CS:4980 Topics in Computer Science II
 Introduction to Automated Reasoning

Theory Solvers II

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

Overview

SMT solvers can be used to solve arithmetic problems
Linear Programs (LPs) are a particularly interesting class of arithmetic problems, with stand-alone solvers

Many interesting applications: robotic planning, formal verification, operations research

Outline

- QF_LRA
- Linear Programming
- The Simplex algorithm

Readings: DP 5.1-5.2

Review: Theory of Real Arithmetics ($T_{R A}$)

$\mathcal{T}_{\text {RA }}=\left\langle\Sigma_{\text {RA }}, M_{\text {RA }}\right\rangle$

$$
\Sigma_{R A}^{S}=\{\operatorname{Real}\} \quad \Sigma_{R A}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $I \in M_{R A}$ interpret Real as the set \mathbb{R} of real numbers, and the function symbols in the usual way

Review: Theory of Real Arithmetics ($T_{R A}$)

$\mathcal{T}_{\text {RA }}=\left\langle\Sigma_{\text {RA }}, M_{\text {RA }}\right\rangle$

$$
\Sigma_{R A}^{S}=\{\text { Real }\} \quad \Sigma_{R A}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $\mathcal{I} \in M_{R A}$ interpret Real as the set \mathbb{R} of real numbers, and the function symbols in the usual way

Quantifier-free linear real arithmetic (QF_LRA):

1. no quantifiers
2. all occurrences of $*$ have at least one argument that is a decimal numeral

Review: Theory of Real Arithmetics ($T_{R A}$)

$\mathcal{T}_{\text {RA }}=\left\langle\Sigma_{\text {RA }}, M_{R A}\right\rangle$

$$
\Sigma_{R A}^{S}=\{\text { Real }\} \quad \Sigma_{R A}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $\mathcal{I} \in M_{R A}$ interpret Real as the set \mathbb{R} of real numbers, and the function symbols in the usual way

Quantifier-free linear real arithmetic (QF_LRA):

1. no quantifiers
2. all occurrences of $*$ have at least one argument that is a decimal numeral

Many SMT solvers (e.g., cvc5, Z3) use a version of the Simplex method as the theory solver for QF_LRA

Linear Programming

A linear program (LP) consists of:

1. An $m \times n$ matrix A, the constraint matrix
2. An m-dimensional vector b
3. An n-dimensional vector c, the objective function

Linear Programming

A linear program (LP) consists of:

1. An $m \times n$ matrix A, the constraint matrix
2. An m-dimensional vector b
3. An n-dimensional vector c, the objective function

Let x a vector of n variables

Linear Programming

A linear program (LP) consists of:

1. An $m \times n$ matrix A, the constraint matrix
2. An m-dimensional vector b
3. An n-dimensional vector c, the objective function

Let x a vector of n variables
Goal: Find a solution x that maximizes $c^{\top} x$ subject to the linear constraints $A x \leq b$

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x_{2} \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

Here:
$x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \quad A=\left[\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right] \quad b=\left[\begin{array}{c}3 \\ -5\end{array}\right] \quad c=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$

Find x that maximizes $c^{\top} x$, subject to $A x \leq b$

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x_{2} \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$ Otherwise, it is an infeasible solution

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x 2 \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$
Otherwise, it is an infeasible solution
Is $\langle 0,0\rangle$ a feasible solution?

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x 2 \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$
Otherwise, it is an infeasible solution
Is $\langle 0,0\rangle$ a feasible solution? \boldsymbol{x}

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x 2 \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$
Otherwise, it is an infeasible solution
Is $\langle 0,0\rangle$ a feasible solution? \boldsymbol{x}
Is $\langle-2,1\rangle$ a feasible solution?

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x 2 \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$
Otherwise, it is an infeasible solution
Is $\langle 0,0\rangle$ a feasible solution? \boldsymbol{x}
Is $\langle-2,1\rangle$ a feasible solution?

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x 2 \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$
Otherwise, it is an infeasible solution
Is $\langle 0,0\rangle$ a feasible solution? \boldsymbol{X}
Is $\langle-2,1\rangle$ a feasible solution?
For a given assignment of x, the value of $c^{\top} x$ is the objective value, or cost, of x

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x 2 \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$
Otherwise, it is an infeasible solution
Is $\langle 0,0\rangle$ a feasible solution? \boldsymbol{X}
Is $\langle-2,1\rangle$ a feasible solution?
For a given assignment of x, the value of $c^{\top} x$ is the objective value, or cost, of x
What is the objective value of $\langle-2,1\rangle$?

Example and Terminology

Maximize $2 x_{2}-x_{1}$ subject to:

$$
\begin{array}{r}
x_{1}+x 2 \leq 3 \\
2 x_{1}-x_{2} \leq-5
\end{array}
$$

An assignment of x is a feasible solution if it satisfies $A x \leq b$
Otherwise, it is an infeasible solution
Is $\langle 0,0\rangle$ a feasible solution? \boldsymbol{X}
Is $\langle-2,1\rangle$ a feasible solution?
For a given assignment of x, the value of $c^{\top} x$ is the objective value, or cost, of x
What is the objective value of $\langle-2,1\rangle$? 4

Example and Terminology

An optimal solution is feasible solution with a maximal objective value, over all feasible solutions

Example and Terminology

An optimal solution is feasible solution with a maximal objective value, over all feasible solutions

If a linear program has no feasible solutions, the linear program is infeasible

Example and Terminology

An optimal solution is feasible solution with a maximal objective value, over all feasible solutions

If a linear program has no feasible solutions, the linear program is infeasible

The linear program is unbounded if the objective value of the optimal solution is

Geometric Interpretation

A polytope the generalization of polyhedron from 3-dimensional space to higher dimensions

A polytope P is convex if for all $v_{1}, v_{2} \in \mathbb{R}^{n} \cap P$, $\lambda v_{1}+(1-\lambda) v_{2} \in P$ for all $\lambda \in[0,1]$

In other words, every point on the line segment connecting two points in P is also in P

Note: For an $m \times n$ constraint matrix A, the set of points $P=\{x \mid \boldsymbol{A} x \leq \boldsymbol{b}\}$ form a convex polytope in n-dimensional space

Geometric Interpretation

A polytope the generalization of polyhedron from 3-dimensional space to higher dimensions

