CS:4980 Topics in Computer Science II Introduction to Automated Reasoning

Proof systems for First-order Logic

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by **Cesare Tinelli** at the University of Iowa, and by **Clark Barrett**, **Caroline Trippel**, and **Andrew (Haoze) Wu** at Stanford University. Adapted by permission.

Outline

- Semantic arguments for FOL
- PCNF (ML 9.2) and Clausal Form
- First-order Resolution (ML 10)

Proof systems for FOL are usually extensions of those for PL

Proof systems for FOL are usually extensions of those for PL

- ullet replacing the truth assignment v with an interpretation ${\mathcal I}$ and
- adding proof rules for quantifiers
- adding proof rules for equality (for FOL with equality)

Proof systems for FOL are usually extensions of those for PL

- replacing the truth assignment v with an interpretation \mathcal{I} and
- adding proof rules for quantifiers
- adding proof rules for equality (for FOL with equality)

Proof systems for FOL are usually extensions of those for PL

- replacing the truth assignment v with an interpretation ${\mathcal I}$ and
- adding proof rules for quantifiers
- adding proof rules for equality (for FOL with equality)

Proof systems for FOL are usually extensions of those for PL

- replacing the truth assignment v with an interpretation \mathcal{I} and
- adding proof rules for quantifiers
- adding proof rules for equality (for FOL with equality)

Semantic arguments for FOL: propositional rules

Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, $\varepsilon[v \leftarrow t]$ denotes the term/formula obtained from ε by replacing every free occurrence of v in ε by t

Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, $\varepsilon[v \leftarrow t]$ denotes the term/formula obtained from ε by replacing every free occurrence of v in ε by t

Examples:

 $\begin{aligned} x[x \leftarrow \mathsf{S}(y)] &= \mathsf{S}(y) & (x+y)[x \leftarrow y] &= y+y \\ x[x \leftarrow \mathsf{S}(x)] &= \mathsf{S}(x) & (x \doteq y)[x \leftarrow 0] &= 0 \doteq y \\ x[x \leftarrow y] &= y & (x \doteq x)[x \leftarrow \mathsf{S}(x)] &= \mathsf{S}(x) \doteq \mathsf{S}(x) \\ & (x \doteq y \lor x < y)[x \leftarrow \mathsf{S}(0)] &= \mathsf{S}(0) \doteq y \lor \mathsf{S}(0) < y \\ & (x \doteq y \lor \forall x.x < y)[x \leftarrow \mathsf{S}(y)] &= \mathsf{S}(y) \doteq y \lor \forall x.x < y \end{aligned}$

Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, $\varepsilon[v \leftarrow t]$ denotes the term/formula obtained from ε by replacing every free occurrence of v in ε by t

(m)
$$\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{I} \models \alpha [v \leftarrow t]} \text{ for any term } t \text{ of sort } \sigma$$

(n)
$$\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \alpha [v \leftarrow t]} \text{ for any term } t \text{ of sort } \sigma$$

(o)
$$\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{I} \models \alpha [v \leftarrow k]} \text{ for a fresh variable } k \text{ of sort } \sigma$$

(p)
$$\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{I} \not\models \alpha [v \leftarrow k]} \text{ for a fresh variable } k \text{ of sort } \sigma$$

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. P(x) \Rightarrow \exists y. P(y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma [v \leftarrow t]}$ for any term t of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \models \exists x. P(x) \Rightarrow \exists y. P(y)$ 2. $\mathcal{I} \models \exists x. P(x)$ by (h) on 1 3. $\mathcal{I} \models \exists y. P(y)$ by (h) on 1 4. $\mathcal{I} \models P(x_0)$ by (o) on 2 5. $\mathcal{I} \models P(x_0)$ by (n) on 3 6. $\mathcal{I} \models \bot$ by (i) on 4, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. P(x) \Rightarrow \exists y. P(y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma [v \leftarrow t]}$ for any term t of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{I} \models \sigma [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \exists x. P(x) \Rightarrow \exists y. P(y)$ 2. $\mathcal{I} \models \exists x. P(x) \text{ by (h) on 1}$ 3. $\mathcal{I} \not\models \exists y. P(y) \text{ by (h) on 1}$ 4. $\mathcal{I} \models P(x_0) \text{ by (o) on 2}$ 5. $\mathcal{I} \not\models P(x_0) \text{ by (n) on 3}$ 6. $\mathcal{I} \models 1 \text{ by (i) on 4, 5}$

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. P(x) \Rightarrow \exists y. P(y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma[v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \exists x. P(x) \Rightarrow \exists y. P(y)$ 2. $\mathcal{I} \models \exists x. P(x)$ by (h) on 1 3. $\mathcal{I} \models \exists y. P(y)$ by (h) on 1 4. $\mathcal{I} \models P(x_0)$ by (o) on 2 5. $\mathcal{I} \models P(x_0)$ by (n) on 3 6. $\mathcal{I} \models \mathcal{I}$ by (i) on 4, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. P(x) \Rightarrow \exists y. P(y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma[v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \exists x. P(x) \Rightarrow \exists y. P(y)$

2. $\mathcal{I} \models \exists x. P(x)$ by (h) on 1

3.
$$\mathcal{I} \not\models \exists y. P(y)$$
 by (h) on 1

4. $\mathcal{I} \models P(x_0)$ by (o) on 2 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 3 6. $\mathcal{I} \models \bot$ by (i) on 4, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. P(x) \Rightarrow \exists y. P(y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma [v \not\models t]}$ for any term t of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{I} \models \sigma [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

