CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Combining Theory Solvers with SAT solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Recall: Given a signature Σ , the most general theory consists of the class of all Σ -interpretations

This family of theories parameterized by the signature is known as the theory of *Equality with Uninterpreted Functions (EUF)* or the *empty theory*

QF_UF (conjunctions of \mathcal{T}_{EUF} -literals) can be decided with a satisfiability proof system The proof system can be implemented efficiently by a *congruence closure* procedure

Example: $f(a) \doteq a \land g(a) \neq f(a)$

Recall: Given a signature Σ , the most general theory consists of the class of all Σ -interpretations

This family of theories parameterized by the signature is known as the theory of *Equality with Uninterpreted Functions (EUF)* or the *empty theory*

QF_UF (conjunctions of \mathcal{T}_{EUF} -literals) can be decided with a satisfiability proof system

The proof system can be implemented efficiently by a congruence closure procedure

Example: $f(a) \doteq a \land g(a) \neq f(a)$

Recall: Given a signature Σ , the most general theory consists of the class of all Σ -interpretations

This family of theories parameterized by the signature is known as the theory of *Equality with Uninterpreted Functions (EUF)* or the *empty theory*

QF_UF (conjunctions of \mathcal{T}_{EUF} -literals) can be decided with a satisfiability proof system

The proof system can be implemented efficiently by a *congruence closure* procedure

Example: $f(a) \doteq a \land g(a) \neq f(a)$

Recall: Given a signature Σ , the most general theory consists of the class of all Σ -interpretations

This family of theories parameterized by the signature is known as the theory of *Equality with Uninterpreted Functions (EUF)* or the *empty theory*

QF_UF (conjunctions of T_{EUF} -literals) can be decided with a satisfiability proof system

The proof system can be implemented efficiently by a *congruence closure* procedure

Example: $f(a) \doteq a \land g(a) \neq f(a)$

Consider a set *S* and a binary relation $R \subseteq S \times S$

R is an equivalence relation if it is reflexive, symmetric, and transitive

R is a congruence relation if

• it is an equivalence relation and

• for every *n*-ary function $f : S^n \to S$, if $R(a_i, b_i)$ holds for all $a_1, \ldots, a_n, y_1, \ldots, y_n \in S$, then $R(f(a_1, \ldots, a_n), f(a_1, \ldots, a_n))$ holds as well

Is equality an congruence relation? Yes!

Consider a set *S* and a binary relation $R \subseteq S \times S$

R is an *equivalence relation* if it is reflexive, symmetric, and transitive

R is a congruence relation if

- it is an equivalence relation and
- for every *n*-ary function $f : S^n \to S$, if $R(a_i, b_i)$ holds for all $a_1, \ldots, a_n, y_1, \ldots, y_n \in S$, then $R(f(a_1, \ldots, a_n), f(a_1, \ldots, a_n))$ holds as well

Is equality an congruence relation? Yes!

Consider a set *S* and a binary relation $R \subseteq S \times S$

R is an *equivalence relation* if it is reflexive, symmetric, and transitive

R is a *congruence relation* if

- it is an equivalence relation and
- for every *n*-ary function $f : S^n \to S$, if $R(a_i, b_i)$ holds for all $a_1, \ldots, a_n, y_1, \ldots, y_n \in S$, then $R(f(a_1, \ldots, a_n), f(a_1, \ldots, a_n))$ holds as well

Consider a set *S* and a binary relation $R \subseteq S \times S$

R is an *equivalence relation* if it is reflexive, symmetric, and transitive

R is a *congruence relation* if

- it is an equivalence relation and
- for every *n*-ary function $f : S^n \to S$, if $R(a_i, b_i)$ holds for all $a_1, \ldots, a_n, y_1, \ldots, y_n \in S$, then $R(f(a_1, \ldots, a_n), f(a_1, \ldots, a_n))$ holds as well

Is equality an congruence relation? Yes!

Consider a set *S* and a binary relation $R \subseteq S \times S$

R is an *equivalence relation* if it is reflexive, symmetric, and transitive

R is a *congruence relation* if

- it is an equivalence relation and
- for every *n*-ary function $f : S^n \to S$, if $R(a_i, b_i)$ holds for all $a_1, \ldots, a_n, y_1, \ldots, y_n \in S$, then $R(f(a_1, \ldots, a_n), f(a_1, \ldots, a_n))$ holds as well

Is equality an congruence relation? Yes!

Consider a set *S* and a binary relation $R \subseteq S \times S$

The *equivalence closure R^E* of *R* is the smallest relation that

- contains *R*
- is a equivalent relation

The *congruence closure* R^C of R is the smallest relation that

- contains R
- is a congruence relation

Consider a set *S* and a binary relation $R \subseteq S \times S$

The *equivalence closure* R^{E} of *R* is the smallest relation that

- contains *R*
- is a equivalent relation

The *congruence closure R^c* of *R* is the smallest relation that

- contains R
- is a congruence relation

Consider a set *S* and a binary relation $R \subseteq S \times S$

The *equivalence closure* R^{E} of *R* is the smallest relation that

- contains *R*
- is a equivalent relation

The congruence closure R^C of R is the smallest relation that

- contains *R*
- is a congruence relation

Given a Σ -formula α , its subterm set S_{α} consists of the subterms of α that do not contain \doteq

Example: $\alpha := f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $S_{\alpha} := \{ a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a)) \}$

- 1. Partition the literals into a set of equalities *E* and a set of inequalities *D*
- 2. Construct the congruence closure E^{C} of E over S_{α}
- 3. lpha is unsatisfiable iff there exists $t_1
 eq t_2 \in D$ and $(t_1, t_2) \in E^{C}$

Given a Σ -formula α , its subterm set S_{α} consists of the subterms of α that do not contain \doteq

Example: $\alpha := f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$

- 1. Partition the literals into a set of equalities *E* and a set of inequalities *D*.
- 2. Construct the congruence closure E^{C} of E over S_{α}
- 3. lpha is unsatisfiable iff there exists $t_1
 eq t_2\in D$ and $(t_1,t_2)\in E^{\mathbb{C}}$

Given a Σ -formula α , its subterm set S_{α} consists of the subterms of α that do not contain \doteq

Example: $\alpha := f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $S_{\alpha} :\doteq \{ a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a)) \}$

- 1. Partition the literals into a set of equalities *E* and a set of inequalities *D*.
- 2. Construct the congruence closure *E^C* of *E* over *S*_a
- 3. lpha is unsatisfiable iff there exists $t_1
 eq t_2\in D$ and $(t_1,t_2)\in E^{\mathbb{C}}$

Given a Σ -formula α , its subterm set S_{α} consists of the subterms of α that do not contain \doteq

Example: $\alpha := f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $S_{\alpha} :\doteq \{ a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a)) \}$

- 1. Partition the literals into a set of equalities *E* and a set of inequalities *D*
- 2. Construct the congruence closure E^{C} of E over S_{α}
- 3. α is unsatisfiable iff there exists $t_1 \neq t_2 \in D$ and $(t_1, t_2) \in E^C$