A polytope P is convex if for all $v_{1}, v_{2} \in \mathbb{R}^{n} \cap P$, $\lambda v_{1}+(1-\lambda) v_{2} \in P$ for all $\lambda \in[0,1]$
In other words, every point on the line segment connecting two points in P is also in P

Note: For an $m \times n$ constraint matrix A, the set of points $P=\{x \mid \boldsymbol{A} x \leq \boldsymbol{b}\}$ form a convex polytope in n-dimensional space

LP goals: find a point in the polytope that maximizes $c^{\top} x$ for a given c

Geometric Interpretation

The LP is infeasible iff the polytope is empty
The LP is unbounded iff the polytope is open in the direction of the objective function The optimal solution for a bounded LP must lie on a vertex of the polytope

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 1: convert equalities to inequalities

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 1: convert equalities to inequalities
A linear $\mathcal{T}_{\mathrm{RA}}$-equality can be written to have the form $a^{\top} \boldsymbol{x}=b$

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 1: convert equalities to inequalities
A linear $\mathcal{T}_{\mathrm{RA}}$-equality can be written to have the form $a^{\top} x=b$
We rewrite this further as $a^{\top} \boldsymbol{x} \geq b$ and $a^{\top} \boldsymbol{x} \leq b$
And finally to $-a^{\top} x \leq-b, a^{\top} x \leq b$

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 2: handle inequalities

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 2: handle inequalities
A $\mathcal{T}_{\mathrm{RA}}$-literal of the form $a^{\top} x \leq b$ is already in the desired form

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 2: handle inequalities
A $\mathcal{T}_{\text {RA }}$-literal of the form $a^{\top} x \leq b$ is already in the desired form
A $\mathcal{T}_{\text {RA }}$-literal of the form $\neg\left(a^{\top} \boldsymbol{x} \leq b\right)$ is transformed as follows

$$
\neg\left(\boldsymbol{a}^{\top} \boldsymbol{x} \leq b\right) \longrightarrow \boldsymbol{a}^{\top} \boldsymbol{x}>b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}<-b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}+y \leq-b, y>0
$$

where y is a fresh variable used for all negated inequalities

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 2: handle inequalities
A $\mathcal{T}_{\text {RA }}$-literal of the form $a^{\top} x \leq b$ is already in the desired form
A $\mathcal{T}_{\text {RA }}$-literal of the form $\neg\left(a^{\top} x \leq b\right)$ is transformed as follows

$$
\neg\left(\boldsymbol{a}^{\top} \boldsymbol{x} \leq b\right) \longrightarrow \boldsymbol{a}^{\top} \boldsymbol{x}>b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}<-b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}+y \leq-b, y>0
$$

where y is a fresh variable used for all negated inequalities
Example: $\neg\left(2 x_{1}-x_{2} \leq 3\right)$ rewrites to $-2 x_{1}+x_{2}+y \leq-3, y>0$

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 2: handle inequalities
A $\mathcal{T}_{\text {RA }}$-literal of the form $a^{\top} x \leq b$ is already in the desired form
A $\mathcal{T}_{\mathrm{RA}}$-literal of the form $\neg\left(\boldsymbol{a}^{\top} \boldsymbol{x} \leq b\right)$ is transformed as follows

$$
\neg\left(\boldsymbol{a}^{\top} \boldsymbol{x} \leq b\right) \longrightarrow \boldsymbol{a}^{\top} \boldsymbol{x}>b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}<-b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}+y \leq-b, y>0
$$

where y is a fresh variable used for all negated inequalities
If there are no negated inequalities, add the inequality $y \leq 1$ where y is a fresh var

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 2: handle inequalities
A $\mathcal{T}_{R A}$-literal of the form $a^{\top} x \leq b$ is already in the desired form
A $\mathcal{T}_{\mathrm{RA}}$-literal of the form $\neg\left(a^{\top} x \leq b\right)$ is transformed as follows

$$
\neg\left(\boldsymbol{a}^{\top} \boldsymbol{x} \leq b\right) \longrightarrow \boldsymbol{a}^{\top} \boldsymbol{x}>b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}<-b \longrightarrow-\boldsymbol{a}^{\top} \boldsymbol{x}+y \leq-b, y>0
$$

where y is a fresh variable used for all negated inequalities
If there are no negated inequalities, add the inequality $y \leq 1$ where y is a fresh var
In either case, we have the set of the form $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \cup\{y>0\}$

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 3: check the satisfiability of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \cup\{y>0\}$

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 3: check the satisfiability of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \cup\{y>0\}$
Encode that as the LP: maximize y subject to $A x \leq \boldsymbol{b}$

Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear $\mathcal{T}_{\text {RA }}$-literals

Step 3: check the satisfiability of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \cup\{y>0\}$
Encode that as the LP: maximize y subject to $A x \leq \boldsymbol{b}$

[^0]
Methods for solving LP problems

- Simplex (Dantzig, 1949) Exponential time (probably)
- Ellipsoid (Khachian, 1979) Polynomial time
- Interior-point (Karmarkar, 1984) Polynomial time

Methods for solving LP problems

- Simplex (Dantzig, 1949) Exponential time (probably)
- Ellipsoid (Khachian, 1979) Polynomial time
- Interior-point (Karmarkar, 1984) Polynomial time

Although the Simplex method is the oldest and the least efficient in theory it can be implemented to be quite efficient in practice

Methods for solving LP problems

- Simplex (Dantzig, 1949) Exponential time (probably)
- Ellipsoid (Khachian, 1979) Polynomial time
- Interior-point (Karmarkar, 1984) Polynomial time

Although the Simplex method is the oldest and the least efficient in theory it can be implemented to be quite efficient in practice

It remains the most popular and we focus on it next

Standard Form

The general form of LP is to maximize objective function subject to a system of inequalities

Standard Form

The general form of LP is to maximize objective function subject to a system of inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

Standard Form

The general form of LP is to maximize objective function subject to a system of inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

$$
\begin{array}{ll}
\text { s.t. } \quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{array}
$$

Standard Form

The general form of LP is to maximize objective function subject to a system of inequalities

However, the Simplex method is easier to present if we make the additional assumption that all variables are non-negative:
maximize

