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Roadmap for Today

Theory Solvers

• Difference Logic
• Equality and Uninterpreted Functions
• Arrays

2 / 22



Theory Solvers

A theory solver for a theory T is a specialized procedure for determining
whether a conjunction of literals is satisfiable in T

Theory solvers are crucial building blocks in SMT solvers
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A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals
of a very restricted form:

x − y ▷◁ c

where x and y are integer variables, c is a numeral, and ▷◁ ∈ {=, <,≤, >,≥}
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A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals
of a very restricted form:

x − y ▷◁ c

where x and y are integer variables, c is a numeral, and ▷◁ ∈ {=, <,≤, >,≥}

Note: There is a similar version of difference logic over the reals, which we will not
cover, where x and y are integer variables and c is a decimal numeral
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Difference Logic

A solver for difference logic consists of three steps:

1. Literal normalization

2. Conversion to a graph

3. Cycle detection in the graph
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Difference Logic

Step 1

Rewrite each literal in terms of ≤ by applying these transformations to completion:

1. x − y = c −→ x − y ≤ c ∧ x − y ≥ c

2. x − y ≥ c −→ y − x ≤ −c

3. x − y > c −→ y − x < −c

4. x − y < c −→ x − y ≤ c − 1
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Difference Logic

Step 2

From the resulting literals of Step 1, construct a weighted directed graph G with a
vertex for each variable

Add the edge x c→ y to G for each literal x − y ≤ c

Step 3

Look for a cycle in G where the sum of the weights on the edges is negative

Return UNSAT if there is such a cycle and return SAT otherwise

Note: There are a number of efficient algorithms for detecting negative cycles in graphs

• e.g., Bellman-Ford, O(v · e) where v is the number of vertices and e the number of edges
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Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z − w < 0
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Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z − w < 0

x − y = 5
z − y ≥ 2
z − x > 2
w − x = 2
z − w < 0
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Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z − w < 0

x − y = 5 x − y ≤ 5 ∧ y − x ≤ −5
z − y ≥ 2 y − z ≤ −2
z − x > 2 −→ x − z ≤ −3
w − x = 2 w − x ≤ 2 ∧ x − w ≤ −2
z − w < 0 z − w ≤ −1

8 / 22



Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z − w < 0

x − y = 5 x − y ≤ 5 ∧ y − x ≤ −5
z − y ≥ 2 y − z ≤ −2
z − x > 2 −→ x − z ≤ −3
w − x = 2 w − x ≤ 2 ∧ x − w ≤ −2
z − w < 0 z − w ≤ −1

−3

−2

−12

−2

5

−5

8 / 22



Difference Logic Example

x − y = 5 ∧ z − y ≥ 2 ∧ z − x > 2 ∧ w − x = 2 ∧ z − w < 0

x − y = 5 x − y ≤ 5 ∧ y − x ≤ −5
z − y ≥ 2 y − z ≤ −2
z − x > 2 −→ x − z ≤ −3
w − x = 2 w − x ≤ 2 ∧ x − w ≤ −2
z − w < 0 z − w ≤ −1

−3

−2

−12

−2

5

−5

Return UNSAT because of cycle: −3,−1, 2
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Theory Solvers as Satisfiability Proof Systems

In general, how do we determine whether a conjunction (or, equivalently, a finite set)
of literals is T -satisfiable?

For many theories, we can use the framework of satisfiability proof systems
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Notation and Assumptions
A literal is flat if it is of the form:

x .
= y ¬(x .

= y) x .
= f (z)

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables

Note: Any set of literals can be converted to an equisatisfiable flat set of literals by
introducing fresh variables and equating non-equational atoms to true

Example

{ x + y > 0, y .
= f (g(z)) } −→

{ v1
.
= true, v1

.
= v2 > v3, v2

.
= x + y, v3

.
= 0, y .

= f (v4), v4
.
= g(z) }

For the proof systems we present next, we assume that all literals are flat
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Notation and Assumptions
• We abbreviate ¬(s .

= t) with s ̸ .= t

• For tuples u = ⟨u1, . . . , un⟩ and v = ⟨v1, . . . , vn⟩, we write u = v as an
abbreviation for u1

.
= v1, . . . , un

.
= vn

• Proof states, besides SAT and UNSAT, are sets Γ of formulas

• The satisfiable states are those that are T -satisfiable, plus SAT

• We use Γ to refer to the current proof state in rule premises

• We write Γ, s .
= t as an abbreviation of Γ ∪ { s .

