigma_2^F$, has the same rank in both Σ_1 and Σ_2

The *combination* of two compatible signatures Σ_1 and Σ_2 , is the signature

 $\Sigma_1 \oplus \Sigma_2 = (\Sigma_1^S \cup \Sigma_2^S, \Sigma_1^F \cup \Sigma_2^F)$

Note: Signatures with no shared function symbols are trivially compatible

Recall: A *theory* T is a pair (Σ, S) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- S is a class of Σ -interpretations closed under variable re-assignment

Let $\mathcal{T}_1 = (\Sigma_1, S_1)$ and $\mathcal{T}_2 = (\Sigma_2, S_2)$ be two theories with compatible signatures

Recall: A *theory* T is a pair (Σ , S), where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- S is a class of Σ -interpretations closed under variable re-assignment

Let $\mathcal{T}_1 = (\Sigma_1, S_1)$ and $\mathcal{T}_2 = (\Sigma_2, S_2)$ be two theories with compatible signatures

The *combination* of \mathcal{T}_1 and \mathcal{T}_2 is the theory

 $\mathcal{T}_1 \oplus \mathcal{T}_2 = (\Sigma, S)$

where $\Sigma = \Sigma_1 \oplus \Sigma_2$ and $S = \{ \mathcal{I} \mid \mathcal{I}^{\Sigma_1} \in S_1 \text{ and } \mathcal{I}^{\Sigma_2} \in S_2 \}$

Recall: A *theory* T is a pair (Σ, S) , where:

- Σ is a signature, consisting of a set Σ^S of *sort symbols* and a set Σ^F of function symbols
- S is a class of Σ -interpretations closed under variable re-assignment

Let $\mathcal{T}_1 = (\Sigma_1, S_1)$ and $\mathcal{T}_2 = (\Sigma_2, S_2)$ be two theories with compatible signatures

The *combination* of \mathcal{T}_1 and \mathcal{T}_2 is the theory

 $\mathcal{T}_1 \oplus \mathcal{T}_2 = (\Sigma, S)$

where $\Sigma = \Sigma_1 \oplus \Sigma_2$ and $S = \{ \mathcal{I} \mid \mathcal{I}^{\Sigma_1} \in S_1 \text{ and } \mathcal{I}^{\Sigma_2} \in S_2 \}$

Recall: the reduct \mathcal{I}^{Ω} of a Σ -interpretation \mathcal{I} to a subsignature Ω of Σ is an Ω -interpretation defined exactly as \mathcal{I} over the symbols in Ω

Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers for the individual theories

This is easier to do when individual theories are convex.

A \mathcal{T} -theory \mathcal{T} is *convex* if for all sets Γ of \mathcal{T} -literals over the variables $x_1, \ldots, x_n, y_1, \ldots, y_n$ with n > 0

 $\Gamma \models_{\mathcal{T}} x_1 \doteq y_1 \lor \cdots \lor x_n \doteq y_n \quad \text{iff} \quad \Gamma \models_{\mathcal{T}} x_k \doteq y_k \quad \text{for some } k \in \mathbf{1}, ..., n$

Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers for the individual theories

This is easier to do when individual theories are convex

A \mathcal{T} -theory \mathcal{T} is *convex* if for all sets Γ of \mathcal{T} -literals over the variables $x_1, \ldots, x_n y_1, \ldots, y_n$ with n > 0

 $\Gamma \models_{\mathcal{T}} x_1 \doteq y_1 \lor \cdots \lor x_n \doteq y_n$ iff $\Gamma \models_{\mathcal{T}} x_k \doteq y_k$ for some $k \in 1, ..., n$

Convex Theories

We want to build theory solvers for combined theory by modularly combining theory solvers for the individual theories

This is easier to do when individual theories are convex

A \mathcal{T} -theory \mathcal{T} is *convex* if for all sets Γ of \mathcal{T} -literals over the variables $x_1, \ldots, x_n, y_1, \ldots, y_n$ with n > 0

 $\Gamma \models_{\mathcal{T}} x_1 \doteq y_1 \lor \cdots \lor x_n \doteq y_n$ iff $\Gamma \models_{\mathcal{T}} x_k \doteq y_k$ for some $k \in 1, ..., n$

Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance $x \doteq 1, y \doteq 2, 1 \le z, z \le 2 \models_{LA} z \doteq x \lor z \doteq y$ holds, while neithe $x = 1, y = 2, 1 \le z, z \le 2 \models_{LA} z = x$ nor $x = 1, y = 2, 1 \le z, z \le 2 \models_{LA} z = y$ holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with other theories, as we will see

Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance

 $x \doteq 1, y \doteq 2, 1 \le z, z \le 2 \models_{\text{LIA}} z \doteq x \lor z \doteq y$ holds, while neither

 $x = 1, y = 2, 1 \le z, z \le 2$ $\models_{\mathsf{LIA}} z = x$ nor

 $x = 1, y = 2, 1 \le z, z \le 2 \models_{\mathsf{LIA}} z = y$ holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with other theories, as we will see

Convex Theories: Examples

Linear real arithmetic is convex

This is a consequence of the fact that sets of literals in this theory define convex polytopes (recall the linear programming slides)

Linear integer arithmetic is non-convex, for instance

 $x \doteq 1, y \doteq 2, 1 \le z, z \le 2 \models_{\mathsf{LIA}} z \doteq x \lor z \doteq y$ holds, while neither $x = 1, y = 2, 1 \le z, z \le 2 \models_{\mathsf{LIA}} z = x$ nor

 $x = 1, y = 2, 1 \le z, z \le 2 \models_{LIA} z = y$ holds

Many theories used in SMT are non-convex, which makes their solvers harder to combine with other theories, as we will see

Combining Theory Solvers

Let S_1 and S_2 be two theory solvers deciding the satisfiability of sets of literals in theories T_1 and T_2 , respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $T_1 \oplus T_2$ by modularly combining S₁ and S₂.