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{array}
$$

We call this the standard form

Standard Form

The general form of LP is to maximize objective function subject to a system of inequalities

However, the Simplex method is easier to present if we make the additional assumption that all variables are non-negative:

We call this the standard form
This causes no loss of generality since any LP can be transformed to standard form

Standard Form

$$
\begin{aligned}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{aligned}
$$

Running example:

$$
\begin{array}{ll}
\max & 5 x_{1}+4 x_{2}+3 x_{3} \\
\text { s.t. } & \left\{\begin{array}{l}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right.
\end{array}
$$

Slack Variables

Observe the first inequation

$$
2 x_{1}+3 x_{2}+x_{3} \leq 5
$$

Define a new variable to represent the slack:

$$
x_{4}=5-2 x_{1}-3 x_{2}-x_{3}, \quad x_{4} \geq 0
$$

$$
\max 5 x_{1}+4 x_{2}+3 x_{3}
$$

$$
\text { s.t. }\left\{\begin{array}{l}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right.
$$

Do this to every each constraint so everything becomes equalities

Slack Variables

Observe the first inequation

$$
2 x_{1}+3 x_{2}+x_{3} \leq 5
$$

$$
\max 5 x_{1}+4 x_{2}+3 x_{3}
$$

Define a new variable to represent the slack:

$$
x_{4}=5-2 x_{1}-3 x_{2}-x_{3}, \quad x_{4} \geq 0
$$

$$
\text { s.t. }\left\{\begin{array}{l}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right.
$$

Do this to every each constraint so everything becomes equalities

Define a new variable to represent the objective value: $z=5 x_{1}+4 x_{2}+3 x_{3}$

Slack Variables

$$
\begin{aligned}
& \max 5 x_{1}+4 x_{2}+3 x_{3} \\
& \text { s.t. }\left\{\begin{array}{l}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right. \\
& \text { s.t. }\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=0+5 x_{1}+4 x_{2}+3 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}\right.
\end{aligned}
$$

New variables are called slack variables

Slack Variables

$\max 5 x_{1}+4 x_{2}+3 x_{3}$

$$
\text { s.t. }\left\{\begin{array}{l}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right.
$$

$\max \quad z$

$$
\text { s.t. }\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=0+5 x_{1}+4 x_{2}+3 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}\right.
$$

New variables are called slack variables
Optimal solution remains optimal for the new problem

The Simplex Strategy

- Start with a feasible solution
- For our example, assign 0 to all original variables - $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0$
- Assign the introduced vars their computed value
- $x_{4} \mapsto 5, x_{5} \mapsto 11, x_{6} \mapsto 8, z \mapsto 0$
- Iteratively improve the objective value
- Go from x to x^{\prime} only if $z(x) \leq z\left(x^{\prime}\right)$

What can we improve here?

The Simplex Strategy

- Start with a feasible solution
- For our example, assign 0 to all original variables - $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0$
- Assign the introduced vars their computed value
- $x_{4} \mapsto 5, x_{5} \mapsto 11, x_{6} \mapsto 8, z \mapsto 0$
- Iteratively improve the objective value
- Go from x to x^{\prime} only if $z(x) \leq z\left(x^{\prime}\right)$

What can we improve here?
One option: make x_{1} larger, leave x_{2}, x_{3} unchanged

- $x_{1}=1 \Rightarrow x_{4}=3, x_{5}=7, x_{6}=1, z=5$

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

The Simplex Strategy

- Start with a feasible solution
- For our example, assign 0 to all original variables - $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0$
- Assign the introduced vars their computed value
- $x_{4} \mapsto 5, x_{5} \mapsto 11, x_{6} \mapsto 8, z \mapsto 0$
- Iteratively improve the objective value
- Go from x to x^{\prime} only if $z(x) \leq z\left(x^{\prime}\right)$

What can we improve here?
One option: make x_{1} larger, leave x_{2}, x_{3} unchanged

- $x_{1}=1 \Rightarrow x_{4}=3, x_{5}=7, x_{6}=1, z=5$

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

The Simplex Strategy

- Start with a feasible solution
- For our example, assign 0 to all original variables - $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0$
- Assign the introduced vars their computed value
- $x_{4} \mapsto 5, x_{5} \mapsto 11, x_{6} \mapsto 8, z \mapsto 0$
- Iteratively improve the objective value
- Go from x to x^{\prime} only if $z(x) \leq z\left(x^{\prime}\right)$

What can we improve here?
One option: make x_{1} larger, leave x_{2}, x_{3} unchanged

- $x_{1}=1 \Rightarrow x_{4}=3, x_{5}=7, x_{6}=1, z=5$
- $x_{1}=2 \Rightarrow x_{4}=1, x_{5}=3, x_{6}=2, z=10$

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

The Simplex Strategy

- Start with a feasible solution
- For our example, assign 0 to all original variables - $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0$
- Assign the introduced vars their computed value
- $x_{4} \mapsto 5, x_{5} \mapsto 11, x_{6} \mapsto 8, z \mapsto 0$
- Iteratively improve the objective value
- Go from x to x^{\prime} only if $z(x) \leq z\left(x^{\prime}\right)$

What can we improve here?
One option: make x_{1} larger, leave x_{2}, x_{3} unchanged

- $x_{1}=1 \Rightarrow x_{4}=3, x_{5}=7, x_{6}=1, z=5$
- $x_{1}=2 \Rightarrow x_{4}=1, x_{5}=3, x_{6}=2, z=10$

The Simplex Strategy

- Start with a feasible solution
- For our example, assign 0 to all original variables - $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0$
- Assign the introduced vars their computed value - $x_{4} \mapsto 5, x_{5} \mapsto 11, x_{6} \mapsto 8, z \mapsto 0$
- Iteratively improve the objective value
- Go from x to x^{\prime} only if $z(x) \leq z\left(x^{\prime}\right)$

What can we improve here?
One option: make x_{1} larger, leave x_{2}, x_{3} unchanged

- $x_{1}=1 \Rightarrow x_{4}=3, x_{5}=7, x_{6}=1, z=5$
- $x_{1}=2 \Rightarrow x_{4}=1, x_{5}=3, x_{6}=2, z=10$
- $x_{1}=3 \Rightarrow x_{4}=-1, \ldots$

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

The Simplex Strategy

- Start with a feasible solution
- For our example, assign 0 to all original variables
- $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0$
- Assign the introduced vars their computed value
- $x_{4} \mapsto 5, x_{5} \mapsto 11, x_{6} \mapsto 8, z \mapsto 0$
- Iteratively improve the objective value
- Go from x to x^{\prime} only if $z(x) \leq z\left(x^{\prime}\right)$

What can we improve here?
One option: make x_{1} larger, leave x_{2}, x_{3} unchanged

- $x_{1}=1 \Rightarrow x_{4}=3, x_{5}=7, x_{6}=1, z=5$
- $x_{1}=2 \Rightarrow x_{4}=1, x_{5}=3, x_{6}=2, z=10$
- $x_{1}=3 \Rightarrow x_{4}=-1, \ldots \quad x$ no longer feasible!