- **1.** $\mathcal{I} \not\models \exists x. P(x) \Rightarrow \exists y. P(y)$
- 2. $\mathcal{I} \models \exists x. P(x)$ by (h) on 1
- 3. $\mathcal{I} \not\models \exists y. P(y)$ by (h) on 1
- 4. $\mathcal{I} \models P(x_0)$ by (o) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 3 6. $\mathcal{I} \models \bot$ by (i) on 4, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. P(x) \Rightarrow \exists y. P(y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma[v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{I} \models \sigma [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

- **1.** $\mathcal{I} \not\models \exists x. P(x) \Rightarrow \exists y. P(y)$
- 2. $\mathcal{I} \models \exists x. P(x)$ by (h) on 1
- 3. $\mathcal{I} \not\models \exists y. P(y)$ by (h) on 1
- 4. $\mathcal{I} \models P(x_0)$ by (o) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 3
- 6. $I \models \bot$ by (i) on 4, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. P(x) \Rightarrow \exists y. P(y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma[v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma[v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

- **1.** $\mathcal{I} \not\models \exists x. P(x) \Rightarrow \exists y. P(y)$
- 2. $\mathcal{I} \models \exists x. P(x)$ by (h) on 1
- 3. $\mathcal{I} \not\models \exists y. P(y)$ by (h) on 1
- 4. $\mathcal{I} \models P(x_0)$ by (o) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 3

6.
$$\mathcal{I} \models \bot$$
 by (i) on 4, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\forall x. (P(x) \Rightarrow \exists y. P(y))$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma [v \leftarrow t]}$ for any term t of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{I} \models \sigma [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

 I ≠ ∀x. (P(x) ⇒ ∃y. P(y))
 I ≠ P(x₀) ⇒ ∃y. P(y) by (p) on 1
 I ⊨ P(x₀) by (h) on 2
 I ≠ ∃y. P(y) by (h) on 2
 I ≠ ∃y. P(y) by (h) on 4
 I ⊨ L by (i) on 3, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\forall x. (P(x) \Rightarrow \exists y. P(y))$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma [v \leftarrow t]}$ for any term t of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \forall x. (P(x) \Rightarrow \exists y. P(y))$ 2. $\mathcal{I} \not\models P(x_0) \Rightarrow \exists y. P(y) \text{ by (p) on } 1$ 3. $\mathcal{I} \models P(x_0) \text{ by (h) on } 2$ 4. $\mathcal{I} \not\models \exists y. P(y) \text{ by (h) on } 2$ 5. $\mathcal{I} \not\models P(x_0) \text{ by (n) on } 4$ 6. $\mathcal{I} \models \bot \text{ by (i) on } 3, 5$

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\forall x. (P(x) \Rightarrow \exists y. P(y))$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma [v \not\models t]}$ for any term t of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \forall x. (P(x) \Rightarrow \exists y. P(y))$ 2. $\mathcal{I} \not\models P(x_0) \Rightarrow \exists y. P(y)$ by (p) on 1 3. $\mathcal{I} \models P(x_0)$ by (h) on 2 4. $\mathcal{I} \not\models \exists y. P(y)$ by (h) on 2 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 4 6. $\mathcal{I} \models 1$ by (i) on 3, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\forall x. (P(x) \Rightarrow \exists y. P(y))$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\vdash \sigma [v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \forall x. (P(x) \Rightarrow \exists y. P(y))$

2. $\mathcal{I} \not\models P(x_0) \Rightarrow \exists y. P(y)$ by (p) on 1

3.
$$\mathcal{I} \models P(x_0)$$
 by (h) on 2

- 4. $\mathcal{I} \not\models \exists y . P(y)$ by (h) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 4 6. $\mathcal{I} \models 1$ by (i) on 3.5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\forall x. (P(x) \Rightarrow \exists y. P(y))$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\vdash \sigma [v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \forall x. (P(x) \Rightarrow \exists y. P(y))$

2. $\mathcal{I} \not\models P(x_0) \Rightarrow \exists y. P(y)$ by (p) on 1

3.
$$I \models P(x_0)$$
 by (h) on 2

- 4. $\mathcal{I} \not\models \exists y . P(y)$ by (h) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 4

6. $\mathcal{I}\models\perp$ by (i) on 3, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{P\}, \operatorname{rank}(P) = \langle A, Bool \rangle$, and all vars of sort A

Prove that $\forall x. (P(x) \Rightarrow \exists y. P(y))$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \sigma [v \not= t]}$ for any term t of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

- **1.** $\mathcal{I} \not\models \forall x. (P(x) \Rightarrow \exists y. P(y))$
- 2. $\mathcal{I} \not\models P(x_0) \Rightarrow \exists y. P(y)$ by (p) on 1
- 3. $\mathcal{I} \models P(x_0)$ by (h) on 2
- 4. $\mathcal{I} \not\models \exists y . P(y)$ by (h) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 4

6.
$$\mathcal{I} \models \bot$$
 by (i) on 3, 5

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{Q\}, \operatorname{rank}(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{T} \not\models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{Q\}, \operatorname{rank}(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{T} \not\models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{Q\}, \operatorname{rank}(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{T} \not\vdash \sigma [v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ 2. $\mathcal{I} \models \exists x. \forall y. Q(x, y)$ by (h) on 1 3. $\mathcal{I} \not\models \forall y. \exists x. Q(x, y)$ by (h) on 1

4. $\mathcal{I} \models \forall y : \mathcal{Q}(x_0, y)$ by (o) on 2 5. $\mathcal{I} \models \exists x : \mathcal{Q}(x, y_0)$ by (p) on 3 6. $\mathcal{I} \models \mathcal{Q}(x_0, y_0)$ by (m) on 4 7. $\mathcal{I} \models \mathcal{Q}(x_0, y_0)$ by (n) on 5 8. $\mathcal{I} \models \bot$ by (i) on 6,7