= t }

• From now on, we also assume that if applying a rule R does not change Γ, then R
is not applicable to Γ, i.e., Γ is irreducible with respect to R
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A Satisfiability Proof System for QF_UF

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ

The following is a simple satisfiability proof system RUF for QF_UF:

CONTR x .
= y ∈ Γ x ̸ .= y ∈ Γ

UNSAT REfl x occurs in Γ
Γ := Γ, x .

= x

SYMM x .
= y ∈ Γ

Γ := Γ, y .
= x TRANS x .

= y ∈ Γ y .
= z ∈ Γ

Γ := Γ, x .
= z

CONG
x .
= f (u) ∈ Γ

y .
= f (v) ∈ Γ u .

= v ∈ Γ
Γ := Γ, x .

= y
SAT No other rules apply

SAT

Is RUF sound? Is it terminating?
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Example derivation

REfl x occurs in Γ
Γ := Γ, x .

= x CONTR x .
= y ∈ Γ x ̸ .= y ∈ Γ

UNSAT TRANS x .
= y ∈ Γ y .

= z ∈ Γ
Γ := Γ, x .

= z

SYMM x .
= y ∈ Γ

Γ := Γ, y .
= x CONG

x .
= f(u) ∈ Γ

y .
= f(v) ∈ Γ u .

= v ∈ Γ
Γ := Γ, x .

= y
SAT No other rules apply

SAT

Problem Determine the satisfiability of { a .
= f(f(a)), a .

= f(f(f(a))), g(a, f(a)) ̸ .= g(f(a), a) } which
can be flattened to

a .
= f(a1), a1

.
= f(a), a .

= f(a2), a2
.
= f(a1), a3 ̸ .= a4, a3

.
= g(a, a1), a4

.
= g(a1, a)

(REfl)
a1

.
= a1 (CONG1)

a .
= a2 (CONG2)

a1
.
= a (SYMM)

a .
= a1 (CONG3)

a3
.
= a4 (CONTR4)UNSAT

1 applied to a .
= f(a1), a2

.
= f(a1), a1

.
= a1

2 applied to a1
.
= f(a), a .

= f(a2), a .
= a2

3 applied to a3
.
= g(a, a1), a4

.
= g(a1, a), a .

= a1, a1
.
= a 4 applied to a3

.
= a4, a3 ̸ .= a4

13 / 22

Showing only difference
with previous state



Example derivation

REfl x occurs in Γ
Γ := Γ, x .

= x CONTR x .
= y ∈ Γ x ̸ .= y ∈ Γ

UNSAT TRANS x .
= y ∈ Γ y .

= z ∈ Γ
Γ := Γ, x .

= z

SYMM x .
= y ∈ Γ

Γ := Γ, y .
= x CONG

x .
= f(u) ∈ Γ

y .
= f(v) ∈ Γ u .

= v ∈ Γ
Γ := Γ, x .

= y
SAT No other rules apply

SAT

Problem Determine the satisfiability of { a .
= f(f(a)), a .

= f(f(f(a))), g(a, f(a)) ̸ .= g(f(a), a) } which
can be flattened to

a .
= f(a1), a1

.
= f(a), a .

= f(a2), a2
.
= f(a1), a3 ̸ .= a4, a3

.
= g(a, a1), a4

.
= g(a1, a)

(REfl)
a1

.
= a1 (CONG1)

a .
= a2 (CONG2)

a1
.
= a (SYMM)

a .
= a1 (CONG3)

a3
.
= a4 (CONTR4)UNSAT

1 applied to a .
= f(a1), a2

.
= f(a1), a1

.
= a1

2 applied to a1
.
= f(a), a .

= f(a2), a .
= a2

3 applied to a3
.
= g(a, a1), a4

.
= g(a1, a), a .

= a1, a1
.
= a 4 applied to a3

.
= a4, a3 ̸ .= a4

13 / 22

Showing only difference
with previous state



Soundness

Theorem 1 (Refutation soundness)
A literal set Γ0 is unsatisfiable if RUF derives UNSAT from it.
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Soundness

Theorem 1 (Refutation soundness)
A literal set Γ0 is unsatisfiable if RUF derives UNSAT from it.

