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Outline

• First-order Theories

• Satisfiability Modulo Theories

• Examples of First-order Theories
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Motivation

Consider the signature Σ = ⟨ΣS,ΣF⟩ for a fragment of number theory:

ΣS = {Nat} ΣF = {0, 1,+, <}
rank(0) = ⟨Nat⟩ rank(1) = ⟨Nat⟩

rank(+) = ⟨Nat,Nat,Nat⟩ rank(<) = ⟨Nat,Nat,Bool⟩

Consider the Σ-sentence

Is the formula valid?
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Consider the signature Σ = ⟨ΣS,ΣF⟩ for a fragment of number theory:

ΣS = {Nat} ΣF = {0, 1,+, <}
rank(0) = ⟨Nat⟩ rank(1) = ⟨Nat⟩

rank(+) = ⟨Nat,Nat,Nat⟩ rank(<) = ⟨Nat,Nat,Bool⟩

Consider the Σ-sentence

∀x:Nat.∀x:Nat.∀x:Nat. (x < y ∧ y < z ⇒ x < z)

Is the formula valid?
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Motivation

Consider the signature Σ = ⟨ΣS,ΣF⟩ for a fragment of number theory:

ΣS = {Nat} ΣF = {0, 1,+, <}
rank(0) = ⟨Nat⟩ rank(1) = ⟨Nat⟩

rank(+) = ⟨Nat,Nat,Nat⟩ rank(<) = ⟨Nat,Nat,Bool⟩

Consider the Σ-sentence

∀x:Nat.∀x:Nat.∀x:Nat. (x < y ∧ y < z ⇒ x < z)

Is the formula valid? No, e.g., if we interpret < as the successor relation
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Motivation
Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general
but rather with respect to a limited class of interpretations
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In practice, we often do not care about satisfiability or validity in general
but rather with respect to a limited class of interpretations

A practical reason:

When reasoning in a particular application domain, we typically have specific data
types/structures in mind (e.g., integers, strings, lists, arrays, finite sets, . . . )

More generally, we are typically not interested in arbitrary interpretations, but in
specific in ones

Theories formalize this domain-specific reasoning:
we talk about satisfiability or validity in a theory or modulo a theory
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Motivation
Recall that valid means true for all possible interpretations

In practice, we often do not care about satisfiability or validity in general
but rather with respect to a limited class of interpretations

A computational reason:

While validity in FOL is undecidable, validity in particular theories can be decidable

It is useful for AR purposes to
• identify decidable fragments of FOL and
• develop efficient decision procedures for them
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First-order theories
We will assume from now on an infinite set X of variables

A theory T is a pair ⟨Σ,M⟩, where:
• Σ = ⟨ΣS,ΣF⟩ is a signature
• M is a class1 of Σ-interpretations over X that is closed under variable

re-assignment

1In set theory, a class is a more general notion of set.
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A theory T is a pair ⟨Σ,M⟩, where:
• Σ = ⟨ΣS,ΣF⟩ is a signature
• M is a class1 of Σ-interpretations over X that is closed under variable

re-assignment

M is closed under variable re-assignment if every Σ-interpretation that differs
from one inM only in the way it interprets the variables of X is also inM

1In set theory, a class is a more general notion of set.
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• Σ = ⟨ΣS,ΣF⟩ is a signature
• M is a class1 of Σ-interpretations over X that is closed under variable
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First-order theories
We will assume from now on an infinite set X of variables

A theory T is a pair ⟨Σ,M⟩, where:
• Σ = ⟨ΣS,ΣF⟩ is a signature
• M is a class1 of Σ-interpretations over X that is closed under variable

re-assignment

Example 1: the theory of Real Arithmetic TRA = ⟨ΣRA,MRA⟩

ΣS
RA = {Real } ΣF

RA = {+,−, ∗,≤} ∪ { q | q is a decimal numeral }

All I ∈ MRA interpret Real as the set R of real numbers, and the function symbols in
the usual way

1In set theory, a class is a more general notion of set.
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First-order theories
We will assume from now on an infinite set X of variables

