CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Satisfiability Modulo Theories

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University. Adapted by permission.

Outline

- First-order Theories
- Satisfiability Modulo Theories
- Examples of First-order Theories

Motivation

Consider the signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of number theory:

$$
\begin{aligned}
\Sigma^{s}=\{\text { Nat }\} & \Sigma^{F}=\{0,1,+,<\} \\
\operatorname{rank}(0)=\langle\text { Nat }\rangle & \operatorname{rank}(1)=\langle\text { Nat }\rangle \\
\operatorname{rank}(+)=\langle\text { Nat, Nat, Nat }\rangle & \operatorname{rank}(<)=\langle\text { Nat, Nat, Bool }\rangle
\end{aligned}
$$

Motivation

Consider the signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of number theory:

$$
\begin{aligned}
\Sigma^{s}=\{\text { Nat }\} & \Sigma^{F}=\{0,1,+,<\} \\
\operatorname{rank}(0)=\langle\text { Nat }\rangle & \operatorname{rank}(1)=\langle\text { Nat }\rangle \\
\operatorname{rank}(+)=\langle\text { Nat, Nat, Nat }\rangle & \operatorname{rank}(<)=\langle\text { Nat, Nat, Bool }\rangle
\end{aligned}
$$

Consider the Σ-sentence

$$
\forall x: \text { Nat. } \neg(x<x)
$$

Is the formula valid?

Motivation

Consider the signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of number theory:

$$
\begin{aligned}
\Sigma^{S}=\{\text { Nat }\} & \Sigma^{F}=\{0,1,+,<\} \\
\operatorname{rank}(0)=\langle\text { Nat }\rangle & \operatorname{rank}(1)=\langle\text { Nat }\rangle \\
\operatorname{rank}(+)=\langle\text { Nat, Nat, Nat }\rangle & \operatorname{rank}(<)=\langle\text { Nat, Nat, Bool }\rangle
\end{aligned}
$$

Consider the Σ-sentence

$$
\forall x: \text { Nat. } \neg(x<x)
$$

Is the formula valid?
No, e.g., if we interpret < as equals or as divides

Motivation

Consider the signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of number theory:

$$
\begin{aligned}
\Sigma^{s}=\{\text { Nat }\} & \Sigma^{F}=\{0,1,+,<\} \\
\operatorname{rank}(0)=\langle\text { Nat }\rangle & \operatorname{rank}(1)=\langle\text { Nat }\rangle \\
\operatorname{rank}(+)=\langle\text { Nat, Nat, Nat }\rangle & \operatorname{rank}(<)=\langle\text { Nat, Nat, Bool }\rangle
\end{aligned}
$$

Consider the Σ-sentence

$$
\neg \exists x: \text { Nat. } x<0
$$

Is the formula valid?

Motivation

Consider the signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of number theory:

$$
\begin{aligned}
\Sigma^{S}=\{\text { Nat }\} & \Sigma^{F}=\{0,1,+,<\} \\
\operatorname{rank}(0)=\langle\text { Nat }\rangle & \operatorname{rank}(1)=\langle\text { Nat }\rangle \\
\operatorname{rank}(+)=\langle\text { Nat, Nat, Nat }\rangle & \operatorname{rank}(<)=\langle\text { Nat, Nat, Bool }\rangle
\end{aligned}
$$

Consider the Σ-sentence $\neg \exists x$:Nat. $x<0$

Is the formula valid?
No, e.g., if we interpret Nat as the set of all integers

Motivation

Consider the signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of number theory:

$$
\begin{aligned}
\Sigma^{s}=\{\text { Nat }\} & \Sigma^{F}=\{0,1,+,<\} \\
\operatorname{rank}(0)=\langle\text { Nat }\rangle & \operatorname{rank}(1)=\langle\text { Nat }\rangle \\
\operatorname{rank}(+)=\langle\text { Nat, Nat, Nat }\rangle & \operatorname{rank}(<)=\langle\text { Nat, Nat, Bool }\rangle
\end{aligned}
$$

Consider the Σ-sentence

$$
\forall x: \text { Nat. } \forall x: \text { Nat. } \forall x: \text { Nat. }(x<y \wedge y<z \Rightarrow x<z)
$$

Is the formula valid?

Motivation

Consider the signature $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ for a fragment of number theory:

$$
\begin{aligned}
\Sigma^{S}=\{\text { Nat }\} & \Sigma^{F}=\{0,1,+,<\} \\
\operatorname{rank}(0)=\langle\text { Nat }\rangle & \operatorname{rank}(1)=\langle\text { Nat }\rangle \\
\operatorname{rank}(+)=\langle\text { Nat, Nat, Nat }\rangle & \operatorname{rank}(<)=\langle\text { Nat, Nat, Bool }\rangle
\end{aligned}
$$

Consider the Σ-sentence

$$
\forall x: \text { Nat. } \forall x: \text { Nat. } \forall x: \text { Nat. }(x<y \wedge y<z \Rightarrow x<z)
$$

Is the formula valid? No, e.g., if we interpret < as the successor relation

Motivation

Recall that valid means true for all possible interpretations

Motivation

Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general but rather with respect to a limited class of interpretations

Motivation

Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general but rather with respect to a limited class of interpretations

A practical reason:

When reasoning in a particular application domain, we typically have specific data types/structures in mind (e.g., integers, strings, lists, arrays, finite sets, ...)

Motivation

Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general but rather with respect to a limited class of interpretations

A practical reason:

When reasoning in a particular application domain, we typically have specific data types/structures in mind (e.g., integers, strings, lists, arrays, finite sets, ...)

