CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Theory Solvers I

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Roadmap for Today

Theory Solvers

- Difference Logic
- Equality and Uninterpreted Functions
- Arrays

Theory Solvers

A *theory solver* for a theory \mathcal{T} is a specialized procedure for determining whether a conjunction of literals is satisfiable in \mathcal{T}

Theory solvers are crucial building blocks in SMT solvers

Theory Solvers

A *theory solver* for a theory \mathcal{T} is a specialized procedure for determining whether a conjunction of literals is satisfiable in \mathcal{T}

Theory solvers are **crucial** building blocks in SMT solvers

A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals of a very restricted form:

 $x - y \bowtie c$

where x and y are integer variables, c is a numeral, and $\bowtie \in \{=, <, \leq, >, \geq\}$

A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals of a very restricted form:

 $x - y \bowtie c$

where x and y are integer variables, c is a numeral, and $\bowtie \in \{=, <, \leq, >, \geq\}$

A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals of a very restricted form:

 $x - y \bowtie c$

where x and y are integer variables, c is a numeral, and $\bowtie \in \{=, <, \leq, >, \geq\}$

Note: There is a similar version of difference logic over the reals, which we will not cover, where *x* and *y* are integer variables and *c* is a decimal numeral

A solver for difference logic consists of three steps:

- 1. Literal normalization
- 2. Conversion to a graph
- 3. Cycle detection in the graph

Step 1

Rewrite each literal in terms of \leq by applying these transformations to completion:

- 1. $x y = c \longrightarrow x y \leq c \land x y \geq c$
- **2.** $x y \ge c \quad \longrightarrow \quad y x \le -c$
- 3. $x y > c \longrightarrow y x < -c$
- $4. \ x y < c \quad \longrightarrow \quad x y \leq c 1$

Step 2

From the resulting literals of Step 1, construct a weighted directed graph G with a vertex for each variable

Add the edge $x \stackrel{c}{\rightarrow} y$ to *G* for each literal $x - y \leq c$

Step 3

Look for a cycle in G where the sum of the weights on the edges is negative Return UNSAT if there is such a cycle and return SAT otherwise

Note: There are a number of efficient algorithms for detecting negative cycles in graphs

• e.g., Bellman-Ford, O(v + e) where v is the number of vertices and e the number of edges

Step 2

From the resulting literals of Step 1, construct a weighted directed graph *G* with a vertex for each variable

Add the edge $x \stackrel{c}{\rightarrow} y$ to *G* for each literal $x - y \leq c$

Step 3

Look for a cycle in *G* where the sum of the weights on the edges is negative Return UNSAT if there is such a cycle and return SAT otherwise

Note: There are a number of efficient algorithms for detecting negative cycles in graphs

• e.g., Bellman-Ford, $O(v \cdot e)$ where v is the number of vertices and e the number of edges

Step 2

From the resulting literals of Step 1, construct a weighted directed graph *G* with a vertex for each variable

Add the edge $x \stackrel{c}{\rightarrow} y$ to *G* for each literal $x - y \leq c$

Step 3

Look for a cycle in *G* where the sum of the weights on the edges is negative Return UNSAT if there is such a cycle and return SAT otherwise

Note: There are a number of efficient algorithms for detecting negative cycles in graphs

• e.g., Bellman-Ford, $O(v \cdot e)$ where v is the number of vertices and e the number of edges

x-y=5 \wedge $z-y\geq 2$ \wedge z-x>2 \wedge w-x=2 \wedge z-w<0

 $x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$ x - y = 5 $z - y \ge 2$ z - x > 2 w - x = 2 z - w < 0

$$x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$$

$$x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$$

$$x - y = 5 \land z - y \ge 2 \land z - x > 2 \land w - x = 2 \land z - w < 0$$

Return UNSAT because of cycle: -3, -1, 2

Theory Solvers as Satisfiability Proof Systems

In general, how do we determine whether a conjunction (or, equivalently, a finite set) of literals is T-satisfiable?

For many theories, we can use the framework of satisfiability proof systems

Theory Solvers as Satisfiability Proof Systems

In general, how do we determine whether a conjunction (or, equivalently, a finite set) of literals is T-satisfiable?

