
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

Proof systems for First-order Logic

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of
Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University.
Adapted by permission.

1 / 21

Outline

• Semantic arguments for FOL
• PCNF (ML 9.2) and Clausal Form
• First-order Resolution (ML 10)

2 / 21

Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by

• replacing the truth assignment v with an interpretation I and
• adding proof rules for quantifiers
• adding proof rules for equality (for FOL with equality)

3 / 21

Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by

• replacing the truth assignment v with an interpretation I and
• adding proof rules for quantifiers
• adding proof rules for equality (for FOL with equality)

3 / 21

Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by

• replacing the truth assignment v with an interpretation I and
• adding proof rules for quantifiers
• adding proof rules for equality (for FOL with equality)

3 / 21

Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by

• replacing the truth assignment v with an interpretation I and
• adding proof rules for quantifiers
• adding proof rules for equality (for FOL with equality)

3 / 21

Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by

• replacing the truth assignment v with an interpretation I and
• adding proof rules for quantifiers
• adding proof rules for equality (for FOL with equality)

3 / 21

Semantic arguments for FOL: propositional rules

I |= ¬α
(a)

I ̸|= α

I ̸|= ¬α
(b)

I |= α

I |= α ∧ β
(c)

I |= α, I |= β

I ̸|= α ∧ β
(d)

I ̸|= α | I ̸|= β

I |= α ∨ β
(e)

I |= α | I |= β

I ̸|= α ∨ β
(f)

I ̸|= α, I ̸|= β

I |= α ⇒ β
(g)

I ̸|= α | I |= β

I ̸|= α ⇒ β
(h)

I |= α, I ̸|= β

I |= α I ̸|= α
(i)

I |= ⊥

I |= α ⇔ β
(k)

I |= α, I |= β | I ̸|= α, I ̸|= β

I ̸|= α ⇔ β
(j)

I ̸|= α, I |= β | v |= α, I ̸|= β

4 / 21

Semantic arguments for FOL: quantifier rules
Notation: if v is a variable, ε is a term/formula, and t is a term, ε[v ← t] denotes
the term/formula obtained from ε by replacing every free occurrence of v in ε by t

5 / 21

Semantic arguments for FOL: quantifier rules
Notation: if v is a variable, ε is a term/formula, and t is a term, ε[v ← t] denotes
the term/formula obtained from ε by replacing every free occurrence of v in ε by t

Examples:
x[x ← S(y)] = S(y) (x + y)[x ← y] = y + y

x[x ← S(x)] = S(x) (x .
= y)[x ← 0] = 0 .

= y

x[x ← y] = y (x .
= x)[x ← S(x)] = S(x) .

= S(x)

(x .
= y ∨ x < y)[x ← S(0)] = S(0) .

= y ∨ S(0) < y

(x .
= y ∨ ∀x. x < y)[x ← S(y)] = S(y) .

= y ∨ ∀x. x < y

5 / 21

Semantic arguments for FOL: quantifier rules
Notation: if v is a variable, ε is a term/formula, and t is a term, ε[v ← t] denotes
the term/formula obtained from ε by replacing every free occurrence of v in ε by t

I |= ∀v:σ. α
(m) for any term t of sort σI |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σI ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

5 / 21

Proof by deduction: Example 1
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)

2. I |= ∃x. P(x) by (h) on 1

3. I ̸|= ∃y. P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I ̸|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

6 / 21

Proof by deduction: Example 1
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)

2. I |= ∃x. P(x) by (h) on 1

3. I ̸|= ∃y. P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I ̸|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

6 / 21

Proof by deduction: Example 1
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)

2. I |= ∃x. P(x) by (h) on 1

3. I ̸|= ∃y. P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I ̸|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

6 / 21

Proof by deduction: Example 1
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)

2. I |= ∃x. P(x) by (h) on 1

3. I ̸|= ∃y. P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I ̸|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

6 / 21

Proof by deduction: Example 1
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)

2. I |= ∃x. P(x) by (h) on 1

3. I ̸|= ∃y. P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I ̸|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

6 / 21

Proof by deduction: Example 1
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)

2. I |= ∃x. P(x) by (h) on 1

3. I ̸|= ∃y. P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I ̸|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