More generally, we are typically not interested in arbitrary interpretations, but in specific in ones

Motivation

Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general but rather with respect to a limited class of interpretations

A practical reason:

When reasoning in a particular application domain, we typically have specific data types/structures in mind (e.g., integers, strings, lists, arrays, finite sets, ...)
More generally, we are typically not interested in arbitrary interpretations, but in specific in ones

Theories formalize this domain-specific reasoning: we talk about satisfiability or validity in a theory or modulo a theory

Motivation

Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general but rather with respect to a limited class of interpretations

A computational reason:

While validity in FOL is undecidable, validity in particular theories can be decidable

Motivation

Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general but rather with respect to a limited class of interpretations

A computational reason:

While validity in FOL is undecidable, validity in particular theories can be decidable It is useful for AR purposes to

- identify decidable fragments of FOL and
- develop efficient decision procedures for them

First-order theories

We will assume from now on an infinite set χ of variables

First-order theories

We will assume from now on an infinite set X of variables

A theory \mathcal{T} is a pair $\langle\Sigma, \boldsymbol{M}\rangle$, where:

- $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ is a signature
- M is a class ${ }^{1}$ of Σ-interpretations over X that is closed under variable re-assignment
${ }^{1}$ In set theory, a class is a more general notion of set.

First-order theories

We will assume from now on an infinite set X of variables

A theory \mathcal{T} is a pair $\langle\Sigma, \boldsymbol{M}\rangle$, where:

- $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ is a signature
- M is a class ${ }^{1}$ of Σ-interpretations over X that is closed under variable re-assignment
M is closed under variable re-assignment if every \sum-interpretation that differs from one in M only in the way it interprets the variables of X is also in M

[^0]
First-order theories

We will assume from now on an infinite set X of variables

A theory \mathcal{T} is a pair $\langle\Sigma, M\rangle$, where:

- $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ is a signature
- M is a class ${ }^{1}$ of Σ-interpretations over X that is closed under variable re-assignment

A theory limits the interpretations of \sum-formulas to those from M
${ }^{1}$ In set theory, a class is a more general notion of set.

First-order theories

We will assume from now on an infinite set X of variables

A theory \mathcal{T} is a pair $\langle\Sigma, M\rangle$, where:

- $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ is a signature
- M is a class ${ }^{1}$ of Σ-interpretations over X that is closed under variable re-assignment

Example 1: the theory of Real Arithmetic $\mathcal{T}_{R A}=\left\langle\Sigma_{R A}, M_{R A}\right\rangle$

$$
\Sigma_{R A}^{S}=\{\operatorname{Real}\} \quad \Sigma_{R A}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $I \in M_{R A}$ interpret Real as the set \mathbb{R} of real numbers, and the function symbols in the usual way

[^1]
First-order theories

We will assume from now on an infinite set X of variables

A theory \mathcal{T} is a pair $\langle\Sigma, \boldsymbol{M}\rangle$, where:

- $\Sigma=\left\langle\Sigma^{S}, \Sigma^{F}\right\rangle$ is a signature
- M is a class ${ }^{1}$ of Σ-interpretations over X that is closed under variable re-assignment

Example 2: the theory of Ternary Strings $\mathcal{T}_{T S}=\left\langle\Sigma_{T S}, M_{T S}\right\rangle$

$$
\Sigma_{\mathrm{TS}}^{S}=\{\text { String }\} \quad \Sigma_{\mathrm{TS}}^{F}=\{\cdot,<\} \cup\{a, b, c\}
$$

All $I \in M_{\text {TS }}$ interpret String as the set $\{a, b, c\}^{*}$ of all strings over the characters
a, b, c, and \cdot as string concatenation (e.g., $\left.(a \cdot b)^{\mathcal{I}}=a b\right)$ and $<$ as alphabetical order

[^2]
\mathcal{T}-interpretations

Let Σ and Ω be two signatures over a set χ of variables where $\Omega \supseteq \Sigma$ (i.e., $\Omega^{S} \supseteq \Sigma^{S}$ and $\Omega^{F} \supseteq \Sigma^{F}$)

Let I be an Ω-interpretation over X

\mathcal{T}-interpretations

Let Σ and Ω be two signatures over a set χ of variables where $\Omega \supseteq \Sigma$ (i.e., $\Omega^{S} \supseteq \Sigma^{S}$ and $\Omega^{F} \supseteq \Sigma^{F}$)

Let I be an Ω-interpretation over X

The reduct \mathcal{I}^{Σ} of \mathcal{I} to Σ is a Σ-interpretation over X obtained from I by restricting it to interpret only the symbols in Σ and X

\mathcal{T}-interpretations

Given a theory $\mathcal{T}:=\langle\Sigma, M\rangle$,
a \mathcal{T}-interpretation is any Ω-interpretation I for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

\mathcal{T}-interpretations

Given a theory $\mathcal{T}:=\langle\Sigma, M\rangle$,
a \mathcal{T}-interpretation is any Ω-interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

Note: This definition allows us to consider the satisfiability in a theory $\mathcal{T}:=(\Sigma, M)$ of formulas that contain sorts or function symbols not in Σ

These symbols are usually called uninterpreted (in \mathcal{T})

\mathcal{T}-interpretations

Given a theory $\mathcal{T}:=\langle\Sigma, M\rangle$,
a \mathcal{T}-interpretation is any Ω-interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

Example: Consider again $\mathcal{T}_{R A}=\left\langle\Sigma_{R A}, M_{R A}\right\rangle$ where

$$
\Sigma_{\mathrm{RA}}^{S}=\{\operatorname{Real}\} \quad \Sigma_{\mathrm{RA}}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $I \in M_{R A}$ interpret Real as \mathbb{R} and the function symbols as usual

\mathcal{T}-interpretations

Given a theory $\mathcal{T}:=\langle\Sigma, M\rangle$,
a \mathcal{T}-interpretation is any Ω-interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

Example: Consider again $\mathcal{T}_{R A}=\left\langle\Sigma_{R A}, M_{R A}\right\rangle$ where

$$
\Sigma_{\mathrm{RA}}^{S}=\{\operatorname{Real}\} \quad \Sigma_{\mathrm{RA}}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $I \in M_{R A}$ interpret Real as \mathbb{R} and the function symbols as usual
Which of the following interpretations are $\mathcal{T}_{R A}$-interpretations?

