CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Combining Theory Solvers with SAT solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Recall: Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This family of theories parameterized by the signature is known as the theory of Equality with Uninterpreted Functions (EUF) or the empty theory

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Recall: Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This family of theories parameterized by the signature is known as the theory of Equality with Uninterpreted Functions (EUF) or the empty theory

QF_UF (conjunctions of $\mathcal{T}_{\text {EUF }}$-literals) can be decided with a satisfiability proof system

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Recall: Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This family of theories parameterized by the signature is known as the theory of Equality with Uninterpreted Functions (EUF) or the empty theory

QF_UF (conjunctions of $\mathcal{T}_{\text {EUF }}$-literals) can be decided with a satisfiability proof system
The proof system can be implemented efficiently by a congruence closure procedure

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Recall: Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This family of theories parameterized by the signature is known as the theory of Equality with Uninterpreted Functions (EUF) or the empty theory

QF_UF (conjunctions of $\mathcal{T}_{\text {EUF }}$-literals) can be decided with a satisfiability proof system
The proof system can be implemented efficiently by a congruence closure procedure

Example: $f(a) \doteq a \wedge g(a) \neq f(a)$

Note: For simplicity, we only consider equality over one sort

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$
R is an equivalence relation if it is reflexive, symmetric, and transitive

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$
R is an equivalence relation if it is reflexive, symmetric, and transitive
R is a congruence relation if

- it is an equivalence relation and
- for every n-ary function $f: S^{n} \rightarrow S$, if $R\left(a_{i}, b_{i}\right)$ holds for all $a_{1}, \ldots a_{n}, y_{1}, \ldots, y_{n} \in S$, then $R\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(a_{1}, \ldots, a_{n}\right)\right)$ holds as well

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$
R is an equivalence relation if it is reflexive, symmetric, and transitive
R is a congruence relation if

- it is an equivalence relation and
- for every n-ary function $f: S^{n} \rightarrow S$, if $R\left(a_{i}, b_{i}\right)$ holds for all $a_{1}, \ldots a_{n}, y_{1}, \ldots, y_{n} \in S$, then $R\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(a_{1}, \ldots, a_{n}\right)\right)$ holds as well

Is equality an congruence relation?

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$
R is an equivalence relation if it is reflexive, symmetric, and transitive
R is a congruence relation if

- it is an equivalence relation and
- for every n-ary function $f: S^{n} \rightarrow S$, if $R\left(a_{i}, b_{i}\right)$ holds for all $a_{1}, \ldots a_{n}, y_{1}, \ldots, y_{n} \in S$, then $R\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(a_{1}, \ldots, a_{n}\right)\right)$ holds as well

Is equality an congruence relation? Yes!

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$

The equivalence closure R^{E} of R is the smallest relation that

- contains R
- is a equivalent relation

Congruence Closure: Definitions

Consider a set S and a binary relation $R \subseteq S \times S$

The equivalence closure R^{E} of R is the smallest relation that

- contains R
- is a equivalent relation

The congruence closure R^{C} of R is the smallest relation that

- contains R
- is a congruence relation

Congruence Closure Algorithm

Given a \sum-formula α, its subterm set S_{α} consists of the subterms of α that do not contain \doteq

Congruence Closure Algorithm

Given a \sum-formula α, its subterm set S_{α} consists of the subterms of α that do not contain \doteq

Example: $\alpha:=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a))$

Congruence Closure Algorithm

Given a \sum-formula α, its subterm set S_{α} consists of the subterms of α that do not contain $=$

Example: $\alpha:=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a))$
$S_{\alpha}: \doteq\{a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a))\}$

Congruence Closure Algorithm

Given a \sum-formula α, its subterm set S_{α} consists of the subterms of α that do not contain $=$

Example: $\alpha:=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a))$

$$
S_{\alpha}: \doteq\{a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a))\}
$$

High-level idea:

1. Partition the literals into a set of equalities E and a set of inequalities D
2. Construct the congruence closure E^{C} of E over S_{α}
3. α is unsatisfiable iff there exists $t_{1} \neq t_{2} \in D$ and $\left(t_{1}, t_{2}\right) \in E^{C}$

Congruence Closure: Algorithm

$$
\begin{gathered}
\alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
S_{\alpha}=\{a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a))\}
\end{gathered}
$$

Congruence Closure: Algorithm

$$
\begin{gathered}
\alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
S_{\alpha}=\{a, f(a), f(f(a)), f(f(f(a))), g(a), g(f(a))\}
\end{gathered}
$$

Step 1: place each subterm of α into its own congruence class:

$$
\{a\},\{f(a)\},\{f(f(a))\},\{f(f(f(a)))\},\{g(a)\},\{g(f(a))\}
$$

Congruence Closure: Algorithm

Step 2: For each positive literal $t_{1} \doteq t_{2}$ in α

- merge the congruence classes for t_{1} and t_{2}
- propagate the resulting congruences

$$
\begin{gathered}
\alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
\{a\},\{f(a)\},\{f(f(a))\},\{f(f(f(a)))\},\{g(a)\},\{g(f(a))\}
\end{gathered}
$$

Congruence Closure: Algorithm

Step 2: For each positive literal $t_{1} \doteq t_{2}$ in α

- merge the congruence classes for t_{1} and t_{2}
- propagate the resulting congruences

$$
\begin{gathered}
\alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
\{a, f(f(a))\},\{f(a)\},\{f(f(f(a)))\},\{g(a)\},\{g(f(a))\}
\end{gathered}
$$

Congruence Closure: Algorithm

Step 2: For each positive literal $t_{1} \doteq t_{2}$ in α

- merge the congruence classes for t_{1} and t_{2}
- propagate the resulting congruences

$$
\begin{aligned}
& \alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
& \{a, f(f(a))\},\{f(a), f(f(f(a)))\},\{g(a)\},\{g(f(a))\}
\end{aligned}
$$