6 / 21

Proof by deduction: Example 1
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∃x. P(x)⇒ ∃y.P(y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x. P(x)⇒ ∃y. P(y)

2. I |= ∃x. P(x) by (h) on 1

3. I ̸|= ∃y. P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I ̸|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

6 / 21

Proof by deduction: Example 2
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∀x. (P(x)⇒ ∃y. P(y)) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∀x. (P(x)⇒ ∃y. P(y))

2. I ̸|= P(x0)⇒ ∃y. P(y) by (p) on
1

3. I |= P(x0) by (h) on 2

4. I ̸|= ∃y.P(y) by (h) on 2

5. I ̸|= P(x0) by (n) on 4

6. I |= ⊥ by (i) on 3, 5

7 / 21

Proof by deduction: Example 2
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∀x. (P(x)⇒ ∃y. P(y)) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∀x. (P(x)⇒ ∃y. P(y))

2. I ̸|= P(x0)⇒ ∃y. P(y) by (p) on
1

3. I |= P(x0) by (h) on 2

4. I ̸|= ∃y.P(y) by (h) on 2

5. I ̸|= P(x0) by (n) on 4

6. I |= ⊥ by (i) on 3, 5

7 / 21

Proof by deduction: Example 2
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∀x. (P(x)⇒ ∃y. P(y)) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∀x. (P(x)⇒ ∃y. P(y))

2. I ̸|= P(x0)⇒ ∃y. P(y) by (p) on
1

3. I |= P(x0) by (h) on 2

4. I ̸|= ∃y.P(y) by (h) on 2

5. I ̸|= P(x0) by (n) on 4

6. I |= ⊥ by (i) on 3, 5

7 / 21

Proof by deduction: Example 2
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∀x. (P(x)⇒ ∃y. P(y)) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∀x. (P(x)⇒ ∃y. P(y))

2. I ̸|= P(x0)⇒ ∃y. P(y) by (p) on
1

3. I |= P(x0) by (h) on 2

4. I ̸|= ∃y.P(y) by (h) on 2

5. I ̸|= P(x0) by (n) on 4

6. I |= ⊥ by (i) on 3, 5

7 / 21

Proof by deduction: Example 2
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∀x. (P(x)⇒ ∃y. P(y)) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∀x. (P(x)⇒ ∃y. P(y))

2. I ̸|= P(x0)⇒ ∃y. P(y) by (p) on
1

3. I |= P(x0) by (h) on 2

4. I ̸|= ∃y.P(y) by (h) on 2

5. I ̸|= P(x0) by (n) on 4

6. I |= ⊥ by (i) on 3, 5

7 / 21

Proof by deduction: Example 2
Consider signature Σ with ΣS = { A }, ΣF = { P }, rank(P) = ⟨A,Bool⟩, and all vars of sort A

Prove that ∀x. (P(x)⇒ ∃y. P(y)) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∀x. (P(x)⇒ ∃y. P(y))

2. I ̸|= P(x0)⇒ ∃y. P(y) by (p) on
1

3. I |= P(x0) by (h) on 2

4. I ̸|= ∃y.P(y) by (h) on 2

5. I ̸|= P(x0) by (n) on 4

6. I |= ⊥ by (i) on 3, 5

7 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Proof by deduction: Example 3
Consider signature Σ with ΣS = { A }, ΣF = {Q }, rank(Q) = ⟨A, A,Bool⟩, and all vars of sort A

Prove that ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y) is valid

I |= ∀v:σ. α
(m) for any term t of sort σ

I |= α[v ← t]

I ̸|= ∃v:σ. α
(n) for any term t of sort σ
I ̸|= α[v ← t]

I |= ∃v:σ. α
(o) for a fresh variable k of sort σI |= α[v ← k]

I ̸|= ∀v:σ. α
(p) for a fresh variable k of sort σI ̸|= α[v ← k]

1. I ̸|= ∃x.∀y.Q(x, y)⇒ ∀y.∃x.Q(x, y)

2. I |= ∃x.∀y.Q(x, y) by (h) on 1

3. I ̸|= ∀y.∃x.Q(x, y) by (h) on 1

4. I |= ∀y.Q(x0, y) by (o) on 2

5. I ̸|= ∃x.Q(x, y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I ̸|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

