CS:4980 Topics in Computer Science II
 Introduction to Automated Reasoning

Theory Solvers I

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

Roadmap for Today

Theory Solvers

- Difference Logic
- Equality and Uninterpreted Functions
- Arrays

Theory Solvers

A theory solver for a theory \mathcal{T} is a specialized procedure for determining whether a conjunction of literals is satisfiable in \mathcal{T}

Theory Solvers

A theory solver for a theory \mathcal{T} is a specialized procedure for determining whether a conjunction of literals is satisfiable in \mathcal{T}

Theory solvers are crucial building blocks in SMT solvers

A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals of a very restricted form:

$$
x-y \bowtie c
$$

where x and y are integer variables, c is a numeral, and $\bowtie \in\{=,<, \leq,>, \geq\}$

A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals of a very restricted form:

$$
x-y \bowtie c
$$

where x and y are integer variables, c is a numeral, and $\bowtie \in\{=,<, \leq,>, \geq\}$

A Fragment of Arithmetic: Difference Logic

Difference logic is a fragment of integer arithmetic consisting of conjunction of literals of a very restricted form:

$$
x-y \bowtie c
$$

where x and y are integer variables, c is a numeral, and $\bowtie \in\{=,<, \leq,>, \geq\}$

Note: There is a similar version of difference logic over the reals, which we will not cover, where x and y are integer variables and c is a decimal numeral

Difference Logic

A solver for difference logic consists of three steps:

1. Literal normalization
2. Conversion to a graph
3. Cycle detection in the graph

Difference Logic

Step 1

Rewrite each literal in terms of \leq by applying these transformations to completion:

1. $x-y=c \quad \longrightarrow \quad x-y \leq c \wedge x-y \geq c$
2. $x-y \geq c \longrightarrow y-x \leq-c$
3. $x-y>c \longrightarrow y-x<-c$
4. $x-y<c \quad \longrightarrow \quad x-y \leq c-1$

Difference Logic

Step 2

From the resulting literals of Step 1, construct a weighted directed graph G with a vertex for each variable

Add the edge $x \xrightarrow{c} y$ to G for each literal $x-y \leq c$

Difference Logic

Step 2

From the resulting literals of Step 1, construct a weighted directed graph G with a vertex for each variable

Add the edge $x \xrightarrow{c} y$ to G for each literal $x-y \leq c$

Step 3

Look for a cycle in G where the sum of the weights on the edges is negative Return UNSAT if there is such a cycle and return SAT otherwise

Difference Logic

Step 2

From the resulting literals of Step 1, construct a weighted directed graph G with a vertex for each variable

Add the edge $x \xrightarrow{c} y$ to G for each literal $x-y \leq c$

Step 3

Look for a cycle in G where the sum of the weights on the edges is negative Return UNSAT if there is such a cycle and return SAT otherwise

Note: There are a number of efficient algorithms for detecting negative cycles in graphs

- e.g., Bellman-Ford, $O(v \cdot e)$ where v is the number of vertices and e the number of edges

Difference Logic Example

$$
x-y=5 \wedge z-y \geq 2 \wedge z-x>2 \wedge w-x=2 \wedge z-w<0
$$

Difference Logic Example

$$
\begin{aligned}
& \quad x-y=5 \wedge z-y \geq 2 \wedge z-x>2 \wedge w-x=2 \wedge z-w<0 \\
& x-y=5 \\
& z-y \geq 2 \\
& z-x>2 \\
& w-x=2 \\
& z-w<0
\end{aligned}
$$

Difference Logic Example

$$
\begin{array}{ll}
x-y=5 \wedge & z-y \geq 2 \wedge z-x>2 \wedge w-x=2 \wedge z-w<0 \\
x-y=5 & \\
z-y \leq 5 \wedge y-x \leq-5 \\
z-y \geq 2 & y-z \leq-2 \\
z-x>2 & \\
w-z \leq-3 \\
w-w<0 & \\
z-x \leq 2 \wedge x-w \leq-2 \\
& z-w \leq-1
\end{array}
$$

Difference Logic Example

Difference Logic Example

Return UNSAT because of cycle: $-3,-1,2$

Theory Solvers as Satisfiability Proof Systems

In general, how do we determine whether a conjunction (or, equivalently, a finite set) of literals is \mathcal{T}-satisfiable?