Congruence Closure: Algorithm

Step 2: For each positive literal $t_{1} \doteq t_{2}$ in α

- merge the congruence classes for t_{1} and t_{2}
- propagate the resulting congruences

$$
\begin{gathered}
\alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
\{a, f(a), f(f(a)), f(f(f(a)))\},\{g(a)\},\{g(f(a))\}
\end{gathered}
$$

Congruence Closure: Algorithm

Step 2: For each positive literal $t_{1} \doteq t_{2}$ in α

- merge the congruence classes for t_{1} and t_{2}
- propagate the resulting congruences

$$
\begin{gathered}
\alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
\quad\{a, f(a), f(f(a)), f(f(f(a)))\},\{g(a), g(f(a))\}
\end{gathered}
$$

Congruence Closure: Algorithm

$$
\begin{gathered}
\alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
\{a, f(a), f(f(a)), f(f(f(a)))\},\{g(a), g(f(a))\}
\end{gathered}
$$

Step 3: α is $\mathcal{T}_{\text {EUF }}$-unsatisfiable iff it contains a negative literal $t_{1} \neq t_{2}$, with t_{1} and t_{2} in the same congruence class

Congruence Closure: Algorithm

$$
\begin{aligned}
& \alpha=f(f(a)) \doteq a \wedge f(f(f(a))) \doteq a \wedge g(a) \neq g(f(a)) \\
& \quad\{a, f(a), f(f(a)), f(f(f(a)))\},\{g(a), g(f(a))\}
\end{aligned}
$$

Step 3: α is $\mathcal{T}_{\text {EUF }}$-unsatisfiable iff it contains a negative literal $t_{1} \neq t_{2}$, with t_{1} and t_{2} in the same congruence class

Note: This algorithm can be implemented efficiently with a union-find data structure (CC. Chap. 9.1-9.3)

Congruence Closure: still an active research problem

Downey, et al. "Variations on the common subexpressions problem", 1980. Nieuwenhuis and Oliveras, "Proof-Producing Congruence Closure", 2005. Willsey, et al. "egg: Fast and extensible equality saturation", 2021.

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF }}$-literals
What about

$$
g(a) \doteq c \wedge(f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d
$$

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF }}$-literals
What about

$$
g(a) \doteq c \wedge(f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d
$$

Theorem 1
For all theories \mathcal{T}, the \mathcal{T}-satisfiability of quantifier-free formulas is decidable iff the \mathcal{T}-satisfiability of conjunctions/sets of literals is decidable.

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF }}$-literals
What about

$$
g(a) \doteq c \wedge(f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d
$$

Theorem 1

For all theories \mathcal{T}, the \mathcal{T}-satisfiability of quantifier-free formulas is decidable iff the τ-satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is \mathcal{T}-satisfiable.

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF }}$-literals
What about

$$
g(a) \doteq c \wedge(f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d
$$

Theorem 1

For all theories \mathcal{T}, the \mathcal{T}-satisfiability of quantifier-free formulas is decidable iff the τ-satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is \mathcal{T}-satisfiable.
Recall: the DNF conversion is very inefficient!

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF }}$-literals
What about

$$
g(a) \doteq c \wedge(f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d
$$

Theorem 1

For all theories \mathcal{T}, the \mathcal{T}-satisfiability of quantifier-free formulas is decidable iff the τ-satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is \mathcal{T}-satisfiable.
Recall: the DNF conversion is very inefficient!
A better solution: exploit propositional satisfiability technology

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

2. Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver
- Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a unique propositional variable $e(\alpha)$

The Boolean skeleton of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a unique propositional variable $e(\alpha)$

The Boolean skeleton of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Example:

$$
\varphi:=x<0 \vee(x+y<1 \wedge \neg(x<0)) \Rightarrow y<0
$$

Let $e(x<0)=p_{1}, e(x+y<1)=p_{2}, e(y<0)=p_{3}$
What is the Boolean skeleton of φ ?

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a unique propositional variable $e(\alpha)$

The Boolean skeleton of a formula φ is a propositional logic formula, where each atomic formula α in φ is replaced with $e(\alpha)$

Example:

$$
\varphi:=x<0 \vee(x+y<1 \wedge \neg(x<0)) \Rightarrow y<0
$$

Let $e(x<0)=p_{1}, e(x+y<1)=p_{2}, e(y<0)=p_{3}$
What is the Boolean skeleton of φ ? $p_{1} \vee\left(p_{2} \wedge \neg p_{1}\right) \Rightarrow p_{3}$

(Very) Lazy Approach for SMT - Example

$$
g(a) \doteq c \wedge(f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d
$$

(Very) Lazy Approach for SMT - Example

$$
g(a) \doteq c \wedge(f(g(a)) \neq f(c) \vee g(a) \doteq d) \wedge c \neq d
$$

Simplest setting:

- Off-line SAT solver
- Non-incremental theory solver for conjunctions of equalities and disequalities
- Theory atoms (e.g., $g(a) \doteq c$) abstracted to propositional atoms (e.g., 1)

(Very) Lazy Approach for SMT - Example

$$
\underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}}
$$

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) $\{1, \overline{2}, \overline{4}\}$ unsat in $T_{\text {EUF }}$ (meaning that $\overline{1} \vee 2 \vee 4$ is valid in $\mathcal{T}_{\text {EUF }}$)

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) $\{1, \overline{2}, \overline{4}\}$ unsat in $T_{E U F}$ (meaning that $\overline{1} \vee 2 \vee 4$ is valid in $T_{\text {EUF }}$)
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to SAT solver

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) $\{1, \overline{2}, \overline{4}\}$ unsat in $T_{\text {EUF }}$ (meaning that $\overline{1} \vee 2 \vee 4$ is valid in $\mathcal{T}_{\text {EUF }}$)
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1,3, \overline{4}\}$