For many theories, we can use the framework of satisfiability proof systems

A literal is *flat* if it is of the form:

$$x \doteq y$$
 $\neg(x \doteq y)$ $x \doteq f(z)$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables

Note: Any set of literals can be converted to an equisatisfiable flat set of literals by introducing fresh variables and equating non-equational atoms to true

Example

 $\{ x + y > 0, y \doteq f(g(z)) \} \longrightarrow$ $\{ v_1 \doteq \text{true}, v_1 \doteq v_2 > v_3, v_2 \doteq x + y, v_3 \doteq 0, y \doteq f(v_4), v_4 \doteq g(z) \}$

A literal is *flat* if it is of the form:

$$x \doteq y$$
 $\neg(x \doteq y)$ $x \doteq f(z)$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables

Note: Any set of literals can be converted to an equisatisfiable flat set of literals by introducing fresh variables and equating non-equational atoms to true

Example $\{x + y > 0, y \doteq f(g(z))\} \longrightarrow$ $\{v_1 \doteq true, v_1 \doteq v_2 > v_3, v_2 \doteq x + y, v_3 \doteq 0, y \doteq f(v_4), v_4 \doteq g(z)\}$

A literal is *flat* if it is of the form:

$$x \doteq y$$
 $\neg(x \doteq y)$ $x \doteq f(z)$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables

Note: Any set of literals can be converted to an equisatisfiable flat set of literals by introducing fresh variables and equating non-equational atoms to true

Example

 $\{x + y > 0, y \doteq f(g(z))\} \longrightarrow$ $\{v_1 \doteq \mathsf{true}, v_1 \doteq v_2 > v_3, v_2 \doteq x + y, v_3 \doteq 0, y \doteq f(v_4), v_4 \doteq g(z)\}$

A literal is *flat* if it is of the form:

$$x \doteq y$$
 $\neg(x \doteq y)$ $x \doteq f(z)$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables

Note: Any set of literals can be converted to an equisatisfiable flat set of literals by introducing fresh variables and equating non-equational atoms to true

Example

 $\{x + y > 0, y \doteq f(g(z))\} \longrightarrow$ $\{v_1 \doteq \mathsf{true}, v_1 \doteq v_2 > v_3, v_2 \doteq x + y, v_3 \doteq 0, y \doteq f(v_4), v_4 \doteq g(z)\}$

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples u = ⟨u₁,..., u_n⟩ and v = ⟨v₁,..., v_n⟩, we write u = v as an abbreviation for u₁ ≐ v₁,..., u_n ≐ v_n
- Proof states, besides SAT and UNSAT, are sets F of formulas
- The satisfiable states are those that are T-satisfiable, plus SAT
- We use Γ to refer to the current proof state in rule premises
- We write Γ , $s \doteq t$ as an abbreviation of $\Gamma \cup \{s \doteq t\}$
- From now on, we also assume that if applying a rule R does not change Γ, then R is not applicable to Γ, i.e., Γ is irreducible with respect to R

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $u = \langle u_1, \ldots, u_n \rangle$ and $v = \langle v_1, \ldots, v_n \rangle$, we write u = v as an abbreviation for $u_1 \doteq v_1, \ldots, u_n \doteq v_n$
- Proof states, besides SAT and UNSAT, are sets F of formulas
- The satisfiable states are those that are ${\mathcal T}$ -satisfiable, plus sat
- We use Γ to refer to the current proof state in rule premises
- We write Γ , $s \doteq t$ as an abbreviation of $\Gamma \cup \{s \doteq t\}$
- From now on, we also assume that if applying a rule *R* does not change Γ, then *R* is *not applicable* to Γ, i.e., Γ is irreducible with respect to *R*

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $\boldsymbol{u} = \langle u_1, \dots, u_n \rangle$ and $\boldsymbol{v} = \langle v_1, \dots, v_n \rangle$, we write $\boldsymbol{u} = \boldsymbol{v}$ as an abbreviation for $u_1 \doteq v_1, \dots, u_n \doteq v_n$
- Proof states, besides SAT and UNSAT, are sets Γ of formulas
- The satisfiable states are those that are T-satisfiable, plus SAT
- We use
 to refer to the current proof state in rule premises
- We write $\[\ f, \ s \doteq t \]$ as an abbreviation of $\[\ \ \cup \ \{ \ s \doteq t \]$
- From now on, we also assume that if applying a rule R does not change Γ, then R is not applicable to Γ, i.e., Γ is irreducible with respect to R