 $\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $S_{\alpha} = \{ a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a)) \}$

Step 1: place each subterm of α into its own congruence class:

 $\{a\}, \{f(a)\}, \{f(f(a))\}, \{f(f(f(a)))\}, \{g(a)\}, \{g(f(a))\}$

$$\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$$
$$S_{\alpha} = \{ a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a)) \}$$

Step 1: place each subterm of α into its own *congruence class*:

 $\{a\}, \{f(a)\}, \{f(f(a))\}, \{f(f(f(a)))\}, \{g(a)\}, \{g(f(a))\}\}$

Step 2: For each positive literal $t_1 \doteq t_2$ in α

- *merge* the congruence classes for t_1 and t_2
- propagate the resulting congruences

 $\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ { a }, { f(a) }, { f(f(a)) }, { f(f(f(a))) }, { g(a) }, { g(f(a)) }

Step 2: For each positive literal $t_1 \doteq t_2$ in α

- *merge* the congruence classes for t_1 and t_2
- propagate the resulting congruences

 $\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ { a, f(f(a)) }, { f(a) }, { f(f(f(a))) }, { g(a) }, { g(f(a)) }

Step 2: For each positive literal $t_1 \doteq t_2$ in α

- *merge* the congruence classes for t_1 and t_2
- propagate the resulting congruences

 $\alpha = f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a))$ $\{a, f(f(a))\}, \{f(a), f(f(f(a)))\}, \{g(a)\}, \{g(f(a))\}\}$

Step 2: For each positive literal $t_1 \doteq t_2$ in α

- *merge* the congruence classes for t_1 and t_2
- propagate the resulting congruences

 $\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $\{a, f(a), f(f(a)), f(f(f(a)))\}, \{g(a)\}, \{g(f(a))\}\}$

Step 2: For each positive literal $t_1 \doteq t_2$ in α

- *merge* the congruence classes for t_1 and t_2
- propagate the resulting congruences

 $\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $\{ a, f(a), f(f(a)), f(f(f(a))) \}, \{ g(a), g(f(a)) \}$

 $\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $\{a, f(a), f(f(a)), f(f(f(a)))\}, \{g(a), g(f(a))\}$

Step 3: α is \mathcal{T}_{EUF} -unsatisfiable iff it contains a negative literal $t_1 \neq t_2$, with t_1 and t_2 in the same congruence class

Note: This algorithm can be implemented efficiently with a *union-find* data structure (CC. Chap. 9.1-9.3)

 $\alpha = f(f(a)) \doteq a \land f(f(f(a))) \doteq a \land g(a) \neq g(f(a))$ $\{a, f(a), f(f(a)), f(f(f(a)))\}, \{g(a), g(f(a))\}$

Step 3: α is \mathcal{T}_{EUF} -unsatisfiable iff it contains a negative literal $t_1 \neq t_2$, with t_1 and t_2 in the same congruence class

Note: This algorithm can be implemented efficiently with a *union-find* data structure (CC. Chap. 9.1-9.3)

Congruence Closure: still an active research problem

Downey, et al. "Variations on the common subexpressions problem", 1980. Nieuwenhuis and Oliveras, "Proof-Producing Congruence Closure", 2005. Willsey, et al. "egg: Fast and extensible equality saturation", 2021.

The congruence closure checks the satisfiability of conjunctions of \mathcal{T}_{EUF} -literals

What about

 $g(a) \doteq c \land (f(g(a)) \neq f(c) \lor g(a) \doteq d) \land c \neq d$

Theorem 1 For all theories T, the T-satisfiability of quantifier-free formulas is decidable iff the T-satisfiability of conjunctions/sets of literals is decidable.

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable.

Recall: the DNF conversion is very inefficient!

The congruence closure checks the satisfiability of conjunctions of \mathcal{T}_{EUF} -literals

What about

 $g(a) \doteq c \land (f(g(a)) \neq f(c) \lor g(a) \doteq d) \land c \neq d$

Theorem 1 For all theories \mathcal{T} , the \mathcal{T} -satisfiability of quantifier-free formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable.

Recall: the DNF conversion is very inefficient!

The congruence closure checks the satisfiability of conjunctions of \mathcal{T}_{EUF} -literals

What about

 $g(a) \doteq c \land (f(g(a)) \neq f(c) \lor g(a) \doteq d) \land c \neq d$

Theorem 1 For all theories \mathcal{T} , the \mathcal{T} -satisfiability of quantifier-free formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable.

Recall: the DNF conversion is very inefficient!

The congruence closure checks the satisfiability of conjunctions of \mathcal{T}_{EUF} -literals

What about

 $g(a) \doteq c \land (f(g(a)) \neq f(c) \lor g(a) \doteq d) \land c \neq d$

Theorem 1 For all theories \mathcal{T} , the \mathcal{T} -satisfiability of quantifier-free formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable.

Recall: the DNF conversion is very inefficient!

The congruence closure checks the satisfiability of conjunctions of \mathcal{T}_{EUF} -literals

What about

 $g(a) \doteq c \land (f(g(a)) \neq f(c) \lor g(a) \doteq d) \land c \neq d$

Theorem 1 For all theories \mathcal{T} , the \mathcal{T} -satisfiability of quantifier-free formulas is decidable iff the \mathcal{T} -satisfiability of conjunctions/sets of literals is decidable.

Proof.

Convert the formula to DNF and check if any of its disjuncts is \mathcal{T} -satisfiable.

Recall: the DNF conversion is very inefficient!

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

2. Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver
- Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

2. *Lazy*

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver
- Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

Lazy Approach for SMT

Given a quantifier-free Σ -formula φ , for each atomic formula α in φ , we associate a unique propositional variable $e(\alpha)$

The *Boolean skeleton* of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Example:

 $\varphi:=|x<0|\vee|(x+y<1\wedge\neg(x<0))\Rightarrow y<0$

Let $e(x < 0) = p_1$, $e(x + y < 1) = p_2$, $e(y < 0) = p_3$ What is the Boolean skeleton of φ ? $p_1 \lor (p_2 \land \neg p_1) \Rightarrow p_3$
Lazy Approach for SMT

Given a quantifier-free Σ -formula φ , for each atomic formula α in φ , we associate a unique propositional variable $e(\alpha)$

The *Boolean skeleton* of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Example:

$$\varphi := x < 0 \lor (x + y < 1 \land \neg(x < 0)) \Rightarrow y < 0$$

Let $e(x < 0) = p_1$, $e(x + y < 1) = p_2$, $e(y < 0) = p_3$

What is the Boolean skeleton of φ ?