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) $\{1, \overline{2}, \overline{4}\}$ unsat in $T_{\text {EUF }}$ (meaning that $\overline{1} \vee 2 \vee 4$ is valid in $\mathcal{T}_{\text {EUF }}$)
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1,3, \overline{4}\}$
- Theory solver finds $\{1,3, \overline{4}\}$ unsat

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) $\{1, \overline{2}, \overline{4}\}$ unsat in $T_{E U F}$ (meaning that $\overline{1} \vee 2 \vee 4$ is valid in $\mathcal{T}_{\text {EUF }}$)
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1,3, \overline{4}\}$
- Theory solver finds $\{1,3, \overline{4}\}$ unsat
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4\}$ to SAT solver

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) $\{1, \overline{2}, \overline{4}\}$ unsat in $T_{E U F}$ (meaning that $\overline{1} \vee 2 \vee 4$ is valid in $\mathcal{T}_{E \cup F}$)
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1,3, \overline{4}\}$
- Theory solver finds $\{1,3, \overline{4}\}$ unsat
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4\}$ unsat

(Very) Lazy Approach for SMT - Example

- Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT solver
- SAT solver returns model $\{1, \overline{2}, \overline{4}\}$
- Theory solver finds (concretization of) $\{1, \overline{2}, \overline{4}\}$ unsat in $T_{E U F}$ (meaning that $\overline{1} \vee 2 \vee 4$ is valid in $\mathcal{T}_{E \cup F}$)
- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4\}$ to SAT solver
- SAT solver returns model $\{1,3, \overline{4}\}$
- Theory solver finds $\{1,3, \overline{4}\}$ unsat

Done! The original formula is unsatisfiable in $\mathcal{T}_{\text {EUF }}$

- Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4\}$ to SAT solver
- SAT solver finds $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4\}$ unsat

Eager Approach for SMT - Example

$$
f(b) \doteq a \quad \vee f(a) \neq a
$$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_{x} to replace function application $f(x)$
- for each pair of introduced variables f_{x}, f_{y}, add the formula $x \doteq y \Rightarrow f_{x} \doteq f_{y}$

Eager Approach for SMT - Example

$$
f(b) \doteq a \quad \vee f(a) \neq a
$$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_{x} to replace function application $f(x)$
- for each pair of introduced variables f_{x}, f_{y}, add the formula $x \doteq y \Rightarrow f_{x} \doteq f_{y}$

$$
\begin{gathered}
f(b) \Rightarrow f_{b} \quad f(a) \Rightarrow f_{a} \\
\left(f_{b} \doteq a \vee f_{a} \neq a\right) \wedge\left(a \doteq b \Rightarrow f_{a} \doteq f_{b}\right)
\end{gathered}
$$

Eager Approach for SMT - Example

$$
f(b) \doteq a \quad \vee f(a) \neq a
$$

Step 1: Eliminate all function applications (Ackermann's encoding)

- introduce a constant symbol f_{x} to replace function application $f(x)$
- for each pair of introduced variables f_{x}, f_{y}, add the formula $x \doteq y \Rightarrow f_{x} \doteq f_{y}$

$$
\begin{gathered}
f(b) \Rightarrow f_{b} \quad f(a) \Rightarrow f_{a} \\
\left(f_{b} \doteq a \vee f_{a} \neq a\right) \wedge\left(a \doteq b \Rightarrow f_{a} \doteq f_{b}\right)
\end{gathered}
$$

Now, atomic formulas are equalities between constants/variables

Eager Approach for SMT - Example

Rename f_{b} as c and f_{a} as d :

$$
\left(f_{b} \doteq a \vee f_{a} \neq a\right) \wedge\left(a \doteq b \Rightarrow f_{a} \doteq f_{b}\right)
$$

becomes

$$
(c \doteq a \vee d \neq a) \wedge(a \doteq b \Rightarrow d \doteq c)
$$

Eager Approach for SMT - Example

Rename f_{b} as c and f_{a} as d :

$$
\left(f_{b} \doteq a \vee f_{a} \neq a\right) \wedge\left(a \doteq b \Rightarrow f_{a} \doteq f_{b}\right)
$$

becomes

$$
(c \doteq a \vee d \neq a) \wedge(a \doteq b \Rightarrow d \doteq c)
$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x, y}$
- add facts about reflexivity, symmetry, transitivity

$$
\left(p_{c, a} \vee \neg p_{d, a}\right) \wedge\left(p_{a, b} \Rightarrow p_{d, c}\right)
$$

Eager Approach for SMT - Example

Rename f_{b} as c and f_{a} as d :

$$
\left(f_{b} \doteq a \vee f_{a} \neq a\right) \wedge\left(a \doteq b \Rightarrow f_{a} \doteq f_{b}\right)
$$

becomes

$$
(c \doteq a \vee d \neq a) \wedge(a \doteq b \Rightarrow d \doteq c)
$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x, y}$
- add facts about reflexivity, symmetry, transitivity

$$
\begin{gathered}
\left(p_{c, a} \vee \neg p_{d, a}\right) \wedge\left(p_{a, b} \Rightarrow p_{d, c}\right) \\
\wedge p_{a, a} \wedge p_{b, b} \wedge p_{c, c} \wedge p_{d, d} \wedge\left(p_{a, b} \Leftrightarrow p_{b, a}\right) \wedge\left(p_{a, c} \Leftrightarrow p_{c, a}\right) \wedge\left(p_{a, d} \Leftrightarrow p_{d, a}\right) \wedge \cdots \\
\wedge\left(\left(p_{a, b} \wedge p_{b, c}\right) \Rightarrow p_{a, c}\right) \wedge\left(\left(p_{a, c} \wedge p_{c, d}\right) \Rightarrow p_{a, d}\right) \wedge \cdots
\end{gathered}
$$