1. Real ${ }^{I_{1}}$ is the rational numbers, symbols in $\sum_{R A}^{F}$ interpreted as usual
2. Real ${ }^{I_{2}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and String ${ }^{I_{2}}=\{0.5,1.3\}$
3. Real $^{I_{3}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and $\log ^{\mathcal{T}_{3}}$ is the successor function

\mathcal{T}-interpretations

Given a theory $\mathcal{T}:=\langle\Sigma, M\rangle$,
a \mathcal{T}-interpretation is any Ω-interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

Example: Consider again $\mathcal{T}_{R A}=\left\langle\Sigma_{R A}, M_{R A}\right\rangle$ where

$$
\Sigma_{R A}^{S}=\{\operatorname{Real}\} \quad \Sigma_{R A}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $I \in M_{R A}$ interpret Real as \mathbb{R} and the function symbols as usual
Which of the following interpretations are $\mathcal{T}_{R A}$-interpretations?

1. Real ${ }^{I_{1}}$ is the rational numbers, symbols in $\Sigma_{R A}^{F}$ interpreted as usual X
2. Real ${ }^{I_{2}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and String ${ }^{I_{2}}=\{0.5,1.3\}$
3. Real $^{I_{3}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and $\log ^{\mathcal{T}_{3}}$ is the successor function

\mathcal{T}-interpretations

Given a theory $\mathcal{T}:=\langle\Sigma, M\rangle$,
a \mathcal{T}-interpretation is any Ω-interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

Example: Consider again $\mathcal{T}_{R A}=\left\langle\Sigma_{R A}, M_{R A}\right\rangle$ where

$$
\Sigma_{\mathrm{RA}}^{S}=\{\operatorname{Real}\} \quad \Sigma_{\mathrm{RA}}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $I \in M_{R A}$ interpret Real as \mathbb{R} and the function symbols as usual
Which of the following interpretations are $\mathcal{T}_{R A}$-interpretations?

1. Real ${ }^{I_{1}}$ is the rational numbers, symbols in $\Sigma_{R A}^{F}$ interpreted as usual X
2. Real ${ }^{I_{2}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and String ${ }^{I_{2}}=\{0.5,1.3\}$
3. Real $^{I_{3}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and $\log ^{\mathcal{T}_{3}}$ is the successor function

\mathcal{T}-interpretations

Given a theory $\mathcal{T}:=\langle\Sigma, M\rangle$,
a \mathcal{T}-interpretation is any Ω-interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

Example: Consider again $\mathcal{T}_{R A}=\left\langle\Sigma_{R A}, M_{R A}\right\rangle$ where

$$
\Sigma_{\mathrm{RA}}^{S}=\{\operatorname{Real}\} \quad \Sigma_{\mathrm{RA}}^{F}=\{+,-, *, \leq\} \cup\{q \mid q \text { is a decimal numeral }\}
$$

All $I \in M_{R A}$ interpret Real as \mathbb{R} and the function symbols as usual
Which of the following interpretations are $\mathcal{T}_{R A}$-interpretations?

1. Real ${ }^{I_{1}}$ is the rational numbers, symbols in $\Sigma_{R A}^{F}$ interpreted as usual X
2. Real ${ }^{I_{2}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and String ${ }^{I_{2}}=\{0.5,1.3\}$
3. Real $^{I_{3}}=\mathbb{R}$, symbols in $\Sigma_{R A}^{F}$ interpreted as usual, and $\log ^{\mathcal{T}_{3}}$ is the successor function

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$,
if every \mathcal{T}-interpretation that satisfies all formulas in \lceil satisfies α as well

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T}-interpretation that satisfies all formulas in \lceil satisfies α as well

An formula α is valid in \mathcal{T}, or \mathcal{T}-valid, written $\vDash \mathcal{T} \alpha$, if it is satisfied by all \mathcal{T}-interpretations

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T}-interpretation that satisfies all formulas in \lceil satisfies α as well

An formula α is valid in \mathcal{T}, or \mathcal{T}-valid, written $\vDash \mathcal{T} \alpha$, if it is satisfied by all \mathcal{T}-interpretations

Note: α is valid in \mathcal{T} iff $\left\} \not \models_{\mathcal{T}} \alpha\right.$

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T}-interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in \mathcal{T}, or \mathcal{T}-valid, written $\Vdash \mathcal{T} \alpha$, if it is satisfied by all \mathcal{T}-interpretations

Example: Which of the following $\Sigma_{R A}$-formulas is satisfiable or valid in $\mathcal{T}_{R A}$?

1. $\left(x_{0}+x_{1} \leq 0.5\right) \wedge\left(x_{0}-x_{1} \leq 2\right)$
2. $\forall x_{0} \cdot\left(\left(x_{0}+x_{1} \leq 1.7\right) \Rightarrow\left(x_{1} \leq 1.7-x_{0}\right)\right)$
3. $\forall x_{0} \cdot \forall x_{1} \cdot\left(x_{0}+x_{1} \leq 1\right)$

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T}-interpretation that satisfies all formulas in \lceil satisfies α as well

An formula α is valid in \mathcal{T}, or \mathcal{T}-valid, written $\Vdash \mathcal{T} \alpha$, if it is satisfied by all \mathcal{T}-interpretations

Example: Which of the following $\Sigma_{R A}$-formulas is satisfiable or valid in $\mathcal{T}_{R A}$?

1. $\left(x_{0}+x_{1} \leq 0.5\right) \wedge\left(x_{0}-x_{1} \leq 2\right)$
satisfiable, not valid
2. $\forall x_{0} \cdot\left(\left(x_{0}+x_{1} \leq 1.7\right) \Rightarrow\left(x_{1} \leq 1.7-x_{0}\right)\right)$
3. $\forall x_{0} \cdot \forall x_{1} \cdot\left(x_{0}+x_{1} \leq 1\right)$

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T}-interpretation that satisfies all formulas in \lceil satisfies α as well

An formula α is valid in \mathcal{T}, or \mathcal{T}-valid, written $\Vdash \mathcal{T} \alpha$, if it is satisfied by all \mathcal{T}-interpretations

Example: Which of the following $\Sigma_{R A}$-formulas is satisfiable or valid in $\mathcal{T}_{R A}$?