Lazy Approach for SMT

Given a quantifier-free Σ -formula φ , for each atomic formula α in φ , we associate a unique propositional variable $e(\alpha)$

The *Boolean skeleton* of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Example:

$$\varphi := x < 0 \lor (x + y < 1 \land \neg(x < 0)) \Rightarrow y < 0$$

Let $e(x < 0) = p_1$, $e(x + y < 1) = p_2$, $e(y < 0) = p_3$

What is the Boolean skeleton of φ ? $p_1 \lor (p_2 \land \neg p_1) \Rightarrow p_3$

 $g(a) \doteq c \land (f(g(a)) \neq f(c) \lor g(a) \doteq d) \land c \neq d$

Simplest setting:

- Off-line SAT solver
- Non-incremental theory solver for conjunctions of equalities and disequalities
- Theory atoms (e.g., $g(a) \doteq c$) abstracted to propositional atoms (e.g., 1)

 $g(a) \doteq c \land (f(g(a)) \neq f(c) \lor g(a) \doteq d) \land c \neq d$

Simplest setting:

- Off-line SAT solver
- Non-incremental theory solver for conjunctions of equalities and disequalities
- Theory atoms (e.g., $g(a) \doteq c$) abstracted to propositional atoms (e.g., 1)

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model {1, 2, 4}
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds {1, 3, 4} unsat
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds {1, 3, 4} unsat
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \bar{2} \lor 3, \bar{4}, \bar{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds {1, 3, 4} unsat
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model {1, 3,
- Theory solver finds {1, 3, 4} unsat
- Send $\{1, \bar{2} \lor 3, \bar{4}, \bar{1} \lor 2 \lor 4, \bar{1} \lor \bar{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds {1, 3, 4} unsat
- Send $\{1, \bar{2} \lor 3, \bar{4}, \bar{1} \lor 2 \lor 4, \bar{1} \lor \bar{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds $\{1, 3, \overline{4}\}$ unsat
- Send {1, 2 ∨ 3, 4, 1 ∨ 2 ∨ 4, 1 ∨ 3 ∨ 4} to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds $\{1, 3, \overline{4}\}$ unsat
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds $\{1, 3, \overline{4}\}$ unsat
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

- Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) {1, 2, 4} unsat in T_{EUF} (meaning that 1 ∨ 2 ∨ 4 is valid in T_{EUF})
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT solver
- SAT solver returns model $\{1, 3, \overline{4}\}$
- Theory solver finds $\{1, 3, \overline{4}\}$ unsat
- Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ unsat

Done! The original formula is unsatisfiable in \mathcal{T}_{EUF}

 $f(b) \doteq a \lor f(a) \neq a$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_x to replace function application f(x)
- for each pair of introduced variables f_x , f_y , add the formula $x \doteq y \Rightarrow f_x \doteq f_y$ $f(D) \Rightarrow f_D$ $f(D) \Rightarrow f_D$

Now, atomic formulas are equalities between constants/variables

 $f(b) \doteq a \lor f(a) \neq a$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_x to replace function application f(x)
- for each pair of introduced variables f_x , f_y , add the formula $x \doteq y \Rightarrow f_x \doteq f_y$

 $f(b) \Rightarrow f_b \quad f(a) \Rightarrow f_a$ $(f_b \doteq a \lor f_a \neq a) \land (a \doteq b \Rightarrow f_a \doteq f_b)$

Now, atomic formulas are equalities between constants/variables

 $f(b) \doteq a \lor f(a) \neq a$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_x to replace function application f(x)
- for each pair of introduced variables f_x , f_y , add the formula $x \doteq y \Rightarrow f_x \doteq f_y$

 $f(b) \Rightarrow f_b \quad f(a) \Rightarrow f_a$ $(f_b \doteq a \lor f_a \neq a) \land (a \doteq b \Rightarrow f_a \doteq f_b)$

Now, atomic formulas are equalities between constants/variables

Rename f_b as c and f_a as d:

$$(f_b \doteq a \lor f_a \neq a) \land (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \lor d \neq a) \land (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable p_{x,y}
- add facts about reflexivity, symmetry, transitivity

 $(P_{c,a} \lor \neg P_{d,a}) \land (P_{a,b} \Rightarrow P_{d,c})$ $(P_{a,d} \Leftrightarrow P_{d,a} \land (P_{a,b} \Leftrightarrow P_{b,a}) \land (P_{a,c} \Leftrightarrow P_{c,a}) \land (P_{a,d} \Leftrightarrow P_{d,a}) \land (P_{a,b} \Leftrightarrow P_{d,a}) \land (P_{a,c} \land P_{c,d}) \land (P_{a,d} \land P_{d,a}) \land ((P_{a,c} \land P_{c,d}) \Rightarrow P_{a,d}) \land ((P_{a,c} \land P_{c,d}) \Rightarrow (P_{a,c} \land P_{c,d}) \land ((P_{a,c} \land P_{c,d}) \Rightarrow (P_{a,c}) \land ((P_{a,c} \land P_{c,d}) \land ((P_{a,c} \land P_{c,d})$

The resulting propositional formula is equisatisfiable with the original *T_{EUF}-*formula Note: Not all the transitivity cases are needed

Rename f_b as c and f_a as d:

$$(f_b \doteq a \lor f_a \neq a) \land (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \lor d \neq a) \land (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x,y}$
- add facts about reflexivity, symmetry, transitivity

 $(p_{c,a} \lor \neg p_{d,a}) \land (p_{a,b} \Rightarrow p_{d,c})$

 $P_{a,a} \land P_{b,b} \land P_{c,c} \land P_{d,d} \land (P_{a,b} \Leftrightarrow P_{b,a}) \land (P_{a,c} \Leftrightarrow P_{c,a}) \land (P_{a,d} \Leftrightarrow P_{d,a}) \land \cdots \land ((P_{a,b} \land P_{b,c}) \Rightarrow P_{a,c}) \land ((P_{a,c} \land P_{c,d}) \Rightarrow P_{a,d}) \land \cdots$

The resulting propositional formula is equisatisfiable with the original *T_{EUF}-*formula **Note:** Not all the transitivity cases are needed

Rename f_b as c and f_a as d:

$$(f_b \doteq a \lor f_a \neq a) \land (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \lor d \neq a) \land (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x,y}$
- add facts about reflexivity, symmetry, transitivity

 $(p_{c,a} \lor \neg p_{d,a}) \land (p_{a,b} \Rightarrow p_{d,c})$ $\land p_{a,a} \land p_{b,b} \land p_{c,c} \land p_{d,d} \land (p_{a,b} \Leftrightarrow p_{b,a}) \land (p_{a,c} \Leftrightarrow p_{c,a}) \land (p_{a,d} \Leftrightarrow p_{d,a}) \land \cdots$ $\land ((p_{a,b} \land p_{b,c}) \Rightarrow p_{a,c}) \land ((p_{a,c} \land p_{c,d}) \Rightarrow p_{a,d}) \land \cdots$

The resulting propositional formula is equisatisfiable with the original T_{EUF} -formula

Note: Not all the transitivity cases are needed

Rename f_b as c and f_a as d:

$$(f_b \doteq a \lor f_a \neq a) \land (a \doteq b \Rightarrow f_a \doteq f_b)$$

becomes

$$(c \doteq a \lor d \neq a) \land (a \doteq b \Rightarrow d \doteq c)$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x,y}$
- add facts about reflexivity, symmetry, transitivity