The resulting propositional formula is equisatisfiable with the original $T_{E U F}$-formula

Eager Approach for SMT - Example

Rename f_{b} as c and f_{a} as d :

$$
\left(f_{b} \doteq a \vee f_{a} \neq a\right) \wedge\left(a \doteq b \Rightarrow f_{a} \doteq f_{b}\right)
$$

becomes

$$
(c \doteq a \vee d \neq a) \wedge(a \doteq b \Rightarrow d \doteq c)
$$

Step 2: Eliminate all equalities

- replace each pair of constants x, y with a unique propositional variable $p_{x, y}$
- add facts about reflexivity, symmetry, transitivity

$$
\begin{gathered}
\left(p_{c, a} \vee \neg p_{d, a}\right) \wedge\left(p_{a, b} \Rightarrow p_{d, c}\right) \\
\wedge p_{a, a} \wedge p_{b, b} \wedge p_{c, c} \wedge p_{d, d} \wedge\left(p_{a, b} \Leftrightarrow p_{b, a}\right) \wedge\left(p_{a, c} \Leftrightarrow p_{c, a}\right) \wedge\left(p_{a, d} \Leftrightarrow p_{d, a}\right) \wedge \cdots \\
\wedge\left(\left(p_{a, b} \wedge p_{b, c}\right) \Rightarrow p_{a, c}\right) \wedge\left(\left(p_{a, c} \wedge p_{c, d}\right) \Rightarrow p_{a, d}\right) \wedge \cdots
\end{gathered}
$$

The resulting propositional formula is equisatisfiable with the original $T_{E U F}$-formula
Note: Not all the transitivity cases are needed

Discussion: eager vs. lazy approach

Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

Discussion: eager vs. lazy approach

Eager

- translate into an equisatisfiable propositional formula
- feed it to any SAT solver

Lazy

- abstract the input formula to a propositional one
- feed it to a (CDCL-based) SAT solver
- use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

Discussion: eager vs. lazy approach

- Eager
- Can always use the best SAT solver off the shelf
- Requires care in encoding
- Tends not to scale well
- Lazy
- Theory-specific reasoning
- Designing new theory solvers can be challenging
- Might require extension of a SAT solver for more efficiency interplay with theory solver

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check \mathcal{T}-satisfiability only of full propositional model

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check \mathcal{T}-satisfiability only of full propositional model

Check \mathcal{T}-satisfiability of partial assignment M as it grows

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check \mathcal{T}-satisfiability only of full propositional model

Check \mathcal{T}-satisfiability of partial assignment M as it grows

- If M is \mathcal{T}-unsatisfiable, add $\neg M$ as a clause

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check \mathcal{T}-satisfiability only of full propositional model

Check \mathcal{T}-satisfiability of partial assignment M as it grows

- If M is \mathcal{T}-unsatisfiable, add $\neg M$ as a clause

If M is \mathcal{T}-unsatisfiable, identify a \mathcal{T}-unsatisfiable subset M_{0} of M and add $\neg M_{0}$ as a clause

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check \mathcal{T}-satisfiability only of full propositional model

Check \mathcal{T}-satisfiability of partial assignment M as it grows

- If M is \mathcal{T}-unsatisfiable, add $\neg M$ as a clause

If M is \mathcal{T}-unsatisfiable, identify a \mathcal{T}-unsatisfiable subset M_{0} of M and add $\neg M_{0}$ as a clause

- If M is \mathcal{T}-unsatisfiable, add clause and restart

Lazy Approach - Enhancements

Several enhancements are possible to increase efficiency:

- Check \mathcal{T}-satisfiability only of full propositional model

Check \mathcal{T}-satisfiability of partial assignment M as it grows

- If M is \mathcal{T}-unsatisfiable, add $\neg M$ as a clause

If M is \mathcal{T}-unsatisfiable, identify a \mathcal{T}-unsatisfiable subset M_{0} of M and add $\neg M_{0}$ as a clause

- If M is \mathcal{T}-unsatisfiable, add clause and restart

If M is \mathcal{T}-unsatisfiable, backtrack to some point where the assignment was still \mathcal{T}-satisfiable

Lazy Approach - Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

Lazy Approach - Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Lazy Approach - Main Benefits

Every tool does what it is good at:

- SAT solver takes care of Boolean information
- Theory solver takes care of theory information

The theory solver works only with conjunctions of literals
Modular approach:

- SAT and theory solvers communicate via a simple API
- SMT for a new theory only requires new theory solver
- An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a satisfiability proof system like those for Abstract DPLL and Abstract CDCL

Review: Abstract DPLL

States:
UNSAT $\quad\langle M, \Delta\rangle$
where

- M is a sequence of literals and decision points \bullet denoting a partial variable assignment
- \triangle is a set of clauses denoting a CNF formula

Review: Abstract DPLL

States:
UNSAT $\quad\langle M, \Delta\rangle$
where

- M is a sequence of literals and decision points \bullet denoting a partial variable assignment
- \triangle is a set of clauses denoting a CNF formula

Note: When convenient, we treat M as a set
Provided M contains no complementary literals it determines the assignment

$$
v_{M}(p)= \begin{cases}\text { true } & \text { if } p \in M \\ \text { false } & \text { if } \neg p \in M \\ \text { undef } & \text { otherwise }\end{cases}
$$

Review: Abstract DPLL

States:
UNSAT $\quad\langle M, \Delta\rangle$
where

- M is a sequence of literals and decision points denoting a partial variable assignment
- \triangle is a set of clauses denoting a CNF formula

Notation: If $M=M_{0} \bullet M_{1} \bullet \cdots M_{n}$ where each M_{i} contains no decision points

- M_{i} is decision level i of M
- $M^{[i]}$ denotes the subsequence $M_{0} \bullet \cdots \bullet M_{i}$, from decision level 0 to decision level i