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{Q\}, \operatorname{rank}(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{T} \not\vdash \sigma [v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$

- 2. $\mathcal{I} \models \exists x. \forall y. Q(x, y)$ by (h) on 1
- 3. $\mathcal{I} \not\models \forall y . \exists x . Q(x, y)$ by (h) on 1
- 4. $\mathcal{I} \models \forall y.Q(x_0, y)$ by (o) on 2

5. $\mathcal{I} \not\models \exists x. Q(x, y_0)$ by (p) on 3 6. $\mathcal{I} \models Q(x_0, y_0)$ by (m) on 4 7. $\mathcal{I} \not\models Q(x_0, y_0)$ by (n) on 5 8. $\mathcal{I} \models \bot$ by (i) on 6,7

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{Q\}, \operatorname{rank}(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

(m) $\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{T} \models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (n) $\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{T} \not\models \sigma [v \leftarrow t]}$ for any term *t* of sort σ (o) $\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{T} \models \alpha [v \leftarrow k]}$ for a fresh variable *k* of sort σ (p) $\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{T} \not\models \alpha[v \leftarrow k]}$ for a fresh variable *k* of sort σ

1. $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$

- 2. $\mathcal{I} \models \exists x. \forall y. Q(x, y)$ by (h) on 1
- 3. $\mathcal{I} \not\models \forall y . \exists x . Q(x, y)$ by (h) on 1

4.
$$\mathcal{I} \models \forall y.Q(x_0, y)$$
 by (o) on 2

- 5. $\mathcal{I} \not\models \exists x.Q(x, y_0)$ by (p) on 3
- 6. $\mathcal{I} \models Q(x_0, y_0)$ by (m) on 4 7. $\mathcal{I} \not\models Q(x_0, y_0)$ by (n) on 5 8. $\mathcal{I} \models \bot$ by (i) on 6,7

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{Q\}, \operatorname{rank}(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

- **1.** $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$
- 2. $\mathcal{I} \models \exists x. \forall y. Q(x, y)$ by (h) on 1
- 3. $\mathcal{I} \not\models \forall y . \exists x . Q(x, y)$ by (h) on 1
- 4. $\mathcal{I} \models \forall y.Q(x_0, y)$ by (o) on 2
- 5. $\mathcal{I} \not\models \exists x.Q(x, y_0)$ by (p) on 3
- 6. $\mathcal{I} \models Q(x_0, y_0)$ by (m) on 4
- 7. $\mathcal{I} \not\models Q(x_0, y_0)$ by (n) on 5 8. $\mathcal{I} \models \bot$ by (i) on 6,7

Consider signature Σ with $\Sigma^{S} = \{A\}, \Sigma^{F} = \{Q\}, \operatorname{rank}(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

- **1.** $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$
- 2. $\mathcal{I} \models \exists x. \forall y. Q(x, y)$ by (h) on 1
- 3. $\mathcal{I} \not\models \forall y . \exists x . Q(x, y)$ by (h) on 1
- 4. $\mathcal{I} \models \forall y.Q(x_0, y)$ by (o) on 2
- 5. $\mathcal{I} \not\models \exists x.Q(x, y_0)$ by (p) on 3
- 6. $\mathcal{I} \models Q(x_0, y_0)$ by (m) on 4
- 7. $\mathcal{I} \not\models Q(x_0, y_0)$ by (n) on 5

8. $\mathcal{I} \models \bot$ by (i) on 6,7

Consider signature Σ with $\Sigma^{S} = \{A\}$, $\Sigma^{F} = \{Q\}$, rank $(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$ is valid

(m)
$$\frac{\mathcal{I} \models \forall v: \sigma. \alpha}{\mathcal{I} \models \alpha [v \leftarrow t]} \text{ for any term } t \text{ of sort } \sigma$$
(n)
$$\frac{\mathcal{I} \not\models \exists v: \sigma. \alpha}{\mathcal{I} \not\models \alpha [v \leftarrow t]} \text{ for any term } t \text{ of sort } \sigma$$
(o)
$$\frac{\mathcal{I} \models \exists v: \sigma. \alpha}{\mathcal{I} \models \alpha [v \leftarrow k]} \text{ for a fresh variable } k \text{ of sort } \sigma$$
(p)
$$\frac{\mathcal{I} \not\models \forall v: \sigma. \alpha}{\mathcal{I} \not\models \alpha [v \leftarrow k]} \text{ for a fresh variable } k \text{ of sort } \sigma$$

1. $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Rightarrow \forall y. \exists x. Q(x, y)$

- 2. $\mathcal{I} \models \exists x. \forall y. Q(x, y)$ by (h) on 1
- 3. $\mathcal{I} \not\models \forall y . \exists x . Q(x, y)$ by (h) on 1
- 4. $\mathcal{I} \models \forall y.Q(x_0, y)$ by (o) on 2
- 5. $\mathcal{I} \not\models \exists x.Q(x, y_0)$ by (p) on 3
- 6. $\mathcal{I} \models Q(x_0, y_0)$ by (m) on 4
- 7. $\mathcal{I} \not\models Q(x_0, y_0)$ by (n) on 5
- 8. $\mathcal{I} \models \bot$ by (i) on 6,7

Refutation Soundness and Completeness

Theorem 1 (Soundness)

For all Σ -formulas α , if there is a closed derivation tree with root $\mathcal{I} \not\models \alpha$ then α is valid

Theorem 2 (Completeness)

For all Σ -formulas α without equality, if α is valid, then there is a closed derivation tree with root $\mathcal{I} \not\models \alpha$

Refutation Soundness and Completeness

Theorem 1 (Soundness)

For all Σ -formulas α , if there is a closed derivation tree with root $\mathcal{I} \not\models \alpha$ then α is valid

Theorem 2 (Completeness)

For all Σ -formulas α without equality, if α is valid, then there is a closed derivation tree with root $\mathcal{I} \not\models \alpha$

Termination?