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $\boldsymbol{u} = \langle u_1, \dots, u_n \rangle$ and $\boldsymbol{v} = \langle v_1, \dots, v_n \rangle$, we write $\boldsymbol{u} = \boldsymbol{v}$ as an abbreviation for $u_1 \doteq v_1, \dots, u_n \doteq v_n$
- Proof states, besides SAT and UNSAT, are sets Γ of formulas
- The satisfiable states are those that are \mathcal{T} -satisfiable, plus sat
- We use I to refer to the current proof state in rule premises
- We write Γ , $s \doteq t$ as an abbreviation of $\Gamma \cup \{s \doteq t\}$
- From now on, we also assume that if applying a rule R does not change Γ, then R is not applicable to Γ, i.e., Γ is irreducible with respect to R

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $\boldsymbol{u} = \langle u_1, \dots, u_n \rangle$ and $\boldsymbol{v} = \langle v_1, \dots, v_n \rangle$, we write $\boldsymbol{u} = \boldsymbol{v}$ as an abbreviation for $u_1 \doteq v_1, \dots, u_n \doteq v_n$
- Proof states, besides SAT and UNSAT, are sets Γ of formulas
- The satisfiable states are those that are \mathcal{T} -satisfiable, plus sat
- We use Γ to refer to the current proof state in rule premises
- We write Γ , $s \doteq t$ as an abbreviation of $\Gamma \cup \{s \doteq t\}$
- From now on, we also assume that if applying a rule R does not change Γ, then R is not applicable to Γ, i.e., Γ is irreducible with respect to R

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $\boldsymbol{u} = \langle u_1, \dots, u_n \rangle$ and $\boldsymbol{v} = \langle v_1, \dots, v_n \rangle$, we write $\boldsymbol{u} = \boldsymbol{v}$ as an abbreviation for $u_1 \doteq v_1, \dots, u_n \doteq v_n$
- Proof states, besides SAT and UNSAT, are sets Γ of formulas
- The satisfiable states are those that are \mathcal{T} -satisfiable, plus sat
- We use Γ to refer to the current proof state in rule premises
- We write Γ , $s \doteq t$ as an abbreviation of $\Gamma \cup \{s \doteq t\}$
- From now on, we also assume that if applying a rule R does not change Γ, then R is not applicable to Γ, i.e., Γ is irreducible with respect to R

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $\boldsymbol{u} = \langle u_1, \dots, u_n \rangle$ and $\boldsymbol{v} = \langle v_1, \dots, v_n \rangle$, we write $\boldsymbol{u} = \boldsymbol{v}$ as an abbreviation for $u_1 \doteq v_1, \dots, u_n \doteq v_n$
- Proof states, besides SAT and UNSAT, are sets Γ of formulas
- The satisfiable states are those that are \mathcal{T} -satisfiable, plus sat
- We use Γ to refer to the current proof state in rule premises
- We write Γ , $s \doteq t$ as an abbreviation of $\Gamma \cup \{s \doteq t\}$
- From now on, we also assume that if applying a rule *R* does not change Γ, then *R* is *not applicable* to Γ, i.e., Γ is irreducible with respect to *R*

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ

The following is a simple satisfiability proof system *R*_{UF} for QF_UF:

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ

The following is a simple satisfiability proof system R_{UF} for QF_UF:

CONTR $x \doteq y \in \Gamma$ $x \neq y \in \Gamma$ Refl $x \operatorname{occurs in } \Gamma$ UNSATRefl $\overline{\Gamma := \Gamma, x \doteq x}$ SYMM $x \doteq y \in \Gamma$ $T \operatorname{rans}$ $\overline{\Gamma := \Gamma, x \doteq z}$ SYMM $x \doteq f(u) \in \Gamma$ $T \operatorname{rans}$ $\overline{\Gamma := \Gamma, x \doteq z}$ CONG $y \doteq f(v) \in \Gamma$ $u \doteq v \in \Gamma$ Sat $\Gamma := \Gamma, x \doteq y$ $T \operatorname{rans}$ \overline{Sat}

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ

The following is a simple satisfiability proof system R_{UF} for QF_UF:

CONTR $x \doteq y \in \Gamma$ $x \neq y \in \Gamma$ Refl $x \operatorname{occurs in } \Gamma$ UNSATRefl $\overline{\Gamma := \Gamma, x \doteq x}$ SYMM $x \doteq y \in \Gamma$ $T \operatorname{rans}$ $\overline{\Gamma := \Gamma, x \doteq z}$ SYMM $x \doteq f(u) \in \Gamma$ $T \operatorname{rans}$ $\overline{\Gamma := \Gamma, x \doteq z}$ CONG $y \doteq f(v) \in \Gamma$ $u \doteq v \in \Gamma$ Sat $\Gamma := \Gamma, x \doteq y$ $T \operatorname{rans}$ \overline{Sat}