Review: Abstract DPLL

States:
UNSAT $\quad\langle M, \Delta\rangle$

Initial state:

- $\left\langle(), \Delta_{0}\right\rangle$, where Δ_{0} is to be checked for satisfiability

Review: Abstract DPLL

States:
UNSAT $\quad\langle M, \Delta\rangle$

Initial state:

- $\left\langle(), \Delta_{0}\right\rangle$, where \triangle_{0} is to be checked for satisfiability

Expected final states:

- UNSAT if \triangle_{0} is unsatisfiable
- $\left\langle M, \Delta_{n}\right\rangle$ otherwise, where Δ_{n} is equisatisfiable with Δ_{0} and satisfied by M

Review: Abstract CDCL

States:

$$
\text { UNSAT } \quad\langle M, \Delta, C\rangle
$$

where

- M is a sequence of literals and decision points • (denoting a partial truth assignment)
- \triangle is a set of clauses denoting a CNF formula
- C is either no or a conflict clause

Review: Abstract CDCL

States:

$$
\text { UNSAT } \quad\langle M, \Delta, C\rangle
$$

where

- M is a sequence of literals and decision points • (denoting a partial truth assignment)
- \triangle is a set of clauses denoting a CNF formula
- C is either no or a conflict clause

Initial state:

- $\left\langle(), \Delta_{0}\right.$, no \rangle, where Δ_{0} is to be checked for satisfiability

Review: Abstract CDCL

States:

$$
\text { UNSAT } \quad\langle M, \Delta, C\rangle
$$

where

- M is a sequence of literals and decision points • (denoting a partial truth assignment)
- \triangle is a set of clauses denoting a CNF formula
- C is either no or a conflict clause

Initial state:

- $\left\langle(), \Delta_{0}\right.$, no , where Δ_{0} is to be checked for satisfiability

Expected final states:

- UNSAT if \triangle_{0} is unsatisfiable
- $\left\langle M, \Delta_{n}\right.$, no \rangle otherwise, where Δ_{n} is equisatisfiable with Δ_{0} and satisfied by M

Review: CDCL proof rules

Propagate $\frac{\left\{I_{1}, \ldots, I_{n}, l\right\} \in \Delta \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \in \mathrm{M} \quad \mid, \bar{I} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l}$

Decide $\frac{l \in \operatorname{Lits}(\Delta) \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} \bullet l}$
FAIL $\frac{C \neq n o \quad \bullet \notin M}{\text { UNSAT }}$
$\operatorname{ExpLAIN} \frac{C=\{l\} \cup D \quad\left\{l_{1}, \ldots, l_{n}, \bar{l}\right\} \in \Delta \quad \bar{I}_{1}, \ldots, \bar{I}_{n}, \bar{l} \in \mathrm{M} \quad \bar{I}_{1}, \ldots, \bar{I}_{n} \nprec_{\mathrm{M}} \bar{l}}{C:=\left\{l_{1}, \ldots, l_{n}\right\} \cup D}$

BACKJUMP $\frac{C=\left\{l_{1}, \ldots, I_{n}, l\right\} \quad \operatorname{lev}\left(\bar{l}_{1}\right), \ldots, \operatorname{lev}\left(\bar{l}_{n}\right) \leq i<\operatorname{lev}(\bar{l})}{\mathrm{M}:=\mathrm{M}^{[i]} l \quad \mathrm{C}:=\mathrm{no}}$

Review: CDCL proof rules

 BACKJUMP $\frac{C=\left\{l_{1}, \ldots, l_{n}, l\right\} \quad \operatorname{lev}\left(\bar{l}_{1}\right), \ldots, \operatorname{lev}\left(\bar{l}_{n}\right) \leq i<\operatorname{lev}(\bar{l})}{\mathrm{M}:=\mathrm{M}^{[i]} l \quad \mathrm{C}:=\mathrm{no}}$

We are going to extend this abstract framework to lazy SMT

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

- \triangle contains quantifier-free clauses in some theory \mathcal{T}
- M is a sequence of theory literals (i.e., atomic formulas or their negations) and decision points
- CDCL Rules operate on the Boolean skeleton of \triangle, given by a mapping from theory literals to propositional literals
- The proofs system is augmented with SMT-specific rules: \mathcal{T}-Conflict, \mathcal{T}-Propagate and \mathcal{T}-Explain
- Invariant: either $\mathrm{C} \neq \mathrm{no}$ or $\Delta \models_{\mathcal{T}} \mathrm{C}$ and $\mathrm{M} \models_{\mathrm{p}} \neg \mathrm{C}$

SMT-level Rules

At SAT level:

$$
\text { Conflıct } \frac{C=\text { no } \quad\left\{l_{1}, \ldots, l_{n}\right\} \in \Delta \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in M}{C:=\left\{l_{1}, \ldots, l_{n}\right\}}
$$

At SMT level:

$$
\mathcal{T} \text {-Conflıct } \frac{C=\text { no } \quad \bar{l}_{1} \wedge \ldots \wedge \bar{l}_{n} \models_{\mathcal{T}} \perp \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M}}{C:=\left\{l_{1}, \ldots, l_{n}\right\}}
$$

If a set of literals in M are unsatisfiable in \mathcal{T}, make their negation a conflict clause

SMT-level Rules

At SAT level:

$$
\operatorname{PrOPAGATE} \frac{\left\{l_{1}, \ldots, l_{n}, l\right\} \in \Delta \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \in \mathrm{M} \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l}
$$

At SMT level:

$$
\mathcal{T} \text {-Propagate } \frac{l \in \operatorname{Lits}(\Delta) \quad \mathrm{M} \models_{\mathcal{T}} l \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l}
$$