A popular procedure that achieves this combination consists of four main steps:

- 1. **Purification.** Purify L into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals
- 2. **Propagation.** Exchange entailed equalities between variables shared by L_1 and L_2
- Decision. If either T₁ or T₂ is non-convex, guess non-entailed equalities and disequalities between the shared variables. Go to 2
- 4. Check. Check the satisfiability of L_i locally in T_i for i = 1, 2

Combining Theory Solvers

Let S_1 and S_2 be two theory solvers deciding the satisfiability of sets of literals in theories T_1 and T_2 , respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $T_1 \oplus T_2$ by modularly combining S_1 and S_2

A popular procedure that achieves this combination consists of four main steps:

- 1. **Purification.** Purify L into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals
- 2. **Propagation.** Exchange entailed equalities between variables shared by L_1 and L_2
- Decision. If either T₁ or T₂ is non-convex, guess non-entailed equalities and disequalities between the shared variables. Go to 2
- 4. Check. Check the satisfiability of L_i locally in \mathcal{T}_i for i = 1, 2

Combining Theory Solvers

Let S_1 and S_2 be two theory solvers deciding the satisfiability of sets of literals in theories T_1 and T_2 , respectively

We are interested in constructing a theory solver deciding the satisfiability of sets L of literals in $T_1 \oplus T_2$ by modularly combining S_1 and S_2

A popular procedure that achieves this combination consists of four main steps:

- 1. **Purification.** Purify *L* into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals
- 2. Propagation. Exchange entailed equalities between variables shared by L_1 and L_2
- 3. **Decision.** If either T_1 or T_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables. Go to 2
- 4. **Check.** Check the satisfiability of L_i locally in \mathcal{T}_i for i = 1, 2

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

1. Purify and partition input set

 $L = \begin{cases} f(f(x) - f(y)) \doteq a \\ f(0) > a + 2 \\ x \doteq y \end{cases} \longrightarrow \begin{cases} f(v_1 - v_2) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y) \\ f(v_3) > a + 2, v_3 \doteq 0 \\ x \doteq y \end{cases}$

$$\begin{cases} f(v_4) \doteq a, v_4 \doteq v_1 - v_2, \ v_1 \doteq f(x), \ v_2 \doteq f(y) \\ v_5 > a + 2, \ v_5 \doteq f(v_3), \ v_3 \doteq 0 \\ x \doteq y \end{cases}$$

 $L_1 = \{ f(v_4) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y), v_5 \doteq f(v_3), x \doteq y \}$ $L_2 = \{ v_4 \doteq v_1 - v_2, v_5 > a + 2, v_3 \doteq 0 \}$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

1. Purify and partition input set

$$L = \begin{cases} f(f(x) - f(y)) \doteq a \\ f(0) > a + 2 \\ x \doteq y \end{cases} \longrightarrow \begin{cases} f(v_1 - v_2) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y) \\ f(v_3) > a + 2, v_3 \doteq 0 \\ x \doteq y \end{cases}$$

 $\Rightarrow \begin{cases} f(v_4) \doteq a, v_4 \doteq v_1 - v_2, v_1 \doteq f(x), v_2 \doteq f(y) \\ v_5 > a + 2, v_5 \doteq f(v_3), v_3 \doteq 0 \\ x \doteq y \end{cases}$

 $L_1 = \{ f(v_4) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y), v_5 \doteq f(v_3), x \doteq y \}$ $L_2 = \{ v_4 \doteq v_1 - v_2, v_5 > a + 2, v_3 \doteq 0 \}$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

1. Purify and partition input set

$$L = \begin{cases} f(f(x) - f(y)) \doteq a \\ f(0) > a + 2 \\ x \doteq y \end{cases} \longrightarrow \begin{cases} f(v_1 - v_2) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y) \\ f(v_3) > a + 2, v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$\rightarrow \begin{cases} f(v_4) \doteq a, v_4 \doteq v_1 - v_2, v_1 \doteq f(x), v_2 \doteq f(y) \\ v_5 > a + 2, v_5 \doteq f(v_3), v_3 \doteq 0 \\ x \doteq y \end{cases}$$

 $L_1 = \{ f(v_4) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y), v_5 \doteq f(v_3), x \doteq y \}$ $L_2 = \{ v_4 \doteq v_1 - v_2, v_5 > a + 2, v_3 \doteq 0 \}$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

1. Purify and partition input set

$$L = \begin{cases} f(f(x) - f(y)) \doteq a \\ f(0) > a + 2 \\ x \doteq y \end{cases} \longrightarrow \begin{cases} f(v_1 - v_2) \doteq a, v_1 \doteq f(x), v_2 \doteq f(y) \\ f(v_3) > a + 2, v_3 \doteq 0 \\ x \doteq y \end{cases}$$

$$\longrightarrow \begin{cases} f(v_4) \doteq a, v_4 \doteq v_1 - v_2, v_1 \doteq f(x), v_2 \doteq f(y) \\ v_5 > a + 2, v_5 \doteq f(v_3), v_3 \doteq 0 \\ x \doteq y \end{cases}$$

 $L_{1} = \{ f(v_{4}) \doteq a, v_{1} \doteq f(x), v_{2} \doteq f(y), v_{5} \doteq f(v_{3}), x \doteq y \}$ $L_{2} = \{ v_{4} \doteq v_{1} - v_{2}, v_{5} > a + 2, v_{3} \doteq 0 \}$

Combining Theory Solvers: Step 1

An *i-term* is a non-variable term of signature \sum_i for i = 1 or i = 2

Purification: Given a set *L* of $\Sigma_1 \oplus \Sigma_2$ -literals:

- 1. Find an *i*-term *t* that is a subterm of a non- \sum_i -literal $l \in L$
- 2. Replace t in l with a fresh variable v, and add $v \doteq t$ to L
- 3. Repeat Steps 1 and 2 until every literal is *pure* (i.e, is either a Σ_1 or a Σ_2 -literal)
- 4. Partition *L* into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals

Note: *L* is equisatisfiable with $L_1 \cup L_2$ in $\mathcal{T}_1 \oplus \mathcal{T}_2$

Combining Theory Solvers: Step 1

An *i-term* is a non-variable term of signature \sum_i for i = 1 or i = 2

Purification: Given a set *L* of $\Sigma_1 \oplus \Sigma_2$ -literals:

- 1. Find an *i*-term *t* that is a subterm of a non- \sum_i -literal $l \in L$
- 2. Replace t in l with a fresh variable v, and add $v \doteq t$ to L
- 3. Repeat Steps 1 and 2 until every literal is *pure* (i.e, is either a Σ_1 or a Σ_2 -literal)
- 4. Partition *L* into a set L_1 of Σ_1 -literals and a set L_2 of Σ_2 -literals