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ

The following is a simple satisfiability proof system R_{UF} for QF_UF:

CONTR $x \doteq y \in \Gamma$
UNSAT $x \neq y \in \Gamma$
T
 $\overline{\Gamma} := \Gamma, x \doteq x$ Refl $x \operatorname{occurs in } \Gamma$
 $\overline{\Gamma} := \Gamma, x \doteq x$ SYMM $x \doteq y \in \Gamma$
 $\overline{\Gamma} := \Gamma, y \doteq x$ TRANS $x \doteq y \in \Gamma$
 $\overline{\Gamma} := \Gamma, x \doteq z$ SYMM $x \doteq f(u) \in \Gamma$
 $y \doteq f(v) \in \Gamma$
 $\overline{\Gamma} := \Gamma, x \doteq y$ TRANS $x \doteq y \in \Gamma$
 $\overline{\Gamma} := \Gamma, x \doteq z$ Some $x \doteq f(u) \in \Gamma$
 $\overline{\Gamma} := \Gamma, x \doteq y$ SatNo other rules apply
SAT

Example derivation

Problem Determine the satisfiability of $\{a \doteq f(f(a)), a \doteq f(f(f(a))), g(a, f(a)) \neq g(f(a), a)\}$ which can be flattened to

 $a \doteq f(a_1), \, a_1 \doteq f(a), \, a \doteq f(a_2), \, a_2 \doteq f(a_1), \, a_3 \neq a_4, \, a_3 \doteq g(a,a_1), \, a_4 \doteq g(a_1,a)$

Showing only difference with previous state

$$\begin{array}{c}
 a_{\pm} = a_{1} \\
 a_{\pm} = a_{2} \\
 a_{1} = a \\
 a_{\pm} = a_{1} \\
 a_{\pm} = a_{1} \\
 a_{\pm} = a_{4} \\
 unsat
\end{array}$$
(Cong³)

¹ applied to $a \doteq f(a_1)$, $a_2 \doteq f(a_1)$, $a_1 \doteq a_1$ ³ applied to $a_3 \doteq g(a, a_1)$, $a_4 \doteq g(a_1, a)$, $a \doteq a_1$, $a_1 \doteq a$ ⁴ applied to $a_3 \doteq a_4$, $a_3 \neq a_4$

Example derivation

Problem Determine the satisfiability of $\{a \doteq f(f(a)), a \doteq f(f(f(a))), g(a, f(a)) \neq g(f(a), a)\}$ which can be flattened to

 $\frac{a \doteq f(a_1), a_1 \doteq f(a), a \doteq f(a_2), a_2 \doteq f(a_1), a_3 \neq a_4, a_3 \doteq g(a, a_1), a_4 \doteq g(a_1, a)}{a \doteq a_1}$ (Refl) Showing only difference with previous state $\frac{a_1 \doteq a_1}{a_1 = a_1} (CONG^1)$ $\frac{a_1 \doteq a_1}{a_2 = a_1} (SYMM)$ $\frac{a_2 = a_1}{a_3 \doteq a_4} (CONG^3)$ $\frac{a_3 \doteq a_4}{UNSAT} (CONTR^4)$

¹ applied to $a \doteq f(a_1)$, $a_2 \doteq f(a_1)$, $a_1 \doteq a_1$ ³ applied to $a_3 \doteq g(a, a_1)$, $a_4 \doteq g(a_1, a)$, $a \doteq a_1$, $a_1 \doteq a$ ² applied to $a_1 \doteq f(a)$, $a \doteq f(a_2)$, $a \doteq a_2$ ⁴ applied to $a_3 \doteq a_4$, $a_3 \neq a_4$

Theorem 1 (Refutation soundness)

A literal set Γ_0 is unsatisfiable if R_{UF} derives UNSAT from it.

Theorem 1 (Refutation soundness) A literal set Γ_0 is unsatisfiable if R_{UF} derives UNSAT from it.

Proof sketch. All rules but SAT are clearly satisfiability preserving.

If a derivation from Γ_0 ends with UNSAT, it must then be that Γ_0 is unsatisfiable.

Theorem 1 (Solutions soundness)

A literal set Γ_0 is satisfiable if R_{UF} derives SAT from it.