If M entails some literal / in \mathcal{T}, extend it with /

SMT-level Rules

At SAT level:

$$
\operatorname{ExPLAIN} \frac{C=\{l\} \cup D \quad\left\{l_{1}, \ldots, l_{n}, \bar{l}\right\} \in \Delta \quad \bar{l}_{1}, \ldots, \bar{I}_{n}, \bar{l} \in \mathrm{M} \quad \bar{l}_{1}, \ldots, \bar{I}_{n} \prec_{\mathrm{M}} \bar{l}}{C:=\left\{l_{1}, \ldots, l_{n}\right\} \cup D}
$$

At SMT level:

$$
\mathcal{T} \text {-ExPLAIN } \frac{C=\{l\} \cup D \quad \bar{l}_{1} \wedge \cdots \wedge \bar{l}_{n} \models_{\mathcal{T}} \bar{l} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \prec_{\mathrm{M}} \bar{l}}{C:=\left\{l_{1}, \cdots, l_{n}\right\} \cup D}
$$

If the complement \bar{l} of a literal in the conflict clause is entailed in \mathcal{T} by some literals $\bar{I}_{1}, \ldots, \bar{I}_{n}$ at lower decision levels, derive a new conflict clause by resolution with $\left\{l_{1}, \ldots, I_{n}, \bar{l}\right\}$

CDCL Modulo Theories proof rules

$\operatorname{Decide} \frac{l \in \operatorname{Lits}(\Delta) \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} \bullet l}$

RESTART $\overline{\mathrm{M}:=\mathrm{M}^{[0]} \quad \mathrm{C}:=\mathrm{no}}$

\mathcal{T}-Propagate $\frac{l \in \operatorname{Lits}(\Delta) \quad \mathrm{M} \models \mathcal{T} l \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l}$

Modeling the Very Lazy Theory Approach

\mathcal{T}-Conflict is enough to model the naive integration of SAT solvers and theory solvers seen in the earlier EUF example

Modeling the Very Lazy Theory Approach

M	Δ	C	rule
	$1, \overline{2} \vee 3, \overline{4}$	no	
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}$	no	by PROPAGATE
$1 \overline{4} \bullet \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	no	by DECIDE

Modeling the Very Lazy Theory Approach

$$
\underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}}
$$

M	Δ	C	rule
	$1, \overline{2} \vee 3, \overline{4}$	no	
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}$	no	by Propagate ${ }^{+}$
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	no	by Decide
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	$\overline{1} \vee 2 \vee 4$	by \mathcal{T}-Conflıct

Modeling the Very Lazy Theory Approach

M	Δ	C	rule
	$1, \overline{2} \vee 3, \overline{4}$	no	
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}$	no	by PROPAGATE
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	no	by DECIDE
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	$\overline{1} \vee 2 \vee 4$	by \mathcal{T}-Conflict
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	$\overline{1} \vee 2 \vee 4$	by LEARN

Modeling the Very Lazy Theory Approach

M	Δ	C	rule
$1, \overline{2} \vee 3, \overline{4}$	no		
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}$	no	by PROPAGATE
$1 \overline{4} \bullet \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	no	by DECIDE
$1 \overline{4} \bullet \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	$\overline{1} \vee 2 \vee 4$	by $\mathcal{T}-C O N f l i c t ~$
$1 \overline{4} \bullet \overline{2}$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	$\overline{1} \vee 2 \vee 4$	by LEARN
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	no	by RESTART

Modeling the Very Lazy Theory Approach

M	\triangle	C	rule
	$1, \overline{2} \vee 3, \overline{4}$	no	
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}$	no	by Propagate ${ }^{+}$
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	no	by Decide
$14 \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	$\overline{1} \vee 2 \vee 4$	by \mathcal{T}-Conflict
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	$\overline{1} \vee 2 \vee 4$	by Learn
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	no	by Restart
$1 \overline{4} 23$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	no	by Propagate ${ }^{+}$

Modeling the Very Lazy Theory Approach

M \triangle	C	rule
1, $\overline{2} \vee 3, \overline{4}$	no	
$1 \overline{4} \quad 1, \overline{2} \vee 3, \overline{4}$	no	by Propagate ${ }^{+}$
$1 \overline{4} \cdot \overline{2} \quad 1, \overline{2} \vee 3, \overline{4}$	no	by Decide
$1 \overline{4} \cdot \overline{2} \quad 1, \overline{2} \vee 3, \overline{4}$	$\overline{1} \vee 2 \vee 4$	by \mathcal{T}-CONflıct
$1 \overline{4} \cdot \overline{2} 1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	$\overline{1} \vee 2 \vee 4$	by Learn
$1 \overline{4} 1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	no	by Restart
$1 \overline{4} 231, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	no	by Propagate ${ }^{+}$
$1 \overline{4} 231, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	$\overline{1} \vee \overline{3} \vee 4$	by \mathcal{T}-CONflıct
$1 \overline{4} 231, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4$	no	by LeArn

Modeling the Very Lazy Theory Approach

M	Δ	C	rule
	1, $\overline{2} \vee 3, \overline{4}$	no	
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}$	no	by Propagate ${ }^{+}$
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	no	by Decide
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}$	$\overline{1} \vee 2 \vee 4$	by \mathcal{T}-Conflict
$1 \overline{4} \cdot \overline{2}$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	$\overline{1} \vee 2 \vee 4$	by Learn
$1 \overline{4}$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	no	by Restart
$1 \overline{4} 23$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	no	by Propagate ${ }^{+}$
$1 \overline{4} 23$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4$	$\overline{1} \vee \overline{3} \vee 4$	by \mathcal{T}-Conflict
$1 \overline{4} 23$	$1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4$	no	by Learn
	\vdots		
	UNSAT		by FAIL

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an on-line SAT engine that accept new input clauses on the fly

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an on-line SAT engine that accept new input clauses on the fly
- an incremental and explicating \mathcal{T}-solver that can

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an on-line SAT engine that accept new input clauses on the fly
- an incremental and explicating \mathcal{T}-solver that can