Proof sketch. All rules but SAT are clearly satisfiability preserving.

If a derivation from Γ0 ends with UNSAT, it must then be that Γ0 is unsatisfiable.
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Soundness

Theorem 1 (Solutions soundness)
A literal set Γ0 is satisfiable if RUF derives SAT from it.
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Soundness

Theorem 1 (Solutions soundness)
A literal set Γ0 is satisfiable if RUF derives SAT from it.

Proof sketch. Let Γ be a proof state to which SAT applies. From Γ, we construct an
interpretation that satisfies Γ0.

Let s ∼ t iff s = t ∈ Γ. One can show that ∼ is an equivalence relation.

Let the domain of I be the equivalence classes E1, . . . , Ek of ∼.

For every variable or a constant t, let tI = Ei if t ∈ Ei for some i; otherwise, let tI = E1.

For every unary function symbol f , and equivalence class Ei, let fI be such that
fI(Ei) = Ej if f (t) ∈ Ej for some t ∈ Ei, and fI(Ei) = E1 otherwise. Define fI for
non-unary f similarly.

We can show that I |= Γ. This means that I |= Γ0 as well since Γ0 ⊆ Γ.
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Termination

Theorem 2 (Termination)
Every derivation strategy for RUF terminates.
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Termination

Theorem 2 (Termination)
Every derivation strategy for RUF terminates.

Proof sketch. RUF adds to the current state Γ only equalities between variables of Γ0.

So at some point it will run out of new equalities to add.
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Completeness

Theorem 3 (Refutation completeness)
Every derivation strategy applied to an unsatisfiable state Γ0 ends with UNSAT.
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Proof sketch. Let Γ0 be an unsatisfiable state.

Suppose there was a derivation from Γ0 that did not end with UNSAT.

Then, by the termination theorem, it would have to end with SAT.

But then RUF would be not be solution sound.

16 / 22



Completeness

Theorem 3 (Refutation completeness)
Every derivation strategy applied to an unsatisfiable state Γ0 ends with UNSAT.

Theorem 4 (Solution completeness)
Every derivation strategy applied to a satisfiable state Γ0 ends with SAT.

16 / 22



Completeness

Theorem 3 (Refutation completeness)
Every derivation strategy applied to an unsatisfiable state Γ0 ends with UNSAT.

Theorem 4 (Solution completeness)
Every derivation strategy applied to a satisfiable state Γ0 ends with SAT.

Proof sketch. Let Γ0 be a satisfiable state.

Suppose there was a derivation from Γ0 that did not end with SAT.

Then, by the termination theorem, it would have to end with UNSAT.

But then RUF would be refutation unsound.

16 / 22



Theory of Arrays TA

Recall: TA = ⟨Σ,M⟩ where

• ΣS = { A, I, E } (for arrays, indices, elements)

ΣF = { read,write }, rank(read) = ⟨A, I, E⟩ and rank(write) = ⟨A, I, E, A⟩

• M is the class of Σ-interpretations that satisfy the following axioms:
1. ∀a. ∀i.∀v. read(write(a, i, v), i) .

= v

2. ∀a. ∀i.∀i′.∀v. (i ̸ .= i′ ⇒ read(write(a, i, v), i′) .
= read(a, i′))

3. ∀a. ∀a′
1. (∀i.read(a, i) .

= read(a′
1, i) ⇒ a .

= a′
1)
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Example

1 void ReadBlock(int data[], int x, int len)
2 {
3 int i = 0;
4 int next = data[0];
5 for (; i < next && i < len; i = i + 1) {
6 if (data[i] == x)
7 break;
8 else
9 Process(data[i]);
10 }
11 assert(i < len);
12 }

One path through this code can be translated using the theory of arrays as:

i .
= 0 ∧ next .

= read(data, 0) ∧ i < next ∧
i < len ∧ read(data, i) = x ∧ ¬(i < len)
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A Satisfiability Proof System for TA

The satisfiability proof system RA for TA extends the proof system RUF for QF_UF with the
following rules:

RINTRO1
b .
= write(a, i, v) ∈ Γ

Γ := Γ, v .
= read(b, i)

RINTRO2
b .
= write(a, i, v) ∈ Γ u .