Theory Solvers as Satisfiability Proof Systems

In general, how do we determine whether a conjunction (or, equivalently, a finite set) of literals is \mathcal{T}-satisfiable?

For many theories, we can use the framework of satisfiability proof systems

Notation and Assumptions

A literal is flat if it is of the form:

$$
x \doteq y \quad \neg(x \doteq y) \quad x \doteq f(\mathbf{z})
$$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables

Notation and Assumptions

A literal is flat if it is of the form:

$$
x \doteq y \quad \neg(x \doteq y) \quad x \doteq f(\mathbf{z})
$$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables
Note: Any set of literals can be converted to an equisatisfiable flat set of literals by introducing fresh variables and equating non-equational atoms to true

Notation and Assumptions

A literal is flat if it is of the form:

$$
x \doteq y \quad \neg(x \doteq y) \quad x \doteq f(\mathbf{z})
$$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables
Note: Any set of literals can be converted to an equisatisfiable flat set of literals by introducing fresh variables and equating non-equational atoms to true

Example

$\{x+y>0, y \doteq f(g(z))\} \longrightarrow$
$\left\{v_{1} \doteq\right.$ true $\left., v_{1} \doteq v_{2}>v_{3}, v_{2} \doteq x+y, v_{3} \doteq 0, y \doteq f\left(v_{4}\right), v_{4} \doteq g(z)\right\}$

Notation and Assumptions

A literal is flat if it is of the form:

$$
x \doteq y \quad \neg(x \doteq y) \quad x \doteq f(\mathbf{z})
$$

where x, y are variables, f is a function symbol and z is a tuple of 0 or more variables
Note: Any set of literals can be converted to an equisatisfiable flat set of literals by introducing fresh variables and equating non-equational atoms to true

Example

```
\(\{x+y>0, y \doteq f(g(z))\} \longrightarrow\)
\(\left\{v_{1} \doteq\right.\) true \(\left., v_{1} \doteq v_{2}>v_{3}, v_{2} \doteq x+y, v_{3} \doteq 0, y \doteq f\left(v_{4}\right), v_{4} \doteq g(z)\right\}\)
```

For the proof systems we present next, we assume that all literals are flat

Notation and Assumptions

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$

Notation and Assumptions

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, we write $u=v$ as an abbreviation for $u_{1} \doteq v_{1}, \ldots, u_{n} \doteq v_{n}$

Notation and Assumptions

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, we write $u=v$ as an abbreviation for $u_{1} \doteq v_{1}, \ldots, u_{n} \doteq v_{n}$
- Proof states, besides SAT and UNSAT, are sets \lceil of formulas

Notation and Assumptions

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, we write $u=v$ as an abbreviation for $u_{1} \doteq v_{1}, \ldots, u_{n} \doteq v_{n}$
- Proof states, besides SAT and UNSAT, are sets \lceil of formulas
- The satisfiable states are those that are \mathcal{T}-satisfiable, plus SAT

Notation and Assumptions

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, we write $u=v$ as an abbreviation for $u_{1} \doteq v_{1}, \ldots, u_{n} \doteq v_{n}$
- Proof states, besides SAT and UNSAT, are sets \lceil of formulas
- The satisfiable states are those that are \mathcal{T}-satisfiable, plus SAT
- We use \lceil to refer to the current proof state in rule premises

Notation and Assumptions

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, we write $u=v$ as an abbreviation for $u_{1} \doteq v_{1}, \ldots, u_{n} \doteq v_{n}$
- Proof states, besides SAT and UNSAT, are sets \lceil of formulas
- The satisfiable states are those that are \mathcal{T}-satisfiable, plus SAT
- We use \lceil to refer to the current proof state in rule premises
- We write $\Gamma, s \doteq t$ as an abbreviation of $\Gamma \cup\{s \doteq t\}$