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0, x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_1, x_1)$ by (m) on 1 4. $\mathcal{I} \not\models q(x_2, x_2)$ by (m) on 1 5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system
Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0, x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_1, x_1)$ by (m) on 1 4. $\mathcal{I} \not\models q(x_2, x_2)$ by (m) on 1 5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 4. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 4. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0, x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_1, x_1)$ by (m) on 1 4. $d \not\models q(x_1, x_1)$ by (m) on 1 5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0, x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_1, x_1)$ by (m) on 1 4. $\mathcal{I} \not\models q(x_2, x_2)$ by (m) on 1 5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_1,x_1)$ by (m) on 1 4. $\mathcal{I} \not\models q(x_2,x_2)$ by (m) on 1 5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

1. $\mathcal{I} \not\models \forall x.q(x,x)$ 2. $\mathcal{I} \not\models q(x_0,x_0)$ by (m) on 1 3. $\mathcal{I} \not\models q(x_1,x_1)$ by (m) on 1 4. $\mathcal{I} \not\models q(x_2,x_2)$ by (m) on 1 5. ...

There is no strategy that guarantees termination in all cases of invalid formulas

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

There is no strategy that guarantees termination in all cases of invalid formulas

For AR purposes, it is useful in FOL too impose syntactic restrictions on formulas

A Σ -formula α is in *prenex normal form* (PNF) if it has the form

 $Q_1 x_1$. · · · $Q_n x_n$. β

where each Q_i is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition, β is in conjunctive normal form¹

Example: The formula below is in PCNF

$$\forall y. \exists z. ((\underbrace{p(f(y))}_{A_1} \lor \underbrace{q(z)}_{A_2}) \land (\neg \underbrace{q(z)}_{A_2} \lor \underbrace{q(x)}_{A_3}))$$

 $^{^1}$ If we treat every atomic formula of eta as if it was a propositional variable

A Σ -formula α is in *prenex normal form* (PNF) if it has the form

 $Q_1 x_1. \cdots Q_n x_n. \beta$

where each Q_i is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition, β is in conjunctive normal form¹

Example: The formula below is in PCNF

$$\forall y. \exists z. ((\underbrace{p(f(y))}_{A_1} \lor \underbrace{q(z)}_{A_2}) \land (\neg \underbrace{q(z)}_{A_2} \lor \underbrace{q(x)}_{A_3}))$$

 1 If we treat every atomic formula of eta as if it was a propositional variable

A Σ -formula α is in *prenex normal form* (PNF) if it has the form

 $Q_1 x_1. \cdots Q_n x_n. \beta$

where each Q_i is a quantifier and β is a quantifier-free formula

Formula α above is in *prenex conjunctive normal form* (PCNF) if, in addition, β is in conjunctive normal form¹

Example: The formula below is in PCNF

¹If we treat every atomic formula of β as if it was a propositional variable

A Σ -formula α is in *prenex normal form* (PNF) if it has the form

 $Q_1 x_1. \cdots Q_n x_n. \beta$

where each Q_i is a quantifier and β is a quantifier-free formula

Formula α above is in *prenex conjunctive normal form* (PCNF) if, in addition, β is in conjunctive normal form¹

Example: The formula below is in PCNF

$$\forall y. \exists z. ((\overbrace{p(f(y))}^{C_1} \lor \overbrace{q(z)}^{Q(z)}) \land (\overbrace{\neg \underbrace{q(z)}_{A_2}}^{C_2} \lor \underbrace{q(x)}_{A_3}))$$

¹If we treat every atomic formula of β as if it was a propositional variable

A Σ -formula is in *clausal form* if

- 1. it is in PCNF
- 2. it is closed (i.e., it has no free variables)
- 3. all of its quantifiers are universal

- $\forall y. \exists z. (p(f(y)) \land \neg q(y, z)) \rightarrow$
- $\forall y. \forall z. (p(f(y)) \land \neg q(x, z))$
- $\forall y. \forall z. (p(f(y)) \land \neg q(y, z))$

A Σ -formula is in *clausal form* if

- 1. it is in PCNF
- 2. it is closed (i.e., it has no free variables)
- 3. all of its quantifiers are universal

- $\forall y. \exists z. (p(f(y)) \land \neg q(y, z))$ ×
- $\forall y. \forall z. (p(f(y)) \land \neg q(x, z))$
- $\forall y. \forall z. (p(f(y)) \land \neg q(y, z)) \checkmark$

A Σ -formula is in *clausal form* if

- 1. it is in PCNF
- 2. it is closed (i.e., it has no free variables)
- 3. all of its quantifiers are universal

- $\forall y. \exists z. (p(f(y)) \land \neg q(y, z))$ X
- $\forall y. \forall z. (p(f(y)) \land \neg q(x, z))$
- $\forall y. \forall z. (p(f(y)) \land \neg q(y, z)) \checkmark$

A Σ -formula is in *clausal form* if

- 1. it is in PCNF
- 2. it is closed (i.e., it has no free variables)
- 3. all of its quantifiers are universal

- $\forall y. \exists z. (p(f(y)) \land \neg q(y, z))$ X
- $\forall y. \forall z. (p(f(y)) \land \neg q(x, z))$
- $\forall y. \forall z. (p(f(y)) \land \neg q(y, z)) \checkmark$

A Σ -formula is in *clausal form* if

- 1. it is in PCNF
- 2. it is closed (i.e., it has no free variables)
- 3. all of its quantifiers are universal

- $\forall y. \exists z. (p(f(y)) \land \neg q(y, z))$ X
- $\forall y. \forall z. (p(f(y)) \land \neg q(x, z))$
- $\forall y. \forall z. (p(f(y)) \land \neg q(y, z)) \checkmark$