1. $\left(x_{0}+x_{1} \leq 0.5\right) \wedge\left(x_{0}-x_{1} \leq 2\right)$
2. $\forall x_{0} \cdot\left(\left(x_{0}+x_{1} \leq 1.7\right) \Rightarrow\left(x_{1} \leq 1.7-x_{0}\right)\right)$
3. $\forall x_{0} \cdot \forall x_{1} \cdot\left(x_{0}+x_{1} \leq 1\right)$
satisfiable, not valid satisfiable, valid

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T}-interpretation that satisfies all formulas in \lceil satisfies α as well

An formula α is valid in \mathcal{T}, or \mathcal{T}-valid, written $\Vdash \mathcal{T} \alpha$, if it is satisfied by all \mathcal{T}-interpretations

Example: Which of the following $\Sigma_{R A}$-formulas is satisfiable or valid in $\mathcal{T}_{R A}$?

1. $\left(x_{0}+x_{1} \leq 0.5\right) \wedge\left(x_{0}-x_{1} \leq 2\right)$
2. $\forall x_{0} \cdot\left(\left(x_{0}+x_{1} \leq 1.7\right) \Rightarrow\left(x_{1} \leq 1.7-x_{0}\right)\right)$
3. $\forall x_{0} \cdot \forall x_{1} \cdot\left(x_{0}+x_{1} \leq 1\right)$
satisfiable, not valid satisfiable, valid not satisfiable, not valid

\mathcal{T}-satisfiability, \mathcal{T}-validity

$$
\text { Let } \mathcal{T}:=\langle\Sigma, M\rangle \text { be a theory }
$$

A formula α is satisfiable in \mathcal{T}, or \mathcal{T}-satisfiable, if it is satisfied by some \mathcal{T}-interpretation \mathcal{I}

A set Γ of formulas \mathcal{T}-entails a formula α, written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T}-interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in \mathcal{T}, or \mathcal{T}-valid, written $\vDash \mathcal{T} \alpha$, if it is satisfied by all \mathcal{T}-interpretations

Note: For every signature Σ, entailment and validity in FOL can be reframed as entailment and validity in the theory $\mathcal{T}_{\text {FOL }}=\left\langle\Sigma, M_{\text {FOL }}\right\rangle$ where $M_{\text {FOL }}$ is the class of all Σ-interpretations

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

We refer to such theories as (first-order) axiomatic theories

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

We refer to such theories as (first-order) axiomatic theories
These notions of theory and validity are a special case of those in the previous slides

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

We refer to such theories as (first-order) axiomatic theories
These notions of theory and validity are a special case of those in the previous slides

- Given a theory \mathcal{T} defined by Σ and \mathcal{A}, we define a theory $\mathcal{T}^{\prime}:=\langle\mathcal{T}, M\rangle$ where M is the class of all Σ-interpretations that satisfy \mathcal{A}
- It is not hard to show that a formula α is valid in \mathcal{T} iff it is valid in \mathcal{T}^{\prime}

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

We refer to such theories as (first-order) axiomatic theories
These notions of theory and validity are a special case of those in the previous slides
In fact, they are strictly less general since not all theories are first-order axiomatizable

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

We refer to such theories as (first-order) axiomatic theories
These notions of theory and validity are a special case of those in the previous slides
In fact, they are strictly less general since not all theories are first-order axiomatizable

Example

Consider the theory $\mathcal{T}_{\text {Nat }}$ of the natural numbers, with signature Σ where $\Sigma^{S}=\{$ Nat $\}$ and $\Sigma^{F}=\{0, S,+,<\}$, and $M=\{I\}$ where $N a t^{\mathcal{I}}=\mathbb{N}$ and Σ^{F} is interpreted as usual

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

We refer to such theories as (first-order) axiomatic theories
These notions of theory and validity are a special case of those in the previous slides
In fact, they are strictly less general since not all theories are first-order axiomatizable

Example

Consider the theory $\mathcal{T}_{\text {Nat }}$ of the natural numbers, with signature Σ where $\Sigma^{S}=\{$ Nat $\}$ and $\Sigma^{F}=\{0, S,+,<\}$, and $M=\{I\}$ where $\mathrm{Nat}^{\mathcal{I}}=\mathbb{N}$ and Σ^{F} is interpreted as usual

Any set of axioms for this theory is satisfied by non-standard models, e.g., interpretations I where $\mathrm{Nat}{ }^{\mathcal{I}}$ includes other chains of elements besides the natural numbers

Alternative definition of theory

In Chap. 3 of CC, a theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ-sentences, or axioms
In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation \mathcal{I} that satisfies \mathcal{A} also satisfies α

We refer to such theories as (first-order) axiomatic theories
These notions of theory and validity are a special case of those in the previous slides
In fact, they are strictly less general since not all theories are first-order axiomatizable

Example

Consider the theory $\mathcal{T}_{\text {Nat }}$ of the natural numbers, with signature Σ where $\Sigma^{S}=\{N$ at $\}$ and $\Sigma^{F}=\{0, S,+,<\}$, and $M=\{I\}$ where $N a t^{\mathcal{I}}=\mathbb{N}$ and Σ^{F} is interpreted as usual

Any set of axioms for this theory is satisfied by non-standard models, e.g., interpretations I where $\mathrm{Nat}{ }^{\mathcal{I}}$ includes other chains of elements besides the natural numbers
These models falsify formulas that are valid in $\mathcal{T}_{\text {Nat }}$ (e.g., $\neg \exists x . x<0$ or $\forall x .(x \doteq 0 \vee \exists y . x \doteq S(y)))$

Completeness of theories

A Σ-theory \mathcal{T} is complete if for every Σ-sentence α, either α or $\neg \alpha$ is valid in \mathcal{T}
Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Completeness of theories

A Σ-theory \mathcal{T} is complete if for every Σ-sentence α, either α or $\neg \alpha$ is valid in \mathcal{T}
Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 1:

Any theory $\mathcal{T}=\langle\Sigma, M\rangle$ where all the interpretations in M only differ in how they interpret the variables (e.g., $\mathcal{T}_{R A}$) is complete

Completeness of theories

A Σ-theory \mathcal{T} is complete if for every Σ-sentence α, either α or $\neg \alpha$ is valid in \mathcal{T}
Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 2:

The axiomatic (mono-sorted) theory of monoids with $\Sigma^{F}=\{\cdot, \epsilon\}$ and axioms

$$
\forall x . \forall y . \forall z \cdot(x \cdot y) \cdot z \doteq x \cdot(y \cdot z) \quad \forall x \cdot x \cdot \epsilon \doteq x \quad \forall x \cdot \epsilon \cdot x \doteq x
$$

is incomplete

Completeness of theories

A Σ-theory \mathcal{T} is complete if for every Σ-sentence α, either α or $\neg \alpha$ is valid in \mathcal{T}
Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 2:

The axiomatic (mono-sorted) theory of monoids with $\Sigma^{F}=\{\cdot, \epsilon\}$ and axioms

$$
\forall x . \forall y . \forall z \cdot(x \cdot y) \cdot z \doteq x \cdot(y \cdot z) \quad \forall x \cdot x \cdot \epsilon \doteq x \quad \forall x \cdot \epsilon \cdot x \doteq x
$$

is incomplete. For instance, the sentence

$$
\forall x . \forall y . x \cdot y \doteq y \cdot x
$$

is true in some monoids (e.g., the integers with addition) but false in others (e.g., the strings with concatenation)

Completeness of theories

A Σ-theory \mathcal{T} is complete if for every Σ-sentence α, either α or $\neg \alpha$ is valid in \mathcal{T}
Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 3: The axiomatic (mono-sorted) theory of dense linear orders without endpoints with $\Sigma^{F}=\{\prec\}$ and axioms

$$
\begin{array}{cl}
\forall x . \forall y .(x \prec y \Rightarrow \exists z .(x \prec z \wedge z \prec y)) & \text { (dense) } \\
\forall x . \forall y .(x \prec y \vee x \doteq y \vee y \prec x) & \text { (linear) } \\
\forall x . \neg(x \prec x) \quad \forall x . \forall y . \forall z .(x \prec y \wedge y \prec z \Rightarrow x \prec z) & \text { (orders) } \\
\forall x . \exists y . y \prec x \quad \forall x . \exists y . x \prec y & \text { (without endpoints) }
\end{array}
$$

is complete

Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure that, for every input element a, returns yes if $a \in A$ and no otherwise

Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure that, for every input element a, returns yes if $a \in A$ and no otherwise

A theory $\mathcal{T}:=\langle\Sigma, M\rangle$ is decidable if the set of all Σ-formulas valid in \mathcal{T} is decidable

Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure that, for every input element a, returns yes if $a \in A$ and no otherwise

A theory $\mathcal{T}:=\langle\Sigma, \boldsymbol{M}\rangle$ is decidable if the set of all Σ-formulas valid in \mathcal{T} is decidable

A fragment of \mathcal{T} is a syntactically-restricted subset of the \sum-formulas valid in \mathcal{T}

Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure that, for every input element a, returns yes if $a \in A$ and no otherwise

A theory $\mathcal{T}:=\langle\Sigma, \boldsymbol{M}\rangle$ is decidable if the set of all Σ-formulas valid in \mathcal{T} is decidable

A fragment of \mathcal{T} is a syntactically-restricted subset of the \sum-formulas valid in \mathcal{T}
Example 1: The quantifier-free fragment of \mathcal{T} is the set of all quantifier-free formulas valid in \mathcal{T}

Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure that, for every input element a, returns yes if $a \in A$ and no otherwise

A theory $\mathcal{T}:=\langle\Sigma, \boldsymbol{M}\rangle$ is decidable if the set of all Σ-formulas valid in \mathcal{T} is decidable
A fragment of \mathcal{T} is a syntactically-restricted subset of the Σ-formulas valid in \mathcal{T}
Example 1: The quantifier-free fragment of \mathcal{T} is the set of all quantifier-free formulas valid in \mathcal{T}

Example 2: The linear fragment of $\mathcal{T}_{R A}$ is the set of all $\Sigma_{R A}$ - valid in \mathcal{T} that do not contain multiplication $(*)$

Axiomatizability

A theory $\mathcal{T}=\langle\Sigma, M\rangle$ is recursively axiomatizable if M is the class of all interpretations satisfying a decidable set of (first-order) axioms \mathcal{A}

Axiomatizability

A theory $\mathcal{T}=\langle\Sigma, M\rangle$ is recursively axiomatizable if M is the class of all interpretations satisfying a decidable set of (first-order) axioms \mathcal{A}

Lemma 1

Every recursively axiomatizable theory \mathcal{T} admits a procedure $E_{\mathcal{T}}$ that enumerates all formulas valid in \mathcal{T}

Axiomatizability

A theory $\mathcal{T}=\langle\Sigma, M\rangle$ is recursively axiomatizable if M is the class of all interpretations satisfying a decidable set of (first-order) axioms \mathcal{A}

Lemma 1

Every recursively axiomatizable theory \mathcal{T} admits a procedure $E_{\mathcal{T}}$ that enumerates all formulas valid in \mathcal{T}

Theorem 2

For every complete and recursively axiomatizable theory \mathcal{T}, validity in \mathcal{T} is decidable

Axiomatizability

A theory $\mathcal{T}=\langle\Sigma, M\rangle$ is recursively axiomatizable if M is the class of all interpretations satisfying a decidable set of (first-order) axioms \mathcal{A}

Lemma 1

Every recursively axiomatizable theory \mathcal{T} admits a procedure $E_{\mathcal{T}}$ that enumerates all formulas valid in \mathcal{T}

Theorem 2

For every complete and recursively axiomatizable theory \mathcal{T}, validity in \mathcal{T} is decidable

Proof.

Given a formula α, we use $E_{\mathcal{T}}$ to enumerate all valid formulas. Since \mathcal{T} is complete, either α or $\neg \alpha$ will eventually be produced by $E_{\mathcal{T}}$.