8 / 21

Refutation Soundness and Completeness

Theorem 1 (Soundness)
For all Σ-formulas α, if there is a closed derivation tree with root I ̸|= α then α is
valid

Theorem 2 (Completeness)
For all Σ-formulas α without equality, if α is valid, then there is a closed derivation
tree with root I ̸|= α

9 / 21

Refutation Soundness and Completeness

Theorem 1 (Soundness)
For all Σ-formulas α, if there is a closed derivation tree with root I ̸|= α then α is
valid

Theorem 2 (Completeness)
For all Σ-formulas α without equality, if α is valid, then there is a closed derivation
tree with root I ̸|= α

9 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

Termination?
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula ∀x. q(x, x)

1. I ̸|= ∀x.q(x, x)
2. I ̸|= q(x0, x0) by (m) on 1
3. I ̸|= q(x1, x1) by (m) on 1
4. I ̸|= q(x2, x2) by (m) on 1
5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

10 / 21

FOL is only semi-decidable: you can always show
validity algorithmically but not invalidity

Prenex Normal Form (PNF)
For AR purposes, it is useful in FOL too impose syntactic restrictions on formulas

A Σ-formula α is in prenex normal form (PNF) if it has the form

Q1x1. · · · Qnxn. β

where each Qi is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition,
β is in conjunctive normal form1

Example: The formula below is in PCNF

∀y.∃z. ((
C1︷ ︸︸ ︷

p(f (y))︸ ︷︷ ︸
A1

∨ q(z)︸︷︷︸
A2

) ∧ (

C2︷ ︸︸ ︷
¬ q(z)︸︷︷︸

A2

∨ q(x)︸︷︷︸
A3

))

1If we treat every atomic formula of β as if it was a propositional variable
11 / 21

Prenex Normal Form (PNF)
A Σ-formula α is in prenex normal form (PNF) if it has the form

Q1x1. · · · Qnxn. β

where each Qi is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition,
β is in conjunctive normal form1

Example: The formula below is in PCNF

∀y.∃z. ((
C1︷ ︸︸ ︷

p(f (y))︸ ︷︷ ︸
A1

∨ q(z)︸︷︷︸
A2

) ∧ (

C2︷ ︸︸ ︷
¬ q(z)︸︷︷︸

A2

∨ q(x)︸︷︷︸
A3

))

1If we treat every atomic formula of β as if it was a propositional variable
11 / 21

Prenex Normal Form (PNF)
A Σ-formula α is in prenex normal form (PNF) if it has the form

Q1x1. · · · Qnxn. β

where each Qi is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition,
β is in conjunctive normal form1

Example: The formula below is in PCNF

∀y.∃z. ((
C1︷ ︸︸ ︷

p(f (y))︸ ︷︷ ︸
A1

∨ q(z)︸︷︷︸
A2

) ∧ (

C2︷ ︸︸ ︷
¬ q(z)︸︷︷︸

A2

∨ q(x)︸︷︷︸
A3

))

1If we treat every atomic formula of β as if it was a propositional variable
11 / 21

Prenex Normal Form (PNF)
A Σ-formula α is in prenex normal form (PNF) if it has the form

Q1x1. · · · Qnxn. β

where each Qi is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition,
β is in conjunctive normal form1

Example: The formula below is in PCNF

∀y.∃z. ((
C1︷ ︸︸ ︷

p(f (y))︸ ︷︷ ︸
A1

∨ q(z)︸︷︷︸
A2

) ∧ (

C2︷ ︸︸ ︷
¬ q(z)︸︷︷︸

A2

∨ q(x)︸︷︷︸
A3

))

1If we treat every atomic formula of β as if it was a propositional variable
11 / 21

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Examples: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f (y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(y, z)) ✓

12 / 21

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Examples: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f (y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(y, z)) ✓

12 / 21

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Examples: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f (y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(y, z)) ✓

12 / 21

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Examples: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f (y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(y, z)) ✓

12 / 21

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Examples: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f (y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(y, z)) ✓

12 / 21

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Examples: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f (y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(y, z)) ✓

12 / 21

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Examples: Which of the following formulas are clausal form?