A Σ -formula is in *clausal form* if

- 1. it is in PCNF
- 2. it is closed (i.e., it has no free variables)
- 3. all of its quantifiers are universal

- $\forall y. \exists z. (p(f(y)) \land \neg q(y, z))$ X
- $\forall y. \forall z. (p(f(y)) \land \neg q(x,z))$ X
- $\forall y. \forall z. (p(f(y)) \land \neg q(y, z))$

A Σ -formula is in *clausal form* if

- 1. it is in PCNF
- 2. it is closed (i.e., it has no free variables)
- 3. all of its quantifiers are universal

- $\forall y. \exists z. (p(f(y)) \land \neg q(y, z))$ X
- $\forall y. \forall z. (p(f(y)) \land \neg q(x,z))$ X
- $\forall y. \forall z. (p(f(y)) \land \neg q(y, z))$

Clausal Form: transformation

Theorem 3 (Skolem's Theorem)

Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

 $\mathsf{Sentence} \Rightarrow \mathsf{PNF} \Rightarrow \mathsf{PCNF} \Rightarrow \mathsf{Clausal} \ \mathsf{Form}$

 $\textbf{Running example:} \quad (\forall x.(p(x) \Rightarrow q(x))) \Rightarrow (\forall x.p(x) \Rightarrow \forall x.q(x))$

Clausal Form: transformation

Theorem 3 (Skolem's Theorem)

Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

 $\mathsf{Sentence} \Rightarrow \mathsf{PNF} \Rightarrow \mathsf{PCNF} \Rightarrow \mathsf{Clausal} \ \mathsf{Form}$

 $\textbf{Running example:} \quad (\forall x.(p(x) \Rightarrow q(x))) \Rightarrow (\forall x.p(x) \Rightarrow \forall x.q(x))$

Clausal Form: transformation

Theorem 3 (Skolem's Theorem)

Any sentence can be transformed to an equi-satisfiable formula in clausal form.

The high level transformation strategy is the following:

 $\mathsf{Sentence} \Rightarrow \mathsf{PNF} \Rightarrow \mathsf{PCNF} \Rightarrow \mathsf{Clausal} \ \mathsf{Form}$

Running example: $(\forall x.(p(x) \Rightarrow q(x))) \Rightarrow (\forall x.p(x) \Rightarrow \forall x.q(x))$

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

 $(\forall x. (p(x) \Rightarrow q(x))) \Rightarrow (\forall x. p(x) \Rightarrow \forall x. q(x))$

Step 1: Rename the bounded variables apart so that

- 1. the bounded variables are disjoint from free variables
- 2. different quantifiers use different bound variables

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

 $(\forall x. (p(x) \Rightarrow q(x))) \Rightarrow (\forall x. p(x) \Rightarrow \forall x. q(x))$

Step 1: Rename the bounded variables apart so that

- 1. the bounded variables are disjoint from free variables
- 2. different quantifiers use different bound variables

 $(\forall x. (p(x) \Rightarrow q(x))) \Rightarrow (\forall x. p(x) \Rightarrow \forall x. q(x)) \longrightarrow \cdots \longrightarrow$ $(\forall x. (p(x) \Rightarrow q(x))) \Rightarrow (\forall y. p(y) \Rightarrow \forall z. q(z))$

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

 $(\forall x. (p(x) \Rightarrow q(x))) \Rightarrow (\forall y. p(y) \Rightarrow \forall z. q(z))$

Step 2: Eliminate all occurrences of \Rightarrow and \Leftrightarrow using the rewrites:

- $\alpha_1 \Leftrightarrow \alpha_2 \longrightarrow (\alpha_1 \Rightarrow \alpha_2) \land (\alpha_2 \Rightarrow \alpha_1)$
- $\alpha_1 \Rightarrow \alpha_2 \longrightarrow \neg \alpha_1 \lor \alpha_2$

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

 $(\forall x. (p(x) \Rightarrow q(x))) \Rightarrow (\forall y. p(y) \Rightarrow \forall z. q(z))$

Step 2: Eliminate all occurrences of \Rightarrow and \Leftrightarrow using the rewrites:

- $\alpha_1 \Leftrightarrow \alpha_2 \longrightarrow (\alpha_1 \Rightarrow \alpha_2) \land (\alpha_2 \Rightarrow \alpha_1)$
- $\alpha_1 \Rightarrow \alpha_2 \longrightarrow \neg \alpha_1 \lor \alpha_2$

 $(\forall x. (p(x) \Rightarrow q(x))) \Rightarrow (\forall y. p(y) \Rightarrow \forall z. q(z)) \longrightarrow \cdots \longrightarrow$ $\neg(\forall x. (\neg p(x) \lor q(x))) \lor (\neg \forall y. p(y) \lor \forall z. q(z))$

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

$\neg(\forall x. (\neg p(x) \lor q(x))) \lor (\neg \forall y. p(y) \lor \forall z. q(z))$

Step 3: Push negations inward as much as possible using the rewrites:

- $\neg(\alpha \land \beta) \longrightarrow \neg \alpha \lor \neg \beta$ $\neg(\alpha \lor \beta) \longrightarrow \neg \alpha \land \neg \beta$
- $\neg \forall v, \alpha \longrightarrow \exists v, \neg \alpha$ $\neg \exists v, \alpha \longrightarrow \forall v, \neg \alpha$

• $\neg \neg \alpha \longrightarrow \alpha$

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

$\neg(\forall x. (\neg p(x) \lor q(x))) \lor (\neg \forall y. p(y) \lor \forall z. q(z))$

Step 3: Push negations inward as much as possible using the rewrites:

- $\neg(\alpha \land \beta) \longrightarrow \neg \alpha \lor \neg \beta$ $\neg(\alpha \lor \beta) \longrightarrow \neg \alpha \land \neg \beta$
- $\neg \forall v. \alpha \longrightarrow \exists v. \neg \alpha$ $\neg \exists v. \alpha \longrightarrow \forall v. \neg \alpha$
- $\neg \neg \alpha \longrightarrow \alpha$

 $\neg(\forall x. (\neg p(x) \lor q(x))) \lor (\neg \forall y. p(y) \lor \forall z. q(z)) \longrightarrow \cdots \longrightarrow$ $\exists x. (p(x) \land \neg q(x)) \lor (\exists y. \neg p(y) \lor \forall z. q(z))$

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

$\exists x. (p(x) \land \neg q(x)) \lor (\exists y. \neg p(y) \lor \forall z. q(z))$

Step 4: Move all quantifiers outward (and so leftwards) using the rewrites:

- $\alpha \bowtie Qv.\beta \longrightarrow Qv.(\alpha \bowtie \beta)$
- $(Qv.\alpha) \bowtie \beta \longrightarrow Qv.(\alpha \bowtie \beta)$

where $Q \in \{ \forall, \exists \}$ and $\bowtie \in \{ \land, \lor \}$

(ok because v does not occur free in α) (ok because v does not occur free in β)

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

 $\exists x. (p(x) \land \neg q(x)) \lor (\exists y. \neg p(y) \lor \forall z. q(z))$

Step 4: Move all quantifiers outward (and so leftwards) using the rewrites:

- $\alpha \bowtie Qv.\beta \longrightarrow Qv.(\alpha \bowtie \beta)$
- $(Qv.\alpha) \bowtie \beta \longrightarrow Qv.(\alpha \bowtie \beta)$

where $Q \in \{ \forall, \exists \}$ and $\bowtie \in \{ \land, \lor \}$

(ok because v does not occur free in α)

(ok because v does not occur free in β)

 $\begin{array}{ll} \exists x. \left(p(x) \land \neg q(x) \right) \lor \left(\exists y. \neg p(y) \lor \forall z. q(z) \right) & \longrightarrow \\ \exists x. \left(\left(p(x) \land \neg q(x) \right) \lor \left(\exists y. \neg p(y) \lor \forall z. q(z) \right) \right) & \longrightarrow \\ \exists x. \left(\left(p(x) \land \neg q(x) \right) \lor \forall z. \left(\exists y. \neg p(y) \lor q(z) \right) \right) & \longrightarrow \\ \exists x. \forall z. \left(\left(p(x) \land \neg q(x) \right) \lor \left(\exists y. \neg p(y) \lor q(z) \right) \right) & \longrightarrow \\ \exists x. \forall z. \exists y. \left(\left(p(x) \land \neg q(x) \right) \lor \left(\neg p(y) \lor q(z) \right) \right) \end{array}$

Any sentence can be transformed into a logically equivalent formula in PNF in 4 steps

 $\exists x. \forall z. \exists y. ((p(x) \land \neg q(x)) \lor (\neg p(y) \lor q(z)))$

Transforming a PNF to a logically equivalent PCNF is straightforward We apply the distributive laws from propositional logic

$\exists x. \forall z. \exists y. ((p(x) \land \neg q(x)) \lor (\neg p(y) \lor q(z)))$

becomes

$\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

This formula contains existentials and is therefore not yet in clausal form

Transforming a PNF to a logically equivalent PCNF is straightforward We apply the distributive laws from propositional logic

 $\exists x. \forall z. \exists y. ((p(x) \land \neg q(x)) \lor (\neg p(y) \lor q(z)))$

becomes

 $\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

This formula contains existentials and is therefore not yet in clausal form

Transforming a PNF to a logically equivalent PCNF is straightforward We apply the distributive laws from propositional logic

 $\exists x. \forall z. \exists y. ((p(x) \land \neg q(x)) \lor (\neg p(y) \lor q(z)))$

becomes

 $\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

This formula contains existentials and is therefore not yet in clausal form

III: Transforming into Clausal Form (Skolemization)

$\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

For every existential quantifier $\exists v$ in the PCNF, let u_1, \ldots, u_n be the universally quantified variables preceding $\exists v$,

- 1. introduce a fresh function symbol f_v with arity n and $(sort(u_1), \ldots sort(u_n), sort(v))$
- 2. delete $\exists v$ and replace every occurrence of v by $f_v(u_1, \ldots, u_n)$
$\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

For every existential quantifier $\exists v$ in the PCNF, let u_1, \ldots, u_n be the universally quantified variables preceding $\exists v$,

- 1. introduce a fresh function symbol f_v with arity n and $(\operatorname{sort}(u_1), \ldots, \operatorname{sort}(v_n), \operatorname{sort}(v))$
- 2. delete $\exists v$ and replace every occurrence of v by $f_v(u_1, \ldots, u_n)$

 $\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

For every existential quantifier $\exists v$ in the PCNF, let u_1, \ldots, u_n be the universally quantified variables preceding $\exists v$,

- 1. introduce a fresh function symbol f_v with arity n and $(\operatorname{sort}(u_1), \ldots, \operatorname{sort}(u_n), \operatorname{sort}(v))$
- 2. delete $\exists v$ and replace every occurrence of v by $f_v(u_1, \ldots, u_n)$

For the formula above, introduce nullary function (i.e., a constant) symbol f_x and unary function symbol f_y for $\exists x$ and $\exists y$, respectively

 $\forall z. ((p(f_x) \lor \neg p(f_y(z)) \lor q(z)) \land (\neg q(f_x) \lor \neg p(f_y(z)) \lor q(z))$