= read(c, j) ∈ Γ x .
= c ∈ Γ x ∈ { a, b }

Γ := Γ, i .
= j Γ := Γ, i ̸ .= j, u .

= read(a, j), u .
= read(b, j)

EXT
a ̸ .= b ∈ Γ a, b arrays

Γ := Γ, u ̸ .= v, u .
= read(a, k), v .

= read(b, k)

where e1, e2 and k are fresh variables

19 / 22



A Satisfiability Proof System for TA

The satisfiability proof system RA for TA extends the proof system RUF for QF_UF with the
following rules:

RINTRO1
b .
= write(a, i, v) ∈ Γ

Γ := Γ, v .
= read(b, i)

RINTRO2
b .
= write(a, i, v) ∈ Γ u .

= read(c, j) ∈ Γ x .
= c ∈ Γ x ∈ { a, b }

Γ := Γ, i .
= j Γ := Γ, i ̸ .= j, u .

= read(a, j), u .
= read(b, j)

EXT
a ̸ .= b ∈ Γ a, b arrays

Γ := Γ, u ̸ .= v, u .
= read(a, k), v .

= read(b, k)

where e1, e2 and k are fresh variables

RINTRO1: If b results from writing v in a at position i, then reading b at that position gives you v

19 / 22



A Satisfiability Proof System for TA

The satisfiability proof system RA for TA extends the proof system RUF for QF_UF with the
following rules:

RINTRO1
b .
= write(a, i, v) ∈ Γ

Γ := Γ, v .
= read(b, i)

RINTRO2
b .
= write(a, i, v) ∈ Γ u .

= read(c, j) ∈ Γ x .
= c ∈ Γ x ∈ { a, b }

Γ := Γ, i .
= j Γ := Γ, i ̸ .= j, u .

= read(a, j), u .
= read(b, j)

EXT
a ̸ .= b ∈ Γ a, b arrays

Γ := Γ, u ̸ .= v, u .
= read(a, k), v .

= read(b, k)

where e1, e2 and k are fresh variables

RINTRO2: If b results from writing v in a at position i, and a or b is read at position j, then
separately consider two cases: (1) i equals j; (2) a and b have the same value at position j

19 / 22



A Satisfiability Proof System for TA

The satisfiability proof system RA for TA extends the proof system RUF for QF_UF with the
following rules:

RINTRO1
b .
= write(a, i, v) ∈ Γ

Γ := Γ, v .
= read(b, i)

RINTRO2
b .
= write(a, i, v) ∈ Γ u .

= read(c, j) ∈ Γ x .
= c ∈ Γ x ∈ { a, b }

Γ := Γ, i .
= j Γ := Γ, i ̸ .= j, u .

= read(a, j), u .
= read(b, j)

EXT
a ̸ .= b ∈ Γ a, b arrays

Γ := Γ, u ̸ .= v, u .
= read(a, k), v .

= read(b, k)

where e1, e2 and k are fresh variables

EXT: If arrays a1 and a2 are distinct, they must differ in the value they store at some position k

19 / 22
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A Satisfiability Proof System for TA

The satisfiability proof system RA for TA extends the proof system RUF for QF_UF with
the following rules:

RINTRO1 b .
= write(a, i, v) ∈ Γ

Γ := Γ, v .
= read(b, i)

RINTRO2 b .
= write(a, i, v) ∈ Γ u .

= read(c, j) ∈ Γ x .
= c ∈ Γ x ∈ { a, b }

Γ := Γ, i .
= j Γ := Γ, i ̸ .= j, u .

= read(a, j), u .
= read(b, j)

EXT a ̸ .= b ∈ Γ a, b arrays
Γ := Γ, u ̸ .= v, u .

= read(a, k), v .
= read(b, k)

Is RA sound? Is it terminating?
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Soundness, Termination, and Completeness

Refutation soundness is straightforward and follows from the TA axioms.

Termination follows from the following argument. Once we add all of the ia,b variables,
no rule introduces new variables. There are only a finite number of terms that match
the conclusions that can be constructed with a finite number of variables, so
eventually, Γ will become reducible only by the SAT rule.

Solution soundness is again by constructing an interpretation but is much more
involved. Essentially, we construct an interpretation much as we did for RUF , but then
we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in
RUF case.

More details in Section 5 of Jovanović and Barrett, “Being Careful about Theory Combination”, 2013.
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