The Simplex Strategy

Moral of the story:

- Can't increase x_{1} too much
- Increase it as much as possible, without compromising feasibility

The Simplex Strategy

Moral of the story:

- Can't increase x_{1} too much
- Increase it as much as possible, without compromising feasibility

$$
\begin{aligned}
& x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0 \\
& \left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
\end{aligned}
$$

$$
x_{1} \leq \frac{5}{2}, x_{1} \leq \frac{11}{4}, x_{1} \leq \frac{8}{3}
$$

The Simplex Strategy

Moral of the story:

- Can't increase x_{1} too much
- Increase it as much as possible, without compromising feasibility

$$
\begin{aligned}
& x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0 \\
& \left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array} \quad \longrightarrow \quad x_{1} \leq \frac{5}{2}, x_{1} \leq \frac{11}{4}, x_{1} \leq \frac{8}{3}\right.
\end{aligned}
$$

Select the tightest bound, $x_{1} \leq \frac{5}{2}$

- New assignment: $x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$

The Simplex Strategy

Moral of the story:

- Can't increase x_{1} too much
- Increase it as much as possible, without compromising feasibility

$$
\begin{aligned}
& x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0 \\
& \left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array} \quad \longrightarrow \quad x_{1} \leq \frac{5}{2}, x_{1} \leq \frac{11}{4}, x_{1} \leq \frac{8}{3}\right.
\end{aligned}
$$

Select the tightest bound, $x_{1} \leq \frac{5}{2}$

- New assignment: $x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$
- This indeed improves the value of z

The Simplex Strategy

Currently,

$x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$
How do we continue?

The Simplex Strategy

Currently,
$x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$
How do we continue?
For the first iteration we had:

- A feasible solution
- An equation system

The Simplex Strategy

Currently, $x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$ How do we continue?

For the first iteration we had:

- A feasible solution
- An equation system, where

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

- variables with positive value are expressed in terms of variables with 0 value

The Simplex Strategy

Currently, $x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$ How do we continue?

For the first iteration we had:

- A feasible solution
- An equation system, where

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

- variables with positive value are expressed in terms of variables with 0 value

Does the current equation system satisfy this property?

The Simplex Strategy

Currently, $x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$ How do we continue?

For the first iteration we had:

- A feasible solution
- An equation system, where

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

- variables with positive value are expressed in terms of variables with 0 value

Does the current equation system satisfy this property? No

The Simplex Strategy

Currently, $x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto 0, x_{5} \mapsto 1, x_{6} \mapsto \frac{1}{2}, z \mapsto \frac{25}{2}$ How do we continue?

For the first iteration we had:

- A feasible solution
- An equation system, where

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

- variables with positive value are expressed in terms of variables with 0 value

Does the current equation system satisfy this property? No
Need to update the equations

The Simplex Strategy

What should we change?
Initially: x_{1} was $0, x_{4}$ was positive Now: x_{1} is positive, x_{4} is 0

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

The Simplex Strategy

What should we change?
Initially: x_{1} was $0, x_{4}$ was positive Now: x_{1} is positive, x_{4} is 0

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

Isolate x_{1}, eliminate from right-hand-side

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

What should we change?
Initially: x_{1} was $0, x_{4}$ was positive Now: x_{1} is positive, x_{4} is 0

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

Isolate x_{1}, eliminate from right-hand-side
$x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \longrightarrow x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}$

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

What should we change?
Initially: x_{1} was $0, x_{4}$ was positive Now: x_{1} is positive, x_{4} is 0

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

Isolate x_{1}, eliminate from right-hand-side

$$
\begin{aligned}
x_{4} & =5-2 x_{1}-3 x_{2}-x_{3} \longrightarrow x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
& \left\{\begin{array} { l }
{ x _ { 4 } = 5 - 2 x _ { 1 } - 3 x _ { 2 } - x _ { 3 } } \\
{ x _ { 5 } = 1 1 - 4 x _ { 1 } - x _ { 2 } - 2 x _ { 3 } } \\
{ x _ { 6 } = 8 - 3 x _ { 1 } - 4 x _ { 2 } - 2 x _ { 3 } } \\
{ z = 5 x _ { 1 } + 4 x _ { 2 } + 3 x _ { 3 } }
\end{array} \longrightarrow \left\{\begin{array}{l}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{array}\right.\right.
\end{aligned}
$$

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

How can we improve z further?

$$
\left\{\begin{array}{l}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{array}\right.
$$

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

How can we improve z further?
Option 1: decrease x_{2} or x_{4}

$$
\left\{\begin{array}{l}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{array}\right.
$$

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

How can we improve z further?
$\begin{aligned} \text { Option 1: } & \text { decrease } x_{2} \text { or } x_{4} \\ & \text { but we can't since } x_{2}, x_{4} \geq 0\end{aligned}$
Option 2: increase x_{3}
By how much?

$$
\left\{\begin{array}{l}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{array}\right.
$$

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

How can we improve z further?
Option 1: decrease x_{2} or x_{4}

$$
\left\{\begin{array}{l}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{array}\right.
$$

x_{3} 's bounds: $x_{3} \leq 5, x_{3} \leq \infty, x_{3} \leq 1$

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

How can we improve z further?
Option 1: decrease x_{2} or x_{4}
but we can't since $x_{2}, x_{4} \geq 0$
Option 2: increase x_{3}
By how much?

$$
\left\{\begin{array}{l}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{array}\right.
$$

x_{3} 's bounds: $x_{3} \leq 5, x_{3} \leq \infty, x_{3} \leq 1$
So we increase x_{3} to 1