Note: *L* is equisatisfiable with $L_1 \cup L_2$ in $\mathcal{T}_1 \oplus \mathcal{T}_2$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

$$\begin{array}{ccccc}
L_1 & L_2 \\
\hline
f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\
v_1 \doteq f(x) & v_5 > a + 2 \\
v_2 \doteq f(y) & v_3 \doteq 0 \\
v_5 \doteq f(v_3) & v_1 \doteq v_2 \\
x \doteq y & a = v_5 \\
v_3 \doteq v_4
\end{array}$$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

2. Propagate entailed equalities between the shared variables v_1 , v_2 , v_3 , v_4 , v_5 , a

 $L_1 \models_{\mathsf{EUF}} V_1 \doteq V_2$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

$$\begin{array}{cccc} L_1 & L_2 \\ \hline f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\ v_1 \doteq f(x) & v_5 > a + 2 \\ v_2 \doteq f(y) & v_3 \doteq 0 \\ v_5 \doteq f(v_3) & v_1 \doteq v_2 \\ x \doteq y & a = v_4 \end{array}$$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

2. Propagate entailed equalities between the shared variables v_1 , v_2 , v_3 , v_4 , v_5 , a

$$\begin{array}{cccc} L_1 & L_2 \\ \hline f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\ v_1 \doteq f(x) & v_5 > a + 2 \\ v_2 \doteq f(y) & v_3 \doteq 0 \\ v_5 \doteq f(v_3) & v_1 \doteq v_2 \\ x \doteq y & a = v_5 \\ v_3 \doteq v_4 \end{array}$$

 $L_2 \models_{\mathsf{LRA}} V_3 = V_4$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

$$\begin{array}{cccc} L_1 & L_2 \\ \hline f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\ v_1 \doteq f(x) & v_5 > a + 2 \\ v_2 \doteq f(y) & v_3 \doteq 0 \\ v_5 \doteq f(v_3) & v_1 \doteq v_2 \\ x \doteq y & a = v_3 \\ v_3 \doteq v_4 \end{array}$$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

$$\begin{array}{ccc} L_1 & L_2 \\ \hline f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\ v_1 \doteq f(x) & v_5 > a + 2 \\ v_2 \doteq f(y) & v_3 \doteq 0 \\ v_5 \doteq f(v_3) & v_1 \doteq v_2 \\ x \doteq y & a \Rightarrow v_3 \\ v_3 \doteq v_4 \end{array}$$

$$L_1 \models_{\mathsf{EUF}} a = v_5$$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

$$\begin{array}{cccc} L_1 & L_2 \\ \hline f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\ v_1 \doteq f(x) & v_5 > a + 2 \\ v_2 \doteq f(y) & v_3 \doteq 0 \\ v_5 \doteq f(v_3) & v_1 \doteq v_2 \\ x \doteq y & a \doteq v_5 \\ v_3 \doteq v_4 \end{array}$$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

2. Propagate entailed equalities between the shared variables v_1 , v_2 , v_3 , v_4 , v_5 , a

$$\begin{array}{cccc} L_1 & L_2 \\ \hline f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\ v_1 \doteq f(x) & v_5 > a + 2 \\ v_2 \doteq f(y) & v_3 \doteq 0 \\ v_5 \doteq f(v_3) & v_1 \doteq v_2 \\ x \doteq y & a \doteq v_5 \\ v_3 \doteq v_4 \end{array}$$

3. If either \mathcal{T}_1 or \mathcal{T}_2 is non-convex, ...

No action because both theories are convex

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

2. Propagate entailed equalities between the shared variables v_1 , v_2 , v_3 , v_4 , v_5 , a

$$\begin{array}{cccc}
L_1 & L_2 \\
\hline
f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\
v_1 \doteq f(x) & v_5 > a + 2 \\
v_2 \doteq f(y) & v_3 \doteq 0 \\
v_5 \doteq f(v_3) & v_1 \doteq v_2 \\
x \doteq y & a \doteq v_5 \\
v_3 \doteq v_4
\end{array}$$

4. Check for satisfiability of L_1 and of L_2 locally

 $L_1 \not\models_{\mathsf{EUF}} \bot$ and $L_2 \not\models_{\mathsf{LRA}} \bot$

Combining Theory Solvers: Step 2-4 Example

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LRA}$

2. Propagate entailed equalities between the shared variables v_1 , v_2 , v_3 , v_4 , v_5 , a

$$\begin{array}{cccc} L_1 & L_2 \\ \hline f(v_4) \doteq a & v_4 \doteq v_1 - v_2 \\ v_1 \doteq f(x) & v_5 > a + 2 \\ v_2 \doteq f(y) & v_3 \doteq 0 \\ v_5 \doteq f(v_3) & v_1 \doteq v_2 \\ x \doteq y & a \doteq v_5 \\ v_3 \doteq v_4 \end{array}$$

4. Check for satisfiability of L_1 and of L_2 locally

 $L_1 \not\models_{\mathsf{EUF}} \bot$ and $L_2 \not\models_{\mathsf{LRA}} \bot$ Report UNSAT

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	1 ≤ <i>x</i>
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	1 <i>≤ x</i>
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$V_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Note: No entailed equalities, but $L_2 \models_{\text{LIA}} x \doteq v_1 \lor x \doteq v_2$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	1 <i>≤ x</i>
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$V_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Consider each case of $x \doteq v_1 \lor x \doteq v_2$ separately

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Case 1) $x \doteq v_1$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L ₁	L ₂
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	<i>x</i> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_1$	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_1$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	1 ≤ <i>x</i>
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_1$	$V_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_1$

 $L_1 \models_{\mathsf{EUF}} a \doteq b \mathsf{ but } L_2, a \doteq b \models_{\mathsf{LIA}} \bot$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$

Case 2) $x = v_2$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	1 ≤ <i>x</i>
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_2$	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_2$

Let $\mathcal{T}_1 = \mathcal{T}_{EUF}$ and $\mathcal{T}_2 = \mathcal{T}_{LIA}$

3. Since \mathcal{T}_2 is non-convex, guess non-entailed equalities and disequalities between the shared variables

L_1	L ₂
$f(v_1) \doteq a$	$1 \leq x$
$f(x) \doteq b$	<u>x</u> ≤ 2
$f(v_2) \doteq v_3$	$v_1 \doteq 1$
$f(v_1) \doteq v_4$	$a \doteq b + 2$
$x \doteq v_2$	$v_2 \doteq 2$
	$v_3 \doteq v_4 + 3$
	$a \doteq v_4$
	$x \doteq v_2$