 $\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

For every existential quantifier $\exists v$ in the PCNF, let u_1, \ldots, u_n be the universally quantified variables preceding $\exists v$,

- 1. introduce a fresh function symbol f_v with arity n and $(\operatorname{sort}(u_1), \ldots, \operatorname{sort}(u_n), \operatorname{sort}(v))$
- 2. delete $\exists v$ and replace every occurrence of v by $f_v(u_1, \ldots, u_n)$

The functions f_v are called *Skolem functions* and the process of replacing existential quantifiers by functions is called *Skolemization*

 $\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$

For every existential quantifier $\exists v$ in the PCNF, let u_1, \ldots, u_n be the universally quantified variables preceding $\exists v$,

- 1. introduce a fresh function symbol f_v with arity n and $(\operatorname{sort}(u_1), \ldots, \operatorname{sort}(u_n), \operatorname{sort}(v))$
- 2. delete $\exists v$ and replace every occurrence of v by $f_v(u_1, \ldots, u_n)$

The functions f_v are called *Skolem functions* and the process of replacing existential quantifiers by functions is called *Skolemization*

Note: Technically, the resulting formula is no longer a Σ -formula, but a Σ_E -formula, where $\Sigma_E^S = \Sigma^S$ and $\Sigma_E^F = \Sigma^F \cup \bigcup_v \{f_v\}$

Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of clauses

Example:

$\forall z. ((p(f(z)) \lor \neg p(g(z)) \lor q(z)) \land (\neg q(f(z)) \lor \neg p(g(z)) \lor q(z)))$

can be written as

$\Delta := \{ \{ \rho(f(z)), \neg \rho(g(z)), q(z) \}, \{ \neg q(f(z)), \neg \rho(g(z)), q(z) \} \}$

Traditionally, theorem provers for FOL use the latter version of the clausal form

Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of clauses

Example:

 $\forall z. ((p(f(z)) \lor \neg p(g(z)) \lor q(z)) \land (\neg q(f(z)) \lor \neg p(g(z)) \lor q(z))$

can be written as

 $\Delta := \{ \{ p(f(z)), \neg p(g(z)), q(z) \}, \{ \neg q(f(z)), \neg p(g(z)), q(z) \} \}$

Traditionally, theorem provers for FOL use the latter version of the clausal form

Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form unambiguously as a set of clauses

Example:

 $\forall z. ((p(f(z)) \lor \neg p(g(z)) \lor q(z)) \land (\neg q(f(z)) \lor \neg p(g(z)) \lor q(z))$

can be written as

 $\Delta := \{ \{ p(f(z)), \neg p(g(z)), q(z) \}, \{ \neg q(f(z)), \neg p(g(z)), q(z) \} \}$

Traditionally, theorem provers for FOL use the latter version of the clausal form

Recall: The satisfiability proof system consisting of the rules below is sound, complete and terminating for clause sets in PL

RESOLVE

$$C_1, C_2 \in \Delta$$
 $p \in C_1$
 $\neg p \in C_2$
 $C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$
 $C \notin \Delta \cup \Phi$
 $\Delta := \Delta \cup \{C\}$

 CLASH
 $C \in \Delta$
 $p, \neg p \in C$

 UNSAT
 $C \in \Delta$
 $p, \neg p \in C$

 UNSAT
 $\{C \in \Delta$
 $p, \neg p \in C$

 UNSAT
 SAT

 No other rules apply

 SAT

Can we extend this proof system to FOL?

Recall: The satisfiability proof system consisting of the rules below is sound, complete and terminating for clause sets in PL

RESOLVE

$$C_1, C_2 \in \Delta$$
 $p \in C_1$
 $\neg p \in C_2$
 $C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$
 $C \notin \Delta \cup \Phi$
 $\Delta := \Delta \cup \{C\}$

 CLASH
 $C \in \Delta$
 $p, \neg p \in C$

 UNSAT
 $C \in \Delta$
 $p, \neg p \in C$

 UNSAT
 Sat
 No other rules apply

Can we extend this proof system to FOL?

Consider the FOL clause set below where x, z are variables and a is a constant symbol

$\Delta := \{ \{ \neg P(z), Q(z) \}, \{ P(a) \}, \{ \neg Q(x) \} \}$

Note that \triangle is equivalent to $\forall z. (P(z) \Rightarrow Q(z)) \land P(a) \land \forall x. \neg Q(x)$, which is unsatisfiable

However, no rules above apply to Δ

Consider the FOL clause set below where x, z are variables and a is a constant symbol

 $\Delta := \{ \{\neg P(z), Q(z)\}, \{P(a)\}, \{\neg Q(x)\} \}$

Note that \triangle is equivalent to $\forall z$. ($P(z) \Rightarrow Q(z)$) $\land P(a) \land \forall x \Rightarrow Q(x)$, which is unsatisfiable

However, no rules above apply to Δ

Consider the FOL clause set below where x, z are variables and a is a constant symbol

 $\Delta := \{ \{\neg P(z), Q(z)\}, \{P(a)\}, \{\neg Q(x)\} \}$

Note that Δ is equivalent to $\forall z. (P(z) \Rightarrow Q(z)) \land P(a) \land \forall x. \neg Q(x)$, which is unsatisfiable

However, no rules above apply to Δ

Consider the FOL clause set below where x, z are variables and a is a constant symbol

 $\Delta := \{ \{\neg P(z), Q(z)\}, \{P(a)\}, \{\neg Q(x)\} \}$

Note that Δ is equivalent to $\forall z. (P(z) \Rightarrow Q(z)) \land P(a) \land \forall x. \neg Q(x)$, which is unsatisfiable

However, no rules above apply to \triangle

Consider the FOL clause set below where x, z are variables and a is a constant symbol