A theory T is a pair ⟨Σ,M⟩, where:
• Σ = ⟨ΣS,ΣF⟩ is a signature
• M is a class1 of Σ-interpretations over X that is closed under variable

re-assignment

Example 2: the theory of Ternary Strings TTS = ⟨ΣTS,MTS⟩

ΣS
TS = { String } ΣF

TS = { ·, < } ∪ { a, b, c }

All I ∈ MTS interpret String as the set { a, b, c }∗ of all strings over the characters
a, b, c, and · as string concatenation (e.g., (a · b)I = ab) and < as alphabetical order

1In set theory, a class is a more general notion of set.
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T -interpretations
Let Σ and Ω be two signatures over a set X of variables where Ω ⊇ Σ
(i.e., ΩS ⊇ ΣS and ΩF ⊇ ΣF)

Let I be an Ω-interpretation over X
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T -interpretations
Let Σ and Ω be two signatures over a set X of variables where Ω ⊇ Σ
(i.e., ΩS ⊇ ΣS and ΩF ⊇ ΣF)

Let I be an Ω-interpretation over X

The reduct IΣ of I to Σ is a Σ-interpretation over X obtained from I
by restricting it to interpret only the symbols in Σ and X
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T -interpretations

Given a theory T := ⟨Σ,M⟩,

a T -interpretation is any Ω-interpretation I for some Ω ⊇ Σ such that IΣ ∈ M
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T -interpretations

Given a theory T := ⟨Σ,M⟩,

a T -interpretation is any Ω-interpretation I for some Ω ⊇ Σ such that IΣ ∈ M

Note: This definition allows us to consider the satisfiability in a theory T := (Σ,M) of
formulas that contain sorts or function symbols not in Σ

These symbols are usually called uninterpreted (in T )
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RA = {Real } ΣF

RA = {+,−, ∗,≤} ∪ { q | q is a decimal numeral }

All I ∈ MRA interpret Real as R and the function symbols as usual
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1. RealI1 is the rational numbers, symbols in ΣF
RA interpreted as usual

2. RealI2 = R, symbols in ΣF
RA interpreted as usual, and StringI2 = { 0.5, 1.3 }

3. RealI3 = R, symbols in ΣF
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Given a theory T := ⟨Σ,M⟩,

a T -interpretation is any Ω-interpretation I for some Ω ⊇ Σ such that IΣ ∈ M
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T -satisfiability, T -validity
Let T := ⟨Σ,M⟩ be a theory

A formula α is satisfiable in T , or T -satisfiable,
if it is satisfied by some T -interpretation I

A set Γ of formulas T -entails a formula α, written Γ |=T α,
if every T -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in T , or T -valid, written |=T α,
if it is satisfied by all T -interpretations
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if it is satisfied by some T -interpretation I

A set Γ of formulas T -entails a formula α, written Γ |=T α,
if every T -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in T , or T -valid, written |=T α,
if it is satisfied by all T -interpretations

Note: α is valid in T iff { } |=T α

7 / 18



T -satisfiability, T -validity
Let T := ⟨Σ,M⟩ be a theory

A formula α is satisfiable in T , or T -satisfiable,
if it is satisfied by some T -interpretation I

A set Γ of formulas T -entails a formula α, written Γ |=T α,
if every T -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in T , or T -valid, written |=T α,
if it is satisfied by all T -interpretations

Example: Which of the following ΣRA-formulas is satisfiable or valid in TRA?

1. (x0 + x1 ≤ 0.5) ∧ (x0 − x1 ≤ 2)
2. ∀x0.((x0 + x1 ≤ 1.7) ⇒ (x1 ≤ 1.7 − x0))

3. ∀x0.∀x1.(x0 + x1 ≤ 1)
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T -satisfiability, T -validity
Let T := ⟨Σ,M⟩ be a theory

A formula α is satisfiable in T , or T -satisfiable,
if it is satisfied by some T -interpretation I

A set Γ of formulas T -entails a formula α, written Γ |=T α,
if every T -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in T , or T -valid, written |=T α,
if it is satisfied by all T -interpretations

Example: Which of the following ΣRA-formulas is satisfiable or valid in TRA?

1. (x0 + x1 ≤ 0.5) ∧ (x0 − x1 ≤ 2) satisfiable, not valid
2. ∀x0.((x0 + x1 ≤ 1.7) ⇒ (x1 ≤ 1.7 − x0))

3. ∀x0.∀x1.(x0 + x1 ≤ 1)
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if every T -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in T , or T -valid, written |=T α,
if it is satisfied by all T -interpretations

Example: Which of the following ΣRA-formulas is satisfiable or valid in TRA?