 $L_1 \models_{\mathsf{EUF}} v_3 \doteq b \text{ but } L_2, v_3 \doteq b \models_{\mathsf{LIA}} \bot$

Bare-bones, non-deterministic, non-incremental version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals Output: SAT OF UNSAT

1. Guess an *arrangement A*, i.e., a set of equalities and disequalities over the variables *V* shared by *L*₁ and *L*₂ such that

 $u \doteq v \in A$ or $u \neq v \in A$ for all $u, v \in V$

- 2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for i = 1 or i = 2, return UNSAT
- 3. Otherwise, return SAT

Bare-bones, non-deterministic, non-incremental version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals **Output:** SAT OF UNSAT

1. Guess an *arrangement A*, i.e., a set of equalities and disequalities over the variables *V* shared by *L*₁ and *L*₂ such that

 $u \doteq v \in A$ or $u \neq v \in A$ for all $u, v \in V$

- 2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for i = 1 or i = 2, return UNSAT
- 3. Otherwise, return SAT

Bare-bones, non-deterministic, non-incremental version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals **Output:** SAT OF UNSAT

1. Guess an *arrangement A*, i.e., a set of equalities and disequalities over the variables *V* shared by *L*₁ and *L*₂ such that

 $u \doteq v \in A$ or $u \neq v \in A$ for all $u, v \in V$

2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for i = 1 or i = 2, return UNSAT

3. Otherwise, return SAT

Bare-bones, non-deterministic, non-incremental version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals **Output:** SAT OF UNSAT

1. Guess an *arrangement A*, i.e., a set of equalities and disequalities over the variables *V* shared by *L*₁ and *L*₂ such that

 $u \doteq v \in A$ or $u \neq v \in A$ for all $u, v \in V$

- 2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for i = 1 or i = 2, return UNSAT
- 3. Otherwise, return SAT

Bare-bones, non-deterministic, non-incremental version:

Input: $L_1 \cup L_2$ with L_i finite set of \mathcal{T}_i -literals **Output:** SAT OF UNSAT

1. Guess an *arrangement A*, i.e., a set of equalities and disequalities over the variables *V* shared by *L*₁ and *L*₂ such that

 $u \doteq v \in A$ or $u \neq v \in A$ for all $u, v \in V$

- 2. If $L_i \cup A$ is unsatisfiable in \mathcal{T}_i for i = 1 or i = 2, return UNSAT
- 3. Otherwise, return SAT

Theorem 1 (Refutation Soundness)

If the method returns UNSAT for every arrangement, the input is unsatisfiable in $T_1 \oplus T_2$.

Proof. Because unsatisfiability in $T_1 \oplus T_2$ is preserved.

Theorem 2 (Solution Soundness)

If $\Sigma_1^r \cap \Sigma_2^r = \emptyset$ and T_1 and T_2 are stably infinite over $\Sigma_1^s \cap \Sigma_2^s$, when the method returns SAT for some arrangement, the input is satisfiable in $T_1 \oplus T_2$.

Proof.

Because satisfiability in $T_1 \oplus T_2$ is preserved for stably infinite theories.

Theorem 1 (Refutation Soundness)

If the method returns UNSAT for every arrangement, the input is unsatisfiable in $T_1 \oplus T_2$.

Proof.

Because unsatisfiability in $T_1 \oplus T_2$ is preserved.

Theorem 2 (Solution Soundness)

If $\Sigma_1^F \cap \Sigma_2^F = \emptyset$ and T_1 and T_2 are stably infinite over $\Sigma_1^S \cap \Sigma_2^S$, when the method returns SAT for some arrangement, the input is satisfiable in $T_1 \oplus T_2$.

Proof.

Because satisfiability in $T_1 \oplus T_2$ is preserved for stably infinite theories.

Theorem 3 (Termination)

The method is terminating.

Proof.

Because there is only a finite number of arrangements to guess.

Theorem 4 (Decidability)

If $\Sigma_1^F \cap \Sigma_2^F = \emptyset$, T_1 and T_2 are stably infinite over $\Sigma_1^S \cap \Sigma_2^S$, and the satisfiability of quantifier-free formulas in T_i is decidable for i = 1, 2, then the satisfiability of quantifier-free formulas in $T_1 \oplus T_2$ is decidable.

Theorem 3 (Termination)

The method is terminating.

Proof.

Because there is only a finite number of arrangements to guess.

Theorem 4 (Decidability)

If $\Sigma_1^F \cap \Sigma_2^F = \emptyset$, T_1 and T_2 are stably infinite over $\Sigma_1^S \cap \Sigma_2^S$, and the satisfiability of quantifier-free formulas in \mathcal{T}_i is decidable for i = 1, 2, then the satisfiability of quantifier-free formulas in $\mathcal{T}_1 \oplus \mathcal{T}_2$ is decidable.

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

- Theories of an infinite structure (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)
 Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

- Theories of an infinite structure (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)
 Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

- Theories of an infinite structure (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic)
 Recall: With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

- Theories of an infinite structure (e.g., integer/real arithmetic)
- Complete theories with an infinite model (e.g., theory of dense linear orders, theory of lists)
- Convex theories (e.g., EUF with uninterpreted sorts, linear real arithmetic) **Recall:** With convex theories, arrangements do not need to be guessed as they can be computed by (theory) propagation

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

Let \mathcal{T} be a theory or signature Σ , let $S \subset \Sigma^S$

 \mathcal{T} is *stably-infinite with respect to S* if every quantifier-free formula satisfiable in \mathcal{T} is satisfiable in \mathcal{T} -interpretation \mathcal{I} such that $\sigma^{\mathcal{I}}$ is infinite for all σ on *S*.

Other interesting theories are not stably infinite:

- Theories of a finite structure (e.g., theory of bit vectors of finite size, arithmetic modulo n)
- Theories with models of bounded cardinality (e.g., theory of strings of bounded length)

The combination method has been extended to over the years to various classes of non-stably infinite theories

Why the combination method needs stably infiniteness

The theory of fixed-size bit-vectors contains sorts whose domains are all finite. Hence, this theory cannot be stably-infinite.

Example: Consider T_{array} where both indices and elements are of the same sort bv, so that the sorts of T_{array} are {array, bv}, and a theory T_{bv} that requires the sort bv to be interpreted as bit-vectors of size 1.