• ∀y. ∃z. (p(f (y)) ∧ ¬q(y, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(x, z)) ✗

• ∀y. ∀z. (p(f (y)) ∧ ¬q(y, z)) ✓

12 / 21

Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

Sentence⇒ PNF⇒ PCNF⇒ Clausal Form

Running example: (∀x.(p(x)⇒ q(x)))⇒ (∀x.p(x)⇒ ∀x.q(x))

13 / 21

Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

Sentence⇒ PNF⇒ PCNF⇒ Clausal Form

Running example: (∀x.(p(x)⇒ q(x)))⇒ (∀x.p(x)⇒ ∀x.q(x))

13 / 21

Clausal Form: transformation

Theorem 3 (Skolem’s Theorem)
Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

Sentence⇒ PNF⇒ PCNF⇒ Clausal Form

Running example: (∀x.(p(x)⇒ q(x)))⇒ (∀x.p(x)⇒ ∀x.q(x))

13 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

(∀x. (p(x)⇒ q(x)))⇒ (∀x. p(x)⇒ ∀x. q(x))

Step 1: Rename the bounded variables apart so that

1. the bounded variables are disjoint from free variables

2. different quantifiers use different bound variables

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

(∀x. (p(x)⇒ q(x)))⇒ (∀x. p(x)⇒ ∀x. q(x))

Step 1: Rename the bounded variables apart so that

1. the bounded variables are disjoint from free variables

2. different quantifiers use different bound variables

(∀x. (p(x)⇒ q(x)))⇒ (∀x. p(x)⇒ ∀x. q(x)) −→ · · · −→
(∀x. (p(x)⇒ q(x)))⇒ (∀y. p(y)⇒ ∀z. q(z))

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

(∀x. (p(x)⇒ q(x)))⇒ (∀y. p(y)⇒ ∀z. q(z))

Step 2: Eliminate all occurrences of⇒ and⇔ using the rewrites:

• α1 ⇔ α2 −→ (α1 ⇒ α2) ∧ (α2 ⇒ α1)

• α1 ⇒ α2 −→ ¬α1 ∨ α2

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

(∀x. (p(x)⇒ q(x)))⇒ (∀y. p(y)⇒ ∀z. q(z))

Step 2: Eliminate all occurrences of⇒ and⇔ using the rewrites:

• α1 ⇔ α2 −→ (α1 ⇒ α2) ∧ (α2 ⇒ α1)

• α1 ⇒ α2 −→ ¬α1 ∨ α2

(∀x. (p(x)⇒ q(x)))⇒ (∀y. p(y)⇒ ∀z. q(z)) −→ · · · −→
¬(∀x. (¬p(x) ∨ q(x))) ∨ (¬∀y. p(y) ∨ ∀z. q(z))

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

¬(∀x. (¬p(x) ∨ q(x))) ∨ (¬∀y. p(y) ∨ ∀z. q(z))

Step 3: Push negations inward as much as possible using the rewrites:

• ¬(α ∧ β) −→ ¬α ∨ ¬β ¬(α ∨ β) −→ ¬α ∧ ¬β
• ¬∀v. α −→ ∃v.¬α ¬∃v. α −→ ∀v.¬α
• ¬¬α −→ α

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

¬(∀x. (¬p(x) ∨ q(x))) ∨ (¬∀y. p(y) ∨ ∀z. q(z))

Step 3: Push negations inward as much as possible using the rewrites:

• ¬(α ∧ β) −→ ¬α ∨ ¬β ¬(α ∨ β) −→ ¬α ∧ ¬β
• ¬∀v. α −→ ∃v.¬α ¬∃v. α −→ ∀v.¬α
• ¬¬α −→ α

¬(∀x. (¬p(x) ∨ q(x))) ∨ (¬∀y. p(y) ∨ ∀z. q(z)) −→ · · · −→
∃x. (p(x) ∧ ¬q(x)) ∨ (∃y.¬p(y) ∨ ∀z. q(z))

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

∃x. (p(x) ∧ ¬q(x)) ∨ (∃y.¬p(y) ∨ ∀z. q(z))

Step 4: Move all quantifiers outward (and so leftwards) using the rewrites:

• α ▷◁ Qv.β −→ Qv.(α ▷◁ β) (ok because v does not occur free in α)
• (Qv.α) ▷◁ β −→ Qv.(α ▷◁ β) (ok because v does not occur free in β)

where Q ∈ {∀, ∃ } and ▷◁∈ {∧,∨}

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

∃x. (p(x) ∧ ¬q(x)) ∨ (∃y.¬p(y) ∨ ∀z. q(z))

Step 4: Move all quantifiers outward (and so leftwards) using the rewrites:
• α ▷◁ Qv.β −→ Qv.(α ▷◁ β) (ok because v does not occur free in α)
• (Qv.α) ▷◁ β −→ Qv.(α ▷◁ β) (ok because v does not occur free in β)

where Q ∈ {∀, ∃ } and ▷◁∈ {∧,∨}
∃x. (p(x) ∧ ¬q(x)) ∨ (∃y.¬p(y) ∨ ∀z. q(z)) −→
∃x. ((p(x) ∧ ¬q(x)) ∨ (∃y.¬p(y) ∨ ∀z. q(z))) −→
∃x. ((p(x) ∧ ¬q(x)) ∨ ∀z. (∃y.¬p(y) ∨ q(z))) −→
∃x.∀z. ((p(x) ∧ ¬q(x)) ∨ (∃y.¬p(y) ∨ q(z))) −→ · · · −→
∃x.∀z. ∃y. ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

14 / 21

I: Transforming into PNF
Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

∃x.∀z. ∃y. ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

14 / 21

II: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic

∃x.∀z. ∃y. ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

becomes

∃x.∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

This formula contains existentials and is therefore not yet in clausal form

15 / 21

II: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic

∃x.∀z. ∃y. ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

becomes

∃x.∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

This formula contains existentials and is therefore not yet in clausal form

15 / 21

II: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic

∃x.∀z. ∃y. ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

becomes

∃x.∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

This formula contains existentials and is therefore not yet in clausal form

15 / 21

III: Transforming into Clausal Form (Skolemization)

∃x. ∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

For every existential quantifier ∃v in the PCNF, let u1, . . . , un be the universally quantified
variables preceding ∃v,

1. introduce a fresh function symbol fv with arity n and ⟨sort(u1), . . . sort(un), sort(v)⟩
2. delete ∃v and replace every occurrence of v by fv(u1, . . . , un)

16 / 21

III: Transforming into Clausal Form (Skolemization)

∃x. ∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

For every existential quantifier ∃v in the PCNF, let u1, . . . , un be the universally quantified
variables preceding ∃v,

1. introduce a fresh function symbol fv with arity n and ⟨sort(u1), . . . sort(un), sort(v)⟩
2. delete ∃v and replace every occurrence of v by fv(u1, . . . , un)

16 / 21

III: Transforming into Clausal Form (Skolemization)

∃x. ∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

For every existential quantifier ∃v in the PCNF, let u1, . . . , un be the universally quantified
variables preceding ∃v,

1. introduce a fresh function symbol fv with arity n and ⟨sort(u1), . . . sort(un), sort(v)⟩
2. delete ∃v and replace every occurrence of v by fv(u1, . . . , un)

For the formula above, introduce nullary function (i.e., a constant) symbol fx and unary
function symbol fy for ∃x and ∃y, respectively

∀z. ((p(fx) ∨ ¬p(fy(z)) ∨ q(z)) ∧ (¬q(fx) ∨ ¬p(fy(z)) ∨ q(z))

16 / 21

III: Transforming into Clausal Form (Skolemization)

∃x. ∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

For every existential quantifier ∃v in the PCNF, let u1, . . . , un be the universally quantified
variables preceding ∃v,

1. introduce a fresh function symbol fv with arity n and ⟨sort(u1), . . . sort(un), sort(v)⟩
2. delete ∃v and replace every occurrence of v by fv(u1, . . . , un)

The functions fv are called Skolem functions and the process of replacing existential quantifiers
by functions is called Skolemization

16 / 21

III: Transforming into Clausal Form (Skolemization)

∃x. ∀z.∃y. ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

For every existential quantifier ∃v in the PCNF, let u1, . . . , un be the universally quantified
variables preceding ∃v,