1. check the \mathcal{T}-satisfiability of M as it is extended and

A Better Lazy Approach

The very lazy approach can be improved considerably with

- an on-line SAT engine that accept new input clauses on the fly
- an incremental and explicating \mathcal{T}-solver that can

1. check the \mathcal{T}-satisfiability of M as it is extended and
2. identify a small \mathcal{T}-unsatisfiable subset of M once M becomes \mathcal{T}-unsatisfiable

A Better Lazy Approach

$$
\underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\frac{2}{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}}
$$

A Better Lazy Approach

$$
\begin{aligned}
& \underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}} \\
& \frac{\mathrm{M} \Delta}{1, \overline{2} \vee 3, \overline{4} \quad \text { no }}
\end{aligned}
$$

A Better Lazy Approach

$$
\begin{aligned}
& \underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}} \\
& \frac{\mathrm{M} \Delta}{1, \overline{2} \vee 3, \overline{4} \quad \text { no }} \begin{array}{l}
\text { rule } \\
1 \overline{4} 1, \overline{2} \vee 3, \overline{4} \quad \text { no by PROPAGATE }{ }^{+}
\end{array}
\end{aligned}
$$

A Better Lazy Approach

Lazy Approach - Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the rules using the following priorities:

1. If a clause is (propositionally) falsified by the current assignment M , apply Conflict
2. If M is \mathcal{T}-unsatisfiable, apply \mathcal{T}-Conflict
3. Apply Fail or Explain+LeArn+BackJump as appropriate
4. Apply Propagate
5. Apply Decide

Lazy Approach - Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the rules using the following priorities:

1. If a clause is (propositionally) falsified by the current assignment M , apply Conflict
2. If M is \mathcal{T}-unsatisfiable, apply \mathcal{T}-Conflıct
3. Apply Fail or Explain+LeArn+BackJump as appropriate
4. Apply Propagate
5. Apply Decide

Note: Depending on the cost of checking the \mathcal{T}-satisfiability of M ,
Step (2) can be applied with lower frequency or priority

Theory Propagation

With \mathcal{T}-Conflict as the only theory rule, the theory solver is used just to validate the choices of the SAT engine

Theory Propagation

With \mathcal{T}-Conflict as the only theory rule, the theory solver is used just to validate the choices of the SAT engine

With \mathcal{T}-Propagate and \mathcal{T}-Explain, it can also be used to guide the engine's search

$$
\mathcal{T} \text {-Propagate } \frac{l \in \operatorname{Lits}(\Delta) \quad \mathrm{M} \models_{\mathcal{T}} l \quad l, \bar{l} \notin \mathrm{M}}{\mathrm{M}:=\mathrm{M} l}
$$

$$
\mathcal{T} \text {-EXPLAIN } \frac{C=\{l\} \cup D \quad \bar{l}_{1} \wedge \cdots \wedge \bar{l}_{n} \models_{\mathcal{T}} \bar{l} \quad \bar{l}_{1}, \ldots, \bar{l}_{n} \prec_{M} \bar{l}}{C:=\left\{l_{1}, \cdots, l_{n}\right\} \cup D}
$$

Theory Propagation Example

$$
\underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\frac{2}{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}}
$$

Theory Propagation Example

$$
\begin{aligned}
& \underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}} \\
& \quad \text { M } \Delta \quad \text { C rule }
\end{aligned}
$$

Theory Propagation Example

$$
\begin{aligned}
& \underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\overline{2}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}} \\
& \begin{array}{llll}
\mathrm{M} & \Delta & \text { C } & \text { rule } \\
& 1, \overline{2} \vee 3, \overline{4} & \text { no } & \\
1 \overline{4} & 1, \overline{2} \vee 3, \overline{4} & \text { no } & \text { by ProPAGATE }
\end{array}
\end{aligned}
$$

Theory Propagation Example

$$
\begin{aligned}
& \underbrace{g(a) \doteq c}_{1} \wedge \underbrace{f(g(a)) \neq f(c)}_{\frac{2}{}} \vee \underbrace{g(a) \doteq d}_{3} \wedge \underbrace{c \neq d}_{\overline{4}} \\
& \begin{array}{cllll}
\text { M } & \Delta & \text { C } & \text { rule } \\
& 1, \overline{2} \vee 3, \overline{4} & \text { no } & & \\
1 \overline{4} & 1, \overline{2} \vee 3, \overline{4} & \text { no } & \text { by PropaGATE } \\
1 \overline{4} \overline{2} & 1, \overline{2} \vee 3, \overline{4} & \text { no } & \text { by } \mathcal{T} \text {-PropaGATE } & \left(\text { as } 1 \models_{\mathcal{T}} 2\right)
\end{array}
\end{aligned}
$$

Theory Propagation Example

Theory Propagation Example

Theory Propagation Example

Note: \mathcal{T}-propagation eliminates search altogether in this case! No applications of Decide are needed

Theory Propagation Features

- With exhaustive theory propagation, every assignment M is \mathcal{T}-satisfiable (since $M /$ is \mathcal{T}-unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)

Theory Propagation Features

- With exhaustive theory propagation, every assignment M is \mathcal{T}-satisfiable (since M l is \mathcal{T}-unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs specialized theory solvers

Theory Propagation Features

- With exhaustive theory propagation, every assignment M is \mathcal{T}-satisfiable (since M l is \mathcal{T}-unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T}-entailed literals is cheap and so exhaustive theory propagation is extremely effective

Theory Propagation Features

- With exhaustive theory propagation, every assignment M is \mathcal{T}-satisfiable (since M l is \mathcal{T}-unsatisfiable iff $M \models_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T}-entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting \mathcal{T}-entailed equalities is cheap but detecting \mathcal{T}-entailed disequalities is quite expensive