Common theories in Satisfiability Modulo Theories

As a branch of Automated Reasoning, SMT has traditionally focused on theories with decidable quantifier-free fragment

Common theories in Satisfiability Modulo Theories

As a branch of Automated Reasoning, SMT has traditionally focused on theories with decidable quantifier-free fragment

SMT is it concerned with the (un)satisfiability of formulas in a theory \mathcal{T}, but recall that a formula α is \mathcal{T}-valid iff $\neg \alpha$ is \mathcal{T}-unsatisfiable

Common theories in Satisfiability Modulo Theories

As a branch of Automated Reasoning, SMT has traditionally focused on theories with decidable quantifier-free fragment

Checking the (un)satisfiability of quantifier-fee formulas in these theories efficiently has a large number of applications in:
hardware and software verification, model checking, symbolic execution, compiler validation, type checking, planning and scheduling, software synthesis, cyber-security, verifiable machine learning, analysis of biological systems, ...

Common theories in Satisfiability Modulo Theories

As a branch of Automated Reasoning, SMT has traditionally focused on theories with decidable quantifier-free fragment

Checking the (un)satisfiability of quantifier-fee formulas in these theories efficiently has a large number of applications in:
hardware and software verification, model checking, symbolic execution, compiler validation, type checking, planning and scheduling, software synthesis, cyber-security, verifiable machine learning, analysis of biological systems, ...

In the rest of the course, we will study

- a few of those theories and their decision procedures
- proof systems to reason modulo theories automatically

From quantifier-free formulas to conjunctions of literals

As in PL, thanks to DNF transformations, the satisfiability of quantifier-free formulas in a theory \mathcal{T} is decidable iff the satisfiability in \mathcal{T} of conjunctions of literals is decidable

From quantifier-free formulas to conjunctions of literals

As in PL, thanks to DNF transformations, the satisfiability of quantifier-free formulas in a theory \mathcal{T} is decidable iff the satisfiability in \mathcal{T} of conjunctions of literals is decidable

In fact, we will study a general extension of CDCL to SMT that uses decision procedures for conjunctions of literals

From quantifier-free formulas to conjunctions of literals

As in PL, thanks to DNF transformations, the satisfiability of quantifier-free formulas in a theory \mathcal{T} is decidable iff the satisfiability in \mathcal{T} of conjunctions of literals is decidable

In fact, we will study a general extension of CDCL to SMT that uses decision procedures for conjunctions of literals

So, we will mostly focus on conjunctions of literals

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This is really a family of theories parameterized by the signature Σ

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This is really a family of theories parameterized by the signature Σ
It is known as the theory of Equality with Uninterpreted Functions (EUF), or the empty theory since it is axiomatized by the empty set of formulas

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This is really a family of theories parameterized by the signature Σ
It is known as the theory of Equality with Uninterpreted Functions (EUF), or the empty theory since it is axiomatized by the empty set of formulas

Validity, and so satisfiability, in $\mathcal{T}_{\text {EUF }}$ is only semi-decidable (as it is just validity in FOL)

Theory of Uninterpreted Functions: TeUF

Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This is really a family of theories parameterized by the signature Σ
It is known as the theory of Equality with Uninterpreted Functions (EUF), or the empty theory since it is axiomatized by the empty set of formulas

Validity, and so satisfiability, in $\mathcal{T}_{\text {EUF }}$ is only semi-decidable (as it is just validity in FOL)
However, the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF-literals }}$ is decidable, in polynomial time, with a congruence closure algorithm

Theory of Uninterpreted Functions: $\mathcal{T}_{\text {EUF }}$

Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This is really a family of theories parameterized by the signature Σ
It is known as the theory of Equality with Uninterpreted Functions (EUF), or the empty theory since it is axiomatized by the empty set of formulas

Validity, and so satisfiability, in $\mathcal{T}_{\text {EUF }}$ is only semi-decidable (as it is just validity in FOL)
However, the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF-literals }}$ is decidable, in polynomial time, with a congruence closure algorithm

Example: $\quad a \doteq b \wedge f(a) \doteq b \wedge \neg(g(a) \doteq g(f(a)))$

Theory of Uninterpreted Functions: TeUF

Given a signature Σ, the most general theory consists of the class of all Σ-interpretations

This is really a family of theories parameterized by the signature Σ
It is known as the theory of Equality with Uninterpreted Functions (EUF), or the empty theory since it is axiomatized by the empty set of formulas

Validity, and so satisfiability, in $\mathcal{T}_{\text {EUF }}$ is only semi-decidable (as it is just validity in FOL)
However, the satisfiability of conjunctions of $\mathcal{T}_{\text {EUF-literals }}$ is decidable, in polynomial time, with a congruence closure algorithm

Example: $\quad a \doteq b \wedge f(a) \doteq b \wedge \neg(g(a) \doteq g(f(a)))$ Is this formula satisfiable in $\mathcal{T}_{\text {EUF }}$?

Theory of Real Arithmetic: $\mathcal{T}_{R A}$

$\Sigma^{s}=\{$ Real $\}$
$\Sigma^{F}=\{+,-, *, \leq\} \cup\{q \mid q$ is a decimal numeral $\}$
M is the class of interpretations that interpret Real as the set of real numbers, and the function symbols in the usual way

Theory of Real Arithmetic: $\mathcal{T}_{R A}$

$\Sigma^{s}=\{$ Real $\}$
$\Sigma^{F}=\{+,-, *, \leq\} \cup\{q \mid q$ is a decimal numeral $\}$
M is the class of interpretations that interpret Real as the set of real numbers, and the function symbols in the usual way

Satisfiability in the full $\tau_{R A}$ is decidable (but in worst-case doubly-exponential time)

Theory of Real Arithmetic: $\mathcal{T}_{R A}$

$\Sigma^{s}=\{$ Real $\}$
$\Sigma^{F}=\{+,-, *, \leq\} \cup\{q \mid q$ is a decimal numeral $\}$
M is the class of interpretations that interpret Real as the set of real numbers, and the function symbols in the usual way