- New assignment: $x_{1} \mapsto 2, x_{2} \mapsto 0, x_{3} \mapsto 1, x_{4} \mapsto 0, x_{5} \mapsto 0, x_{6} \mapsto 0$

The Simplex Strategy

$$
x_{1} \mapsto \frac{5}{2}, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0
$$

How can we improve z further?
Option 1: decrease x_{2} or x_{4}
but we can't since $x_{2}, x_{4} \geq 0$
Option 2: increase x_{3}
By how much?

$$
\left\{\begin{array}{l}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{array}\right.
$$

x_{3} 's bounds: $x_{3} \leq 5, x_{3} \leq \infty, x_{3} \leq 1$
So we increase x_{3} to 1

- New assignment: $x_{1} \mapsto 2, x_{2} \mapsto 0, x_{3} \mapsto 1, x_{4} \mapsto 0, x_{5} \mapsto 0, x_{6} \mapsto 0$
- This gives $z=13$, which is again an improvement

The Simplex Strategy

Analogously to before, we switch x_{6} and x_{3}, and eliminate x_{3} from the right-hand sides

$$
\left\{\begin{array} { l }
{ x _ { 1 } = \frac { 5 } { 2 } - \frac { 3 } { 2 } x _ { 2 } - \frac { 1 } { 2 } x _ { 3 } - \frac { 1 } { 2 } x _ { 4 } } \\
{ x _ { 5 } = 1 + 5 x _ { 2 } + 2 x _ { 4 } } \\
{ x _ { 6 } = \frac { 1 } { 2 } + \frac { 1 } { 2 } x _ { 2 } - \frac { 1 } { 2 } x _ { 3 } + \frac { 3 } { 2 } x _ { 4 } } \\
{ z = \frac { 2 5 } { 2 } - \frac { 7 } { 2 } x _ { 2 } + \frac { 1 } { 2 } x _ { 3 } - \frac { 5 } { 2 } x _ { 4 } }
\end{array} \longrightarrow \left\{\begin{array}{l}
x_{1}=2 x_{2}-2 x_{4}+x_{6} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{3}=1+x_{2}+3 x_{4}-2 x_{6} \\
z=13-3 x_{2}-x_{4}-x_{6}
\end{array}\right.\right.
$$

The Simplex Strategy

$$
\begin{aligned}
& x_{1} \mapsto 2, x_{2} \mapsto 0, x_{3} \mapsto 1 \\
& x_{4} \mapsto 0, x_{6} \mapsto 0
\end{aligned}
$$

Can we improve z again?

$$
\left\{\begin{array}{l}
x_{1}=2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{3}=1+x_{2}+3 x_{4}-2 x_{6} \\
z=13-3 x_{2}-x_{4}-x_{6}
\end{array}\right.
$$

The Simplex Strategy

$$
\begin{aligned}
& x_{1} \mapsto 2, x_{2} \mapsto 0, x_{3} \mapsto 1 \\
& x_{4} \mapsto 0, x_{6} \mapsto 0
\end{aligned}
$$

Can we improve z again?

- No, because $x_{2}, x_{4}, x_{6} \geq 0$ and
- all appear with negative signs in the objective function

$$
\left\{\begin{array}{l}
x_{1}=2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{3}=1+x_{2}+3 x_{4}-2 x_{6} \\
z=13-3 x_{2}-x_{4}-x_{6}
\end{array}\right.
$$

The Simplex Strategy

$$
\begin{aligned}
& x_{1} \mapsto 2, x_{2} \mapsto 0, x_{3} \mapsto 1 \\
& x_{4} \mapsto 0, x_{6} \mapsto 0
\end{aligned}
$$

Can we improve z again?

- No, because $x_{2}, x_{4}, x_{6} \geq 0$ and
- all appear with negative signs in the objective function

$$
\left\{\begin{array}{l}
x_{1}=2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{3}=1+x_{2}+3 x_{4}-2 x_{6} \\
z=13-3 x_{2}-x_{4}-x_{6}
\end{array}\right.
$$

So we are done, and the optimal value of z is 13

The Simplex Strategy

$$
\begin{aligned}
& x_{1} \mapsto 2, x_{2} \mapsto 0, x_{3} \mapsto 1 \\
& x_{4} \mapsto 0, x_{6} \mapsto 0
\end{aligned}
$$

Can we improve z again?

- No, because $x_{2}, x_{4}, x_{6} \geq 0$ and
- all appear with negative signs in the objective function

$$
\left\{\begin{array}{l}
x_{1}=2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5}=1+5 x_{2}+2 x_{4} \\
x_{3}=1+x_{2}+3 x_{4}-2 x_{6} \\
z=13-3 x_{2}-x_{4}-x_{6}
\end{array}\right.
$$

So we are done, and the optimal value of z is 13

$$
\text { The optimal solution is then } x_{1} \mapsto 2, x_{2} \mapsto 0, x_{3} \mapsto 1
$$

The Simplex Algorithm

maximize

$\sum_{j=1}^{n} c_{j} x_{j}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{array}
$$

1. Introduce slack variables x_{n+1}, \ldots, x_{n+m}
2. Set $x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}$ for $i=1, \ldots, m$
3. Start with initial, feasible solution ($x_{1} \mapsto 0, \ldots, x_{n} \mapsto 0$ in our example)
4. If some addends in the current objective function have positive coefficients, update the feasible solution to improve the objective value; otherwise, stop
5. Update the equations to maintain the invariant that all right-hand side vars have value 0
6. Go to step 4

Updating the Equations: Pivoting

As we progress towards the optimal solution, equations are updated

Updating the Equations: Pivoting

As we progress towards the optimal solution, equations are updated
This computational process of constructing the new equation system is called pivoting

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

Updating the Equations: Pivoting

As we progress towards the optimal solution, equations are updated
This computational process of constructing the new equation system is called pivoting

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

Invariants:

- Number of equations (m) never changes
- Variables are either on the left-hand side or the right-hand side, never both
- Left-hand side variables are called basic
- Right-hand side variables are called non-basic
- Non-basic variables always pressed against their bounds (always 0)
- Basic variable assignment determined by non-basic assignment and equations

Updating the Equations: Pivoting

The set of basic variables is the basis

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

In the pivoting step:

- A non-basic variable enters the basis (the entering variable)
- A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen?