Notation and Assumptions

- We abbreviate $\neg(s \doteq t)$ with $s \neq t$
- For tuples $u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, we write $u=v$ as an abbreviation for $u_{1} \doteq v_{1}, \ldots, u_{n} \doteq v_{n}$
- Proof states, besides SAT and UNSAT, are sets \lceil of formulas
- The satisfiable states are those that are \mathcal{T}-satisfiable, plus SAT
- We use \lceil to refer to the current proof state in rule premises
- We write $\Gamma, s \doteq t$ as an abbreviation of $\Gamma \cup\{s \doteq t\}$
- From now on, we also assume that if applying a rule R does not change Γ, then R is not applicable to Γ, i.e., Γ is irreducible with respect to R

A Satisfiability Proof System for QF_UF

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ

A Satisfiability Proof System for QF_UF

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ
The following is a simple satisfiability proof system $R_{U F}$ for QF_UF:
$\operatorname{CoNTR} \frac{x \doteq y \in \Gamma \quad x \neq y \in \Gamma}{\text { UNSAT }}$
SYMM $\frac{x \doteq y \in \Gamma}{\Gamma:=\Gamma, y \doteq x}$
CONG $\begin{aligned} & x \doteq f(\boldsymbol{u}) \in \Gamma \\ & y \doteq f(\boldsymbol{v}) \in \Gamma \quad u \doteq \boldsymbol{j} \in \Gamma \\ & \Gamma:=\Gamma, x \doteq y\end{aligned}$

Refl $\frac{x \text { occurs in } \Gamma}{\Gamma:=\Gamma, x \doteq x}$
Trans $\frac{x \doteq y \in \Gamma \quad y \doteq z \in \Gamma}{\Gamma:=\Gamma, x \doteq z}$

SAT $\frac{\text { No other rules apply }}{\text { SAT }}$

A Satisfiability Proof System for QF_UF

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ
The following is a simple satisfiability proof system $R_{U F}$ for QF_UF:

$$
\begin{aligned}
& \operatorname{CONTR} \frac{x \doteq y \in \Gamma \quad x \neq y \in \Gamma}{\text { UNSAT }} \\
& \text { Symm } \frac{x \doteq y \in \Gamma}{\Gamma:=\Gamma, y \doteq x} \\
& \text { CONG } \begin{array}{l}
x \doteq f(\boldsymbol{u}) \in \Gamma \\
y \doteq f(\boldsymbol{v}) \in \Gamma \quad u \doteq \boldsymbol{j} \in \Gamma \\
\Gamma:=\Gamma, x \doteq y
\end{array} \\
& \operatorname{Refl} \frac{x \text { occurs in } \Gamma}{\Gamma:=\Gamma, x \doteq x} \\
& \text { TRANS } \frac{x \doteq y \in \Gamma \quad y \doteq z \in \Gamma}{\Gamma:=\Gamma, x \doteq z} \\
& \text { SAT } \frac{\text { No other rules apply }}{\text { SAT }}
\end{aligned}
$$

Is $R_{\text {UF }}$ sound?

A Satisfiability Proof System for QF_UF

Let QF_UF be the quantifier-free fragment of FOL over some signature Σ
The following is a simple satisfiability proof system $R_{U F}$ for QF_UF:

$$
\begin{array}{ll}
\text { ConTR } \frac{x \doteq y \in \Gamma \quad x \neq y \in \Gamma}{\text { UNSAT }} & \text { Refl } \frac{x \text { occurs in } \Gamma}{\Gamma:=\Gamma, x \doteq x} \\
\text { SYMM } \frac{x \doteq y \in \Gamma}{\Gamma:=\Gamma, y \doteq x} & \text { TRANS } \frac{x \doteq y \in \Gamma \quad y \doteq z \in \Gamma}{\Gamma:=\Gamma, x \doteq z} \\
\text { CONG } \begin{array}{ll}
x \doteq f(\boldsymbol{u}) \in \Gamma & \\
& \\
& \text { SAT } \frac{\text { No other rules apply }}{\text { SAT }}
\end{array}
\end{array}
$$

Is $R_{\text {UF }}$ sound? Is it terminating?