 $(p_{c,a} \lor \neg p_{d,a}) \land (p_{a,b} \Rightarrow p_{d,c})$ $\land p_{a,a} \land p_{b,b} \land p_{c,c} \land p_{d,d} \land (p_{a,b} \Leftrightarrow p_{b,a}) \land (p_{a,c} \Leftrightarrow p_{c,a}) \land (p_{a,d} \Leftrightarrow p_{d,a}) \land \cdots$ $\land ((p_{a,b} \land p_{b,c}) \Rightarrow p_{a,c}) \land ((p_{a,c} \land p_{c,d}) \Rightarrow p_{a,d}) \land \cdots$

The resulting propositional formula is equisatisfiable with the original T_{EUF} -formula **Note:** Not all the transitivity cases are needed

Discussion: eager vs. lazy approach

Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

Discussion: eager vs. lazy approach

Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

Discussion: eager vs. lazy approach

• Eager

- Can always use the best SAT solver off the shelf
- Requires care in encoding
- Tends not to scale well
- Lazy
 - Theory-specific reasoning
 - Designing new theory solvers can be challenging
 - Might require extension of a SAT solver for more efficiency interplay with theory solver

Several enhancements are possible to increase efficiency:

• Check \mathcal{T} -satisfiability only of full propositional model

Check $\mathcal T$ -satisfiability of partial assignment M as it grows

- If M is T-unsatisfiable, add ¬M as a clause
 If M is T-unsatisfiable, identify a T-unsatisfiable subset M₀
 add ¬M₀ as a clause
- If M is \mathcal{T} -unsatisfiable, add clause and restart

If M is T-unsatisfiable, backtrack to some point where the assignment was still T-satisfiable

Several enhancements are possible to increase efficiency:

- Check *T*-satisfiability only of full propositional model
 Check *T*-satisfiability of partial assignment *M* as it grows
- If *M* is *T*-unsatisfiable, add ¬*M* as a clause

If *M* is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset *M*₀ of *M* and add $\neg M_0$ as a clause

• If *M* is *T*-unsatisfiable, add clause and restart

If M is T-unsatisfiable, backtrack to some point where the assignment was still T-satisfiable

Several enhancements are possible to increase efficiency:

- Check *T*-satisfiability only of full propositional model
 Check *T*-satisfiability of partial assignment *M* as it grows
- If *M* is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause

If *M* is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset M_0 of *M* and add $\neg M_0$ as a clause

• If *M* is *T*-unsatisfiable, add clause and restart

If *M* is \mathcal{T} -unsatisfiable, backtrack to some point where the assignment was still \mathcal{T} -satisfiable

Several enhancements are possible to increase efficiency:

- Check *T*-satisfiability only of full propositional model
 Check *T*-satisfiability of partial assignment *M* as it grows
- If *M* is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause

If *M* is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset M_0 of *M* and add $\neg M_0$ as a clause

 If *M* is *T*-unsatisfiable, add clause and restart
 If *M* is *T*-unsatisfiable, backtrack to some point where the assignment was still *T*-satisfiable

Several enhancements are possible to increase efficiency:

- Check *T*-satisfiability only of full propositional model
 Check *T*-satisfiability of partial assignment *M* as it grows
- If *M* is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause

If *M* is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset M_0 of *M* and add $\neg M_0$ as a clause

• If M is T-unsatisfiable, add clause and restart

If M is $\mathcal T$ -unsatisfiable, backtrack to some point where the assignment was still $\mathcal T$ -satisfiable

Several enhancements are possible to increase efficiency:

- Check *T*-satisfiability only of full propositional model
 Check *T*-satisfiability of partial assignment *M* as it grows
- If *M* is \mathcal{T} -unsatisfiable, add $\neg M$ as a clause

If *M* is \mathcal{T} -unsatisfiable, identify a \mathcal{T} -unsatisfiable subset M_0 of *M* and add $\neg M_0$ as a clause

• If M is T-unsatisfiable, add clause and restart

If *M* is \mathcal{T} -unsatisfiable, backtrack to some point where the assignment was still \mathcal{T} -satisfiable

Lazy Approach – Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

- SAT and theory solvers communicate via a simple API
- SMT for a new theory only requires new theory solver
- An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

Lazy Approach – Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

- SAT and theory solvers communicate via a simple API
- SMT for a new theory only requires new theory solver
- An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

Lazy Approach – Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

- SAT and theory solvers communicate via a simple API
- SMT for a new theory only requires new theory solver
- An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a satisfiability proof system like those for Abstract DPLL and Abstract CDCL

Review: Abstract DPLL

States:

UNSAT

 $\langle M, \Delta \rangle$

where

- M is a sequence of literals and decision points

 denoting a partial variable assignment
- Δ is a set of clauses denoting a CNF formula

Review: Abstract DPLL

States:

UNSAT $\langle M, \Delta \rangle$

where

- M is a sequence of literals and decision points denoting a partial variable assignment
- Δ is a set of clauses denoting a CNF formula

Note: When convenient, we treat *M* as a set

Provided *M* contains no complementary literals it determines the assignment

 $v_M(p) = \begin{cases} \text{true} & \text{if } p \in M \\ \text{false} & \text{if } \neg p \in M \\ \text{undef} & \text{otherwise} \end{cases}$
Review: Abstract DPLL

States:

UNSAT

 $\langle M, \Delta \rangle$

where

- M is a sequence of literals and decision points

 denoting a partial variable assignment
- Δ is a set of clauses denoting a CNF formula

Notation: If $M = M_0 \bullet M_1 \bullet \cdots \bullet M_n$ where each M_i contains no decision points

- *M_i* is decision level *i* of *M*
- $M^{[i]}$ denotes the subsequence $M_0 \bullet \cdots \bullet M_i$, from decision level 0 to decision level i

Review: Abstract DPLL

States:

UNSAT

 $\langle M, \Delta \rangle$

Initial state:

• $\langle (), \Delta_0 \rangle$, where Δ_0 is to be checked for satisfiability

Review: Abstract DPLL

States:

UNSAT

 $\langle M, \Delta \rangle$

Initial state:

• $\langle (), \Delta_0 \rangle$, where Δ_0 is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: Abstract CDCL

States:

UNSAT $\langle M, \Delta, C \rangle$

where

- *M* is a sequence of literals and decision points (denoting a partial truth assignment)
- Δ is a set of clauses denoting a CNF formula
- *C* is either no or a *conflict clause*

Initial state:

• $((), \Delta_0, no)$, where Δ_0 is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- $(M, \Delta_n, \mathbf{no})$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: Abstract CDCL

States:

UNSAT $\langle M, \Delta, C \rangle$

where

- *M* is a sequence of literals and decision points (denoting a partial truth assignment)
- Δ is a set of clauses denoting a CNF formula
- *C* is either no or a *conflict clause*

Initial state:

• $\langle (), \Delta_0, no \rangle$, where Δ_0 is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, \mathbf{no} \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: Abstract CDCL

States:

UNSAT $\langle M, \Delta, C \rangle$

where

- *M* is a sequence of literals and decision points (denoting a partial truth assignment)
- Δ is a set of clauses denoting a CNF formula
- *C* is either no or a *conflict clause*

Initial state:

• $\langle (), \Delta_0, no \rangle$, where Δ_0 is to be checked for satisfiability

- UNSAT if Δ_0 is unsatisfiable
- $\langle M, \Delta_n, no \rangle$ otherwise, where Δ_n is equisatisfiable with Δ_0 and satisfied by M

Review: CDCL proof rules

We are going to extend this abstract framework to lazy SMT

Review: CDCL proof rules

We are going to extend this abstract framework to lazy SMT

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

- Δ contains quantifier-free clauses in some theory \mathcal{T}
- M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the Boolean skeleton of △, given by a mapping from theory literals to propositional literals
- The proofs system is augmented with SMT-specific rules: \mathcal{T} -Conflict, \mathcal{T} -PROPAGATE and \mathcal{T} -EXPLAIN
- Invariant: either $C \neq no$ or $\Delta \models_{\mathcal{T}} C$ and $M \models_p \neg C$

SMT-level Rules

At SAT level:

Conflict
$$\frac{\mathsf{C} = \mathsf{no} \qquad \{l_1, \dots, l_n\} \in \Delta \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M}}{\mathsf{C} := \{l_1, \dots, l_n\}}$$

At SMT level:

$$\mathcal{T}\text{-Conflict} \frac{\mathsf{C} = \mathsf{no} \qquad \overline{l}_1 \wedge \cdots \wedge \overline{l}_n \models_{\mathcal{T}} \bot \qquad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M}}{\mathsf{C} := \{l_1, \dots, l_n\}}$$

If a set of literals in M are unsatisfiable in T, make their negation a conflict clause

SMT-level Rules

At SAT level:

$$\mathbf{PROPAGATE} \begin{array}{c} \{l_1, \dots, l_n, l\} \in \Delta \quad \overline{l}_1, \dots, \overline{l}_n \in \mathsf{M} \quad l, \overline{l} \notin \mathsf{M} \\ \mathbf{M} := \mathsf{M} \ l \end{array}$$

At SMT level:

$$\mathcal{T}\text{-}\mathsf{PROPAGATE} \xrightarrow{l \in \mathtt{Lits}(\Delta) \quad \mathsf{M} \models_{\mathcal{T}} l \quad l, \overline{l} \notin \mathsf{M}}_{\mathsf{M} := \mathsf{M} l}$$

If M entails some literal l in T, extend it with l

SMT-level Rules

At SAT level:

Explain
$$\frac{\mathsf{C} = \{l\} \cup D \quad \{l_1, \dots, l_n, \overline{l}\} \in \Delta \quad \overline{l}_1, \dots, \overline{l}_n, \overline{l} \in \mathsf{M} \quad \overline{l}_1, \dots, \overline{l}_n \prec_\mathsf{M} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup D}$$

At SMT level:

$$\mathcal{T}\text{-Explain} \frac{\mathsf{C} = \{l\} \cup D \qquad \overline{l}_1 \wedge \dots \wedge \overline{l}_n \models_{\mathcal{T}} \overline{l} \qquad \overline{l}_1, \dots, \overline{l}_n \prec_{\mathsf{M}} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup D}$$

If the complement \overline{l} of a literal in the conflict clause is entailed in \mathcal{T} by some literals $\overline{l}_1, \ldots, \overline{l}_n$ at lower decision levels, derive a new conflict clause by resolution with $\{l_1, \ldots, l_n, \overline{l}\}$

CDCL Modulo Theories proof rules

 \mathcal{T} -Conflict is enough to model the naive integration of SAT solvers and theory solvers seen in the earlier EUF example

g(a)	$a) \stackrel{.}{=} c \land f(g(a)) \stackrel{.}{\neq} f(c) \lor g$	$g(a) \doteq d$	$\land c \neq d$
	<u>1</u> <u><u>ž</u></u>	3	

g(d	$f(g(a)) \stackrel{i}{=} c \land f(g(a))$	$\underbrace{) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3}$	$\wedge \underbrace{c \neq d}_{\overline{4}}$
М	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	

g(a	$a) \doteq c \land$	$\underbrace{f(g(a)) \neq f(c)}_{-} \lor \underbrace{f(c)}_{+}$	$g(a) \doteq d$	$\wedge \underbrace{c \neq d}_{\overline{z}}$
М	1	2	3	4 rule
IVI	$\underline{1}, \overline{2} \lor 3, \overline{4}$		no	Tute
14	$1, \bar{2} \lor 3, \bar{4}$		no	by Propagate ⁺

<u>g</u> (a	$a) \doteq c \wedge$	$f(g(a)) \neq f(c) \lor g$	$g(a) \doteq d$	$\land c \neq d$
	1	Ī	3	
М	Δ		С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$		no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$		no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$		no	by Decide

g(a	$a) \doteq c \wedge$	$f(g(a)) \neq f(c) \lor$	$g(a) \doteq d$	$\wedge c \neq d$
	1	Ī	3	4
М	Δ		С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$		no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$		no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$		no	by Decide
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$		$\bar{1} \lor 2 \lor 4$	by <i>T</i>-Сонflicт

$\underline{g(a) \doteq c} \wedge \underline{f(g(a))}$	$(a)) \neq f(c) \forall \underbrace{g(a) \doteq d}_{3}$	$\wedge \underbrace{c \neq d}_{\overline{d}}$
MΔ	2 C	rule
$1, \bar{2} \lor 3, \bar{4}$	no	
$1 \bar{4} 1, \bar{2} \lor 3, \bar{4}$	no	by Propagate ⁺
$1\bar{4}\bullet\bar{2}$ 1, $\bar{2}\lor3$, $\bar{4}$	no	by Decide
$1\bar{4}\bullet\bar{2}$ 1, $\bar{2}\lor3$, $\bar{4}$	$\overline{1} \lor 2 \lor 4$	by \mathcal{T} -Сомflict
$1 \bar{4} \bullet \bar{2}$ 1, $\bar{2} \lor 3$, $\bar{4}$, $\bar{1} \lor 2$	\lor 4 $\overline{1} \lor 2 \lor 4$	by Learn

g(a	$f(g(a)) \doteq c \land f(g(a)) \neq f(c) \lor g$	$g(a) \doteq d$	$\land c \neq d$
	1 2	3	-
М	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\bar{1} \lor 2 \lor 4$	by <i>T</i>-Conflicт
1 4 • 2	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	$\overline{1} \lor 2 \lor 4$	by LEARN
14	$1,\ \bar{2}\vee 3,\ \bar{4},\ \bar{1}\vee 2\vee 4$	no	by Restart