Updating the Equations: Pivoting

The set of basic variables is the basis
In the pivoting step:

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

- A non-basic variable enters the basis (the entering variable)
- A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

Updating the Equations: Pivoting

The set of basic variables is the basis

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

In the pivoting step:

- A non-basic variable enters the basis (the entering variable)
- A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z
One strategy (Dantzig's rule) picks the variable with the largest coefficient

Updating the Equations: Pivoting

The set of basic variables is the basis

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

In the pivoting step:

- A non-basic variable enters the basis (the entering variable)
- A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z
One strategy (Dantzig's rule) picks the variable with the largest coefficient
How is the leaving variable chosen?

Updating the Equations: Pivoting

The set of basic variables is the basis

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

In the pivoting step:

- A non-basic variable enters the basis (the entering variable)
- A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z
One strategy (Dantzig's rule) picks the variable with the largest coefficient
How is the leaving variable chosen? To maintain feasibility

Updating the Equations: Pivoting

The set of basic variables is the basis

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

In the pivoting step:

- A non-basic variable enters the basis (the entering variable)
- A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z
One strategy (Dantzig's rule) picks the variable with the largest coefficient
How is the leaving variable chosen? To maintain feasibility
Select the basic variable corresponding to the tightest upper-bound

Tableau and Implementation

We have presented the equation system as a dictionary

Tableau and Implementation

We have presented the equation system as a dictionary
A more popular version uses a matrix, or a tableau:

Tableau and Implementation

We have presented the equation system as a dictionary
A more popular version uses a matrix, or a tableau:

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	z	b
2	3	1	1	0	0	0	5
4	1	2	1	1	0	0	11
3	4	2	1	0	1	0	8
5	4	3	0	0	0	0	0
-5	-4	-3	0	0	0	1	0

Tableau and Implementation

We have presented the equation system as a dictionary
A more popular version uses a matrix, or a tableau:

$$
\left\{\begin{array}{l}
x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
z=5 x_{1}+4 x_{2}+3 x_{3}
\end{array}\right.
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	z	b
2	3	1	1	0	0	0	5
4	1	2	1	1	0	0	11
3	4	2	1	0	1	0	8
5	4	3	0	0	0	0	0
-5	-4	-3	0	0	0	1	0

The pivoting process can be understood as a series of matrix operations See [Guoqing Hu] for a description and example

Some Challenges

Possible problems of the procedure that we described so far:

Initialization: how to obtain an initial feasible solution?

Some Challenges

Possible problems of the procedure that we described so far:

Initialization: how to obtain an initial feasible solution?
Termination: can we generate an infinite sequence of dictionaries, without reaching an optimal z ?

Challenges: initialization

maximize

$$
\begin{array}{ll}
\text { nize } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{array}
$$

Challenges: initialization

$$
\begin{aligned}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{aligned}
$$

Easy when all b_{i} 's are non-negative (set all x_{j} to 0)

Challenges: initialization

$$
\begin{aligned}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{aligned}
$$

Easy when all b_{i} 's are non-negative (set all x_{j} to 0)

What can we do for negative b_{i} 's?

Challenges: initialization

Solution: switch to an auxiliary problem with a known feasible solution

Challenges: initialization

Solution: switch to an auxiliary problem with a known feasible solution

$$
\begin{aligned}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=1, \ldots, n
\end{aligned}
$$

becomes

$$
\begin{aligned}
& \operatorname{maximize}-x_{0} \\
& \qquad \begin{array}{ll}
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{array}
\end{aligned}
$$

Challenges: initialization

$$
\begin{array}{ll}
\operatorname{maximize} & -x_{0} \\
\qquad \begin{array}{ll}
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{array}
\end{array}
$$

For the auxiliary problem, a feasible solution is easy to find

Challenges: initialization

$$
\begin{array}{ll}
\operatorname{maximize} & -x_{0} \\
\qquad \begin{array}{ll}
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{array}
\end{array}
$$

For the auxiliary problem, a feasible solution is easy to find:
set x_{1}, \ldots, x_{n} to 0 , and make x_{0} sufficiently large

Challenges: initialization

$$
\begin{array}{ll}
\operatorname{maximize} & -x_{0} \\
\qquad \begin{array}{ll}
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \quad \text { for } j=0,1, \ldots, n
\end{array}
\end{array}
$$

For the auxiliary problem, a feasible solution is easy to find:
set x_{1}, \ldots, x_{n} to 0 , and make x_{0} sufficiently large

Original problem is feasible iff the optimal solution for the auxiliary problem has $x_{0} \mapsto 0$

Initialization: example

maximize $x_{1}+2 x_{2}$

$$
\text { s.t. } \begin{cases}2 x_{1}-3 x_{2} & \leq-2 \\ 4 x_{1}-x_{2} & \leq-4 \\ x_{1}, x_{2} & \geq 0\end{cases}
$$

Initialization: example

maximize $\quad x_{1}+2 x_{2}$
s.t. $\begin{cases}2 x_{1}-3 x_{2} & \leq-2 \\ 4 x_{1}-x_{2} & \leq-4 \\ x_{1}, x_{2} & \geq 0\end{cases}$
maximize $-x_{0}$

$$
\text { s.t. } \begin{cases}2 x_{1}-3 x_{2}-x_{0} & \leq-2 \\ 4 x_{1}-x_{2}-x_{0} & \leq-4 \\ x_{0}, x_{1}, x_{2} & \geq 0\end{cases}
$$

Initialization: example

maximize $x_{1}+2 x_{2} \quad$ maximize $-x_{0}$

$$
\text { s.t. } \begin{cases}2 x_{1}-3 x_{2} & \leq-2 \\ 4 x_{1}-x_{2} & \leq-4 \\ x_{1}, x_{2} & \geq 0\end{cases}
$$

The dictionary of the auxiliary problem: $\quad \begin{array}{rll}x_{3} & =-2-2 x_{1}+3 x_{2} & +x_{0} \\ x_{4} & =-4-4 x_{1}+x_{2} & +x_{0} \\ z & = & -x_{0}\end{array}$
Initial feasible solution: $x_{0} \mapsto 4, x_{1} \mapsto 0, x_{2} \mapsto 0$

Initialization: example

maximize $x_{1}+2 x_{2} \quad$ maximize $-x_{0}$

$$
\text { s.t. } \begin{cases}2 x_{1}-3 x_{2} & \leq-2 \\ 4 x_{1}-x_{2} & \leq-4 \\ x_{1}, x_{2} & \geq 0\end{cases}
$$

The dictionary of the auxiliary problem: $\quad \begin{array}{rll}x_{3} & =-2-2 x_{1}+3 x_{2} & +x_{0} \\ x_{4} & =-4-4 x_{1}+x_{2} & +x_{0} \\ z & = & -x_{0}\end{array}$
Initial feasible solution: $x_{0} \mapsto 4, x_{1} \mapsto 0, x_{2} \mapsto 0$
Any issues?