Theory Propagation Features

- With exhaustive theory propagation, every assignment M is \mathcal{T}-satisfiable (since M l is \mathcal{T}-unsatisfiable iff $M=_{\mathcal{T}} \bar{l}$)
- For theory propagation to be effective in practice, it needs specialized theory solvers
- For some theories, e.g., difference logic, detecting \mathcal{T}-entailed literals is cheap and so exhaustive theory propagation is extremely effective
- For others, e.g., the theory of equality, detecting \mathcal{T}-entailed equalities is cheap but detecting \mathcal{T}-entailed disequalities is quite expensive
- If \mathcal{T}-Propagate is not applied exhaustively, \mathcal{T}-Conflıct is needed to repair \mathcal{T}-unsatisfiable assignments

Theory Propagation Exercise

$$
\begin{gathered}
\underbrace{a \doteq b}_{1} \wedge \underbrace{a \doteq c}_{2} \vee \underbrace{c \doteq b}_{3} \wedge \underbrace{a \neq b}_{\overline{1}} \vee \underbrace{f(a) \neq f(c)}_{\overline{4}} \wedge \underbrace{c \neq b}_{\overline{3}} \vee \underbrace{g(a) \doteq g(c)}_{5} \\
\Delta_{0}:=1,2 \vee 3, \overline{1} \vee \overline{4}, \overline{3} \vee 5
\end{gathered}
$$

Theory Propagation Exercise

Scenario 1: propagating only \mathcal{T}-entailed equalities (no disequalities)

$$
\Delta_{0}:=1, \quad 2 \vee 3, \overline{1} \vee \overline{4}, \overline{3} \vee 5
$$

Theory Propagation Exercise

Scenario 1: propagating only \mathcal{T}-entailed equalities (no disequalities)

Theory Propagation Exercise

Scenario 2: propagating \mathcal{T}-entailed equalities and disequalities

Theory Propagation Exercise

Scenario 2: propagating \mathcal{T}-entailed equalities and disequalities

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:
(1) Propagate, Decide, Conflict, Explain, Backjump, Fail
(2) \mathcal{T}-Conflict, \mathcal{T}-Propagate, \mathcal{T}-Explain
(3) Learn, Forget, Restart

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with rules:
(1) Propagate, Decide, Conflict, Explain, Backjump, Fail
(2) \mathcal{T}-Conflict, \mathcal{T}-Propagate, \mathcal{T}-Explain
(3) Learn, Forget, Restart

Basic CDCL Modulo Theories $\stackrel{\text { def }}{=}(1)+(2)$
CDCL Modulo Theories $\stackrel{\text { def }}{=}(1)+(2)+(3)$

Correctness

Updated terminology:
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply Execution: a (single-branch) derivation tree starting with $\mathrm{M}=\emptyset$ and $\mathrm{C}=$ no Exhausted execution: execution ending in an irreducible state

Correctness

Updated terminology:
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply Execution: a (single-branch) derivation tree starting with $M=\emptyset$ and $C=$ no
Exhausted execution: execution ending in an irreducible state
Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) Restart is applied with increased periodicity is finite.

Correctness

Updated terminology:
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with $M=\emptyset$ and $C=$ no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) Restart is applied with increased periodicity is finite.

Lemma 3
Every exhausted execution ends with either $\mathrm{C}=$ no or UNSAT.

Correctness

Updated terminology:
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with $M=\emptyset$ and $C=$ no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) Restart is applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta=\Delta_{0}$ and ending with unsAT, the clause set \triangle_{0} is \mathcal{T}-unsatisfiable.

Correctness

Updated terminology:
Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with $\mathrm{M}=\emptyset$ and $\mathrm{C}=$ no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)

Every execution in which (i) LeArn/Forget are applied only finitely many times and (ii) Restart is applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)

For every exhausted execution starting with $\Delta=\Delta_{0}$ and ending with unsAT, the clause set Δ_{0} is τ-unsatisfiable.

Theorem 4 (Refutation Completeness)

For every exhausted execution starting with $\Delta=\Delta_{0}$ and ending with $C=n 0$, the clause set Δ_{0} is \mathcal{T}-satisfiable; specifically, M is \mathcal{T}-satisfiable and $\mathrm{M} \vDash{ }_{\mathrm{p}} \Delta_{0}$.

$\operatorname{CDCL}(\mathcal{T})$ Architecture

The approach formalized so far can be implemented with a simple architecture originally named DPLL(T) but currently known as $\operatorname{CDCL}(T)$

$$
\operatorname{CDCL}(\mathcal{T})=\operatorname{CDCL}(X) \text { engine }+\mathcal{T} \text {-solver }
$$

$\operatorname{CDCL}(\mathcal{T})$ Architecture

The approach formalized so far can be implemented with a simple architecture originally named DPLL(T) but currently known as $\operatorname{CDCL}(T)$

$$
\operatorname{CDCL}(\mathcal{T})=\operatorname{CDCL}(X) \text { engine }+\mathcal{T} \text {-solver }
$$

$\operatorname{CDCL}(X)$:

- Very similar to a SAT solver, enumerates Boolean models
- Not allowed: pure literal rule (and other SAT specific optimizations)
- Required: incremental addition of clauses
- Desirable: partial model detection

$\operatorname{CDCL}(\mathcal{T})$ Architecture

The approach formalized so far can be implemented with a simple architecture originally named $\operatorname{DPLL}(T)$ but currently known as $\operatorname{CDCL}(T)$

$$
\operatorname{CDCL}(\mathcal{T})=\operatorname{CDCL}(X) \text { engine }+\mathcal{T} \text {-solver }
$$

τ-solver:

- Checks the \mathcal{T}-satisfiability of conjunctions of literals
- Computes theory propagations
- Produces explanations of \mathcal{T}-unsatisfiability/propagation
- Must be incremental and backtrackable

Typical SMT solver architecture