g(a)	$f(g(a)) \stackrel{.}{=} c \land f(g(a)) \stackrel{.}{\neq} f(c) \lor g$	$g(a) \doteq d$	$\wedge \underbrace{c \neq d}_{}$
	1 ž	3	$\frac{1}{4}$
М	Δ	С	rule
	$1, \ \bar{2} \lor 3, \ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\bar{1} \lor 2 \lor 4$	by <i>T</i>-Сонflicт
14.2	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	$\overline{1} \lor 2 \lor 4$	by LEARN
14	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	no	by Restart
1 4 2 3	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	no	by Propagate ⁺

g(a	$f(g(a)) \doteq c \wedge f(g(a)) \neq f(c) \vee g$	$g(a) \doteq d$	$\wedge c \neq d$
	1 2	3	4
М	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \lor 2 \lor 4$	by <i>T</i>-Conflicт
14•2	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	$\overline{1} \lor 2 \lor 4$	by Learn
14	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	no	by Restart
1 4 2 3	1, $\overline{2} \lor 3$, $\overline{4}$, $\overline{1} \lor 2 \lor 4$	no	by Propagate ⁺
1 4 2 3	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	$\overline{1} \vee \overline{3} \vee 4$	by <i>T</i>-Conflicт
1 4 2 3	1, $\bar{2} \vee 3$, $\bar{4}$, $\bar{1} \vee 2 \vee 4$, $\bar{1} \vee \bar{3} \vee 4$	no	by LEARN

g(a)	$f(g(a)) \stackrel{.}{=} c \land f(g(a)) \stackrel{.}{\neq} f(c) \lor g$	$g(a) \doteq d$	$\wedge c \neq d$
	1 <u>ž</u>	3	$\dot{\overline{4}}$
М	Δ	С	rule
	$1, \ \bar{2} \lor 3, \ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\bar{1} \lor 2 \lor 4$	by <i>T</i>-Conflicт
14.2	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	$\bar{1} \lor 2 \lor 4$	by Learn
14	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	no	by Restart
1 4 2 3	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	no	by Propagate ⁺
1 4 2 3	$1, \ \overline{2} \lor 3, \ \overline{4}, \ \overline{1} \lor 2 \lor 4$	$\bar{1} \vee \bar{3} \vee 4$	by <i>T</i>-Сонflicт
1 4 2 3	1, $\bar{2} \lor 3$, $\bar{4}$, $\bar{1} \lor 2 \lor 4$, $\bar{1} \lor \bar{3} \lor 4$	no	by LEARN
	UNSAT		by FAIL

- an *on-line* SAT engine that accept new input clauses on the fly
- an incremental and explicating *T*-solver that can

- an *on-line* SAT engine that accept new input clauses on the fly
- an *incremental and explicating* \mathcal{T} -solver that can
 - 1. check the \mathcal{T} -satisfiability of M as it is extended and
 - 2. identify a small \mathcal{T} -unsatisfiable subset of M once M becomes \mathcal{T} -unsatisfiable

- an *on-line* SAT engine that accept new input clauses on the fly
- an *incremental and explicating* T-solver that can
 - 1. check the $\mathcal{T}\text{-satisfiability of }\mathsf{M}$ as it is extended and
 - 2. identify a small ${\mathcal T}$ -unsatisfiable subset of M once M becomes ${\mathcal T}$ -unsatisfiable

- an *on-line* SAT engine that accept new input clauses on the fly
- an *incremental and explicating* T-solver that can
 - 1. check the $\mathcal{T}\text{-satisfiability of }\mathsf{M}$ as it is extended and
 - 2. identify a small \mathcal{T} -unsatisfiable subset of M once M becomes \mathcal{T} -unsatisfiable

 $\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$

 M
 Δ C
 rule

 1, $\overline{2} \lor 3$, $\overline{4}$ no
 by Propagate⁺

 1 $\overline{4}$ 1, $\overline{2} \lor 3$, $\overline{4}$ no
 by Decide

 1 $\overline{4} \bullet \overline{2}$ 1, $\overline{2} \lor 3$, $\overline{4}$ no
 by Decide

 1 $\overline{4} \bullet \overline{2}$ 1, $\overline{2} \lor 3$, $\overline{4}$ $\overline{1} \lor 2$ by \mathcal{T} -Conflict

 1 $\overline{4} \circ \overline{2}$ 1, $\overline{2} \lor 3$, $\overline{4}$ no
 by BackJump

 1 $\overline{4} 2 3$ 1, $\overline{2} \lor 3$, $\overline{4}$ no
 by Propagate

 1 $\overline{4} 2 3$ 1, $\overline{2} \lor 3$, $\overline{4}$ no
 by Propagate

 1 $\overline{4} 2 3$ 1, $\overline{2} \lor 3$, $\overline{4}$ $\overline{1} \lor \overline{3} \lor 4$ by \mathcal{T} -Conflict

 UNSAT
 UNSAT
 by Fail
 $\overline{5} \lor 5$ $\overline{5} \lor 5$

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

Μ	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

М	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

$$\underbrace{\frac{M \ \Delta}{1, \overline{2} \lor 3, \overline{4} \quad no}_{1 \overline{4}, 1, \overline{2} \lor 3, \overline{4} \quad no}_{1 \overline{4}, 2 \overline{2} \lor 3, \overline{4} \quad no}_{1 \overline{4} \lor \overline{2}, 1, \overline{2} \lor 3, \overline{4} \quad no}_{1 \overline{4} \lor \overline{2}, 1, \overline{2} \lor 3, \overline{4} \quad no}_{0 \text{ by Propagate}^+}_{0 \text{ by Decide}}$$

$$\underbrace{14 \ \bullet \overline{2}, 1, \overline{2} \lor 3, \overline{4}, no}_{0 \text{ by Decide}}_{0 \text{ by BackJump}}_{0 \text{ by BackJump}}_{0 \text{ by BackJump}}_{0 \text{ by BackJump}}_{0 \text{ by Decide}}_{0 \text{ by Conflict}}_{0 \text{ by Decide}}_{0 \text{ by Decide}}_{0 \text{ by Conflict}}_{0 \text{ by Decide}}_{0 \text{ by Conflict}}_{0 \text{ by Decide}}_{0 \text{ by Conflict}}_{0 \text{ by Decide}}_{0 \text{$$

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

Μ	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \lor 2$	by $\mathcal{T} extsf{-Conflict}$

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

Μ	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \lor 2$	by \mathcal{T} -Сонflict
142	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Васкјимр

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

Μ	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \lor 2$	by $\mathcal{T} extsf{-Conflict}$
142	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Васкјимр
1423	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate

$$\underbrace{g(a) \doteq c}_{1} \land \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} \land \underbrace{c \neq d}_{\overline{4}}$$

М	Δ	С	rule
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
1 4 • 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \lor 2$	by $\mathcal{T} extsf{-Conflict}$
1 4 2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Васкјимр
1 4 2 3	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate
1 4 2 3	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \vee \overline{3} \vee 4$	by $\mathcal{T} extsf{-Conflict}$
A Better Lazy Approach

$$\underbrace{\begin{array}{ccc} \underline{g(a) \doteq c} \\ 1 \end{array}}_{1} & \wedge & \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \lor \underbrace{g(a) \doteq d}_{3} & \wedge & \underbrace{c \neq d}_{\overline{4}} \\ \\ & \underbrace{\begin{array}{ccc} M & \Delta \\ \hline 1, \ \overline{2} \lor 3, \ \overline{4} & \text{no} \\ \hline 1, \ \overline{2} \lor 3, \ \overline{4} & \text{no} \end{array}}_{1} \\ \end{array}$$