 $\Delta := \{ \{\neg P(z), Q(z)\}, \{P(a)\}, \{\neg Q(x)\} \}$

Note that Δ is equivalent to $\forall z. (P(z) \Rightarrow Q(z)) \land P(a) \land \forall x. \neg Q(x)$, which is unsatisfiable

However, no rules above apply to \triangle

Example: $C_1 : \{ \neg P(z), Q(z) \} = C_2 : \{ P(a) \} = C_3 : \{ \neg Q(x) \}$

Φ		
{ }	$\{C_1, C_2, C_3\}$	

Example: $C_1 : \{\neg P(z), Q(z)\} \quad C_2 : \{P(a)\} \quad C_3 : \{\neg Q(x)\}$

Φ	Δ	
{ }	$\{C_1, C_2, C_3\}$	
{ }	$\{C_1, C_2, C_3, C_4: \{\neg P(a), Q(a)\}\}$	by INST on C_1 with $z \leftarrow a$
{ }	$\{C_1, C_2, C_3, C_4, C_5: \{Q(a)\}\}$	by Resolve on C_2, C_4
{ }	$\{C_1, C_2, C_3, C_4, C_5, C_6: \{\neg Q(a)\}\}$	by INST on C_3 with $x \leftarrow a$

Example: $C_1 : \{\neg P(z), Q(z)\} \quad C_2 : \{P(a)\} \quad C_3 : \{\neg Q(x)\}$

Example: $C_1 : \{\neg P(z), Q(z)\} \quad C_2 : \{P(a)\} \quad C_3 : \{\neg Q(x)\}$

Φ	Δ	
{ }	$\{C_1, C_2, C_3\}$	
{ }	$\{C_1, C_2, C_3, C_4: \{\neg P(a), Q(a)\}\}$	by INST on C_1 with $z \leftarrow a$
{ }	$\{C_1, C_2, C_3, C_4, C_5: \{Q(a)\}\}$	by Resolve on C_2, C_4
{ }	$\{C_1, C_2, C_3, C_4, C_5, C_6: \{\neg Q(a)\}\}$	by INST on C_3 with $x \leftarrow a$
{ }	$\{C_1, C_2, C_3, C_4, C_5, C_6, C_7: \{\}\}$	by Resolve on <i>C</i> ₅ , <i>C</i> ₆
	UNSAT	by UNSAT on C ₇

This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set Δ_0 is unsatisfiable, there is a derivation of UNSAT from Δ_0

This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set Δ_0 is unsatisfiable, there is a derivation of UNSAT from Δ_0

The system is also solution-sound:

• There is a derivation of SAT from Δ_0 only if Δ_0 is satisfiable

This system is refutation-sound and complete for FOL clause sets without equality:

• If a clause set Δ_0 is unsatisfiable, there is a derivation of UNSAT from Δ_0

The system is **not**, and cannot be, **terminating**:

• if Δ_0 is satisfiable, it is possible for **SAT** to never apply

Note: This proof system is challenging to implement efficiently because **INST** is not constrained enough

Automated theorem provers for FOL use instead a more sophisticated **Resolve** rule

where two literals in different clauses are instantiated directly, and only as needed, to make them complementary (see ML Chap. 10)

Automated theorem provers for FOL use instead a more sophisticated **Resolve** rule where two literals in different clauses are instantiated directly, and only as needed, to make them complementary (see ML Chap. 10)

Example: $\{P(x, y), Q(a, f(y))\}$, $\{\neg Q(z, f(b)), R(g(z))\}$ resolve to $\{P(x, b), R(g(a))\}$

Problem: How do we prove the unsatisfiability of these clause sets?

 $\{\{x \doteq y\}, \{\neg(y \doteq x)\}\} \{\{x \doteq y\}, \{y \doteq z\}, \{\neg(x \doteq z)\}\} \{\{x \doteq y\}, \{\neg(f(x) \doteq f(y))\}\}$

Problem: How do we prove the unsatisfiability of these clause sets?

 $\{\{x \doteq y\}, \{\neg(y \doteq x)\}\} = \{\{x \doteq y\}, \{y \doteq z\}, \{\neg(x \doteq z)\}\} = \{\{x \doteq y\}, \{\neg(f(x) \doteq f(y))\}\}$

We need specialized rules for equality reasoning!

Another Problem: How to we prove the unsatisfiability of these clause sets?

 $\{\{x < x\}\} \quad \{\{x < y\}, \{y < z\}, \{\neg(x < z)\}\} \quad \{\{\neg(x + y \doteq y + x)\}\} \quad \{\{\neg(x + 0 \doteq x)\}\}$

Another Problem: How to we prove the unsatisfiability of these clause sets?

 $\{\{x < x\}\} \quad \{\{x < y\}, \{y < z\}, \{\neg(x < z)\}\} \quad \{\{\neg(x + y \doteq y + x)\}\} \quad \{\{\neg(x + 0 \doteq x)\}\}$

The thing is: each of these clause set is actually satisfiable in FOL!

Another Problem: How to we prove the unsatisfiability of these clause sets?

 $\{\{x < x\}\} \ \{\{x < y\}, \{y < z\}, \{\neg(x < z)\}\} \ \{\{\neg(x + y \doteq y + x)\}\} \ \{\{\neg(x + 0 \doteq x)\}\}$

The thing is: each of these clause set is actually satisfiable in FOL!

However, they are unsatisfiable in the theory of arithmetic

Another Problem: How to we prove the unsatisfiability of these clause sets?

 $\{\{x < x\}\} \ \{\{x < y\}, \{y < z\}, \{\neg(x < z)\}\} \ \{\{\neg(x + y \doteq y + x)\}\} \ \{\{\neg(x + 0 \doteq x)\}\}$

We need proof systems for satisfiability modulo theories