Satisfiability in the full $\tau_{R A}$ is decidable (but in worst-case doubly-exponential time)
Restricted fragments can be decided more efficiently

Theory of Real Arithmetic: $\mathcal{T}_{R A}$

$\Sigma^{s}=\{$ Real $\}$
$\Sigma^{F}=\{+,-, *, \leq\} \cup\{q \mid q$ is a decimal numeral $\}$
M is the class of interpretations that interpret Real as the set of real numbers, and the function symbols in the usual way

Satisfiability in the full $\tau_{R A}$ is decidable (but in worst-case doubly-exponential time)
Restricted fragments can be decided more efficiently
Example: quantifier-free linear real arithmetic (QF_LRA): * can only appear if at least one its two arguments is a decimal numeral

Theory of Real Arithmetic: $\mathcal{T}_{R A}$

$\Sigma^{s}=\{$ Real $\}$
$\Sigma^{F}=\{+,-, *, \leq\} \cup\{q \mid q$ is a decimal numeral $\}$
M is the class of interpretations that interpret Real as the set of real numbers, and the function symbols in the usual way

Satisfiability in the full $\tau_{R A}$ is decidable (but in worst-case doubly-exponential time)
Restricted fragments can be decided more efficiently
Example: quantifier-free linear real arithmetic (QF_LRA): * can only appear if at least one its two arguments is a decimal numeral

The satisfiability of conjunctions of literals in QF_LRA is decidable in polynomial time

Theory of Integer Arithmetic: $\mathcal{T}_{\text {IA }}$

```
\Sigmas}={\mathrm{ Int }
\Sigma 
```

M is the class of interpretations that interpret Int as the set of integers numbers, and the function symbols in the usual way

Theory of Integer Arithmetic: $\mathcal{T}_{\text {IA }}$

```
\Sigmas}={\mathrm{ Int }
\Sigma 
```

M is the class of interpretations that interpret Int as the set of integers numbers, and the function symbols in the usual way

Satisfiability in $\mathcal{T}_{\text {IA }}$ is not even semi-decidable!

Theory of Integer Arithmetic: $\mathcal{T}_{\text {IA }}$

```
\Sigmas}={\mathrm{ Int }
\Sigma 
```

M is the class of interpretations that interpret Int as the set of integers numbers, and the function symbols in the usual way

Satisfiability in $\mathcal{T}_{\text {IA }}$ is not even semi-decidable!

Satisfiability of quantifier-free Σ-formulas in $\mathcal{T}_{\text {IA }}$ is undecidable as well

Theory of Integer Arithmetic: $\mathcal{T}_{\text {IA }}$

```
\Sigmas}={\mathrm{ Int }
\Sigma 
```

M is the class of interpretations that interpret Int as the set of integers numbers, and the function symbols in the usual way

Satisfiability in $\mathcal{T}_{\text {IA }}$ is not even semi-decidable!

Satisfiability of quantifier-free Σ-formulas in $\mathcal{T}_{\text {IA }}$ is undecidable as well

Linear integer arithmetic (LIA) (aka., Presburger arithmetic) is decidable, but not efficiently (worst case triply-exponential)

Theory of Arrays with Extensionality: \mathcal{T}_{A}

$\Sigma^{S}=\{A, I, E\}$ (for arrays, indices, elements)
$\Sigma^{F}=\{$ read, write $\}$, where $\operatorname{rank}($ read $)=\langle A, I, E\rangle$ and $\operatorname{rank}($ write $)=\langle A, I, E, A\rangle$
Useful for modeling RAM or array data structures

Theory of Arrays with Extensionality: \mathcal{T}_{A}

```
\SigmaS}={A,I,E}\mathrm{ (for arrays, indices, elements)
\Sigma }\mp@subsup{}{}{F}={\mathrm{ read, write }, where rank(read )}=\langleA,I,E\rangle\mathrm{ and rank(write)}=\langleA,I,E,A
```

Useful for modeling RAM or array data structures

Let a, a^{\prime} be variables of sort A, and i and v variables of sort / and E, respectively

- $\operatorname{read}(a, i)$ denotes the value stored in array a at position i
- write (a, i, v) denotes the array that stores value v at position i and is otherwise identical to a

Theory of Arrays with Extensionality: \mathcal{T}_{A}

```
\(\Sigma^{S}=\{A, I, E\}\) (for arrays, indices, elements)
\(\Sigma^{F}=\{\) read, write \(\}\), where \(\operatorname{rank}(\) read \()=\langle A, I, E\rangle\) and \(\operatorname{rank}(\) write \()=\langle A, I, E, A\rangle\)
```

Useful for modeling RAM or array data structures

Let a, a^{\prime} be variables of sort A, and i and v variables of sort / and E, respectively

- $\operatorname{read}(a, i)$ denotes the value stored in array a at position i
- write (a, i, v) denotes the array that stores value v at position i and is otherwise identical to a

Example 1: read $($ write $(a, i, v), i) \doteq_{E} v$

Theory of Arrays with Extensionality: \mathcal{T}_{A}

```
\(\Sigma^{S}=\{A, I, E\}\) (for arrays, indices, elements)
\(\Sigma^{F}=\{\) read, write \(\}\), where \(\operatorname{rank}(\) read \()=\langle A, I, E\rangle\) and \(\operatorname{rank}(\) write \()=\langle A, I, E, A\rangle\)
```

Useful for modeling RAM or array data structures

Let a, a^{\prime} be variables of sort A, and i and v variables of sort / and E, respectively

- $\operatorname{read}(a, i)$ denotes the value stored in array a at position i
- write (a, i, v) denotes the array that stores value v at position i and is otherwise identical to a

Example 1: read(write $(a, i, v), i) \doteq_{E} V$

Intuitively, is the above formula valid/satisfiable/unsatisfiable in \mathcal{T}_{A} ?