Theorem 1 (Solutions soundness) A literal set Γ_0 is satisfiable if R_{UF} derives SAT from it.

Proof sketch. Let Γ be a proof state to which **SAT** applies. From Γ , we construct an interpretation that satisfies Γ_0 .

Let $s \sim t$ iff $s = t \in \Gamma$. One can show that \sim is an equivalence relation.

Let the domain of \mathcal{I} be the equivalence classes E_1, \ldots, E_k of \sim .

For every variable or a constant t, let $t^{\mathcal{I}} = E_i$ if $t \in E_i$ for some i; otherwise, let $t^{\mathcal{I}} = E_1$.

For every unary function symbol f, and equivalence class E_i , let $f^{\mathcal{I}}$ be such that $f^{\mathcal{I}}(E_i) = E_j$ if $f(t) \in E_j$ for some $t \in E_i$, and $f^{\mathcal{I}}(E_i) = E_1$ otherwise. Define $f^{\mathcal{I}}$ for non-unary f similarly.

We can show that $\mathcal{I} \models \Gamma$. This means that $\mathcal{I} \models \Gamma_0$ as well since $\Gamma_0 \subseteq \Gamma$.

Termination

Theorem 2 (Termination)

Every derivation strategy for R^{UF} terminates.

Termination

Theorem 2 (Termination)

Every derivation strategy for R_{UF} terminates.

Proof sketch. R_{UF} adds to the current state Γ only equalities between variables of Γ_0 . So at some point it will run out of new equalities to add.

Theorem 3 (Refutation completeness)

Every derivation strategy applied to an unsatisfiable state Γ_0 ends with UNSAT.

Theorem 3 (Refutation completeness)

Every derivation strategy applied to an unsatisfiable state Γ_0 ends with UNSAT.

Proof sketch. Let Γ_0 be an unsatisfiable state.

Suppose there was a derivation from Γ_0 that did not end with UNSAT.

Then, by the termination theorem, it would have to end with SAT.

But then R_{UF} would be not be solution sound.

Theorem 3 (Refutation completeness)

Every derivation strategy applied to an unsatisfiable state Γ_0 ends with UNSAT.

Theorem 4 (Solution completeness)

Every derivation strategy applied to a satisfiable state Γ_0 ends with SAT.

Theorem 3 (Refutation completeness)

Every derivation strategy applied to an unsatisfiable state Γ_0 ends with UNSAT.

Theorem 4 (Solution completeness)

Every derivation strategy applied to a satisfiable state Γ_0 ends with SAT.

Proof sketch. Let Γ_0 be a satisfiable state.

Suppose there was a derivation from Γ_0 that did not end with SAT.

Then, by the termination theorem, it would have to end with UNSAT.

But then R_{UF} would be refutation unsound.

Theory of Arrays \mathcal{T}_A

Recall: $\mathcal{T}_{A} = \langle \Sigma, M \rangle$ where

- $\Sigma^{S} = \{A, I, E\}$ (for arrays, indices, elements) $\Sigma^{F} = \{\text{ read, write }\}, \text{ rank(read)} = \langle A, I, E \rangle \text{ and } \text{rank(write)} = \langle A, I, E, A \rangle$
- *M* is the class of Σ -interpretations that satisfy the following axioms:
 - **1.** $\forall a. \forall i. \forall v. \operatorname{read}(\operatorname{write}(a, i, v), i) \doteq v$
 - **2.** $\forall a. \forall i. \forall i'. \forall v. (i \neq i' \Rightarrow read(write(a, i, v), i') \doteq read(a, i'))$
 - **3.** $\forall a. \forall a'_1. (\forall i. \operatorname{read}(a, i) \doteq \operatorname{read}(a'_1, i) \Rightarrow a \doteq a'_1)$

```
1 void ReadBlock(int data[], int x, int len)
2 {
3
    int i = 0:
  int next = data[0];
4
   for (; i < next && i < len; i = i + 1) {
5
    if (data[i] == x)
6
7
        break;
8
      else
9
        Process(data[i]);
10
    }
11 assert(i < len):</pre>
12 }
```

One path through this code can be translated using the theory of arrays as:

 $i \doteq 0 \land next \doteq read(data, 0) \land i < next \land$ $i < len \land read(data, i) = x \land \neg(i < len)$

The satisfiability proof system R_A for T_A extends the proof system R_{UF} for QF_UF with the following rules:

RINTRO1 $b \doteq write(a, i, v) \in \Gamma$ $\Gamma := \Gamma, v \doteq read(b, i)$

 $\frac{b \doteq \text{write}(a, i, v) \in \Gamma \quad u \doteq \text{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a, b\} \} }{\Gamma := \Gamma, i \doteq j} \quad \Gamma := \Gamma, i \neq j, u \doteq \text{read}(a, j), u \doteq \text{read}(b, j)$

Ext $\begin{array}{c} a \neq b \in \Gamma \quad a, b \text{ arrays} \\ \hline \Gamma := \Gamma, \ u \neq v, \ u \doteq \operatorname{read}(a, k), \ v \doteq \operatorname{read}(b, k) \end{array}$

where e_1, e_2 and k are fresh variables

The satisfiability proof system R_A for T_A extends the proof system R_{UF} for QF_UF with the following rules:

RINTRO1 $\frac{b \doteq \text{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \text{read}(b, i)}$

 $\begin{array}{l} b \doteq \mathsf{write}(a,i,v) \in \Gamma \quad u \doteq \mathsf{read}(c,j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a,b\} \\ \hline \Gamma := \Gamma, \ i \doteq j \quad \Gamma := \Gamma, \ i \neq j, \ u \doteq \mathsf{read}(a,j), \ u \doteq \mathsf{read}(b,j) \end{array}$

where e_1, e_2 and k are fresh variables

RINTRO1: If *b* results from writing *v* in *a* at position *i*, then reading *b* at that position gives you *v*

The satisfiability proof system R_A for T_A extends the proof system R_{UF} for QF_UF with the following rules:

RINTRO1 $\frac{b \doteq \text{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \text{read}(b, i)}$

RINTRO2 $\frac{b \doteq \text{write}(a, i, v) \in \Gamma \quad u \doteq \text{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a, b\}}{\Gamma := \Gamma, \ i \neq j, \ u \doteq \text{read}(a, j), \ u \doteq \text{read}(b, j)}$

 $\begin{array}{c} a \not = b \in \mathsf{F} \quad a, b \text{ arrays} \\ \hline \mathsf{F} := \mathsf{F}, \ u \not = v, \ u \doteq \mathsf{read}(a, k), \ v \doteq \mathsf{read}(b, k) \end{array}$

where e_1, e_2 and k are fresh variables

RINTRO2: If *b* results from writing *v* in *a* at position *i*, and *a* or *b* is read at position *j*, then separately consider two cases: (1) *i* equals *j*; (2) *a* and *b* have the same value at position *j*

The satisfiability proof system R_A for T_A extends the proof system R_{UF} for QF_UF with the following rules:

RINTRO1 $\frac{b \doteq \text{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \text{read}(b, i)}$

RINTRO2 $\frac{b \doteq \text{write}(a, i, v) \in \Gamma \quad u \doteq \text{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a, b\}}{\Gamma := \Gamma, \ i \doteq j \quad \Gamma := \Gamma, \ i \neq j, \ u \doteq \text{read}(a, j), \ u \doteq \text{read}(b, j)}$

EXT
$$\frac{a \neq b \in \Gamma \quad a, b \text{ arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \operatorname{read}(a, k), \ v \doteq \operatorname{read}(b, k)}$$

where e_1, e_2 and k are fresh variables

EXT: If arrays a_1 and a_2 are distinct, they must differ in the value they store at some position k

Determine the satisfiability of { write(a_1 , i, read(a_2 , i)) \doteq write(a_2 , i, read(a_1 , i)), $a_1 \neq a_2$ }

$$\begin{aligned} & \mathsf{RINTRO1} \quad \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \mathsf{read}(b, i)} \quad \mathsf{Ext} \quad \frac{a \neq b \in \Gamma \quad a, b \operatorname{arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \mathsf{read}(a, k), \ v \doteq \mathsf{read}(b, k)} \\ & \mathsf{RINTRO2} \quad \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma \quad u \doteq \mathsf{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a, b\}}{\Gamma := \Gamma, \ i \neq j \quad \Gamma := \Gamma, \ i \neq j, \ u \doteq \mathsf{read}(a, j), \ u \doteq \mathsf{read}(b, j)} \end{aligned}$$

Determine the satisfiability of { write(a_1 , i, read(a_2 , i)) \doteq write(a_2 , i, read(a_1 , i)), $a_1 \neq a_2$ }

First, we convert the problem to flat form:

 $\{ \operatorname{write}(a_1, i, \operatorname{read}(a_2, i)) \doteq \operatorname{write}(a_2, i, \operatorname{read}(a_1, i)), a_1 \neq a_2 \}$ $\longrightarrow \{ a'_1 \doteq a'_2, a'_1 \doteq \operatorname{write}(a_1, i, \operatorname{read}(a_2, i)), a'_2 \doteq \operatorname{write}(a_2, i, \operatorname{read}(a_1, i)), a_1 \neq a_2 \}$ $\longrightarrow \{ a'_1 \doteq a'_2, a'_1 \doteq \operatorname{write}(a_1, i, v_2), v_2 \doteq \operatorname{read}(a_2, i), a'_2 \doteq \operatorname{write}(a_2, i, v_1), v_1 \doteq \operatorname{read}(a_1, i), a_1 \neq a_2 \}$

$$\begin{array}{c} \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \mathsf{read}(b, i)} \ \mathsf{Ext} \ \frac{a \neq b \in \Gamma \ a, b \ \mathsf{arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \mathsf{read}(a, k), \ v \doteq \mathsf{read}(b, k)} \\ \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma \ u \doteq \mathsf{read}(c, j) \in \Gamma \ x \doteq c \in \Gamma \ x \in \{a, b\}}{\Gamma := \Gamma, \ i \neq j, \ u \doteq \mathsf{read}(a, j), \ u \doteq \mathsf{read}(b, j)} \end{array}$$

¹ applied to $a_1 \neq a_2$ ² applied to $a'_1 \doteq \text{write}(a_1, i, v_2), u_1 \doteq \text{read}(a_1, n), a_1 \doteq a_1$

$$\begin{array}{c} \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \mathsf{read}(b, i)} \ \mathsf{Ext} \ \frac{a \neq b \in \Gamma \ a, b \ \mathsf{arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \mathsf{read}(a, k), \ v \doteq \mathsf{read}(b, k)} \\ \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma \ u \doteq \mathsf{read}(c, j) \in \Gamma \ x \doteq c \in \Gamma \ x \in \{a, b\}}{\Gamma := \Gamma, \ i \neq j, \ u \doteq \mathsf{read}(a, j), \ u \doteq \mathsf{read}(b, j)} \end{array}$$

³ applied to $v_1 \doteq \operatorname{read}(a_1, i)$, $u_1 \doteq \operatorname{read}(a_1, n)$, $a_1 \doteq a_1$, $i \doteq n$ ⁴ appl. to $v_2 \doteq \operatorname{read}(a_2, i)$, $u_2 \doteq \operatorname{read}(a_2, n)$, $a_2 \doteq a_2$, $i \doteq n$

$$\begin{array}{c} \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \mathsf{read}(b, i)} \ \mathsf{Ext} \ \frac{a \neq b \in \Gamma \ a, b \ \mathsf{arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \mathsf{read}(a, k), \ v \doteq \mathsf{read}(b, k)} \\ \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma \ u \doteq \mathsf{read}(c, j) \in \Gamma \ x \doteq c \in \Gamma \ x \in \{a, b\}}{\Gamma := \Gamma, \ i \neq j, \ u \doteq \mathsf{read}(a, j), \ u \doteq \mathsf{read}(b, j)} \end{array}$$

$$\begin{array}{c} \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \mathsf{read}(b, i)} \ \mathsf{Ext} \ \frac{a \neq b \in \Gamma \ a, b \ \mathsf{arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \mathsf{read}(a, k), \ v \doteq \mathsf{read}(b, k)} \\ \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma \ u \doteq \mathsf{read}(c, j) \in \Gamma \ x \doteq c \in \Gamma \ x \in \{a, b\}}{\Gamma := \Gamma, \ i \neq j, \ u \doteq \mathsf{read}(a, j), \ u \doteq \mathsf{read}(b, j)} \end{array}$$

⁷ applied to $v_1 \doteq \operatorname{read}(a'_2, i), v_2 \doteq \operatorname{read}(a'_1, i), a'_1 \doteq a'_2, i \doteq i$ applied to $u_1 \doteq v_1, v_1 \doteq v_2, v_2 \doteq u_2$

$$\begin{array}{c} \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, \ v \doteq \mathsf{read}(b, i)} \ \mathsf{Ext} \ \frac{a \neq b \in \Gamma \ a, b \ \mathsf{arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \mathsf{read}(a, k), \ v \doteq \mathsf{read}(b, k)} \\ \mathsf{Rintrol} & \frac{b \doteq \mathsf{write}(a, i, v) \in \Gamma \ u \doteq \mathsf{read}(c, j) \in \Gamma \ x \doteq c \in \Gamma \ x \in \{a, b\}}{\Gamma := \Gamma, \ i \neq j, \ u \doteq \mathsf{read}(a, j), \ u \doteq \mathsf{read}(b, j)} \end{array}$$