Initialization: example

maximize $x_{1}+2 x_{2} \quad$ maximize $-x_{0}$

$$
\text { s.t. }\left\{\begin{array} { l l }
{ 2 x _ { 1 } - 3 x _ { 2 } } & { \leq - 2 } \\
{ 4 x _ { 1 } - x _ { 2 } } & { \leq - 4 } \\
{ x _ { 1 } , x _ { 2 } } & { \geq 0 }
\end{array} \quad \text { s.t. } \left\{\begin{array}{ll}
2 x_{1}-3 x_{2}-x_{0} & \leq-2 \\
4 x_{1}-x_{2}-x_{0} & \leq-4 \\
x_{0}, x_{1}, x_{2} & \geq 0
\end{array}\right.\right.
$$

The dictionary of the auxiliary problem: $\quad \begin{array}{rll}x_{3} & =-2-2 x_{1}+3 x_{2} & +x_{0} \\ x_{4} & =-4-4 x_{1}+x_{2} & +x_{0} \\ z & = & -x_{0}\end{array}$
Initial feasible solution: $x_{0} \mapsto 4, x_{1} \mapsto 0, x_{2} \mapsto 0$
Any issues? Variables on the right-hand side need to be 0

Initialization: example

maximize $x_{1}+2 x_{2} \quad$ maximize $-x_{0}$

The dictionary of the auxiliary problem:

$$
\begin{array}{rlr}
x_{3} & =-2-2 x_{1}+3 x_{2} & \\
x_{4} & =-x_{0} \\
z & =-4-4 x_{1}+x_{2} & \\
z & & -x_{0} \\
z & & -x_{0}
\end{array}
$$

Initial feasible solution: $x_{0} \mapsto 4, x_{1} \mapsto 0, x_{2} \mapsto 0$
Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x_{0} into the basis

$$
\begin{array}{rlr}
x_{3} & =2+2 x_{1}+2 x_{2} & +x_{4} \\
x_{0} & =4+4 x_{1}-x_{2} & +x_{4} \\
z & =-4-4 x_{1}+x_{2} & -x_{4}
\end{array}
$$

Challenges: Termination

Recall the goal of every iteration is to increase the objective function z

Challenges: Termination

Recall the goal of every iteration is to increase the objective function z In each pivoting step, we swap a non-basic variable with a basic variable:

Challenges: Termination

Recall the goal of every iteration is to increase the objective function z In each pivoting step, we swap a non-basic variable with a basic variable:

- The non-basic (entering) variable has a positive coefficient in the objective function
- If no such variable exists, the objective function is optimal and we can stop
- The leaving variable is the one imposing the tightest constraint

Challenges: Termination

Recall the goal of every iteration is to increase the objective function z
In each pivoting step, we swap a non-basic variable with a basic variable:

- The non-basic (entering) variable has a positive coefficient in the objective function
- If no such variable exists, the objective function is optimal and we can stop
- The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse

Challenges: Termination

Recall the goal of every iteration is to increase the objective function z
In each pivoting step, we swap a non-basic variable with a basic variable:

- The non-basic (entering) variable has a positive coefficient in the objective function
- If no such variable exists, the objective function is optimal and we can stop
- The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse
So when might we not converge to the optimal z ?

Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it cycles, i.e., it generates the same dictionary infinitely often.

Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it cycles, i.e., it generates the same dictionary infinitely often.

Proof sketch:

1. There are only finitely many bases;
2. each bases uniquely defines the dictionary;
3. therefore, there are only finitely many values of z to try

Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it cycles, i.e., it generates the same dictionary infinitely often.

Proof sketch:

1. There are only finitely many bases;
2. each bases uniquely defines the dictionary;
3. therefore, there are only finitely many values of z to try

If Simplex is cycling, then z has to stop increasing

Degenerate Pivots

Example: Current feasible solution: $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0$

$$
\begin{aligned}
x_{1} & =-2 x_{2}+3 x_{3} \\
z & =5 x_{2}-x_{3}+4 x_{4}
\end{aligned}
$$

Dantzig's rule: pick x_{2} as the entering variable

Degenerate Pivots

Example: Current feasible solution: $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0$

$$
\begin{aligned}
x_{1} & =-2 x_{2}+3 x_{3} \\
z & =5 x_{2}-x_{3}+4 x_{4}
\end{aligned}
$$

Dantzig's rule: pick x_{2} as the entering variable
Leaving variable is x_{1}, but the highest x_{2} can be is 0

Degenerate Pivots

Example: Current feasible solution: $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0$

$$
\begin{aligned}
x_{1} & =-2 x_{2}+3 x_{3} \\
z & =5 x_{2}-x_{3}+4 x_{4}
\end{aligned}
$$

Dantzig's rule: pick x_{2} as the entering variable
Leaving variable is x_{1}, but the highest x_{2} can be is 0
So the value of z does not change after switching x_{1} and x_{2}

Degenerate Pivots

Example: Current feasible solution: $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0$

$$
\begin{aligned}
x_{1} & =-2 x_{2}+3 x_{3} \\
z & =5 x_{2}-x_{3}+4 x_{4}
\end{aligned}
$$

Dantzig's rule: pick x_{2} as the entering variable
Leaving variable is x_{1}, but the highest x_{2} can be is 0
So the value of z does not change after switching x_{1} and x_{2}
A pivot is degenerate if it does not change the objective value

Degenerate Pivots

Example: Current feasible solution: $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0$

$$
\begin{aligned}
x_{1} & =-2 x_{2}+3 x_{3} \\
z & =5 x_{2}-x_{3}+4 x_{4}
\end{aligned}
$$