- Both theories are decidable and we would like to decide the combination theory in a Nelson-Oppen-like framework.
- Let $a_1, ..., a_5$ be array variables and consider the following constraints: $a_i \neq a_j$, for $1 \le i < j \le 5$.
- These constraints are entirely within *T_{array}*. Array theory solver is given all constraints and the bit-vector theory solver is given none.
- **Problem:** Array solver tells us these constraints are SAT, but there are only four possible different arrays with elements and indices over bit-vectors of size 1.

SMT Solving with Multiple Theories

Let $\mathcal{T}_1, \ldots, \mathcal{T}_n$ be theories with respective solvers S_1, \ldots, S_n

How can we integrate all of them cooperatively into a single SMT solver for $T = T_1 \oplus \cdots \oplus T_n$?

SMT Solving with Multiple Theories

Let $\mathcal{T}_1, \ldots, \mathcal{T}_n$ be theories with respective solvers S_1, \ldots, S_n

How can we integrate all of them cooperatively into a single SMT solver for $T = T_1 \oplus \cdots \oplus T_n$?

Quick Solution:

- 1. Combine S_1, \ldots, S_n into a theory solver for T
- 2. Build a CDCL(\mathcal{T}) solver as usual

SMT Solving with Multiple Theories

Let $\mathcal{T}_1, \ldots, \mathcal{T}_n$ be theories with respective solvers S_1, \ldots, S_n

How can we integrate all of them cooperatively into a single SMT solver for $T = T_1 \oplus \cdots \oplus T_n$?

Better Solution:

- 1. Extend CDCL(\mathcal{T}) to CDCL($\mathcal{T}_1, \ldots, \mathcal{T}_n$)
- 2. Lift combination method to the $CDCL(X_1, ..., X_n)$ level
- 3. Build a CDCL($\mathcal{T}_1, \ldots, \mathcal{T}_n$) solver

Modeling CDCL($\mathcal{T}_1, \ldots, \mathcal{T}_n$) Abstractly

- Let n = 2, for simplicity
- Let \mathcal{T}_i be of signature Σ_i for i = 1, 2, with $\Sigma_1 \cap \Sigma_2 = \emptyset$
- Let C be a set of fresh constants
- Assume wlog that each input literal has signature (T₁ ∪ C) or (T₂ ∪ C) (no mixed literals)
- Let $M|_i \stackrel{\text{def}}{=} \{ \Sigma_{i \cup C} \text{-literals of } M \text{ and their complement} \}$
- Let I(M) $\stackrel{\text{def}}{=} \{c = d \mid c, d \text{ occur in } C, M|_1 \text{ and } M|_2\} \cup \{c \neq d \mid c, d \text{ occur in } C, M|_1 \text{ and } M|_2\}$

(interface literals)

Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONFLICT, EXPLAIN, BACKJUMP, FAIL (unchanged)

 $\mathsf{Decide} = \frac{l \in \mathsf{Lits}(\mathsf{F}) \cup \mathsf{I}(\mathsf{M}) \quad l, \overline{l} \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} \bullet l}$

Only change: decide on interface equalities as well

 $\mathcal{T}\text{-}\mathsf{Propagate} \xrightarrow{l \in \operatorname{Lits}(\mathsf{F}) \cup \operatorname{I}(\mathsf{M}) \quad i \in \{1,2\} \quad \mathsf{M} \models_{\mathcal{T}} l = l, \overline{l} \notin \mathsf{M}}_{\mathsf{M} := \mathsf{M} | l}$

Only change: propagate interface equalities as well, but reason locally in each \mathcal{T}_i

Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONFLICT, EXPLAIN, BACKJUMP, FAIL (unchanged)

DECIDE
$$\frac{l \in \text{Lits}(F) \cup I(M) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

Only change: decide on interface equalities as well

-Propagate
$$\frac{l \in \text{Lits}(\mathsf{F}) \cup I(\mathsf{M}) \quad i \in \{1,2\} \quad \mathsf{M} \models_{\mathcal{T}_i} l \quad l, \bar{l} \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} \ l}$$

Only change: propagate interface equalities as well, but reason locally in each \mathcal{T}_i

Abstract CDCL Modulo Multiple Theories

PROPAGATE, CONFLICT, EXPLAIN, BACKJUMP, FAIL (unchanged)

DECIDE
$$\frac{l \in \text{Lits}(F) \cup I(M) \quad l, \bar{l} \notin M}{M := M \bullet l}$$

Only change: decide on interface equalities as well

$$\mathcal{T}\text{-}\mathsf{PROPAGATE} \xrightarrow{l \in \mathsf{Lits}(\mathsf{F}) \cup \mathsf{I}(\mathsf{M}) \quad i \in \{1,2\} \quad \mathsf{M} \models_{\mathcal{T}_i} l \quad l, \overline{l} \notin \mathsf{M}}_{\mathsf{M} := \mathsf{M} \ l}$$

Only change: propagate interface equalities as well, but reason locally in each T_i

Abstract CDCL Modulo Multiple Theories

 \mathcal{T} -Conflict

 $C = no \quad l_1, \dots, l_n \in M \quad l_1, \dots, l_n \models_{\mathcal{T}_i} \perp i \in \{1, 2\}$ $C := \overline{l_1} \vee \dots \vee \overline{l_n}$

 \mathcal{T} -Explain

$$\frac{\mathsf{C} = l \lor D \quad \overline{l}_1, \dots, \overline{l}_n \models_{\mathcal{T}_i} \overline{l} \quad i \in \{1, 2\} \quad \overline{l}_1, \dots, \overline{l}_n \prec_{\mathsf{M}} \overline{l}}{\mathsf{C} := l_1 \lor \dots \lor l_n \lor D}$$

Only change: reason locally in each T_i

I-LEARN

 $\begin{aligned} \models_{\mathcal{T}_i} \ l_1 \vee \cdots \vee l_n \quad l_1, \dots, l_n \in \mathsf{M}|_l \cup \mathrm{I}(\mathsf{M}) \quad i \in \{1, 2\} \\ \mathsf{F} := \mathsf{F} \cup \{l_1 \vee \cdots \vee l_n\} \end{aligned}$

New rule: for entailed disjunctions of interface literals

Abstract CDCL Modulo Multiple Theories

 \mathcal{T} -Conflict

$$C = no \quad l_1, \dots, l_n \in M \quad l_1, \dots, l_n \models_{\mathcal{T}_i} \perp i \in \{1, 2\}$$
$$C := \overline{l_1} \vee \dots \vee \overline{l_n}$$