1. (x0 + x1 ≤ 0.5) ∧ (x0 − x1 ≤ 2) satisfiable, not valid
2. ∀x0.((x0 + x1 ≤ 1.7) ⇒ (x1 ≤ 1.7 − x0)) satisfiable, valid
3. ∀x0.∀x1.(x0 + x1 ≤ 1)
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T -satisfiability, T -validity
Let T := ⟨Σ,M⟩ be a theory

A formula α is satisfiable in T , or T -satisfiable,
if it is satisfied by some T -interpretation I

A set Γ of formulas T -entails a formula α, written Γ |=T α,
if every T -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in T , or T -valid, written |=T α,
if it is satisfied by all T -interpretations

Example: Which of the following ΣRA-formulas is satisfiable or valid in TRA?

1. (x0 + x1 ≤ 0.5) ∧ (x0 − x1 ≤ 2) satisfiable, not valid
2. ∀x0.((x0 + x1 ≤ 1.7) ⇒ (x1 ≤ 1.7 − x0)) satisfiable, valid
3. ∀x0.∀x1.(x0 + x1 ≤ 1) not satisfiable, not valid
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T -satisfiability, T -validity
Let T := ⟨Σ,M⟩ be a theory

A formula α is satisfiable in T , or T -satisfiable,
if it is satisfied by some T -interpretation I

A set Γ of formulas T -entails a formula α, written Γ |=T α,
if every T -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in T , or T -valid, written |=T α,
if it is satisfied by all T -interpretations

Note: For every signature Σ,
entailment and validity in FOL can be reframed as
entailment and validity in the theory TFOL = ⟨Σ,MFOL⟩
whereMFOL is the class of all Σ-interpretations
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Alternative definition of theory
In Chap. 3 of CC, a theory T is defined by a signature Σ and a set A of Σ-sentences, or axioms

In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation I that
satisfies A also satisfies α

We refer to such theories as (first-order) axiomatic theories
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In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation I that
satisfies A also satisfies α

We refer to such theories as (first-order) axiomatic theories

These notions of theory and validity are a special case of those in the previous slides

• Given a theory T defined by Σ and A, we define a theory T ′ := ⟨T ,M⟩
whereM is the class of all Σ-interpretations that satisfy A

• It is not hard to show that a formula α is valid in T iff it is valid in T ′
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In Chap. 3 of CC, a theory T is defined by a signature Σ and a set A of Σ-sentences, or axioms

In particular, an Ω-formula α is valid in this kind of theory if every Ω-interpretation I that
satisfies A also satisfies α

We refer to such theories as (first-order) axiomatic theories

These notions of theory and validity are a special case of those in the previous slides

In fact, they are strictly less general since not all theories are first-order axiomatizable

Example
Consider the theory TNat of the natural numbers, with signature Σ where ΣS = {Nat } and
ΣF = { 0, S,+, < }, andM = { I } where NatI = N and ΣF is interpreted as usual

Any set of axioms for this theory is satisfied by non-standard models, e.g., interpretations I
where NatI includes other chains of elements besides the natural numbers

These models falsify formulas that are valid in TNat (e.g., ¬∃x. x < 0 or
∀x. (x .

= 0 ∨ ∃y. x .
= S(y)))
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Completeness of theories

A Σ-theory T is complete if for every Σ-sentence α, either α or ¬α is valid in T

Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable
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Completeness of theories

A Σ-theory T is complete if for every Σ-sentence α, either α or ¬α is valid in T

Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 1:

Any theory T = ⟨Σ,M⟩ where all the interpretations inM only differ in how they
interpret the variables (e.g., TRA) is complete
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Completeness of theories

A Σ-theory T is complete if for every Σ-sentence α, either α or ¬α is valid in T

Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 2:

The axiomatic (mono-sorted) theory of monoids with ΣF = { ·, ϵ } and axioms

∀x.∀y.∀z. (x · y) · z .
= x · (y · z) ∀x. x · ϵ .