IVI	Δ	C	rute
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Decide
14.2	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \lor 2$	by \mathcal{T} -Сомflict
142	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Васкјимр
1 4 2 3	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate
1 4 2 3	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\overline{1} \vee \overline{3} \vee 4$	by \mathcal{T} -Сомflict
UNSAT			by FAIL

Lazy Approach – Strategies

Ignoring **RESTART** (for simplicity), a common strategy is to apply the rules using the following priorities:

- 1. If a clause is (propositionally) falsified by the current assignment M, apply **Conflic**[™]
- 2. If M is T-unsatisfiable, apply T-Conflict
- 3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate
- 4. Apply **PROPAGATE**
- 5. Apply **Decide**

Note: Depending on the cost of checking the \mathcal{T} -satisfiability of M, Step (2) can be applied with lower frequency or priority

Lazy Approach – Strategies

Ignoring **RESTART** (for simplicity), a common strategy is to apply the rules using the following priorities:

- If a clause is (propositionally) falsified by the current assignment M, apply Conflict
- 2. If M is T-unsatisfiable, apply T-Conflict
- 3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate
- 4. Apply **PROPAGATE**
- 5. Apply **Decide**

Note: Depending on the cost of checking the T-satisfiability of M, Step (2) can be applied with lower frequency or priority

Theory Propagation

With T-Conflict as the only theory rule, the theory solver is used just to validate the choices of the SAT engine

With $\mathcal T$ - PROPAGATE and $\mathcal T$ - EXPLAIN, it can also be used to guide the engine's search

$$\mathcal{T}\text{-}\mathsf{Propagate} \xrightarrow{l \in \operatorname{Lits}(\Delta) \qquad \mathsf{M} \models_{\mathcal{T}} l \qquad l, l \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} l}$$
$$\mathsf{M} := \mathsf{M} l$$
$$\mathcal{T}\text{-}\mathsf{Explain} \xrightarrow{\mathsf{C} = \{l\} \cup \mathsf{D} \qquad \overline{l}_{1} \land \dots \land \overline{l}_{n} \models_{\mathcal{T}} \overline{l} \qquad \overline{l}_{1}, \dots, \overline{l}_{n} \prec_{\mathsf{M}} \overline{l}}{\mathsf{C} := \{l_{1}, \dots, l_{n}\} \cup \mathsf{D}}$$

Theory Propagation

With T-Conflict as the only theory rule, the theory solver is used just to validate the choices of the SAT engine

With T-**PROPAGATE** and T-**EXPLAIN**, it can also be used to guide the engine's search

$$\mathcal{T}\text{-}\mathsf{PROPAGATE} \frac{l \in \mathsf{Lits}(\Delta) \quad \mathsf{M} \models_{\mathcal{T}} l \quad l, l \notin \mathsf{M}}{\mathsf{M} := \mathsf{M} l}$$
$$\mathcal{T}\text{-}\mathsf{Explain} \frac{\mathsf{C} = \{l\} \cup \mathsf{D} \quad \overline{l}_1 \land \dots \land \overline{l}_n \models_{\mathcal{T}} \overline{l} \quad \overline{l}_1, \dots, \overline{l}_n \prec_{\mathsf{M}} \overline{l}}{\mathsf{C} := \{l_1, \dots, l_n\} \cup \mathsf{D}}$$

Μ	Δ	С	rule	
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no		

Μ	Δ	С	rule	
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no		
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺	
142	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by $\mathcal{T} extsf{-Propagate}$	(as 1 ⊨ _T 2)
1 4 2 3	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by $\mathcal{T} extsf{-Propagate}$	$(as 1, \bar{4} \models_{\mathcal{T}} \bar{3})$

Μ	Δ	С	rule	
	$1,\ \bar{2}\vee 3,\ \bar{4}$	no		
14	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by Propagate ⁺	
142	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by $\mathcal{T} extsf{-Propagate}$	(as 1 $\models_{\mathcal{T}}$ 2)
1 4 2 3	$1,\ \bar{2}\vee 3,\ \bar{4}$	no	by $\mathcal{T} extsf{-Propagate}$	$(as 1, \bar{4} \models_{\mathcal{T}} \bar{3})$
1 4 2 3	$1,\ \bar{2}\vee 3,\ \bar{4}$	$\bar{2} \lor 3$	by Conflicт	

- With *exhaustive* theory propagation, every assignment M is *T*-satisfiable (since *Ml* is *T*-unsatisfiable iff *M* |=_{*T*}*l*)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting *T*-entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting \mathcal{T} -entailed equalities is cheap but detecting \mathcal{T} -entailed disequalities is quite expensive
- If T-**PROPAGATE** is not applied exhaustively, T-**Conflict** is needed to repair T-unsatisfiable assignments

- With *exhaustive* theory propagation, every assignment M is *T*-satisfiable (since *Ml* is *T*-unsatisfiable iff *M* ⊨_{*T*}*l*)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting \mathcal{T} -entailed equalities is cheap but detecting \mathcal{T} -entailed disequalities is quite expensive
- If T-**PROPAGATE** is not applied exhaustively, T-**Conflict** is needed to repair T-unsatisfiable assignments

- With *exhaustive* theory propagation, every assignment M is *T*-satisfiable (since *Ml* is *T*-unsatisfiable iff *M* ⊨_{*T*}*l*)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting *T*-entailed equalities is cheap but detecting *T*-entailed disequalities is quite expensive
- If T-**PROPAGATE** is not applied exhaustively, T-**Conflict** is needed to repair T-unsatisfiable assignments

- With *exhaustive* theory propagation, every assignment M is *T*-satisfiable (since *Ml* is *T*-unsatisfiable iff *M* ⊨_{*T*}*l*)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting \mathcal{T} -entailed equalities is cheap but detecting \mathcal{T} -entailed disequalities is quite expensive
- If T-**PROPAGATE** is not applied exhaustively, T-**Conflict** is needed to repair T-unsatisfiable assignments

- With *exhaustive* theory propagation, every assignment M is *T*-satisfiable (since *Ml* is *T*-unsatisfiable iff *M* ⊨_{*T*}*l*)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T} -entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting \mathcal{T} -entailed equalities is cheap but detecting \mathcal{T} -entailed disequalities is quite expensive
- If \mathcal{T} -**PROPAGATE** is not applied exhaustively, \mathcal{T} -**Conflict** is needed to repair \mathcal{T} -unsatisfiable assignments

$$\underbrace{a \doteq b}_{1} \land \underbrace{a \doteq c}_{2} \lor \underbrace{c \doteq b}_{3} \land \underbrace{a \neq b}_{\overline{1}} \lor \underbrace{f(a) \neq f(c)}_{\overline{4}} \land \underbrace{c \neq b}_{\overline{3}} \lor \underbrace{g(a) \doteq g(c)}_{5}$$
$$\Delta_{0} := 1, \ 2 \lor 3, \ \overline{1} \lor \overline{4}, \ \overline{3} \lor 5$$