Example derivation

$$
\begin{array}{llll}
\text { Refl } \frac{x \text { occurs in } \Gamma}{\Gamma:=\Gamma, x \doteq x} & \text { CoNTR } \frac{x \doteq y \in \Gamma \quad x \neq y \in \Gamma}{\text { UNSAT }} & \text { TRANS } \frac{x \doteq y \in \Gamma \quad y \doteq z \in \Gamma}{\Gamma:=\Gamma, x \doteq z} \\
\text { SYMM } \frac{x \doteq y \in \Gamma}{\Gamma:=\Gamma, y \doteq x}
\end{array} \quad \text { CONG } \begin{array}{ll}
x \doteq f(u) \in \Gamma \\
\Gamma \doteq f(v) \in \Gamma \quad u \doteq v \in \Gamma \\
\Gamma:=\Gamma, x \doteq y
\end{array} \quad \text { SAT } \frac{\text { No other rules apply }}{\text { SAT }}
$$

Problem Determine the satisfiability of $\{a \doteq f(f(a)), a \doteq f(f(f(a))), g(a, f(a)) \neq g(f(a), a)\}$

Example derivation

$$
\begin{aligned}
& \text { Refl } \frac{x \text { occurs in } \Gamma}{\Gamma:=\Gamma, x \doteq x} \quad \text { Contr } \frac{x \doteq y \in \Gamma \quad x \neq y \in \Gamma}{\text { UNSAT }} \quad \text { TrANS } \frac{x \doteq y \in \Gamma \quad y \doteq z \in \Gamma}{\Gamma:=\Gamma, x \doteq z}
\end{aligned}
$$

Problem Determine the satisfiability of $\{a \doteq f(f(a)), a \doteq f(f(f(a))), g(a, f(a)) \neq g(f(a), a)\}$ which can be flattened to
${ }^{1}$ applied to $a \doteq f\left(a_{1}\right), a_{2} \doteq f\left(a_{1}\right), a_{1} \doteq a_{1}$
${ }^{3}$ applied to $a_{3} \doteq g\left(a, a_{1}\right), a_{4} \doteq g\left(a_{1}, a\right), a \doteq a_{1}, a_{1} \doteq a$
${ }^{2}$ applied to $a_{1} \doteq f(a), a \doteq f\left(a_{2}\right), a \doteq a_{2}$
${ }^{4}$ applied to $a_{3} \doteq a_{4}, a_{3} \neq a_{4}$

Soundness

Theorem 1 (Refutation soundness)
A literal set Γ_{0} is unsatisfiable if $R_{\text {UF }}$ derives UNSAT from it.

Soundness

Theorem 1 (Refutation soundness)
A literal set Γ_{0} is unsatisfiable if $R_{\text {UF }}$ derives UNSAT from it.
Proof sketch. All rules but SAT are clearly satisfiability preserving.
If a derivation from Γ_{0} ends with UNSAT, it must then be that Γ_{0} is unsatisfiable.

Soundness

Theorem 1 (Solutions soundness)
A literal set Γ_{0} is satisfiable if $R_{U F}$ derives SAT from it.

Soundness

Theorem 1 (Solutions soundness)
A literal set Γ_{0} is satisfiable if $R_{U F}$ derives SAT from it.
Proof sketch. Let Γ be a proof state to which SAT applies. From Γ, we construct an interpretation that satisfies Γ_{0}.

Let $s \sim t$ iff $s=t \in \Gamma$. One can show that \sim is an equivalence relation.
Let the domain of I be the equivalence classes E_{1}, \ldots, E_{k} of \sim.
For every variable or a constant t, let $t^{\mathcal{I}}=E_{i}$ if $t \in E_{i}$ for some i; otherwise, let $t^{\mathcal{I}}=E_{1}$.
For every unary function symbol f, and equivalence class E_{i}, let $f^{\mathcal{I}}$ be such that $f^{\mathcal{I}}\left(E_{i}\right)=E_{j}$ if $f(t) \in E_{j}$ for some $t \in E_{i}$, and $f^{\mathcal{I}}\left(E_{i}\right)=E_{1}$ otherwise. Define $f^{\mathcal{I}}$ for non-unary f similarly.