= x ∀x. ϵ · x .
= x

is incomplete
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Completeness of theories

A Σ-theory T is complete if for every Σ-sentence α, either α or ¬α is valid in T

Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 2:

The axiomatic (mono-sorted) theory of monoids with ΣF = { ·, ϵ } and axioms

∀x.∀y.∀z. (x · y) · z .
= x · (y · z) ∀x. x · ϵ .

= x ∀x. ϵ · x .
= x

is incomplete. For instance, the sentence

∀x.∀y. x · y .
= y · x

is true in some monoids (e.g., the integers with addition)
but false in others (e.g., the strings with concatenation)
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Completeness of theories

A Σ-theory T is complete if for every Σ-sentence α, either α or ¬α is valid in T

Note: In a complete Σ-theory, every Σ-sentence is either valid or unsatisfiable

Example 3: The axiomatic (mono-sorted) theory of dense linear orders without
endpoints with ΣF = {≺} and axioms

∀x.∀y. (x ≺ y ⇒ ∃z. (x ≺ z ∧ z ≺ y)) (dense)

∀x.∀y. (x ≺ y ∨ x .
= y ∨ y ≺ x) (linear)

∀x.¬(x ≺ x) ∀x.∀y. ∀z. (x ≺ y ∧ y ≺ z ⇒ x ≺ z) (orders)

∀x.∃y. y ≺ x ∀x.∃y. x ≺ y (without endpoints)

is complete

9 / 18



Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure
that, for every input element a, returns yes if a ∈ A and no otherwise

A theory T := ⟨Σ,M⟩ is decidable if the set of all Σ-formulas valid in T is decidable

A fragment of T is a syntactically-restricted subset of the Σ-formulas valid in T

Example 1: The quantifier-free fragment of T is the set of all quantifier-free formulas
valid in T
Example 2: The linear fragment of TRA is the set of all ΣRA- valid in T that do not
contain multiplication (∗)

10 / 18



Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure
that, for every input element a, returns yes if a ∈ A and no otherwise

A theory T := ⟨Σ,M⟩ is decidable if the set of all Σ-formulas valid in T is decidable

A fragment of T is a syntactically-restricted subset of the Σ-formulas valid in T

Example 1: The quantifier-free fragment of T is the set of all quantifier-free formulas
valid in T
Example 2: The linear fragment of TRA is the set of all ΣRA- valid in T that do not
contain multiplication (∗)

10 / 18



Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure
that, for every input element a, returns yes if a ∈ A and no otherwise

A theory T := ⟨Σ,M⟩ is decidable if the set of all Σ-formulas valid in T is decidable

A fragment of T is a syntactically-restricted subset of the Σ-formulas valid in T

Example 1: The quantifier-free fragment of T is the set of all quantifier-free formulas
valid in T
Example 2: The linear fragment of TRA is the set of all ΣRA- valid in T that do not
contain multiplication (∗)

10 / 18



Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure
that, for every input element a, returns yes if a ∈ A and no otherwise

A theory T := ⟨Σ,M⟩ is decidable if the set of all Σ-formulas valid in T is decidable

A fragment of T is a syntactically-restricted subset of the Σ-formulas valid in T

Example 1: The quantifier-free fragment of T is the set of all quantifier-free formulas
valid in T
Example 2: The linear fragment of TRA is the set of all ΣRA- valid in T that do not
contain multiplication (∗)

10 / 18



Decidability

Recall: We say that a set A is decidable if there exists a terminating procedure
that, for every input element a, returns yes if a ∈ A and no otherwise

A theory T := ⟨Σ,M⟩ is decidable if the set of all Σ-formulas valid in T is decidable

A fragment of T is a syntactically-restricted subset of the Σ-formulas valid in T

Example 1: The quantifier-free fragment of T is the set of all quantifier-free formulas
valid in T
Example 2: The linear fragment of TRA is the set of all ΣRA- valid in T that do not
contain multiplication (∗)

10 / 18



Axiomatizability
A theory T = ⟨Σ,M⟩ is recursively axiomatizable ifM is the class of all interpretations
satisfying a decidable set of (first-order) axioms A

Lemma 1
Every recursively axiomatizable theory T admits a procedure ET that enumerates
all formulas valid in T

Theorem 2
For every complete and recursively axiomatizable theory T , validity in T is
decidable