1. introduce a fresh function symbol fv with arity n and ⟨sort(u1), . . . sort(un), sort(v)⟩
2. delete ∃v and replace every occurrence of v by fv(u1, . . . , un)

The functions fv are called Skolem functions and the process of replacing existential quantifiers
by functions is called Skolemization

Note: Technically, the resulting formula is no longer a Σ-formula, but a ΣE-formula, where
ΣS

E = ΣS and ΣF
E = ΣF ∪

⋃
v{ fv }

16 / 21

Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a
set of clauses

Example:

∀z. ((p(f (z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f (z)) ∨ ¬p(g(z)) ∨ q(z))

can be written as

∆ := { {p(f (z)),¬p(g(z)), q(z)}, {¬q(f (z)),¬p(g(z)), q(z)} }

Traditionally, theorem provers for FOL use the latter version of the clausal form

17 / 21

Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a
set of clauses

Example:

∀z. ((p(f (z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f (z)) ∨ ¬p(g(z)) ∨ q(z))

can be written as

∆ := { {p(f (z)),¬p(g(z)), q(z)}, {¬q(f (z)),¬p(g(z)), q(z)} }

Traditionally, theorem provers for FOL use the latter version of the clausal form

17 / 21

Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a
set of clauses

Example:

∀z. ((p(f (z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f (z)) ∨ ¬p(g(z)) ∨ q(z))

can be written as

∆ := { {p(f (z)),¬p(g(z)), q(z)}, {¬q(f (z)),¬p(g(z)), q(z)} }

Traditionally, theorem provers for FOL use the latter version of the clausal form

17 / 21

A resolution-based proof system for PL
Recall: The satisfiability proof system consisting of the rules below is sound, complete
and terminating for clause sets in PL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C }

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Can we extend this proof system to FOL?

18 / 21

A resolution-based proof system for PL
Recall: The satisfiability proof system consisting of the rules below is sound, complete
and terminating for clause sets in PL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C }

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Can we extend this proof system to FOL?

18 / 21

A resolution-based proof system for FOL?

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } UNSAT {} ∈ ∆

UNSAT SAT No other rules apply
SAT

Consider the FOL clause set below where x, z are variables and a is a constant symbol

∆ := { {¬P(z),Q(z)}, {P(a)}, {¬Q(x)} }

Note that ∆ is equivalent to ∀z. (P(z)⇒ Q(z)) ∧ P(a) ∧ ∀x.¬Q(x), which is
unsatisfiable

However, no rules above apply to ∆

We need another rule to deal with variables

19 / 21

A resolution-based proof system for FOL?

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } UNSAT {} ∈ ∆

UNSAT SAT No other rules apply
SAT

Consider the FOL clause set below where x, z are variables and a is a constant symbol

∆ := { {¬P(z),Q(z)}, {P(a)}, {¬Q(x)} }

Note that ∆ is equivalent to ∀z. (P(z)⇒ Q(z)) ∧ P(a) ∧ ∀x.¬Q(x), which is
unsatisfiable

However, no rules above apply to ∆

We need another rule to deal with variables

19 / 21

A resolution-based proof system for FOL?

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } UNSAT {} ∈ ∆

UNSAT SAT No other rules apply
SAT

Consider the FOL clause set below where x, z are variables and a is a constant symbol

∆ := { {¬P(z),Q(z)}, {P(a)}, {¬Q(x)} }

Note that ∆ is equivalent to ∀z. (P(z)⇒ Q(z)) ∧ P(a) ∧ ∀x.¬Q(x), which is
unsatisfiable

However, no rules above apply to ∆

We need another rule to deal with variables

19 / 21

A resolution-based proof system for FOL?

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } UNSAT {} ∈ ∆

UNSAT SAT No other rules apply
SAT

Consider the FOL clause set below where x, z are variables and a is a constant symbol

∆ := { {¬P(z),Q(z)}, {P(a)}, {¬Q(x)} }

Note that ∆ is equivalent to ∀z. (P(z)⇒ Q(z)) ∧ P(a) ∧ ∀x.¬Q(x), which is
unsatisfiable

However, no rules above apply to ∆

We need another rule to deal with variables

19 / 21

A resolution-based proof system for FOL?