We can show that $I \models \Gamma$. This means that $I \models \Gamma_{0}$ as well since $\Gamma_{0} \subseteq \Gamma$.

Termination

Theorem 2 (Termination)
Every derivation strategy for RuF terminates.

Termination

Theorem 2 (Termination)
 Every derivation strategy for $R_{U F}$ terminates.

Proof sketch. $R_{U F}$ adds to the current state Γ only equalities between variables of Γ_{0}. So at some point it will run out of new equalities to add.

Completeness

Theorem 3 (Refutation completeness)
Every derivation strategy applied to an unsatisfiable state Γ_{0} ends with UNSAT.

Completeness

Theorem 3 (Refutation completeness)
Every derivation strategy applied to an unsatisfiable state Γ_{0} ends with UNSAT.
Proof sketch. Let Γ_{0} be an unsatisfiable state.
Suppose there was a derivation from Γ_{0} that did not end with UNSAT.
Then, by the termination theorem, it would have to end with SAT.
But then $R_{U F}$ would be not be solution sound.

Completeness

Theorem 3 (Refutation completeness)
Every derivation strategy applied to an unsatisfiable state Γ_{0} ends with UNSAT.

Theorem 4 (Solution completeness)
Every derivation strategy applied to a satisfiable state Γ_{0} ends with SAT.

Completeness

Theorem 3 (Refutation completeness)
Every derivation strategy applied to an unsatisfiable state Γ_{0} ends with UNSAT.

Theorem 4 (Solution completeness)
Every derivation strategy applied to a satisfiable state Γ_{0} ends with sat.
Proof sketch. Let Γ_{0} be a satisfiable state.
Suppose there was a derivation from Γ_{0} that did not end with SAT.
Then, by the termination theorem, it would have to end with UNSAT.
But then $R_{U F}$ would be refutation unsound.

Theory of Arrays T_{A}

Recall: $\mathcal{T}_{A}=\langle\Sigma, M\rangle$ where

- $\Sigma^{S}=\{A, I, E\}$ (for arrays, indices, elements) $\Sigma^{F}=\{$ read, write $\}, \quad \operatorname{rank}($ read $)=\langle A, I, E\rangle$ and $\operatorname{rank}($ write $)=\langle A, I, E, A\rangle$
- M is the class of Σ-interpretations that satisfy the following axioms:

1. $\forall a . \forall i . \forall v$. $\operatorname{read}(w r i t e(a, i, v), i) \doteq v$
2. $\forall a . \forall i \cdot \forall i^{\prime} . \forall v .\left(i \neq i^{\prime} \Rightarrow \operatorname{read}\left(\operatorname{write}(a, i, v), i^{\prime}\right) \doteq \operatorname{read}\left(a, i^{\prime}\right)\right)$
3. $\forall a \cdot \forall a_{1}^{\prime} \cdot\left(\forall i \cdot \operatorname{read}(a, i) \doteq \operatorname{read}\left(a_{1}^{\prime}, i\right) \Rightarrow a \doteq a_{1}^{\prime}\right)$

Example

```
1 void ReadBlock(int data[], int x, int len)
2 {
3 int i = 0;
4 int next = data[0];
5 for (; i < next && i < len; i = i + 1) {
6 if (data[i] == x)
            break;
        else
            Process(data[i]);
    }
    assert(i < len);
12}
```

One path through this code can be translated using the theory of arrays as:

$$
\begin{gathered}
i \doteq 0 \wedge \text { next } \doteq \operatorname{read}(\text { data }, 0) \wedge i<n e x t \wedge \\
i<\text { len } \wedge \operatorname{read}(\text { data }, i)=x \wedge \neg(i<\text { len })
\end{gathered}
$$

A Satisfiability Proof System for T_{A}

The satisfiability proof system R_{A} for T_{A} extends the proof system $R_{U F}$ for $Q F _U F$ with the following rules:

A Satisfiability Proof System for T_{A}

The satisfiability proof system R_{A} for T_{A} extends the proof system $R_{U F}$ for $Q F _U F$ with the following rules:

$$
\text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)}
$$

RINTRO1: If b results from writing v in a at position i, then reading b at that position gives you v