Scenario 1: propagating only T-entailed equalities (no disequalities)

$$\underbrace{a \doteq b}_{1} \land \underbrace{a \doteq c}_{2} \lor \underbrace{c \doteq b}_{3} \land \underbrace{a \neq b}_{\overline{1}} \lor \underbrace{f(a) \neq f(c)}_{\overline{4}} \land \underbrace{c \neq b}_{\overline{3}} \lor \underbrace{g(a) \doteq g(c)}_{5}$$
$$\Delta_{0} := 1, \ 2 \lor 3, \ \overline{1} \lor \overline{4}, \ \overline{3} \lor 5$$

Scenario 1: propagating only T-entailed equalities (no disequalities)

$$\underbrace{a \doteq b}_{1} \land \underbrace{a \doteq c}_{2} \lor \underbrace{c \doteq b}_{3} \land \underbrace{a \neq b}_{\overline{1}} \lor \underbrace{f(a) \neq f(c)}_{\overline{4}} \land \underbrace{c \neq b}_{\overline{3}} \lor \underbrace{g(a) \doteq g(c)}_{5}$$

$$\Delta_{0} := 1, 2 \lor 3, \overline{1} \lor \overline{4}, \overline{3} \lor 5$$

$$\underbrace{M \land C \quad rule}_{\overline{\Delta_{0}} \quad no}_{1\overline{4}} \land \Delta_{0} \quad no \quad by \mathsf{Propagate}^{+}_{1\overline{4}} \circ 2 \land \Delta_{0} \quad \overline{2} \lor 4 \quad by \mathcal{T}\text{-Conflict} \quad (as 2, \overline{4} \models_{\mathcal{T}} \bot)_{1\overline{4}\overline{2}\overline{3}} \land \Delta_{0} \quad \overline{2} \lor 4 \quad by \mathcal{T}\text{-Conflict} \quad (as 1, \overline{3}, \overline{4} \models_{\mathcal{T}} \bot)_{UNSAT} \quad by \mathsf{Fall}$$

Scenario 2: propagating \mathcal{T} -entailed equalities and disequalities

$$\underbrace{a \doteq b}_{1} \land \underbrace{a \doteq c}_{2} \lor \underbrace{c \doteq b}_{3} \land \underbrace{a \neq b}_{\overline{1}} \lor \underbrace{f(a) \neq f(c)}_{\overline{4}} \land \underbrace{c \neq b}_{\overline{3}} \lor \underbrace{g(a) \doteq g(c)}_{5}$$
$$\Delta_{0} := 1, \ 2 \lor 3, \ \overline{1} \lor \overline{4}, \ \overline{3} \lor 5$$

Scenario 2: propagating \mathcal{T} -entailed equalities and disequalities

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:

(1) PROPAGATE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL

(2) \mathcal{T} -Conflict, \mathcal{T} -Propagate, \mathcal{T} -Explain

```
(3) LEARN, FORGET, RESTART
```

Basic CDCL Modulo Theories = (1) + (2)CDCL Modulo Theories $\stackrel{\text{def}}{=} (1) + (2) + (3)$

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:

(1) PROPAGATE, DECIDE, CONFLICT, EXPLAIN, BACKJUMP, FAIL

(2) \mathcal{T} -Conflict, \mathcal{T} -Propagate, \mathcal{T} -Explain

(3) LEARN, FORGET, RESTART

Basic CDCL Modulo Theories $\stackrel{\text{def}}{=}$ (1) + (2)

CDCL Modulo Theories
$$\stackrel{\text{def}}{=}$$
 (1) + (2) + (3)

Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply *Execution:* a (single-branch) derivation tree starting with $M = \emptyset$ and C = no *Exhausted execution:* execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN/FORGET** are applied only finitely many times and (ii) **RESTART** is applied with increased periodicity is finite.

Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply *Execution:* a (single-branch) derivation tree starting with $M = \emptyset$ and C = no *Exhausted execution:* execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN/FORGET** *are applied only finitely many times and (ii)* **RESTART** *is applied with increased periodicity is finite.*

Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply *Execution:* a (single-branch) derivation tree starting with $M = \emptyset$ and C = no *Exhausted execution:* execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN/FORGET** *are applied only finitely many times and (ii)* **RESTART** *is applied with increased periodicity is finite.*

Lemma 3

Every exhausted execution ends with either C = no or UNSAT.

Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply *Execution:* a (single-branch) derivation tree starting with $M = \emptyset$ and C = no *Exhausted execution:* execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN/FORGET** *are applied only finitely many times and (ii)* **RESTART** *is applied with increased periodicity is finite.*

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with UNSAT, the clause set Δ_0 is T-unsatisfiable.

Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply *Execution:* a (single-branch) derivation tree starting with $M = \emptyset$ and C = no *Exhausted execution:* execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) **LEARN/FORGET** *are applied only finitely many times and (ii)* **RESTART** *is applied with increased periodicity is finite.*

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with UNSAT, the clause set Δ_0 is T-unsatisfiable.

Theorem 4 (Refutation Completeness)

For every exhausted execution starting with $\Delta = \Delta_0$ and ending with C = no, the clause set Δ_0 is \mathcal{T} -satisfiable; specifically, M is \mathcal{T} -satisfiable and M $\models_p \Delta_0$.

$CDCL(\mathcal{T})$ Architecture

The approach formalized so far can be implemented with a simple architecture originally named DPLL(T) but currently known as CDCL(T)

 $CDCL(\mathcal{T}) = CDCL(X)$ engine + \mathcal{T} -solver

$CDCL(\mathcal{T})$ Architecture

The approach formalized so far can be implemented with a simple architecture originally named DPLL(T) but currently known as CDCL(T)

```
CDCL(\mathcal{T}) = CDCL(X) engine + \mathcal{T}-solver
```

CDCL(X):

- Very similar to a SAT solver, enumerates Boolean models
- Not allowed: pure literal rule (and other SAT specific optimizations)
- Required: incremental addition of clauses
- Desirable: partial model detection

$CDCL(\mathcal{T})$ Architecture

The approach formalized so far can be implemented with a simple architecture originally named DPLL(T) but currently known as CDCL(T)

```
CDCL(\mathcal{T}) = CDCL(X) engine + \mathcal{T}-solver
```

 \mathcal{T} -solver:

- Checks the T-satisfiability of conjunctions of literals
- Computes theory propagations
- Produces explanations of T-unsatisfiability/propagation
- Must be incremental and backtrackable

Theory Solvers

- Check *T*-satisfiability of sets of theory literals
- Incremental
- Backtrackable
- Conflict Generation
- Theory Propagation