⁹ applied to $a'_2 \doteq \text{write}(a_2, i, v_1), u_2 \doteq \text{read}(a_2, n), a_2 \doteq a_2$ ¹⁰ appl. to $u_1 \doteq \text{read}(a'_1, n), u_2 \doteq \text{read}(a'_2, n), a'_1 \doteq a'_2, n \doteq n$

The satisfiability proof system R_A for \mathcal{T}_A extends the proof system R_{UF} for QF_UF with the following rules:

RINTRO1
$$\frac{b \doteq \text{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, v \doteq \text{read}(b, i)}$$

RINTRO2
$$\frac{b \doteq \text{write}(a, i, v) \in \Gamma \quad u \doteq \text{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a, b\}}{\Gamma := \Gamma, \ i \doteq j} \quad \Gamma := \Gamma, \ i \neq j, \ u \doteq \text{read}(a, j), \ u \doteq \text{read}(b, j)}$$

EXT $\frac{a \neq b \in \Gamma \quad a, b \text{ arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \operatorname{read}(a, k), \ v \doteq \operatorname{read}(b, k)}$

Is R_A sound? Is it terminating?

The satisfiability proof system R_A for \mathcal{T}_A extends the proof system R_{UF} for QF_UF with the following rules:

RINTRO1
$$\frac{b \doteq \text{write}(a, i, v) \in \Gamma}{\Gamma := \Gamma, v \doteq \text{read}(b, i)}$$

RINTRO2
$$\frac{b \doteq \text{write}(a, i, v) \in \Gamma \quad u \doteq \text{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a, b\}}{\Gamma := \Gamma, \ i \doteq j} \quad \Gamma := \Gamma, \ i \neq j, \ u \doteq \text{read}(a, j), \ u \doteq \text{read}(b, j)$$

EXT $\frac{a \neq b \in \Gamma \quad a, b \text{ arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \operatorname{read}(a, k), \ v \doteq \operatorname{read}(b, k)}$

Is *R_A* sound? Is it terminating?

The satisfiability proof system R_A for \mathcal{T}_A extends the proof system R_{UF} for QF_UF with the following rules:

RINTRO1
$$\frac{b \doteq write(a, i, v) \in \Gamma}{\Gamma := \Gamma, v \doteq read(b, i)}$$

RINTRO2
$$\frac{b \doteq \operatorname{write}(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in \{a, b\}}{\Gamma := \Gamma, \ i \doteq j} \quad \Gamma := \Gamma, \ i \neq j, \ u \doteq \operatorname{read}(a, j), \ u \doteq \operatorname{read}(b, j)}$$

EXT $\frac{a \neq b \in \Gamma \quad a, b \text{ arrays}}{\Gamma := \Gamma, \ u \neq v, \ u \doteq \operatorname{read}(a, k), \ v \doteq \operatorname{read}(b, k)}$

Is *R*_A sound? Is it terminating?

Refutation soundness is straightforward and follows from the T_A axioms.

Termination follows from the following argument. Once we add all of the $i_{a,b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the **SAT** rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for *R*_{UF}, but then we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in R_{UF} case.

Refutation soundness is straightforward and follows from the T_A axioms.

Termination follows from the following argument. Once we add all of the $i_{a,b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the **SAT** rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for *R*_{UF}, but then we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in R_{UF} case.

Refutation soundness is straightforward and follows from the T_A axioms.

Termination follows from the following argument. Once we add all of the $i_{a,b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the **SAT** rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for R_{UF} , but then we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in R_{UF} case.

Refutation soundness is straightforward and follows from the T_A axioms.

Termination follows from the following argument. Once we add all of the $i_{a,b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the **SAT** rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for R_{UF} , but then we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in R_{UF} case.

Refutation soundness is straightforward and follows from the T_A axioms.

Termination follows from the following argument. Once we add all of the $i_{a,b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the **SAT** rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for R_{UF} , but then we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in R_{UF} case.