A Satisfiability Proof System for T_{A}

The satisfiability proof system R_{A} for T_{A} extends the proof system $R_{U F}$ for $Q F _U F$ with the following rules:

$$
\begin{gathered}
\text { RINTRO1 } \frac{b \doteq \operatorname{write}(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)} \\
\text { RINTRO2 } \frac{b \doteq \operatorname{write}(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
\end{gathered}
$$

RINTRO2: If b results from writing v in a at position i, and a or b is read at position j, then separately consider two cases: (1) i equals j; (2) a and b have the same value at position j

A Satisfiability Proof System for T_{A}

The satisfiability proof system R_{A} for T_{A} extends the proof system $R_{U F}$ for $Q F _U F$ with the following rules:

$$
\text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)}
$$

$$
\begin{gathered}
\text { RINTRO2 } \frac{b \doteq \operatorname{write}(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j \quad \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)} \\
\operatorname{ExT} \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{read}(b, k)} \\
\text { where } e_{1}, e_{2} \text { and } k \text { are fresh variables }
\end{gathered}
$$

EXT: If arrays a_{1} and a_{2} are distinct, they must differ in the value they store at some position k

$$
\begin{aligned}
& \text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{~read}(b, i)} \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{read}(b, k)} \\
& \text { RINTRO2 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j \quad \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{eread}(b, i)} \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{read}(b, k)} \\
& \text { RINTRO2 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j \quad \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)}
\end{aligned}
$$

Determine the satisfiability of $\left\{\right.$ write $\left(a_{1}, i, \operatorname{read}\left(a_{2}, i\right)\right) \doteq$ write $\left.\left(a_{2}, i, \operatorname{read}\left(a_{1}, i\right)\right), a_{1} \neq a_{2}\right\}$

Example

$$
\begin{aligned}
& \text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)} \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq r e} \\
& \text { RINTRO2 } \frac{b \doteq w r i t e(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
\end{aligned}
$$

Determine the satisfiability of $\left\{\operatorname{write}\left(a_{1}, i, \operatorname{read}\left(a_{2}, i\right)\right) \doteq \operatorname{write}\left(a_{2}, i, \operatorname{read}\left(a_{1}, i\right)\right), a_{1} \neq a_{2}\right\}$
First, we convert the problem to flat form:

$$
\begin{aligned}
& \left\{\text { write }\left(a_{1}, i, \operatorname{read}\left(a_{2}, i\right)\right) \doteq \operatorname{write}\left(a_{2}, i, \operatorname{read}\left(a_{1}, i\right)\right), a_{1} \neq a_{2}\right\} \\
& \longrightarrow\left\{a_{1}^{\prime} \doteq a_{2}^{\prime}, a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, \operatorname{read}\left(a_{2}, i\right)\right), a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, \operatorname{read}\left(a_{1}, i\right)\right), a_{1} \neq a_{2}\right\} \\
& \longrightarrow\left\{a_{1}^{\prime} \doteq a_{2}^{\prime}, a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, v_{2}\right), v_{2} \doteq \operatorname{read}\left(a_{2}, i\right), a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, v_{1}\right), v_{1} \doteq \operatorname{read}\left(a_{1}, i\right), a_{1} \neq a_{2}\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)} \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{re}} \\
& \text { RINTRO2 } \frac{b \doteq w r i t e(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
a_{1}^{\prime} \doteq a_{2}^{\prime}, a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, v_{2}\right), v_{2} \doteq \operatorname{read}\left(a_{2}, i\right), a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, v_{1}\right), v_{1} \doteq \operatorname{read}\left(a_{1}, i\right), a_{1} \neq a_{2} \\
\frac{a_{1} \doteq a_{1}}{a_{2} \doteq a_{2}}(\text { Refl })
\end{array} \text { (REfl) }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1} \text { applied to } a_{1} \neq a_{2} \quad{ }^{2} \text { applied to } a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, v_{2}\right), u_{1} \doteq \operatorname{read}\left(a_{1}, n\right), a_{1} \doteq a_{1}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)} \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{re}} \\
& \text { RINTRO2 } \frac{b \doteq w r i t e(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
a_{1}^{\prime} \doteq a_{2}^{\prime}, a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, v_{2}\right), v_{2} \doteq \operatorname{read}\left(a_{2}, i\right), a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, v_{1}\right), v_{1} \doteq \operatorname{read}\left(a_{1}, i\right), a_{1} \neq a_{2} \\
\frac{a_{1} \doteq a_{1}}{a_{2} \doteq a_{2}}(\text { Refl })
\end{array} \text { (REfl) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Showing only difference with previous state }
\end{aligned}
$$