Proof.
Given a formula α, we use ET to enumerate all valid formulas. Since T is complete,
either α or ¬α will eventually be produced by ET .
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Common theories in Satisfiability Modulo Theories
As a branch of Automated Reasoning, SMT has traditionally focused on theories with
decidable quantifier-free fragment
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decidable quantifier-free fragment

Checking the (un)satisfiability of quantifier-fee formulas in these theories efficiently
has a large number of applications in:

hardware and software verification, model checking, symbolic execution, com-
piler validation, type checking, planning and scheduling, software synthesis,
cyber-security, verifiable machine learning, analysis of biological systems, . . .
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Checking the (un)satisfiability of quantifier-fee formulas in these theories efficiently
has a large number of applications in:

hardware and software verification, model checking, symbolic execution, com-
piler validation, type checking, planning and scheduling, software synthesis,
cyber-security, verifiable machine learning, analysis of biological systems, . . .

In the rest of the course, we will study

• a few of those theories and their decision procedures

• proof systems to reason modulo theories automatically
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From quantifier-free formulas to conjunctions of literals

As in PL, thanks to DNF transformations,

the satisfiability of quantifier-free formulas in a theory T is decidable iff
the satisfiability in T of conjunctions of literals is decidable

In fact, we will study a general extension of CDCL to SMT that uses decision procedures
for conjunctions of literals

So, we will mostly focus on conjunctions of literals
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Theory of Uninterpreted Functions: TEUF

Given a signature Σ, the most general theory consists of the class of all
Σ-interpretations

This is really a family of theories parameterized by the signature Σ

It is known as the theory of Equality with Uninterpreted Functions (EUF), or the empty
theory since it is axiomatized by the empty set of formulas

Validity, and so satisfiability, in TEUF is only semi-decidable (as it is just validity in FOL)

However, the satisfiability of conjunctions of TEUF-literals is decidable, in polynomial
time, with a congruence closure algorithm

Example: a .
= b ∧ f (a) .

= b ∧ ¬(g(a) .
= g(f (a))) Is this formula satisfiable in TEUF?
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Theory of Real Arithmetic: TRA

ΣS = {Real }
ΣF = {+,−, ∗,≤} ∪ { q | q is a decimal numeral }
M is the class of interpretations that interpret Real as the set of real numbers, and the
function symbols in the usual way

Satisfiability in the full TRA is decidable (but in worst-case doubly-exponential time)

Restricted fragments can be decided more efficiently

Example: quantifier-free linear real arithmetic (QF_LRA): ∗ can only appear if at least
one its two arguments is a decimal numeral

The satisfiability of conjunctions of literals in QF_LRA is decidable in polynomial time
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Theory of Integer Arithmetic: TIA

ΣS = { Int }
ΣF = {+,−, ∗,≤} ∪ { n | n is a numeral }
M is the class of interpretations that interpret Int as the set of integers numbers, and
the function symbols in the usual way

Satisfiability in TIA is not even semi-decidable!

Satisfiability of quantifier-free Σ-formulas in TIA is undecidable as well

Linear integer arithmetic (LIA) (aka., Presburger arithmetic) is decidable, but not
efficiently (worst case triply-exponential)
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Theory of Arrays with Extensionality: TA

ΣS = { A, I, E } (for arrays, indices, elements)

ΣF = { read,write }, where rank(read) = ⟨A, I, E⟩ and rank(write) = ⟨A, I, E, A⟩

Useful for modeling RAM or array data structures

Let a, a′ be variables of sort A, and i and v variables of sort I and E, respectively

• read(a, i) denotes the value stored in array a at position i

• write(a, i, v) denotes the array that stores value v at position i and is otherwise
identical to a
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Theory of Arrays with Extensionality: TA

TA is finitely axiomatizable

M is the class of interpretations that satisfy the following axioms:

1. ∀a.∀i.∀v. read(write(a, i, v), i) .
= v

2. ∀a.∀i.∀i′.∀v. (¬(i .
= i′) ⇒ read(write(a, i, v), i′) .

= read(a, i′))

3. ∀a.∀a′. (∀i.read(a, i) .
= read(a′, i) ⇒ a .

= a′)

Note: Axiom 3 can be omitted to obtain a theory of arrays without extensionality

Satisfiability in TA is undecidable

But there are several decidable fragments, as we will see
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