 \mathcal{T} -Explain

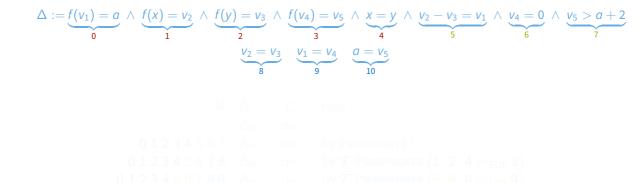
$$\frac{\mathsf{C} = l \lor D \quad \overline{l}_1, \dots, \overline{l}_n \models_{\mathcal{T}_i} \overline{l} \quad i \in \{1, 2\} \quad \overline{l}_1, \dots, \overline{l}_n \prec_{\mathsf{M}} \overline{l}}{\mathsf{C} := l_1 \lor \dots \lor l_n \lor D}$$

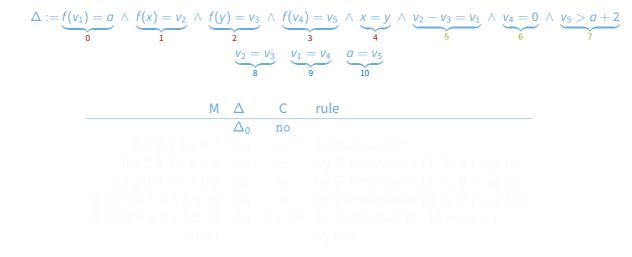
Only change: reason locally in each T_i

I-LEARN

 $\models_{\mathcal{T}_i} l_1 \vee \cdots \vee l_n \quad l_1, \dots, l_n \in \mathsf{M}|_i \cup \mathsf{I}(\mathsf{M}) \quad i \in \{1, 2\}$ $\mathsf{F} := \mathsf{F} \cup \{l_1 \vee \cdots \vee l_n\}$

New rule: for entailed disjunctions of interface literals





$$\Delta := \underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = v_2}_{1} \land \underbrace{f(y) = v_3}_{2} \land \underbrace{f(v_4) = v_5}_{3} \land \underbrace{x = y}_{4} \land \underbrace{v_2 - v_3 = v_1}_{5} \land \underbrace{v_4 = 0}_{6} \land \underbrace{v_5 > a + 2}_{7}$$

$$\underbrace{v_2 = v_3}_{V_2 = V_3} \underbrace{v_1 = v_4}_{9} \underbrace{a = v_5}_{10}$$

$$\underbrace{\frac{M \ \Delta \ C \ rule}{\Delta_0 \ no}}_{0\ 1\ 2\ 3\ 4\ 5\ 6\ 7} \Delta_0 \ no \ by PROPAGATE^+$$

$$\underbrace{0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ \Delta_0 \ no}_{0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10} \Delta_0 \ no \ by \mathcal{T}$$

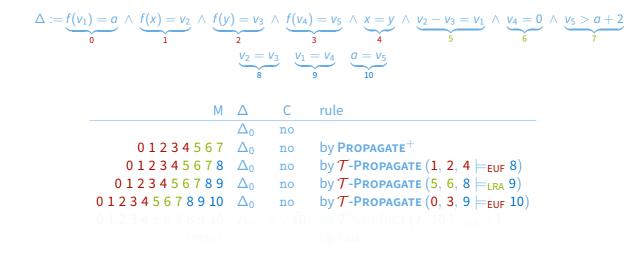
$$\underbrace{PROPAGATE}_{0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10} \Delta_0 \ 7\ 10 \ by \mathcal{T}$$

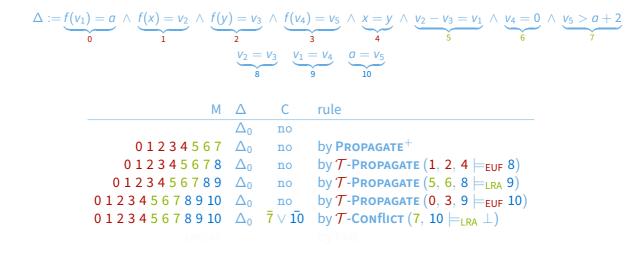
$$\underbrace{PROPAGATE}_{0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10}_{0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10} \Delta_0 \ 7\ 10 \ by \mathcal{T}$$

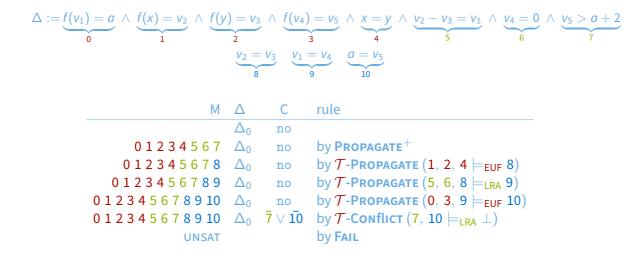
$$\Delta := \underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = v_2}_{1} \land \underbrace{f(y) = v_3}_{2} \land \underbrace{f(v_4) = v_5}_{3} \land \underbrace{x = y}_{4} \land \underbrace{v_2 - v_3 = v_1}_{5} \land \underbrace{v_4 = 0}_{6} \land \underbrace{v_5 > a + 2}_{7}$$

$$\underbrace{v_2 = v_3}_{V_2 = V_3} \quad \underbrace{v_1 = v_4}_{9} \quad \underbrace{a = v_5}_{10}$$

$$\underbrace{\frac{M \ \Delta \ C}_{0} \quad no}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \Delta_0} \quad no}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ \Delta_0} \quad no}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \Delta_0} \quad no}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \Delta_0} \quad no}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \Delta_0} \quad no}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 3 \ 6 \ 7 \ 8 \ 9 \ 10}_{0 \ 1 \ 2 \ 10}_{0 \ 1 \ 2 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 10}_{0 \ 1 \ 10}_{0 \ 10}_{0 \ 1 \ 10}_{0 \ 10}_{0 \ 1 \ 10}_{0 \ 1 \ 10}_{0 \ 10}_{0 \ 10}_{0 \ 1 \ 10}_{0 \ 1$$