${ }^{3}$ applied to $v_{1} \doteq \operatorname{read}\left(a_{1}, i\right), u_{1} \doteq \operatorname{read}\left(a_{1}, n\right), a_{1} \doteq a_{1}, i \doteq n \quad{ }^{4}$ appl. to $v_{2} \doteq \operatorname{read}\left(a_{2}, i\right), u_{2} \doteq \operatorname{read}\left(a_{2}, n\right), a_{2} \doteq a_{2}, i \doteq n$

Example

$$
\text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)} \quad \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{read}(b, k)}
$$

$$
\text { RINTRO2 } \frac{b \doteq \operatorname{write}(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
$$

$$
\begin{aligned}
& \frac{a_{1}^{\prime} \doteq a_{2}^{\prime}, a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, v_{2}\right), v_{2} \doteq \operatorname{read}\left(a_{2}, i\right), a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, v_{1}\right), v_{1} \doteq \operatorname{read}\left(a_{1}, i\right), a_{1} \neq a_{2}}{\frac{a_{1} \doteq a_{1}}{a_{2} \doteq a_{2}}(\mathrm{REfl})} \text { (REfl) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Showing only difference with previous state } \\
& { }^{5} \text { applied to } a_{1}^{\prime} \doteq \text { write }\left(a_{1}, i, v_{2}\right) \quad{ }^{6} \text { applied to } a_{2}^{\prime} \doteq \text { write }\left(a_{2}, i, v_{1}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)} \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq r e} \\
& \text { RINTRO2 } \frac{b \doteq w r i t e(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a_{1}^{\prime} \doteq a_{2}^{\prime}, a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, v_{2}\right), v_{2} \doteq \operatorname{read}\left(a_{2}, i\right), a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, v_{1}\right), v_{1} \doteq \operatorname{read}\left(a_{1}, i\right), a_{1} \neq a_{2}}{\frac{a_{1} \doteq a_{1}}{a_{2} \doteq a_{2}}(\text { Refl })} \text { (REfl) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Showing only difference with previous state }
\end{aligned}
$$

${ }^{7}$ applied to $v_{1} \doteq \operatorname{read}\left(a_{2}^{\prime}, i\right), v_{2} \doteq \operatorname{read}\left(a_{1}^{\prime}, i\right), a_{1}^{\prime} \doteq a_{2}^{\prime}, i \doteq i \quad{ }^{8}$ applied to $u_{1} \doteq v_{1}, v_{1} \doteq v_{2}, v_{2} \doteq u_{2}$

Example

$$
\begin{aligned}
& \text { RINTRO1 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma}{\Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)} \text { ExT } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq r e} \\
& \text { RINTRO2 } \frac{b \doteq w r i t e(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a_{1}^{\prime} \doteq a_{2}^{\prime}, a_{1}^{\prime} \doteq \operatorname{write}\left(a_{1}, i, v_{2}\right), v_{2} \doteq \operatorname{read}\left(a_{2}, i\right), a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, v_{1}\right), v_{1} \doteq \operatorname{read}\left(a_{1}, i\right), a_{1} \neq a_{2}}{\frac{a_{1} \doteq a_{1}}{a_{2} \doteq a_{2}}(\mathrm{REfl})} \text { (REfl) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Showing only difference with previous state }
\end{aligned}
$$