Theory of Arrays with Extensionality: \mathcal{T}_{A}

```
\SigmaS}={A,I,E}\mathrm{ (for arrays, indices, elements)
\Sigma }\mp@subsup{}{}{F}={\mathrm{ read, write }, where rank(read )}=\langleA,I,E\rangle\mathrm{ and rank(write)}=\langleA,I,E,A
```

Useful for modeling RAM or array data structures

Let a, a^{\prime} be variables of sort A, and i and v variables of sort / and E, respectively

- $\operatorname{read}(a, i)$ denotes the value stored in array a at position i
- write (a, i, v) denotes the array that stores value v at position i and is otherwise identical to a

Example 2: $\forall i$. $\operatorname{read}(a, i) \doteq_{E} \operatorname{read}\left(a^{\prime}, i\right) \Rightarrow a \doteq_{A} a^{\prime}$

Theory of Arrays with Extensionality: \mathcal{T}_{A}

```
\(\Sigma^{S}=\{A, I, E\}\) (for arrays, indices, elements)
\(\Sigma^{F}=\{\) read, write \(\}\), where \(\operatorname{rank}(\) read \()=\langle A, I, E\rangle\) and \(\operatorname{rank}(\) write \()=\langle A, I, E, A\rangle\)
```

Useful for modeling RAM or array data structures

Let a, a^{\prime} be variables of sort A, and i and v variables of sort / and E, respectively

- $\operatorname{read}(a, i)$ denotes the value stored in array a at position i
- write (a, i, v) denotes the array that stores value v at position i and is otherwise identical to a

Example 2: $\forall i$. $\operatorname{read}(a, i) \doteq_{E} \operatorname{read}\left(a^{\prime}, i\right) \Rightarrow a \doteq_{A} a^{\prime}$

Intuitively, is the above formula valid/satisfiable/unsatisfiable in \mathcal{T}_{A} ?

Theory of Arrays with Extensionality: \mathcal{T}_{A}

\mathcal{T}_{A} is finitely axiomatizable

Theory of Arrays with Extensionality: \mathcal{T}_{A}

\mathcal{T}_{A} is finitely axiomatizable
M is the class of interpretations that satisfy the following axioms:

1. $\forall a . \forall i . \forall v . \operatorname{read}(w r i t e(a, i, v), i) \doteq v$
2. $\forall a . \forall i . \forall i^{\prime} . \forall v .\left(\neg\left(i \doteq i^{\prime}\right) \Rightarrow \operatorname{read}\left(w r i t e(a, i, v), i^{\prime}\right) \doteq \operatorname{read}\left(a, i^{\prime}\right)\right)$
3. $\forall a \cdot \forall a^{\prime}$. $\left(\forall i \cdot \operatorname{read}(a, i) \doteq \operatorname{read}\left(a^{\prime}, i\right) \Rightarrow a \doteq a^{\prime}\right)$

Theory of Arrays with Extensionality: \mathcal{T}_{A}

\mathcal{T}_{A} is finitely axiomatizable
M is the class of interpretations that satisfy the following axioms:

1. $\forall a . \forall i . \forall v . \operatorname{read}(w r i t e(a, i, v), i) \doteq v$
2. $\forall a$. $\forall i . \forall i^{\prime} . \forall v . ~\left(\neg\left(i \doteq i^{\prime}\right) \Rightarrow \operatorname{read}\left(\right.\right.$ write $\left.\left.(a, i, v), i^{\prime}\right) \doteq \operatorname{read}\left(a, i^{\prime}\right)\right)$
3. $\forall a \cdot \forall a^{\prime}$. $\left(\forall i \cdot \operatorname{read}(a, i) \doteq \operatorname{read}\left(a^{\prime}, i\right) \Rightarrow a \doteq a^{\prime}\right)$

Note: Axiom 3 can be omitted to obtain a theory of arrays without extensionality

Theory of Arrays with Extensionality: \mathcal{T}_{A}

\mathcal{T}_{A} is finitely axiomatizable
M is the class of interpretations that satisfy the following axioms:

1. $\forall a . \forall i . \forall v . \operatorname{read}(w r i t e(a, i, v), i) \doteq v$
2. $\forall a$. $\forall i . \forall i^{\prime} . \forall v . ~\left(\neg\left(i \doteq i^{\prime}\right) \Rightarrow \operatorname{read}\left(\right.\right.$ write $\left.\left.(a, i, v), i^{\prime}\right) \doteq \operatorname{read}\left(a, i^{\prime}\right)\right)$
3. $\forall a \cdot \forall a^{\prime}$. $\left(\forall i \cdot \operatorname{read}(a, i) \doteq \operatorname{read}\left(a^{\prime}, i\right) \Rightarrow a \doteq a^{\prime}\right)$

Note: Axiom 3 can be omitted to obtain a theory of arrays without extensionality

Satisfiability in \mathcal{T}_{A} is undecidable

Theory of Arrays with Extensionality: \mathcal{T}_{A}

\mathcal{T}_{A} is finitely axiomatizable
M is the class of interpretations that satisfy the following axioms:

1. $\forall a . \forall i . \forall v . \operatorname{read}(w r i t e(a, i, v), i) \doteq v$
2. $\forall a$. $\forall i . \forall i^{\prime} . \forall v .\left(\neg\left(i \doteq i^{\prime}\right) \Rightarrow \operatorname{read}\left(\right.\right.$ write $\left.\left.(a, i, v), i^{\prime}\right) \doteq \operatorname{read}\left(a, i^{\prime}\right)\right)$
3. $\forall a \cdot \forall a^{\prime}$. $\left(\forall i \cdot \operatorname{read}(a, i) \doteq \operatorname{read}\left(a^{\prime}, i\right) \Rightarrow a \doteq a^{\prime}\right)$

Note: Axiom 3 can be omitted to obtain a theory of arrays without extensionality

Satisfiability in \mathcal{T}_{A} is undecidable
But there are several decidable fragments, as we will see

[^0]: ${ }^{1}$ In set theory, a class is a more general notion of set.

[^1]: ${ }^{1}$ In set theory, a class is a more general notion of set.

[^2]: ${ }^{1}$ In set theory, a class is a more general notion of set.