 $\Delta_{0} := \underbrace{f(v_{1}) = a}_{0} \land \underbrace{f(x) = b}_{1} \land \underbrace{f(v_{2}) = v_{3}}_{2} \land \underbrace{f(v_{1}) = v_{4}}_{3} \land \underbrace{1 \leq x}_{4} \land \underbrace{x \leq 2}_{5} \land \underbrace{v_{1} = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_{2} = 2}_{8} \land \underbrace{v_{3} = v_{4} + 3}_{9}$ $\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$

 $\Delta_{0} := \underbrace{f(v_{1}) = a}_{0} \land \underbrace{f(x) = b}_{1} \land \underbrace{f(v_{2}) = v_{3}}_{2} \land \underbrace{f(v_{1}) = v_{4}}_{3} \land \underbrace{1 \leq x}_{4} \land \underbrace{x \leq 2}_{5} \land \underbrace{v_{1} = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_{2} = 2}_{8} \land \underbrace{v_{3} = v_{4} + 3}_{9}$ $\underbrace{a = v_4}_{10} \quad \underbrace{x = v_1}_{11} \quad \underbrace{x = v_2}_{12} \quad \underbrace{a = b}_{13}$ MΔ rule Δ_0 no

$\Delta_0 := \underbrace{f(v_1) = a}_{a} \land \underbrace{f(x) = b}_{a} \land$	$\underbrace{f(v_2)=v_3}_{2} \land \underbrace{f(v_1)=v_4}_{2} \land$	$\underbrace{1 \leq x}_{A}$	$\bigwedge \underbrace{x \leq 2}_{5} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
0 1	$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$		
		12	13
М	Δ	С	rule
	Δ_0	no	
0 · · · 9	Δ_0	no	by Propagate ⁺

$\Delta_0 := \underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = b}_{1} \land$	$\underbrace{f(v_2) = v_3}_{2} \land \underbrace{f(v_1) = v_4}_{3} \land$	$\underbrace{1 \leq x}_{4}$	$\wedge \underbrace{x \le 2}_{5} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
	$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a = b
М	Δ	С	rule
0 · · · 9	$\Delta_0 \\ \Delta_0$	no no	by Propagate ⁺
0 ··· 9 10 0 9 10	•		by \mathcal{T} -Propagate (0, 3 $\models_{EUF} 10$)

$\Delta_0 := \underbrace{f}_{}$	$\underbrace{(v_1) = a}_{0} \land \underbrace{f(x) = b}_{1} \land$	$\underbrace{f(v_2) = v_3}_{2} \land \underbrace{f(v_1) = v_4}_{3} \land$	$1 \leq x$	$\bigwedge \underbrace{x \leq 2}_{5} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
		$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a = b
_	М	Δ	С	rule
	0 · · · 9	Δ_0 Δ_0	no no	by Propagate ⁺
	$\begin{array}{ccc} 0 & \cdots & 9 & 10 \\ 0 & \cdots & 9 & 10 \end{array}$	$\begin{array}{c} \Delta_0\\ \Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12 \end{array}$		by \mathcal{T} -Propagate (0, 3 $\models_{EUF} 10$) by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
		$\Delta_0, \ \bar{4} \lor \bar{5} \lor 11 \lor 12$		by DECIDE

$\Delta_0 := \underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = 1}_{1}$	<u>b</u> ∧	$\underbrace{f(v_2) = v_3}_{2} \land \underbrace{f(v_1) = v_4}_{3} \land$	$\underbrace{1 \leq x}_{4} /$	$\bigwedge \underbrace{x \leq 2}_{5} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
		$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a = b
	М	Δ	С	rule
		Δ_0	no	
0 · ·	• 9	Δ_0	no	by Propagate ⁺
0 · · · 9	10	Δ_0	no	by $\mathcal{T} extsf{-Propagate}\left(extsf{0}, extsf{3} \models_{EUF} extsf{10} ight)$
0 · · · 9	10	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
0 · · · 9 10 •	11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by Decide

$\Delta_0:=\underbrace{f(v_1)=a}_{0} \wedge \underbrace{f(v_1)=a}_{0}$	$\underbrace{f(x)=b}_{1} \land \xi$	$\underbrace{f(v_2) = v_3}_{2} \land \underbrace{f(v_1) = v_4}_{3} \land$	$\underbrace{1 \leq x}_{4}$	$\wedge \underbrace{x \leq 2}_{5} \wedge \underbrace{v_1 = 1}_{6} \wedge \underbrace{a = b + 2}_{7} \wedge \underbrace{v_2 = 2}_{8} \wedge \underbrace{v_3 = v_4 + 3}_{9}$
		$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a = b
	М	Δ	С	rule
	•	Δ_0	no	
	0 · · · 9	Δ_0	no	by Propagate ⁺
0)···· 9 10	Δ_0	no	by $\mathcal{T} extsf{-Propagate}\left(0, 3 \models_{EUF} 10 ight)$
0) · · · 9 10	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
0 · · ·	9 10 • 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by Decide
0 · · · 9 1	.0 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by \mathcal{T} -PROPAGATE (0, 1, 11 \models_{EUF} 13)

$\Delta_0 := \underbrace{f(v)}_{v}$	$\underbrace{v_1) = a}_{0} \land \underbrace{f(x) = b}_{1} \land \underbrace{f(x) = b}_{1}$	$\underbrace{f(v_2) = v_3}_{2} \land \underbrace{f(v_1) = v_4}_{3} \land$	$1 \leq x$	$\bigwedge \underbrace{x \leq 2}_{5} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 4}_{9}$	3
		$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a = b	
	М	Δ	С	rule	
		Δ_0	no		
	0 · · · 9	Δ_0	no	by Propagate ⁺	
	0 · · · 9 10	Δ_0	no	by $\mathcal{T} extsf{-Propagate}\left(extsf{0}, extsf{3} \models_{EUF} extsf{10} ight)$	
	0 · · · 9 10	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)	
	0 · · · 9 10 • 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by DECIDE	
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by <i>T</i>-Ргорадате (0 , 1 , 11 ⊨ _{ЕUF} 13)	
	0 · · · 9 10 • 11 13	$\Delta_0,\ \bar{\textbf{4}}\vee\bar{\textbf{5}}\vee\textbf{11}\vee\textbf{12}$	$\overline{7} \vee \overline{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \bot$)	