${ }^{9}$ applied to $a_{2}^{\prime} \doteq \operatorname{write}\left(a_{2}, i, v_{1}\right), u_{2} \doteq \operatorname{read}\left(a_{2}, n\right), a_{2} \doteq a_{2}{ }^{10}$ appl. to $u_{1} \doteq \operatorname{read}\left(a_{1}^{\prime}, n\right), u_{2} \doteq \operatorname{read}\left(a_{2}^{\prime}, n\right), a_{1}^{\prime} \doteq a_{2}^{\prime}, n \doteq n$

A Satisfiability Proof System for T_{A}

The satisfiability proof system R_{A} for \mathcal{T}_{A} extends the proof system $R_{U F}$ for $Q F_{-} U F$ with the following rules:

$$
\text { RINTRO1 } \begin{aligned}
& b \doteq \text { write }(a, i, v) \in \Gamma \\
& \Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)
\end{aligned}
$$

$$
\text { RINTRO2 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \quad \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
$$

$$
\text { Exт } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{read}(b, k)}
$$

A Satisfiability Proof System for T_{A}

The satisfiability proof system R_{A} for \mathcal{T}_{A} extends the proof system $R_{U F}$ for $Q F_{-} U F$ with the following rules:

$$
\text { RINTRO1 } \begin{aligned}
& b \doteq \text { write }(a, i, v) \in \Gamma \\
& \Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)
\end{aligned}
$$

$$
\text { RINTRO2 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \quad \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
$$

$$
\text { Ехт } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{read}(b, k)}
$$

Is R_{A} sound?

A Satisfiability Proof System for T_{A}

The satisfiability proof system R_{A} for \mathcal{T}_{A} extends the proof system $R_{U F}$ for $Q F_{-} U F$ with the following rules:

$$
\text { RINTRO1 } \begin{aligned}
& b \doteq \text { write }(a, i, v) \in \Gamma \\
& \Gamma:=\Gamma, v \doteq \operatorname{read}(b, i)
\end{aligned}
$$

$$
\text { RINTRO2 } \frac{b \doteq \text { write }(a, i, v) \in \Gamma \quad u \doteq \operatorname{read}(c, j) \in \Gamma \quad x \doteq c \in \Gamma \quad x \in\{a, b\}}{\Gamma:=\Gamma, i \doteq j} \Gamma:=\Gamma, i \neq j, u \doteq \operatorname{read}(a, j), u \doteq \operatorname{read}(b, j)
$$

$$
\text { Exт } \frac{a \neq b \in \Gamma \quad a, b \text { arrays }}{\Gamma:=\Gamma, u \neq v, u \doteq \operatorname{read}(a, k), v \doteq \operatorname{read}(b, k)}
$$

Is R_{A} sound? Is it terminating?

Soundness, Termination, and Completeness

Refutation soundness is straightforward and follows from the \mathcal{T}_{A} axioms.

Soundness, Termination, and Completeness

Refutation soundness is straightforward and follows from the \mathcal{T}_{A} axioms.
Termination follows from the following argument. Once we add all of the $i_{a, b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the sat rule.

Soundness, Termination, and Completeness

Refutation soundness is straightforward and follows from the \mathcal{T}_{A} axioms.
Termination follows from the following argument. Once we add all of the $i_{a, b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the SAT rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for $R_{U F}$, but then we modify it to ensure the array axioms are satisfied.

Soundness, Termination, and Completeness

Refutation soundness is straightforward and follows from the \mathcal{T}_{A} axioms.
Termination follows from the following argument. Once we add all of the $i_{a, b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the SAT rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for $R_{U F}$, but then we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in $R_{\text {UF }}$ case.

Soundness, Termination, and Completeness

Refutation soundness is straightforward and follows from the \mathcal{T}_{A} axioms.
Termination follows from the following argument. Once we add all of the $i_{a, b}$ variables, no rule introduces new variables. There are only a finite number of terms that match the conclusions that can be constructed with a finite number of variables, so eventually, Γ will become reducible only by the SAT rule.

Solution soundness is again by constructing an interpretation but is much more involved. Essentially, we construct an interpretation much as we did for $R_{U F}$, but then we modify it to ensure the array axioms are satisfied.

Refutation and solution completeness follow from soundness and termination, as in $R_{\text {UF }}$ case.