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } UNSAT {} ∈ ∆

UNSAT SAT No other rules apply
SAT

Consider the FOL clause set below where x, z are variables and a is a constant symbol

∆ := { {¬P(z),Q(z)}, {P(a)}, {¬Q(x)} }

Note that ∆ is equivalent to ∀z. (P(z)⇒ Q(z)) ∧ P(a) ∧ ∀x.¬Q(x), which is
unsatisfiable

However, no rules above apply to ∆

We need another rule to deal with variables

19 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } { C1, C2, C3 }
{ } { C1, C2, C3, C4:{¬P(a),Q(a)} } by INST on C1 with z← a
{ } { C1, C2, C3, C4, C5:{Q(a)} } by RESOLVE on C2, C4
{ } { C1, C2, C3, C4, C5, C6:{¬Q(a)} } by INST on C3 with x ← a
{ } { C1, C2, C3, C4, C5, C6, C7:{} } by RESOLVE on C5, C6

UNSAT by UNSAT on C7

20 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set ∆0 is unsatisfiable, there is a derivation of UNSAT from ∆0

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set ∆0 is unsatisfiable, there is a derivation of UNSAT from ∆0

The system is also solution-sound:

• There is a derivation of SAT from ∆0 only if ∆0 is satisfiable

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set ∆0 is unsatisfiable, there is a derivation of UNSAT from ∆0

The system is not, and cannot be, terminating:

• if ∆0 is satisfiable, it is possible for SAT to never apply

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Note: This proof system is challenging to implement efficiently because INST is not
constrained enough

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Automated theorem provers for FOL use instead a more sophisticated RESOLVE rule

where two literals in different clauses are instantiated directly, and only as needed, to
make them complementary (see ML Chap. 10)

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Automated theorem provers for FOL use instead a more sophisticated RESOLVE rule

where two literals in different clauses are instantiated directly, and only as needed, to
make them complementary (see ML Chap. 10)

Example: {P(x, y),Q(a, f (y))}, {¬Q(z, f (b)),R(g(z))} resolve to {P(x, b),R(g(a))}

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Problem: How do we prove the unsatisfiability of these clause sets?

{ {x .
= y}, {¬(y .

= x)} } { {x .
= y}, {y .

= z}, {¬(x .
= z)} } { {x .

= y}, {¬(f (x) .
= f (y))} }

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Problem: How do we prove the unsatisfiability of these clause sets?

{ {x .
= y}, {¬(y .

= x)} } { {x .
= y}, {y .

= z}, {¬(x .
= z)} } { {x .

= y}, {¬(f (x) .
= f (y))} }

We need specialized rules for equality reasoning!

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Another Problem: How to we prove the unsatisfiability of these clause sets?

{ {x < x} } { {x < y}, {y < z}, {¬(x < z)} } { {¬(x+y .
= y+x)} } { {¬(x+0 .

= x)} }

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Another Problem: How to we prove the unsatisfiability of these clause sets?

{ {x < x} } { {x < y}, {y < z}, {¬(x < z)} } { {¬(x+y .
= y+x)} } { {¬(x+0 .

= x)} }

The thing is: each of these clause set is actually satisfiable in FOL!

21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Another Problem: How to we prove the unsatisfiability of these clause sets?

{ {x < x} } { {x < y}, {y < z}, {¬(x < z)} } { {¬(x+y .
= y+x)} } { {¬(x+0 .

= x)} }

The thing is: each of these clause set is actually satisfiable in FOL!

However, they are unsatisfiable in the theory of arithmetic
21 / 21

A resolution-based proof system for FOL

RESOLVE C1, C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ
∆ := ∆ ∪ { C }

CLASH C ∈ ∆ p,¬p ∈ C
∆ := ∆ \ { C } Φ := Φ ∪ { C } INST C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C[v ← t]}

UNSAT {} ∈ ∆
UNSAT SAT No other rules apply

SAT

Another Problem: How to we prove the unsatisfiability of these clause sets?

{ {x < x} } { {x < y}, {y < z}, {¬(x < z)} } { {¬(x+y .
= y+x)} } { {¬(x+0 .

= x)} }

We need proof systems for satisfiability modulo theories

21 / 21