$\Delta_0 := f$	$\underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = b}_{1} \land \underbrace{f(x) = b}_{1} \land$	$\underbrace{f(v_2) = v_3}_{2} \land \underbrace{f(v_1) = v_4}_{3} \land$	$1 \leq x$	$\bigvee_{\substack{x \leq 2\\5}} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
		$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a=b
	М	Δ	С	rule
		Δ_0	no	
	0 · · · 9	Δ_0	no	by Propagate ⁺
	0 · · · 9 10	Δ_0	no	by \mathcal{T} -Propagate (0, 3 $\models_{EUF} 10)$
	0 · · · 9 10	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
	0 · · · 9 10 • 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by DECIDE
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by <i>T</i> - Propagate (0 , 1 , 11 ⊨ _{EUF} 13)
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \bot$)
	0 · · · 9 10 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by Васкјимр

$\Delta_0 := \underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = b}_{1}$	$\wedge \underbrace{f(v_2) = v_3}_{2} \wedge \underbrace{f(v_1) = v_4}_{3} /$	$1 \leq x$	$\bigvee_{\underline{x} \leq 2} \land \underbrace{v_1 = 1}_{\underline{6}} \land \underbrace{a = b + 2}_{\underline{7}} \land \underbrace{v_2 = 2}_{\underline{8}} \land \underbrace{v_3 = v_4 + 3}_{\underline{9}}$
	$\underbrace{a=v_4}_{10} \underbrace{x=v_1}_{11}$	$x = v_2$	a = b
	MΔ	С	rule
	Δ_0	no	
0 · · ·	9 Δ_0	no	by Propagate ⁺
0 · · · 9	10 Δ_0	no	by \mathcal{T} -Propagate (0, 3 $\models_{EUF} 10$)
0 · · · 9	10 $\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-LEARN ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
0 · · · 9 10 •	11 $\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by DECIDE
0 · · · 9 10 • 11	13 $\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by \mathcal{T} -Propagate (0, 1, 11 \models_{EUF} 13)
0 · · · 9 10 • 11	13 $\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \bot$)
0 · · · 9 10	$\overline{13}$ Δ_0 , $\overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by ВАСКЈИМР
	$\overline{11}$ Δ_0 , $\overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by \mathcal{T} -Propagate (0, 1, $\overline{13} \models_{EUF} \overline{11}$)
	12 $\Delta_0, \bar{4} \lor \bar{5} \lor 11 \lor 12$		by PROPAGATE

$\Delta_0 :=$	$\underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = b}_{1} \land$	$\underbrace{f(v_2) = v_3}_{2} \land \underbrace{f(v_1) = v_4}_{3} \land$	$\underbrace{1 \leq x}_{4} /$	$\bigvee_{\substack{x \leq 2\\5}} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
		$\underbrace{a=v_4}_{10} \underbrace{x=v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a = b
	М	Δ	С	rule
		Δ_0	no	
	0 · · · 9	Δ_0	no	by Propagate ⁺
	0 · · · 9 10	Δ_0	no	by \mathcal{T} -Propagate (0, 3 $\models_{EUF} 10$)
	0 · · · 9 10	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
	0 · · · 9 10 • 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by DECIDE
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by <i>T</i>-Propagate (0 , 1, 11 ⊨ _{EUF} 13)
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \bot$)
	0 · · · 9 10 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by ВАСКЈИМР
	0 · · · 9 10 13 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by \mathcal{T} -Propagate (0, 1, $\overline{13} \models_{EUF} \overline{11}$)
	0 · · · 9 10 13 11 12	$\Delta_0,\ \bar{\textbf{4}}\vee\bar{\textbf{5}}\vee\textbf{11}\vee\textbf{12}$	no	by PROPAGATE
				(exercise)

UNSAT \cdots

$\Delta_0 := f$	$\underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = b}_{1} \land$	$\underbrace{f(v_2) = v_3}_2 \land \underbrace{f(v_1) = v_4}_3 \land$	$1 \leq x$	$\bigvee \underbrace{x \leq 2}_{5} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
		$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$\underbrace{x = v_2}_{12}$	a = b
	М	Δ	С	rule
		Δ_0	no	
	0 · · · 9	Δ_0	no	by Propagate ⁺
	0 · · · 9 10	Δ_0	no	by \mathcal{T} -Propagate (0, 3 $\models_{EUF} 10)$
	0 · · · 9 10	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
	0 · · · 9 10 • 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by DECIDE
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by \mathcal{T} - Propagate (0, 1, 11 $\models_{EUF} 13$)
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \bot$)
	0 · · · 9 10 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by ВАСКЈИМР
	0 · · · 9 10 13 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by \mathcal{T} - PROPAGATE (0, 1, $\overline{13} \models_{EUF} \overline{11}$)
	0 · · · 9 10 13 11 12	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by Propagate
				(exercise)
				by FAIL

$\Delta_0 := f$	$\underbrace{f(v_1) = a}_{0} \land \underbrace{f(x) = b}_{1} \land$	$\underbrace{f(v_2) = v_3}_2 \land \underbrace{f(v_1) = v_4}_3 \land$	$1 \leq x$	$\underbrace{x \leq 2}_{5} \land \underbrace{v_1 = 1}_{6} \land \underbrace{a = b + 2}_{7} \land \underbrace{v_2 = 2}_{8} \land \underbrace{v_3 = v_4 + 3}_{9}$
		$\underbrace{a = v_4}_{10} \underbrace{x = v_1}_{11}$	$x = \frac{v_2}{12}$	a = b
	М	Δ	С	rule
		Δ_0	no	
	0 · · · 9	Δ_0	no	by Propagate ⁺
	0 · · · 9 10	Δ_0	no	by \mathcal{T} -PROPAGATE (0, 3 $\models_{EUF} 10)$
	0 · · · 9 10	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by I-Learn ($\models_{LIA} \overline{4} \lor \overline{5} \lor 11 \lor 12$)
	0 · · · 9 10 • 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by DECIDE
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by <i>T</i> - Propagate (0, 1, 11 ⊨ _{EUF} 13)
	0 · · · 9 10 • 11 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	$\overline{7} \vee \overline{13}$	by \mathcal{T} -Conflict (7, 13 $\models_{EUF} \bot$)
	0 · · · 9 10 13	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by ВАСКЈИМР
	0 · · · 9 10 13 11	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by <i>T</i> - Propagate (0 , 1, 13 = _{EUF} 11)
	0 · · · 9 10 13 11 12	$\Delta_0, \ \overline{4} \lor \overline{5} \lor 11 \lor 12$	no	by PROPAGATE
				(exercise)
	UNSAT			by FAIL