Dantzig's rule: pick x_{2} as the entering variable
Leaving variable is x_{1}, but the highest x_{2} can be is 0
So the value of z does not change after switching x_{1} and x_{2}
A pivot is degenerate if it does not change the objective value
Cycling can only occur in the presence of a degenerate pivot

Degenerate Pivots

Example: Current feasible solution: $x_{1} \mapsto 0, x_{2} \mapsto 0, x_{3} \mapsto 0, x_{4} \mapsto 0$

$$
\begin{aligned}
x_{1} & =-2 x_{2}+3 x_{3} \\
z & =5 x_{2}-x_{3}+4 x_{4}
\end{aligned}
$$

Dantzig's rule: pick x_{2} as the entering variable
Leaving variable is x_{1}, but the highest x_{2} can be is 0
So the value of z does not change after switching x_{1} and x_{2}
A pivot is degenerate if it does not change the objective value
Cycling can only occur in the presence of a degenerate pivot
Note: Degenerate pivots are empirically rare

Pivoting Strategies

There are variable selection strategies that guarantee termination
Bland's Rule (1977): the simplex method terminates as long as the entering and leaving variables are selected by the smallest-subscript rule in each iteration

Pivoting Strategies

There are variable selection strategies that guarantee termination
Bland's Rule (1977): the simplex method terminates as long as the entering and leaving variables are selected by the smallest-subscript rule in each iteration

Example: $z=-5 x_{1}-3 x_{2}+4 x_{3}+40 x_{4}$
The entering variable is: x_{3}
Leaving variable: still the one imposing the tightest constraint, but break tie by picking the smaller subscript

Pivoting Strategies

There are variable selection strategies that guarantee termination
Bland's Rule (1977): the simplex method terminates as long as the entering and leaving variables are selected by the smallest-subscript rule in each iteration

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not prevent cycling

Pivoting Strategies

There are variable selection strategies that guarantee termination
Bland's Rule (1977): the simplex method terminates as long as the entering and leaving variables are selected by the smallest-subscript rule in each iteration

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not prevent cycling

When cycling is detected: switch to Bland's rule for a while

Pivoting Strategies

There are variable selection strategies that guarantee termination
Bland's Rule (1977): the simplex method terminates as long as the entering and leaving variables are selected by the smallest-subscript rule in each iteration

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not prevent cycling

When cycling is detected: switch to Bland's rule for a while

Complexity: the common strategies all have worse-case exponential time

Possible improvements

- More sophisticated pivoting strategy
- Use rational-number instead of floating-point representation (to handle numerical instability and avoid solutions unsoundness)
- Handle general Linear Programs (variables can have non-zero lower bounds and/or finite upper bounds)
- Extract irreducible infeasible subset in case of infeasibility (theory explanations)
- ...

Application: Neural Network Verification

Property to verify: $\forall x_{1} \cdot x_{2} .\left(x_{1} \in[-2,1] \wedge x_{2} \in[-2,2] \Rightarrow y_{1}<y_{2}\right)$

1. Encoding of the neural network α_{n} (linear + Rectified Linear Units):

$$
\begin{array}{ll}
r_{1 b}=x_{1}+x_{2} \quad r_{2 b}=2 x_{1}-x_{2} & \left(r_{1 b} \leq 0 \wedge r_{1 f}=0\right) \vee\left(r_{1 b} \geq 0 \wedge r_{1 f}=r_{1 b}\right) \\
y_{1}=-r_{1 f}+r_{2 f} \quad y_{2}=r_{1 f}-r_{2 f} & \left(r_{2 b} \leq 0 \wedge r_{2 f}=0\right) \vee\left(r_{2 b} \geq 0 \wedge r_{2 f}=r_{2 b}\right)
\end{array}
$$

Application: Neural Network Verification

Property to verify: $\forall x_{1} \cdot x_{2} \cdot\left(x_{1} \in[-2,1] \wedge x_{2} \in[-2,2] \Rightarrow y_{1}<y_{2}\right)$

1. Encoding of the neural network α_{n} (linear + Rectified Linear Units):

$$
\begin{array}{cl}
r_{1 b}=x_{1}+x_{2} \quad r_{2 b}=2 x_{1}-x_{2} & \left(r_{1 b} \leq 0 \wedge r_{1 f}=0\right) \vee\left(r_{1 b} \geq 0 \wedge r_{1 f}=r_{1 b}\right) \\
y_{1}=-r_{1 f}+r_{2 f} \quad y_{2}=r_{1 f}-r_{2 f} & \left(r_{2 b} \leq 0 \wedge r_{2 f}=0\right) \vee\left(r_{2 b} \geq 0 \wedge r_{2 f}=r_{2 b}\right)
\end{array}
$$

2. Encoding of the the property $\alpha_{p}: \quad-2 \leq x_{1} \leq 1 \quad-2 \leq x_{2} \leq 2 \quad y_{1}>=y_{2}$
3. Property holds iff $\alpha_{n} \wedge \alpha_{p}$ is unsatisfiable

Practical properties

Robustness: $\quad \forall x^{\prime} .\left\|\mathbf{x}-x^{\prime}\right\|<\epsilon \Rightarrow\left\|N(\mathbf{x})-N\left(x^{\prime}\right)\right\|<\delta$

"panda"
577\% confidence

noise

"gibbon"

There is no adversarial input within ϵ distance

Reachability: $\forall x, x \in\left[x_{l}, x_{u}\right] \Rightarrow y \in\left[y_{1}, y_{u}\right]$

Whenever intruder is near and to the right advise strong left

Practical properties

Robustness: $\quad \forall x^{\prime} .\left\|\mathbf{x}-x^{\prime}\right\|<\epsilon \Rightarrow\left\|N(\mathbf{x})-N\left(x^{\prime}\right)\right\|<\delta$

"panda"
577\% confidence

noise

"gibbon"

There is no adversarial input within ϵ distance

Reachability: $\forall x, x \in\left[x_{1}, x_{u}\right] \Rightarrow y \in\left[y_{1}, y_{u}\right]$

Whenever intruder is near and to the right advise strong left

A lot of attention in recent years

[^0]: The final system is satisfiable iff the optimal value for y is positive

